WorldWideScience

Sample records for beam dynamics simulation

  1. Advanced Beam-Dynamics Simulation Tools for RIA

    CERN Document Server

    Garnett, Robert; Crandall, Kenneth; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D; Wangler, Thomas; York, Richard; Zhao, Qiang

    2005-01-01

    Understanding beam losses is important for the high-intensity RIA driver linac. Small fractional beam losses can produce radioactivation of the beamline components that can prevent or hinder hands-on maintenance, reducing facility availability. Operational and alignment errors in the RIA driver linac can lead to beam losses caused by irreversible beam-emittance growth and halo formation. We are developing multiparticle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles for the beam-loss calculations. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, and beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for h...

  2. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  3. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-12-31

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H{sup {minus}} pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 {beta}{lambda} structure to a CCDTL operated at 805 MHz with a 12 {beta}{lambda} structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large ({+-}500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac.

  4. Beam dynamics simulations for linacs driving short-wavelength FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M.; Tazzioli, F. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori nazionali di Frascati; Serafini, L. [Milan Univ., Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan (Italy)

    1999-07-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV).

  5. Many-beam dynamical simulation of electron backscatter diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)], E-mail: winkelm@mpi-halle.mpg.de; Trager-Cowan, Carol; Sweeney, Francis [Department of Physics, University of Strathclyde, Glasgow G4 ONG, Scotland (United Kingdom); Day, Austin P. [Aunt Daisy Scientific Ltd., Dixton Rd., Monmouth, Gwent, NP25 3PP (United Kingdom); Parbrook, Peter [EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2007-04-15

    We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{l_brace}0001{r_brace} at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

  6. Dynamic simulation and efficiency analysis of beam pumping system

    Institute of Scientific and Technical Information of China (English)

    邢明明; 董世民; 童志雄; 田然凤; 陈慧玲

    2015-01-01

    An improved whole model of beam pumping system was built. In the detail, for surface transmission system (STS), a new mathematical model was established considering the influence of some factors on the STS’s torsional vibration, such as the time variation characteristic of equivalent stiffness of belt and equivalent rotational inertia of crank. For the sucker rod string (SRS), an improved mathematical model was built considering the influence of some parameters on the SRS’s longitudinal vibration, such as the nonlinear friction of plunger, hydraulic loss of pump and clearance leakage. The dynamic response and system efficiency of whole system were analyzed. The results show that there is a jumping phenomenon in the amplitude frequency curve, and the system.

  7. Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation

    Institute of Scientific and Technical Information of China (English)

    Qing-Tao Wang; Qiang Tian; Hai-Yan Hu

    2016-01-01

    Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The inter-nal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient con-tact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previ-ously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the pro-posed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.

  8. Time series analysis of Coulomb collisions in a beam dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vivoli, A. [Dipartimento di Fisica Universita di Bologna and INFN, Bologna, Via Irnerio 46, 40126 (Italy)]. E-mail: vivoli@bo.infn.it; Benedetti, C. [Dipartimento di Fisica Universita di Bologna and INFN, Bologna, Via Irnerio 46, 40126 (Italy); Turchetti, G. [Dipartimento di Fisica Universita di Bologna and INFN, Bologna, Via Irnerio 46, 40126 (Italy)

    2006-06-01

    In this paper, a time series analysis of collisional effects in a numerical simulation of a coasting beam transverse dynamics is presented. The simulation performs a numerical integration of the Hamilton's equations of a two-dimensional system of particles, describing the transverse dynamics of the beam. Then, an analysis of the time series generated has been applied in order to describe the dynamics of the system by means of the mean field equations, with the addition of a stochastic process in order to model Coulomb collisions.

  9. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  10. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; XU Meng-Xin; HE Shou-Bo; XIA Jia-Wen; HE Yuan; YUAN You-Jin; LU Yuan-Rong; LIU Yong; WANG Zhi-Jun; DU Xiao-Nan; YAO Qing-Gao; LIU Ge

    2012-01-01

    A new linear accelerator system,called the SSC-Linac injector,is being designed at HIRFL (the heavy ion research facility of Lanzhou).As part of the SSC-Linac,the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles,a re-buncher and a diagnose box.The total length of this segment is about 1.75 m.The beam dynamics simulation in MEBT has been studied using the TRACK 3D particlein-cell code,and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces,and that most of the particles can be captured by the final sector focusing cyclotronfor further acceleration.The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail,and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  11. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Science.gov (United States)

    Xiao, Chen; He, Yuan; Yuan, You-Jin; Lu, Yuan-Rong; Liu, Yong; Wang, Zhi-Jun; Du, Xiao-Nan; Yao, Qing-Gao; Liu, Ge; Xu, Meng-Xin; He, Shou-Bo; Xia, Jia-Wen

    2012-01-01

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle-in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  12. Simulation of high energy photoelectron diffraction using many-beam dynamical Kikuchi-band theory

    Science.gov (United States)

    Winkelmann, Aimo; Schröter, Bernd; Richter, Wolfgang

    2004-06-01

    We use the many-beam dynamical theory of electron diffraction for the calculation of x-ray photoelectron diffraction (XPD) patterns of the substrate emission. The reciprocity principle is used to apply a Bloch wave model for the diffraction of an incoming plane wave by a three-dimensional crystal. In this way, many-beam dynamical simulations of XPD in the context of Kikuchi-band theory can be carried out. This extends the results of the two-beam theory used so far and leads to quantitative descriptions of XPD patterns in the picture of photoelectrons reflected by lattice planes. The effects of forward scattering directions, substrate polarity, circular structures due to onedimensional diffraction, and emitter specific extinction of Kikuchi lines can be reproduced by Kikuchi-band theory. The results are compared with single scattering cluster calculations. In this way, the equivalence of the cluster approach and the Kikuchi-band picture can be demonstrated completely in both directions

  13. Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector

    CERN Document Server

    Kurennoy, Sergey S

    2004-01-01

    A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.

  14. Myocardial physiology measurements using contrast enhanced dynamic computed tomography: simulation of beam hardening effect

    Science.gov (United States)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun

    2006-03-01

    Initial animal study for quantifying myocardial physiology through contrast-enhanced dynamic x-ray CT suggested that beam hardening is one of the limiting factors for accurate regional physiology measurement. In this study, a series of simulations were performed to investigate its deterioration effects and two correction algorithms were adapted to evaluate for their efficiency in improving the measurements. The simulation tool consists of a module simulating data acquisition of a real polyenergetic scanner system and a heart phantom consisting of simple geometric objects representing ventricles and myocardium. Each phantom component was modeled with time-varying attenuation coefficients determined by ideal iodine contrast dynamic curves obtained from experimental data or simulation. A compartment model was used to generate the ideal myocardium contrast curve using physiological parameters consistent with measured values. Projection data of the phantom were simulated and reconstructed to produce a sequence of simulated CT images. Simulated contrast dynamic curves were fitted to the compartmental model and the resultant physiological parameters were compared with ideal values to estimate the errors induced by beam hardening artifacts. The simulations yielded similar deterioration patterns of contrast dynamic curves as observed in the initial study. Significant underestimation of left ventricle curves and corruption of regional myocardium curves result in systematic errors of regional perfusion up to approximately 24% and overestimates of fractional blood volume (f iv) up to 13%. The correction algorithms lead to significant improvement with errors of perfusion reduced to 7% and errors of f iv within 2% which shows promise for more robust myocardial physiology measurement.

  15. End-to-End Beam Dynamics Simulations for the ANL-RIA Driver Linac

    CERN Document Server

    Ostroumov, P N

    2004-01-01

    The proposed Rare Isotope Accelerator (RIA) Facility consists of a superconducting (SC) 1.4 GV driver linac capable of producing 400 kW beams of any ion from hydrogen to uranium. The driver is configured as an array of ~350 SC cavities, each with independently controllable rf phase. For the end-to-end beam dynamics design and simulation we use a dedicated code, TRACK. The code integrates ion motion through the three-dimensional fields of all elements of the driver linac beginning from the exit of the electron cyclotron resonance (ECR) ion source to the production targets. TRACK has been parallelized and is able to track large number of particles in randomly seeded accelerators with misalignments and a comprehensive set of errors. The simulation starts with multi-component dc ion beams extracted from the ECR. Beam losses are obtained by tracking up to million particles in hundreds of randomly seeded accelerators. To control beam losses a set of collimators is applied in designated areas. The end-to-end simulat...

  16. BEAM DYNAMICS SIMULATIONS OF SARAF ACCELERATOR INCLUDING ERROR PROPAGATION AND IMPLICATIONS FOR THE EURISOL DRIVER

    CERN Document Server

    J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)

    AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.

  17. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  18. Beam dynamics simulations in laser electron storage rings and optical stochastic cooling

    Science.gov (United States)

    Duru, Alper

    Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.

  19. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  20. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey

    2016-01-01

    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  1. Numerical Simulation of Dynamic Response of Fiber Reinforced Ceramic Matrix Composite Beam with Matrix Cracks Using Multiscale Modeling

    Institute of Scientific and Technical Information of China (English)

    Gao Xiguang; Song Yingdong; Sun Zhigang; Hu Xuteng

    2010-01-01

    A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed.At the global level,the finite element method is employed to simulate the dynamic response ofa CMC beam.While at the local level,the multiscale mechanical method is used to estimate the stress/strain response of the material.A distributed computing system is developed to speed up the simulation.The simulation of dynamic response of a Nicalon/CAS-Ⅱ beam being subjected to harmonic loading is performed as a numerical example.The results show that both the stress/strain responses under tension and compressive loading are nonlinear.These conditions result in a different response compared with that of elastic beam,such as:1) the displacement response is not symmetric about the axis of time;2) in the condition of small external load,the response at first order natural frequency is limited within a finite range;3) decreasing the matrix crack space will increase the displacement response of the beam.

  2. Nonlinear Dynamics of High-Brightness Electron Beams and Beam-Plasma Interactions: Theories, Simulations, and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Bohn (deceased), P. Piot and B. Erdelyi

    2008-05-31

    According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.

  3. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  4. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  5. Physical simulation of the long-term dynamic action of a plasma beam on a space debris object

    Science.gov (United States)

    Shuvalov, Valentin A.; Gorev, Nikolai. B.; Tokmak, Nikolai A.; Kochubei, Galina S.

    2017-03-01

    A methodology is developed for physical (laboratory) simulation of the long-term dynamic action of plasma beam high-energy ions on a space debris object with the aim of removing it to a lower orbit followed by its burning in the Earth's atmosphere. The methodology is based on the use of a criterion for the equivalence of two plasma beam exposure regimes (in the Earth' ionosphere and in laboratory conditions) and an accelerated test procedure in what concerns space debris object material sputtering and space debris object erosion by a plasma beam in the Earth's ionosphere. The space debris coating material (blanket thermal insulation) sputtering yield and normal and tangential momentum transfer coefficients are determined experimentally as a function of the ion energy and the ion beam incidence angle.

  6. Simulation of crystalline beams in storage rings using molecular dynamics technique

    Science.gov (United States)

    Meshkov, I.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.

    2006-03-01

    Achieving very low temperatures in the beam rest frame can present new possibilities in accelerator physics. Increasing luminosity in the collider and in experiments with targets is a very important asset for investigating rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M [Budker, et al., in: Proceedings of the 4th All-Union Conference on Charged-Particle Accelerators [in Russian], vol. 2, Nauka, Moscow, 1975, p. 309; Budker et al., Part. Accel. 7 (1976) 197; Budker et al., At. Energ. 40 (1976) 49. E. Dementev, N. Dykansky, A. Medvedko et al., Prep. CERN/PS/AA 79-41, Geneva, 1979] (Novosibirsk), ESR [M. Steck et al., Phys. Rev. Lett. 77 (1996) 3803] and SIS [Hasse and Steck, Ordered ion beams, in: Proceeding of EPAC '2000] (Darmstadt), CRYRING [Danared et al., Observation of ordered ion beams in CRYRING, in: Proceeding of PAC '2001] (Stockholm) and PALLAS [Schramm et al., in: J.L. Duggan (Eds.), Proceedings of the Conference on Appl. of Acc. in Research and Industry AIP Conference Proceedings, p. 576 (to be published)] (Munich). In this report, the simulation of 1D crystalline beams with BETACOOL code is presented. The sudden reduction of momentum spread in the ESR experiment is described with this code. Simulation shows good agreement with experimental results and also with the intrabeam scattering (IBS) theory [Martini, Intrabeam scattering in the ACOOL-AA machines, CERN PS/84-9 AA, Geneva, 1984]. The code was used to calculate characteristics of the ordered state of ion beams for the TARN-II [Katayama, TARN II project, in: Proceedings of the IUCF workshop on nuclear physics with stored cooled beams, Spencer, IN, USA, 1984].

  7. A transport model and numerical simulation of the high-frequency dynamics of three-dimensional beam trusses.

    Science.gov (United States)

    Le Guennec, Yves; Savin, Éric

    2011-12-01

    The theory of microlocal analysis shows that the energy density associated with the high-frequency vibrations of a three-dimensional Timoshenko beam satisfies a Liouville-type transport equation. In the present application, the material of the beam is assumed to be isotropic. Its parameters are allowed to vary along the beam axis at length scales much larger than the wavelength of the high-frequency waves traveling in it. Moreover, the curvature and torsion of the beam are accounted for. The first part of the paper focuses on the derivation of the transport model for a single three-dimensional beam. In order to extend this model to beam trusses, the reflection/transmission phenomena of the energy fluxes at junctions of beams are described by power flow reflection/transmission operators in a subsequent part. For numerical simulations, a discontinuous Galerkin finite element method is used on account of the discontinuities of the energy density field at the junctions. Thus, a complete mechanical-numerical modeling of the linear transient dynamics of beam trusses is proposed. It is illustrated by numerical examples highlighting some remarkable features of high-frequency vibrations: The onset of a diffusive regime characterized by energy equipartition rules at late times. Energy diffusion is prompted by the multiple reflection/transmission of waves at the junctions, with possible mode (polarization) conversions. This is the regime applicable to the statistical energy analysis of structural acoustics systems. The main purpose of this research is to develop an effective strategy to simulate and predict the transient response of beam trusses impacted by acoustic or mechanical shocks.

  8. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Giuliano, Paul N.; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  9. Beam dynamics simulation of HEBT for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ni; YUAN You-Jin; XIAO Chen; HE Yuan; WANG Zhi-Jun; SHENG Li-Na

    2012-01-01

    The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u.As a part of the SSC-linac injector,the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code.The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system.The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration.The dispersion is eliminated absolutely in the HEBT.The space-charge effect calculated by the Track code is inconspicuous.According to the simulation,more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.

  10. Numerical Simulations of Nonlinear Dynamics of Electron Cyclotron Maser with a Straight Beam

    Institute of Scientific and Technical Information of China (English)

    KONG Ling-Bao; HOU Zhi-Ling

    2011-01-01

    An electron cyclotron maser based on anomalous Doppler effect (ADECM) with an initially axial beam velocity is considered,and the nonlinear equation of beam-wave interaction is presented.With the numerical methods,the nonlinear dynamics of the ADECM is investigated.It is shown that the saturated interaction efficiency of the ADECM approaches 90% and the interaction length for the saturated efficiency spans about 5-20cm.The results may be of importance for designing a compact device in applications in microwave generations or microwave heating of ceramic laminates.In the late 1950s,the theoretical studies on the instability of electron cyclotron maser based on normal Doppler effect (NDECM) were performed almost simultaneously by Gaponov,[1] Twiss,[2] and Schneider.[3] Their discoveries have resulted in the most successful fast-wave devices such as the gyrotron and variants.[4,5] The possible applications of microwaves span a wide range of technologies such as in thermonuclear fusion energy,charged particle accelerations,radar systems,and processing of advanced ceramics.[6-16]%An electron cyclotron maser based on anomalous Doppler effect (ADECM) with an initially axial beam velocity is considered, and the nonlinear equation of beam-wave interaction is presented. With the numerical methods, the nonlinear dynamics of the ADECM is investigated. It is shown that the saturated interaction efficiency of the ADECM approaches 90% and the interaction length for the saturated efficiency spans about 5-20 cm. The results may be of importance for designing a compact device in applications in microwave generations or microwave heating of ceramic laminates.

  11. Molecular dynamics simulation of ion-beam-amorphization of Si, Ge and GaAs

    CERN Document Server

    Nord, J D; Keinonen, J

    2002-01-01

    We use molecular dynamics simulations to study ion-irradiation-induced amorphization in Si, Ge and GaAs using several different interatomic force models. We find that the coordination number is higher, and the average bond length longer, for the irradiated amorphous structures than for the molten ones in Si and Ge. For amorphous GaAs, we suggest that longer Ga-Ga bonds, also present in pure Ga, are produced during the irradiation. In Si the amorphization is found to proceed via growth of amorphous regions, and low energy recoils are found to induce athermal recrystallization during irradiation.

  12. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending

  13. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  14. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  15. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  16. Beam dynamic simulations of the CLIC crab cavity and implications on the BDS

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R., E-mail: ian.shinton@stfc.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Burt, G. [Engineering Department, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Glasman, C.J.; Jones, R.M. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Wolski, A. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom)

    2011-11-21

    The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as 'Crab cavities', are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.

  17. Establishing an Initial Electron Beam Model with Monte Carlo Simulation for a Single 6 MV X-ray Medical Linac Based on Particle Dynamics Characteristics

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-bin; KONG Xiao-xiao; LI Quan-feng; LIN Xiao-qi; BAO Shang-lian

    2009-01-01

    Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation (TRSV) for the single 6 MV X-ray accelerating waveguide of BJ- 6 medical linac. Methods and Materials:1. We adapted the treatment head configuration of BJ- 6 medical linac made by Beijing Medical Equipment Institute (BMEI) as the radiation system for this study. 2. Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum, the spatial intensity distribution, and the beam incidence angle. 3. Analyze the 6 MV X-ray beam characteristics of PDDc, OARc in a water phantom by using Monte Carlo simulation (BEAMnrc,DOSXYZnrc) for a preset of the initial electron beam parameters which have been determined by TRSV, do the comparisons of the measured results of PDDm, OARm in a real water phantom, and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%. Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%. Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ- 6, modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.

  18. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  19. Simulation of Electron Beam Dynamics in the 22 MeV Accelerator for a Coherent Electron Cooling Proof of Principle Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Justin [Stony Brook Univ., NY (United States)

    2013-12-01

    Coherent electron cooling (CeC) offers a potential new method of cooling hadron beams in colliders such as the Relativistic Heavy Ion Collider (RHIC) or the future electron ion collider eRHIC. A 22 MeV linear accelerator is currently being built as part of a proof of principle experiment for CeC at Brookhaven National Laboratory (BNL). In this thesis we present a simulation of electron beam dynamics including space charge in the 22 MeV CeC proof of principle experiment using the program ASTRA (A Space charge TRacking Algorithm).

  20. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  1. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  2. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  3. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  4. Beam Dynamics Studies for the SPARC Project

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M.; Biagini, Maria E.; Boscolo, M.; Fusco, V.; Guiducci, S.; Migliorati, M.; Serafini, L.; Vaccarezza, C.; Bartolini, R.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Limborg, C.G.; /Unlisted /Unlisted /ENEA, Frascati /SLAC

    2008-03-17

    The aim of the SPARC project, is to promote an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments. We discuss in this paper the status of the beam dynamics simulation activities.

  5. Detailed magnetic model simulations of the H- injection chicane magnets for the CERN PS Booster Upgrade, including eddy currents and influence on beam dynamics

    CERN Document Server

    Benedetto, E; Borburgh, J; Carli, C; Martini, M; Forte, V

    2014-01-01

    The CERN PS Booster will be upgraded with an H- injection system. The chicanemagnets for the injection bump ramp-down in 5 ms and generate eddy currents in the inconel vacuum chamber which perturb the homogeneity of the magnetic field. The multipolar field components are extracted from 3D OPERA simulations and are included in the lattice model. The -beating correction is computed all along the ramp and complete tracking simulations including space-charge are performed to evaluate the impact of these perturbations and correction on beam dynamics.

  6. A contemporary guide to beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Forest, E. [Lawrence Berkeley Lab., CA (United States); Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1992-09-01

    A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases.

  7. RIA Beam Dynamics Comparing TRACK to IMPACT

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D

    2005-01-01

    In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and I...

  8. TRACK The New Beam Dynamics Code

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Schnirman-Lessner, Eliane

    2005-01-01

    The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and ...

  9. Beam simulations for IRE and driver--status and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex E-mail: af@llnl.gov; Grote, David P.; Lee, Edward P.; Sonnendrucker, Eric

    2001-05-21

    The methods and codes employed in the US Heavy Ion Fusion program to simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are presented in overview. A new family of models incorporating accelerating module impedance, multi-beam, and self-magnetic effects is described, and initial WARP3D particle simulations of beams using these models are presented. Finally, plans for streamlining the machine-design simulation sequence, and for simulating beam dynamics from the source to the target in a consistent and comprehensive manner, are described.

  10. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  11. Nonlinear dynamic characteristic analysis of jointed beam with clearance

    Science.gov (United States)

    Zhang, Jing; Guo, Hong-Wei; Liu, Rong-Qiang; Wu, Juan; Kou, Zi-Ming; Deng, Zong-Quan

    2016-12-01

    The impact and elasticity of discontinuous beams with clearance frequently affect the dynamic response of structures used in space missions. This study investigates the dynamic response of jointed beams which are the periodic units of deployable structures. The vibration process of jointed beams includes free-play and impact stages. A method for the dynamic analysis of jointed beams with clearance is proposed based on mode superposition and instantaneous static deformation. Transfer matrix, which expresses the relationship of the responses before and after the impact of jointed beams, is derived to calculate the response of the jointed beams after a critical position. The dynamic responses of jointed beams are then simulated. The effects of various parameters on the displacement and velocity of beams are investigated.

  12. Microwave measurements and beam dynamics simulations of the BNL/SLAC/UCLA emittance-compensated 1.6-cell photocathode rf gun

    Science.gov (United States)

    Palmer, Dennis T.; Miller, Roger H.; Winick, Herman; Wang, Xi J.; Batchelor, Kenneth; Woodle, Martin H.; Ben-Zvi, Ilan

    1995-09-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. Microwave measurements of the 1.6 cell photocathode RF gun have been conducted along with beam dynamics simulations of the emittance compensated low energy beam. These simulations indicate that the 1.6 cell photocathode RF gun in combination with solenoidal emittance compensation will be capable of producing a high brightness beam with a normalization rms emittance of (epsilon) n,rms approximately equals 1 (pi) mm mrad. The longitudinal accelerating field Ez has been measured as a function of azimuthal angle in the full cell of the cold test model for the 1.6 cell BNL/SLAC/UCLA #3 S-band RF Gun using a needle rotation/frequency perturbation technique. These measurements were conducted before and after symmetrizing the full cell with a vacuum pump out port and an adjustable short. Two different waveguide to full cell coupling schemes were studied. Experimental and theoretical studies of the field balance versus mode separation were conducted. The dipole mode of the full cell using the (theta) - coupling scheme is an order of magnitude less severe before symmetrization than the Z- coupling scheme. The multi-pole contribution to the longitudinal field asymmetry are calculated using standard Fourier series techniques for both coupling schemes. The Panofsky- Wenzel theorem is used in estimating the transverse emittance due to the multipole components of Ez. Detailed beam dynamics simulations were performed for the 1.6 cell photocathode RF gun injector using a solenoidal emittance compensation technique. The design of the experimental line along with a proposed experimental program using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. This experimental program includes measurements of beam loading caused

  13. Dynamic Bowtie for Fan-beam CT

    CERN Document Server

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  14. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  15. Multisymplectic Integration for Beam and Plasma Simulations

    Science.gov (United States)

    Webb, Stephen; RadiaSoft, LLC Team

    2015-11-01

    Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.

  16. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; /SLAC; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  17. Dynamic Simulation of Torsion Beam Bracket%扭力梁安装支座动力学仿真分析

    Institute of Scientific and Technical Information of China (English)

    王亚南; 宋纪侠; 王彦

    2012-01-01

    In the paper,some torsion beam bracket is simulated with the help of dynamics software Adams/ride and Adams/car.According to contrast,we can conclude that the analysis result of torsion beam bracket in rear suspension assembly Adams/car is the same as that in whole vehicle Adams/ride.And then rear suspension assembly is simulated under different work conditions,and then the main cause of carling outrigger breakage is found out.%运用Adams/ride和Adams/car软件对某车型扭力梁安装支座进行动力学仿真分析。对比分析可知,运用Adams/car对后悬架系统进行扭力梁安装支座的受力分析基本能够模拟其在整车状态下Adams/ride的受力分析。进而对后悬架系统在不同工况下进行受力分析,找出纵梁舷外支架开裂的主要原因。

  18. Simulation of bending stress variation in long buried thick-walled pipes under the earth’s movement using combined linear dynamics and beam theories

    Directory of Open Access Journals (Sweden)

    Salau Tajudeen A.O.

    2014-01-01

    Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.

  19. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  20. Beam dynamics issues for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set.

  1. High-Performance Beam Simulator for the LANSCE Linac

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

    2012-05-14

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  2. Beam-beam simulation code BBSIM for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab

    2011-01-01

    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.

  3. Spacecraft Dynamic Characteristics While Deploying Flexible Beams

    Institute of Scientific and Technical Information of China (English)

    程绪铎; 李俊峰; 樊勇; 王照林

    2002-01-01

    The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.

  4. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad

    2016-01-01

    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  5. Beam-Beam Simulations with GUINEA-PIG

    CERN Document Server

    Schulte, Daniel

    1998-01-01

    While the bunches in a linear collider cross only once, due to their small size they experience a strong beam-beam effect. GUINEA-PIG is a code to simulate the impact of this effect on luminosity and back ground. A short overview of the program is given with examples of its application to the back ground strudies for TESLA, the top quark threshold scan and a possible luminosity monitor, as well as some results for CLIC.

  6. Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

    Indian Academy of Sciences (India)

    S C L Srivastava; S V L S Rao; P Singh

    2007-10-01

    A code for 2D space-charge dominated beam dynamics study in beam transport lines is developed. The code is used for particle-in-cell (PIC) simulation of -uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam. Numerical techniques as well as the results of beam dynamics studies are presented in the paper.

  7. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    CERN Document Server

    Fraser, M A; Jones, R M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...

  8. Propagation dynamics of vortices in Helico-Conical optical beams

    CERN Document Server

    Bareza, Nestor

    2015-01-01

    We present the dynamics of optical vortices (OVs) that came from the propagation of helico-conical optical beam. This dynamics is investigated numerically by tracking the OVs at several distances using rigorous scalar diffraction theory. To ensure that our numerical calculations are correct, we compare the intensity profiles and their corresponding interferograms taken at different propagation distances between simulations and experiments. We observe that the peripheral isopolar vortices transport radially inward, toward the optical axis along the transverse spatial space as the beam propagates. When the beam has a central vortex, these vortices have significant induced angular rates of motion about the optical axis. These propagation dynamics of vortices influence the internal energy flow and the wave profile reconstruction of the beam, which can be important when deciding their applications.

  9. SPLinac Computer Simulations of SC Linac RF Systems with Beam

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.

  10. Screw theoretic view on dynamics of spatially compliant beam

    Institute of Scientific and Technical Information of China (English)

    Xi-lun DING; J.M.SELIG

    2010-01-01

    Beams with spatial compliance can be deformed as bending in a plane,twisting,and extending.In terms of the screw theory on rigid body motions,the concept of"deflection screw"is introduced,a spatial compliant beam theory via the deflection screw is proposed,and the spatial compliance of such a beam system is presented and analysed based on the material theory and fundamental kinematic assumptions.To study the dynamics of the spatially compliant beam,the potential energy and the kinetic energy of the beam are discussed by using the screw theory to obtain the Lagrangian.The Rayleigh-Ritz method is used to compute the vibrational frequencies based on discussions of boundary conditions and shape functions.The eigenfrequencies of the beam with spatial compliance are compared with those of individual deformation cases,pure bending,extension,or torsion.Finally,dynamics of a robot with two spatial compliant links and perpendicular joints is studied using the spatial compliant beam theory.Coupling between the joint rigid body motions and the deformations of spatial compliant links can easily be found in dynamic simulation.The study shows the effectiveness of using the screw theory to deal with the problems of dynamic modeling and analysis of mechanisms with spatially compliant links.

  11. A piecewise continuous Timoshenko beam model for the dynamic analysis of tapered beam-like structures

    Science.gov (United States)

    Shen, Ji Yao; Abu-Saba, Elias G.; Mcginley, William M.; Sharpe, Lonnie, Jr.; Taylor, Lawrence W., Jr.

    1992-01-01

    Distributed parameter modeling offers a viable alternative to the finite element approach for modeling large flexible space structures. The introduction of the transfer matrix method into the continuum modeling process provides a very useful tool to facilitate the distributed parameter model applied to some more complex configurations. A uniform Timoshenko beam model for the estimation of the dynamic properties of beam-like structures has given comparable results. But many aeronautical and aerospace structures are comprised of non-uniform sections or sectional properties, such as aircraft wings and satellite antennas. This paper proposes a piecewise continuous Timoshenko beam model which is used for the dynamic analysis of tapered beam-like structures. A tapered beam is divided into several segments of uniform beam elements. Instead of arbitrarily assumed shape functions used in finite element analysis, the closed-form solution of the Timoshenko beam equation is used. Application of the transfer matrix method relates all the elements as a whole. By corresponding boundary conditions and compatible conditions a characteristic equation for the global tapered beam has been developed, from which natural frequencies can be derived. A computer simulation is shown in this paper, and compared with the results obtained from the finite element analysis. While piecewise continuous Timoshenko beam model decreases the number of elements significantly; comparable results to the finite element method are obtained.

  12. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  13. Molecular dynamics simulations

    OpenAIRE

    Tarmyshov, Konstantin B.

    2007-01-01

    Molecular simulations can provide a detailed picture of a desired chemical, physical, or biological process. It has been developed over last 50 years and is being used now to solve a large variety of problems in many different fields. In particular, quantum calculations are very helpful to study small systems at a high resolution where electronic structure of compounds is accounted for. Molecular dynamics simulations, in turn, are employed to study development of a certain molecular ensemble ...

  14. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  15. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    Aleksander Filip Żarnecki

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  16. Dynamical Simulation of Probabilities

    Science.gov (United States)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices(such as random number generators). Self-orgainizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed. Special attention was focused upon coupled stochastic processes, defined in terms of conditional probabilities, for which joint probability does not exist. Simulations of quantum probabilities are also discussed.

  17. Numerical simulation of crystalline ion beams in storage ring

    Science.gov (United States)

    Meshkov, I.; Möhl, D.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.

    2004-10-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (München). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numerical simulation of crystalline beams. The sudden reduction of momentum spread in the ESR experiment is described with this code. The simulation shows a good agreement with the experimental results. The code has then been used to calculate characteristics of the ordered state of ion beams for the MUSES Ion Ring (IR) (MUSES Conceptual Design Report, RIKEN, Japan, 2001) in collider mode. A new strategy of the cooling process is proposed which permits to increase significantly the linear density of the ordered ion beam and thereby the luminosity of electron-ion colliding experiments.

  18. Overview on production and dynamics of high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [INFN-Milano and UCLA Dept. of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, California 90095-1547 (United States)

    1997-02-01

    The advent of laser driven RF Photoinjectors has raised the interest in the beam dynamics associated with intense, quasi-laminar, space charge dominated electron beams: the relevant phenomena observed in such a new regime of beam physics are presented and discussed in this paper. Most of the emphasis is focused on the analysis of the so called emittance correction technique, which is applied in the operation of RF guns in order to enhance the performances of these devices in terms of the attainable beam brightness, i.e., minimizing the beam emittance. A fully analytical description of this process is presented, based on an envelope equation treatment which leads to the concept of {ital invariant envelope}. The implications of such a concept are discussed and specific examples are given to compare the analytical predictions to the results of numerical simulations. {copyright} {ital 1997 American Institute of Physics.}

  19. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  20. Fast Electron Beam Simulation and Dose Calculation

    CERN Document Server

    Trindade, A; Peralta, L; Lopes, M C; Alves, C; Chaves, A

    2003-01-01

    A flexible multiple source model capable of fast reconstruction of clinical electron beams is presented in this paper. A source model considers multiple virtual sources emulating the effect of accelerator head components. A reference configuration (10 MeV and 10x10 cm2 field size) for a Siemens KD2 linear accelerator was simulated in full detail using GEANT3 Monte Carlo code. Our model allows the reconstruction of other beam energies and field sizes as well as other beam configurations for similar accelerators using only the reference beam data. Electron dose calculations were performed with the reconstructed beams in a water phantom and compared with experimental data. An agreement of 1-2% / 1-2 mm was obtained, equivalent to the accuracy of full Monte Carlo accelerator simulation. The source model reduces accelerator simulation CPU time by a factor of 7500 relative to full Monte Carlo approaches. The developed model was then interfaced with DPM, a fast radiation transport Monte Carlo code for dose calculati...

  1. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  2. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  3. Engineering parabolic beams with dynamic intensity profiles.

    Science.gov (United States)

    Ruelas, Adrian; Lopez-Aguayo, Servando; Gutiérrez-Vega, Julio C

    2013-08-01

    We present optical fields formed by superposing nondiffracting parabolic beams with distinct longitudinal wave-vector components, generating light profiles that display intensity fluxes following parabolic paths in the transverse plane. Their propagation dynamics vary depending on the physical mechanism originating interference, where the possibilities include constructive and destructive interference between traveling parabolic beams, interference between stationary parabolic modes, and combinations of these. The dark parabolic region exhibited by parabolic beams permits a straightforward superposition of intensity fluxes, allowing formation of a variety of profiles, which can exhibit circular, elliptic, and other symmetries.

  4. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  5. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm.

  6. Optimal Design of Proposed 800 MeV Proton Cyclotron Beam Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG; Jian-jun; LI; Ming; ZHANG; Tian-jue; SONG; Guo-fang; AN; Shi-zhong

    2015-01-01

    The high intensity beam dynamic simulation shows that the theoretic beam current limit of the original design version of the 800 MeV proton cyclotron CYCIEA-800is 1mA.In order to further improve the current limit and reduce beam losses in the cyclotron,the layout of the cyclotron

  7. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  8. Electron Beam Simulations on the SCSS Accelerator

    CERN Document Server

    Hara, Toru; Shintake, Tsumoru

    2004-01-01

    The SPring-8 Compact SASE Source (SCSS) is a SASE-FEL project aiming at soft X-ray radiation at its first stage using 1 GeV electron beams. One of the unique features of the SCSS is the use of a pulsed high-voltage electron gun with a thermionic cathode. Main reason for this choice is its high stability and the well developed technology relating to the gun. Meanwhile, the electron bunch should be compressed properly at the injector in order to obtain sufficient peak currents. In this presentation, the results of the electron beam simulations along the accelerator and the expected parameters of the electron beam will be given.

  9. Development of 3D beam-beam simulation for the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  10. Beam Delivery Simulation - Recent Developments and Optimization

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles

    2015-01-01

    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.

  11. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  12. Radiative transfer simulations of magnetar flare beaming

    Science.gov (United States)

    van Putten, T.; Watts, A. L.; Baring, M. G.; Wijers, R. A. M. J.

    2016-09-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  13. Radiative transfer simulations of magnetar flare beaming

    CERN Document Server

    van Putten, T; Baring, M G; Wijers, R A M J

    2016-01-01

    Magnetar giant flares show oscillatory modulations in the tails of their light curves, which can only be explained via some form of beaming. The fireball model for magnetar bursts has been used successfully to fit the phase-averaged light curves of the tails of giant flares, but so far no attempts have been made to fit the pulsations. We present a relatively simple numerical model to simulate beaming of magnetar flare emission. In our simulations, radiation escapes from the base of a fireball trapped in a dipolar magnetic field, and is scattered through the optically thick magnetosphere of the magnetar until it escapes. Beaming is provided by the presence of a relativistic outflow, as well as by the geometry of the system. We find that a simple picture for the relativistic outflow is enough to create the pulse fraction and sharp peaks observed in pulse profiles of magnetar flares, while without a relativistic outflow the beaming is insufficient to explain giant flare rotational modulations.

  14. Data Systems Dynamic Simulator

    Science.gov (United States)

    Rouff, Christopher; Clark, Melana; Davenport, Bill; Message, Philip

    1993-01-01

    The Data System Dynamic Simulator (DSDS) is a discrete event simulation tool. It was developed for NASA for the specific purpose of evaluating candidate architectures for data systems of the Space Station era. DSDS provides three methods for meeting this requirement. First, the user has access to a library of standard pre-programmed elements. These elements represent tailorable components of NASA data systems and can be connected in any logical manner. Secondly, DSDS supports the development of additional elements. This allows the more sophisticated DSDS user the option of extending the standard element set. Thirdly, DSDS supports the use of data streams simulation. Data streams is the name given to a technique that ignores packet boundaries, but is sensitive to rate changes. Because rate changes are rare compared to packet arrivals in a typical NASA data system, data stream simulations require a fraction of the CPU run time. Additionally, the data stream technique is considerably more accurate than another commonly-used optimization technique.

  15. Dynamic Beam Based Calibration of Beam Position Monitors

    CERN Document Server

    Dehning, Bernd; Galbraith, Peter; Mugnai, G; Placidi, Massimo; Sonnemann, F; Tecker, F A; Wenninger, J

    1998-01-01

    The degree of spin polarization at LEP is strongly dependent on the knowledge of the vertical orbit. Quadrupole magnet alignment and beam position monitor (BPM) offsets are the main source of the orbi t uncertainty. The error of the orbit monitor readings can be largely reduced by calibrating the monitor relative to the adjacent quadrupole. At LEP, 16 BPM offsets can be determined in parallel durin g 40 minutes. The error of the measure offset is about 30mm. During the LEP run 1997, more than 500 measurements were made and used for the optimisation of polarization. The method of dynamic beam bas ed calibration will be explained and the results will be shown.

  16. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  17. Simulation of a Ball on a Beam Model Using a Fuzzy-dynamic and a Fuzzy-static Sliding-mode Controller

    Directory of Open Access Journals (Sweden)

    Muawia A. Magzoub

    2014-07-01

    Full Text Available This study presents the design of a Fuzzy Static (FS and a Fuzzy Dynamic (FD Sliding-Mode Controllers (SMC for both basic and complete ball on beam system. At first, the FSSMC was designed for the simplified and the complete models. Then, the FDSMC was designed on the simplified and the comprehensive models of the system in which the ball is placed on a beam as well. In addition, the lyapunov stability and linearization were used to check the stability of the system. There is an in-built issue of chattering with (FSSMC. However, (FDSMC counter it well. Also, FDSMC is effective with respect to matched disturbance rejection. It has been found out from this research study that the designs of the models which utilize a FDSMC with a comprehensive model of the system were more efficient than the designs that utilize the basic system’s prototype. Lastly, a comprehensive comparative analysis is provided and MATLAB/SIMULINK outcomes confirm the dominance of FDSMC.

  18. Structural dynamic analysis of composite beams

    Science.gov (United States)

    Suresh, J. K.; Venkatesan, C.; Ramamurti, V.

    1990-12-01

    In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.

  19. Impurity Dynamics under Neutral Beam Injection at TJ-II (simulation); Dinamica de Impurezas durante la Inyeccion de Haces Neutros en el TJ-II (simulacion)

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2001-07-01

    In this study the simulations of plasma transport under NBI for TJ-II, previously performed, are extended. Since than a considerable number of important modifications have been introduced in the model: change of magnetic configuration, use of experimental initial profiles, expansion of the Data base from NBI calculations and, mainly, a detailed handling of impurities with inclusion of sputtering effects. Moreover there is now a particular emphasis on the analysis of the conditions for discharge collapse and on the possible effects of single beam injection. This analysis of impurity behaviour with sputtering shows that in the expected usual cases there is no radioactive collapse and that if the recycling coefficients remain lower the unity it is always possible to find a strategy for external gas puffing leading to a stationary state, with densities below the limit and efficient NBI absorption (>50%). The radioactive collapse can appear either at high densities (central value higher than 1.4x10''20 m''3), excessive influx of impurities (i. e. with sputtering rates higher than twice the expected values) o for insufficient injected beam power (less than 45 kW). The present study analyses only the 100{sub 4}4{sub 6}4 configuration of TJ-II, but future works will start a systematic scan of configuration using this same model. (Author) 12 Refs.

  20. Electron Beam Dynamics in 4GLS

    CERN Document Server

    Williams, P H; Muratori, B D; Owen, H L; Smith, S L

    2007-01-01

    Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.

  1. Dynamic behaviour of a rotating cracked beam

    Science.gov (United States)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  2. Beam dynamics in rf guns and emittance correction techniques

    Science.gov (United States)

    Serafini, Luca

    1994-02-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results.

  3. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  4. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    Science.gov (United States)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  5. Study of longitudinal dynamics in space-charge dominated beams

    Science.gov (United States)

    Tian, Kai

    Modern accelerator applications, such as heavy ion fusion drivers, pulsed neutron sources, electron injectors for high-energy linear colliders, and X-ray Free Electron Lasers, demand beams with high intensity, low emittance and small energy spread. At low (non-relativistic) energies, the "electrostatic", collective interactions from space-charge forces existing in such intense beams play the dominant role; we characterize these beams as space-charge dominated beams. This dissertation presents numerous new findings on the longitudinal dynamics of a space-charge dominated beam, particularly on the propagation of density perturbations. In order to fully understand the complex physics of longitudinal space-charge waves, we combine the results of theory, computer simulation, and experiment. In the Long Solenoid Experimental system (LSE), with numerous diagnostic tools and techniques, we have, for the first time, experimentally measured the detailed energy profiles of longitudinal space-charge waves at different locations, both near the beam source and at the end of the transport system. Along with the current profiles, we have a complete set of experimental data for the propagation of space-charge waves. We compare these measured results to a 1-D theory and find better agreement for beams with perturbations in the linear regime, where the perturbation strength is less than 10%, than those with nonlinear perturbations. Using fast imaging techniques that we newly developed, we have, for the first time, obtained the progressive time-resolved images of longitudinal slices of a space-charge dominated beam. These images not only provide us time-resolved transverse density distribution of the beam, but also enable us to take time-resolved transverse phase space measurement using computerized tomography. By combining this information with the longitudinal energy measurement, we have, for the first time, experimentally constructed the full 6-D phase space. Part of the results

  6. Modal Perturbation Method for the Dynamic Characteristics of Timoshenko Beams

    OpenAIRE

    2005-01-01

    Timoshenko beams have been widely used in structural and mechanical systems. Under dynamic loading, the analytical solution of a Timoshenko beam is often difficult to obtain due to the complexity involved in the equation of motion. In this paper, a modal perturbation method is introduced to approximately determine the dynamic characteristics of a Timoshenko beam. In this approach, the differential equation of motion describing the dynamic behavior of the Timoshenko beam can be transformed int...

  7. Automated analysis for detecting beams in laser wakefield simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-07-03

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets.

  8. Modeling and simulation of LHC beam-based collimator setup

    CERN Document Server

    Valentino, G; Assmann, R W; Burkart, F; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    In the 2011 Large Hadron Collider run, collimators were aligned for proton and heavy ion beams using a semiautomatic setup algorithm. The algorithm provided a reduction in the beam time required for setup, an elimination of beam dumps during setup and better reproducibility with respect to manual alignment. A collimator setup simulator was developed based on a Gaussian model of the beam distribution as well as a parametric model of the beam losses. A time-varying beam loss signal can be simulated for a given collimator movement into the beam. The simulation results and comparison to measurement data obtained during collimator setups and dedicated fills for beam halo scraping are presented. The simulator will then be used to develop a fully automatic collimator alignment algorithm.

  9. Simulator for beam-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Aßmann, Ralph; Redaelli, Stefano; Sammut, Nicholas

    2014-02-01

    In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.

  10. Beam dynamics issues in the FCC

    CERN Document Server

    AUTHOR|(CDS)2067437; Benedikt, Michael; Besana, Maria Ilaria; Bruce, Roderik; Bruning, Oliver; Buffat, Xavier; Burkart, Florian; Burkhardt, Helmut; Calatroni, Sergio; Cerutti, Francesco; Fartoukh, Stephane; Fiascaris, Maria; Garion, Cedric; Goddard, Brennan; Hofle, Wolfgang; Holzer, Bernhard; Jowett, John; Kersevan, Roberto; Martin, Roman; Mether, Lotta Maria; Milanese, Attilio; Pieloni, Tatiana; Redaelli, Stefano; Rumolo, Giovanni; Salvant, Benoit; Schaumann, Michaela; Schulte, Daniel; Chapochnikova, Elena; Stoel, Linda; Tambasco, Claudia; Tomas Garcia, Rogelio; Tommasini, Davide; Zimmermann, Frank; Guillermo Canton, Gerardo; Kornilov, Vladimir; Boine-Frankenheim, Oliver; Niedermayer, Uwe; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Chance, Antoine; Dalena, Barbara; Payet, Jacques; Bambade, Philip; Faus-Golfe, Angeles; Molson, James; Biarrotte, Jean-Luc; Lachaize, Antoine; Fox, John D; Stupakov, Gennady; Abelleira, Jose; Cruz Alaniz, Emilia; Seryi, Andrei; Appleby, Robert Barrie; Boscolo, Manuela; Collamati, Francesco; Drago, Alessandro; Barranco Garcia, Javier; Khan, Shaukat; Riemann, Bernhard

    2016-01-01

    The international Future Circular Collider (FCC) study is designing hadron, lepton and lepton-hadron colliders based on a new 100 km tunnel in the Geneva region. The main focus and ultimate goal of the study are high luminosity proton-proton collisions at a centre-of-mass energy of 100 TeV, using 16 T Nb3Sn dipole magnets. Specific FCC beam dynamics issues are related to the large circumference, the high brightness—made available by radiation damping —, the small geometric emittance, unprecedented collision energy and luminosity, the huge amount of energy stored in the beam, large synchrotron radiation power, plus the injection scenarios. In addition to the FCC-hh proper, also a High-Energy LHC (HE-LHC) is being explored, using the FCC-hh magnet technology in the existing LHC tunnel, which can yield a centre-of-mass energy around 25 TeV.

  11. Photorefractive dynamic holography using self-pumped phase conjugate beam

    Indian Academy of Sciences (India)

    Arun Anand; C S Narayanamurthy

    2006-03-01

    Dynamic holography in photorefractive materials using self-pumped phase conjugate beam of the object beam itself as the other writing beam is proposed. Our detailed theoretical analysis shows four-fold increase in the diffraction efficiency of dynamic holograms if recorded using this geometry even in photorefractive crystal like BTO (having low optical activity) without applying external field. Detailed theoretical analysis is given.

  12. Beam stability & nonlinear dynamics. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  13. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  14. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  15. Weak-strong Beam-beam Simulations for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Banfi, Danilo [Ecole Polytechnique, Lausanne; Barranco, Javier [Ecole Polytechnique, Lausanne; Pieloni, Tatiana [CERN; Valishev, Alexander [Fermilab

    2014-07-01

    In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.

  16. Molecular dynamics simulation of diffusivity

    Institute of Scientific and Technical Information of China (English)

    Juanfang LIU; Danling ZENG; Qin LI; Hong GAO

    2008-01-01

    Equilibrium molecular dynamics simulation was performed on water to calculate its diffusivity by adopting different potential models. The results show that the potential models have great influence on the simulated results. In addition, the diffusivities obtained by the SPCE model conform well to the experimental values.

  17. Strong-Strong Beam-Beam Simulation of Bunch Length Splitting at the LHC

    CERN Document Server

    Qiang, J; Pieloni, Tatiana; Ohmi, Kazuhito

    2015-01-01

    Longitudinal bunch length splitting was observed for some LHC beams. In this paper, we will report on the study of the observation using strong-strong beam-beam simulations. We explore a variety of factors including initial momentum deviation, collision crossing angle, synchrotron tune, chromaticity, working points and bunch intensity that contribute to the beam particle loss and the bunch length splitting, and try to understand the underlying mechanism of the observed phenomena.

  18. Particle-in-cell (PIC) simulations of beam instabilities in gyrotron beam tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.M.; Jost, G.; Appert, K.; Sauter, O. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuthrich, S. [CRAY Research, PATP/PSE, Ecole Polytechnique Federale, Lausanne (Switzerland)

    1995-10-01

    Experimental observations seem to indicate that the beam velocity and energy spreads are larger than those calculated from the electron trajectory codes which do not take into account the effects of beam instabilities. On the other hand, parasitic oscillations of the beam with frequencies close to the electron cyclotron frequency {omega}{sub ce} have been observed experimentally, suggesting the possibility that instabilities can be excited in the beam tunnels and are responsible for the beam degradation. 2D electrostatic and electromagnetic time-dependent PIC codes have been developed to simulate the beam transport in the beam tunnel. The results of extensive parametric runs, using these codes (which were ported on the Cray T3D massively parallel computer), together with the role of the beam instabilities around {omega}{sub ce} on the beam degradation will be reported. (author) 2 figs., 9 refs.

  19. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  20. A stochastic model for the semiclassical collective dynamics of charged beams in particle accelerators

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    A recent proposal (see quant-ph/9803068) to simulate semiclassical corrections to classical dynamics by suitable classical stochastic fluctuations is applied to the specific instance of charged beam dynamics in particle accelerators. The resulting picture is that the collective beam dynamics, at the leading semiclassical order in Planck constant can be described by a particular diffusion process, the Nelson process, which is time-reversal invariant. Its diffusion coefficient $\\sqrt{N}\\lambda_{c}$ represents a semiclassical unit of emittance (here $N$ is the number of particles in the beam, and $\\lambda_{c}$ is the Compton wavelength). The stochastic dynamics of the Nelson type can be easily recast in the form of a Schroedinger equation, with the semiclassical unit of emittance replacing Planck constant. Therefore we provide a physical foundation to the several quantum-like models of beam dynamics proposed in recent years. We also briefly touch upon applications of the Nelson and Schroedinger formalisms to inc...

  1. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  2. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  3. Dynamics of the off axis intense beam propagation in a spiral inflector

    Science.gov (United States)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2017-01-01

    In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.

  4. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  5. An optical Hamiltonian experiment and the beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bazzani, A. [Department of Physics and CIG, University of Bologna, INFN sezione di Bologna (Italy)]. E-mail: bazzani@bo.infn.it; Freguglia, P. [Department of Pure and Applied Mathematics, University of L' Aquila (Italy); Fronzoni, L. [Department of Physics and CISC, University of Pisa (Italy); Turchetti, G. [Department of Physics and CIG, University of Bologna, INFN sezione di Bologna (Italy)

    2006-06-01

    The analogy between geometric optics and Hamiltonian mechanics is used to propose an experiment that simulates the beam propagation in a focusing magnetic lattice of a particle accelerator. A laser beam is reflected several times by a parabolic mirror and the resulting pattern is registered by a photo camera. This experiment allows to illustrate some aspects of nonlinear beam transport in presence of nonlinearities and stochastic perturbations. The experimental results are discussed and compared with computer simulations.

  6. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  7. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  8. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    Science.gov (United States)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  9. Beam Dynamics Based Design of Solenoid Channel for TAC Proton Linac

    CERN Document Server

    Kisoglu, H F

    2014-01-01

    Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. It transports the proton beam ejected by an ion source, and matches it with the Radio Frequency Quadrupole (RFQ) that is an important part of the linac. The LEBT channel would be consisted of two focusing solenoids and some diagnostic elements such as faraday cup, BC transformers, etc. This paper includes a beam dynamical design and optimization study of LEBT channel for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER and comparing of the simulation results with the theoretical expectations.

  10. A New Dynamic Model for a Flexible Hub-Beam System

    Institute of Scientific and Technical Information of China (English)

    LIU Zhu-yong; HONG Jia-zhen; CAI Guo-ping

    2009-01-01

    In this paper, a new dynamic model for the flexible hub-beam system is proposed by using the principle of continuum medium mechanics and the finite element discretization method. In the proposed model, the coupling deformation of any element of the beam is only related with the nodal coordinates of this element. So this model is suitable to the rotating beam in an arbitrary shape. Numerical examples of slender beams in straight and irregular shapes are carried out to demonstrate the validation of the proposed model. Simulation results indicate that the proposed model can be used valid for dynamic description of flexible rotating beam in irregular shape, and for both low and high rotation speeds.

  11. Non-Gaussian beam dynamics in low energy antiproton storage rings

    Science.gov (United States)

    Resta-López, J.; Hunt, J. R.; Welsch, C. P.

    2016-10-01

    In low energy antiproton facilities, where electron cooling is fundamental, the cooling forces together with heating phenomena causing emittance blow-up, such as Intra Beam Scattering (IBS), result in highly non-Gaussian beam distributions. In these cases, a precise simulation of IBS effects is essential to realistically evaluate the long term beam evolution, taking into account the non-Gaussian characteristics of the beam. Here, we analyse the beam dynamics in the Extra Low ENergy Antiproton ring (ELENA), which is a new small synchrotron currently being constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Simulations are performed using the code BETACOOL, comparing different models of IBS.

  12. Dynamic Stability of Euler Beams under Axial Unsteady Wind Force

    Directory of Open Access Journals (Sweden)

    You-Qin Huang

    2014-01-01

    Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.

  13. Cold phase fluid model of the longitudinal dynamics ofspace-charged dominated beams

    Energy Technology Data Exchange (ETDEWEB)

    de Hoon, Michiel J.L.; Lee, Edward P.; Barnard, John J.; Friedman, Alex

    2002-03-01

    The dynamics of a longitudinally cold, charged-particle beam can be simulated by dividing the beam into slices and calculating the motion of the slice boundaries due to the longitudinal electric field generated by the beam. On each time step, the beam charge is deposited onto an (r, z) grid, and an existing (r, z) electrostatic field solver is used to find the longitudinal electric field. Transversely, the beam envelope equation is used for each slice boundary separately. In contrast to the g-factor model, it can be shown analytically that the repulsive electric field of a slice compressed to zero length is bounded. Consequently, this model allows slices to overtake their neighbors, effectively incorporating mixing. The model then effectively describes a cold fluid in longitudinal z, v{sub z} phase space. Longitudinal beam compression calculations based on this cold phase fluid model showed that slice overtaking reflects local mixing, while the global phase space structure is preserved.

  14. Simulation studies of macroparticles falling into the LHC Proton Beam

    CERN Document Server

    Fuster Martinez, N; Zimmermann, F; Baer, T; Giovannozzi, M; Holzer, E B; Nebot Del Busto, E; Nordt, A; Sapinski, M; Yang, Z

    2011-01-01

    We report updated simulations on the interaction of macroparticles falling from the top of the vacuum chamber into the circulating LHC proton beam. The path and charge state of micron size micro-particles are computed together with the resulting beam losses, which — if high enough — can lead to the local quench of superconducting (SC) magnets. The simulated time evolution of the beam loss is compared with observations in order to constrain some macroparticle parameters. We also discuss the possibility of a “multiple crossing” by the same macroparticle, the effect of a strong dipole field, and the dependence of peak loss rate and loss duration on beam current and on beam size.

  15. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Science.gov (United States)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  16. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Institute of Scientific and Technical Information of China (English)

    A. Caliskan; M. Yi1maz

    2012-01-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project.Optimization criteria in cavity design are effective shunt impedance (ZTT),transit-time factor and electrical breakdown limit.In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor.Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA.The results of both codes have been compared.In the beam dynamical studies,the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  17. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  18. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  19. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  20. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    Energy Technology Data Exchange (ETDEWEB)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People' s Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  1. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  2. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Korostelev, Maxim [Cockcroft Inst. Accel. Sci. Tech.; Bailey, Ian [Lancaster U.; Herrod, Alexander [Liverpool U.; Morgan, James [Fermilab; Morse, William [RIKEN BNL; Stratakis, Diktys [RIKEN BNL; Tishchenko, Vladimir [RIKEN BNL; Wolski, Andrzej [Cockcroft Inst. Accel. Sci. Tech.

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.

  3. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  4. Molecular dynamics simulation of pyridine

    Science.gov (United States)

    Trumpakaj, Zygmunt; Linde, Bogumił

    2015-04-01

    Molecular Dynamics (MD) simulations are used for the investigation of molecular motions in pyridine in the temperature range 20-480 K under normal pressure. The results obtained are analyzed within the frame of the Mori Zwanzig memory function formalism. An analytical approximation of the first memory function K(t) is applied to predict some dependences on temperature. Experimental results of the Rayleigh scattering of depolarized light from liquid pyridine are used as the main base for the comparison.

  5. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  6. A New Three-Dimensional Code for Simulation of Ion Beam Extraction: Ion Optics Simulator

    Institute of Scientific and Technical Information of China (English)

    JIN Dazhi; HUANG Tao; HU Quan; YANG Zhonghai

    2008-01-01

    A new thee-dimensional code, ion optics simulator (IOS), to simulate ion beam extraction is developed in visual C++ language. The theoretical model, the flowchart of code, and the results of calculation as an example are presented.

  7. Numerical simulation program of multicomponent ion beam transport from ECR ion source

    Institute of Scientific and Technical Information of China (English)

    MA Lei; SONG Ming-Tao; CAO Yun; ZHAO Hong-Wei; ZHANG Zi-Min; LI Xue-Qian; LI Jia-Cai

    2004-01-01

    In order to research multi-component ion beam transport process and improve transport efficiency, a special simulating program for ECR beam is becoming more and more necessary. We have developed a program written by Visual Basic to be dedicated to numerical simulation of the highly charged ion beam and to optimization of beam dynamics in transport line. In the program the exchange of electrons between highly charged ions and low chargedions or neutral atoms (residual gas in transport line) is taken into account, adopting classical molecular over-barrier model and Monte Carlo method, so the code can easily give the change of charge state distribution along the transmission line. The main advantage of the code is the ability to simultaneously simulate a large quantity of ions with different masses and charge states, and particularly, to simulate the loss of highly charged ions and the increase of low charged ions due to electron exchange in the whole transport process. Some simulations have been done to study the transmission line of LECR3[1] which is an ECR ion source for highly charged ion beam at IMP. Compared with experimental results, the simulations are considered to be successful.

  8. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  9. Dynamic stiffness matrix of partial-interaction composite beams

    Directory of Open Access Journals (Sweden)

    Guangjian Bao

    2015-03-01

    Full Text Available Composite beams have a wide application in building and bridge engineering because of their advantages of mechanical properties, constructability and economic performance. Unlike static characteristics, the methods of studying the dynamic characteristics of partial-interaction composite beams were limited, especially dynamic stiffness matrix method. In this article, the dynamic stiffness matrix of partial-interaction composite beams was derived based on the assumption of the Euler–Bernoulli beam theory, and then it was used to predict the frequencies of the free vibration of the single-span composite beams with various boundary conditions or different axial forces. The corresponding vibration modes and buckling loads were also obtained. From the comparison with the existing results, the numerical results obtained by the proposed method agreed reasonably with those in the literatures. The dynamic stiffness matrix method is an accurate method which can determine natural vibration frequencies and vibration mode shapes in any precision theoretically. As a result, when the higher precision or natural frequencies of higher order are required, the dynamic stiffness matrix method is superior when compared to other approximate and numerical methods. The dynamic stiffness matrix method can also be combined with the finite-element method to calculate the free vibration frequencies and natural mode shapes of composite beams in complex conditions.

  10. Beam dynamics studies and parametric characterization of a standing wave electron linac

    Science.gov (United States)

    Dash, R.; Mondal, J.; Sharma, A.; Mittal, K. C.

    2013-07-01

    This paper presents the results of electron beam tracking simulations for a 30 MeV standing wave electron linac at Electron Beam Centre Kharghar, Navi Mumbai, India. For the pulsed mode operation of the present linac preferential operation parameters have been determined from the results of beam dynamics studies. This electron accelerator is a general purpose facility for generation of Bremsstrahlung X-rays and neutron scattering experiments. This electron accelerator-based experimental neutron facility will be used for measurement of neutron cross-section (n,γ), (n, xn) and (n, f) reactions at different energies for various materials and material irradiation studies.

  11. Measurements and simulations of focused beam for orthovoltage therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Hassan, E-mail: Hassan.Abbas@Yale.Edu [Department of Therapeutic Radiology, Yale University School of Medicine, Yale-New Haven Hospital, New Haven, 344 Lane Street Hamden, Connecticut 06514 (United States); Mahato, Dip N., E-mail: dip.n.mahato@intel.com [Intel Corporation, Mail-Stop RA3-410, 2501 NW 229th Avenue, Hillsboro, Oregon 97124 (United States); Satti, Jahangir, E-mail: sattij@mail.amc.edu [Department of Radiation Oncology, Albany Medical Center, 43 New Scotland Avenue, Albany, New York 12208 (United States); MacDonald, C. A., E-mail: c.macdonald@albany.edu [Department of Physics, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222 (United States)

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  12. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Balsa Terzic, Yuhong Zhang

    2010-05-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  13. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  14. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  15. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  16. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    CERN Document Server

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  17. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  18. Beam Dynamics Challenges for FCC-ee

    CERN Document Server

    AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli

    2015-01-01

    The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...

  19. The properties of low energy neutral particles in a neutral beam source: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-hoon, E-mail: physh@kaist.ac.k [Department of Physics, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Yoo, Suk Jae [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chang, Choong-Seock [Department of Physics, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Courant Institute of Mathematical Sciences, New York University, Mercer Street, New York, NY 10012 (United States)

    2010-09-01

    Application of a hyperthermal neutral beam source is one of the candidate methods of reducing plasma induced damage problems. The neutral beam is generated by vertical collisions between energetic ions and a reflector composed of metal. However, it is difficult to measure the neutral angle and energy distribution experimentally. We simulate the hyperthermal neutral beam (HNB) generation using a molecular dynamics algorithm. In order to obtain a low energy neutral beam, ions with various energies are vertically projected onto the reflector surface. A rough surface structure that has been experimentally measured is used for a realistic simulation. The energy distributions are obtained and the ratio of energy of reflected neutral particles agrees with experimental data.

  20. Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    CERN Document Server

    Goddard, B; Presland, A; Weterings, W

    2006-01-01

    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.

  1. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  2. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  3. Grand canonical Molecular Dynamics Simulations

    CERN Document Server

    Fritsch, S; Junghans, C; Ciccotti, G; Site, L Delle; Kremer, K

    2011-01-01

    For simulation studies of (macro-) molecular liquids it would be of significant interest to be able to adjust/increase the level of resolution within one region of space, while allowing for the free exchange of molecules between (open) regions of different resolution/representation. In the present work we generalize the adaptive resolution idea in terms of a generalized Grand Canonical approach. This provides a robust framework for truly open Molecular Dynamics systems. We apply the method to liquid water at ambient conditions.

  4. Modulator simulations for coherent electron cooling using a variable density electron beam

    CERN Document Server

    Bell, George I; Schwartz, Brian T; Bruhwiler, David L; Litvinenko, Vladimir; Wang, Gang; Hao, Yue

    2014-01-01

    Increasing the luminosity of relativistic hadron beams is critical for the advancement of nuclear physics. Coherent electron cooling (CEC) promises to cool such beams significantly faster than alternative methods. We present simulations of 40 GeV/nucleon Au+79 ions through the first (modulator) section of a coherent electron cooler. In the modulator, the electron beam copropagates with the ion beam, which perturbs the electron beam density and velocity via anisotropic Debye shielding. In contrast to previous simulations, where the electron density was constant in time and space, here the electron beam has a finite transverse extent, and undergoes focusing by quadrupoles as it passes through the modulator. The peak density in the modulator increases by a factor of 3, as specified by the beam Twiss parameters. The inherently 3D particle and field dynamics is modeled with the parallel VSim framework using a $\\delta$f PIC algorithm. Physical parameters are taken from the CEC proof-of-principle experiment under de...

  5. Simulation of Proton Beam Effects in Thin Insulating Films

    Directory of Open Access Journals (Sweden)

    Ljubinko Timotijevic

    2013-01-01

    Full Text Available Effects of exposing several insulators, commonly used for various purposes in integrated circuits, to beams of protons have been investigated. Materials considered include silicon dioxide, silicon nitride, aluminium nitride, alumina, and polycarbonate (Lexan. The passage of proton beams through ultrathin layers of these materials has been modeled by Monte Carlo simulations of particle transport. Parameters that have been varied in simulations include proton energy and insulating layer thickness. Materials are compared according to both ionizing and nonionizing effects produced by the passage of protons.

  6. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  7. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  8. Computer simulations for intense continuous beam transport in electrostatic lens systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Song; L(U) Jian-Qin

    2008-01-01

    A code LEADS based on the Lie algebraic analysis for the continuous beam dynamics with space charge effect in beam transport has been developed.The program is used for the simulations of axial-symmetric and unsymmetricalintense continuous beam in the channels including drift spaces.electrostatic lenses and DC electrostatic accelerating tubes.In order to get the accuracy required,all elements are divided into many small segments,and the electric field in the segments is regarded as uniform field,and the dividing points are treated as thin lenses.Iteration procedures are adopted in the program to obtain self-consistent solutions.The code can be used in the designs of low energy beam transport systems,electrostatic accelerators and ion implantation machines.

  9. Process of cracking in reinforced concrete beams (simulation and experiment

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available The paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and solved using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. A series of sequential quasi-static 4-point bend tests leading to the formation of cracks in a reinforced concrete beam were performed. At each loading step, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. During the first stage the nonconservative process of deformation begins to develope, but has not visible signs. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the ordinary concrete beams and the beams strengthened with a carbon-fiber polymer. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring crack formation and assessing the quality of measures aimed at strengthening concrete structures

  10. Dynamic response of a viscoelastic Timoshenko beam

    Science.gov (United States)

    Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.

    1987-01-01

    The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.

  11. Humanoid robot simulator: a realistic dynamics approach

    OpenAIRE

    Lima, José; Gonçalves, José; Costa, Paulo; Moreira, António

    2008-01-01

    This paper describes a humanoid robot simulator with realistic dynamics. As simulation is a powerful tool for speeding up the control software development, the suggested accurate simulator allows to accomplish this goal. The simulator, based on the Open Dynamics Engine and GLScene graphics library, provides instant visual feedback and allows the user to test any control strategy without damaging the real robot in the early stages of the development. The proposed simulator also captures some c...

  12. Dynamic Stiffness Matrix for a Beam Element with Shear Deformation

    Directory of Open Access Journals (Sweden)

    Walter D. Pilkey

    1995-01-01

    Full Text Available A method for calculating the dynamic transfer and stiffness matrices for a straight Timoshenko shear beam is presented. The method is applicable to beams with arbitrarily shaped cross sections and places no restrictions on the orientation of the element coordinate system axes in the plane of the cross section. These new matrices are needed because, for a Timoshenko beam with an arbitrarily shaped cross section, deflections due to shear in the two perpendicular planes are coupled even when the coordinate axes are chosen to be parallel to the principal axes of inertia.

  13. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    OpenAIRE

    Ting Zhang; Ying Pan; Lijie Cao

    2016-01-01

    A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experi...

  14. Tracking Simulation for Beam Loss Studies with Application to FCC

    CERN Document Server

    Boscolo, M

    2015-01-01

    We present first results on FCC-ee beam losses using a tracking simulation tool originally developed and successfully applied to Flav or Factories designs. After a brief description of the tool, we discuss first results obtained for FCC-ee at top energy, both for the Touschek effect and radiative Bhabha scattering.

  15. Dynamic analysis for planar beam with clearance joint

    Science.gov (United States)

    Yao, XiaoGuang; Guo, XiaoSong; Feng, YongBao; Yu, ChuanQiang; Ma, Changlin

    2015-03-01

    An analytical model was presented in this study to describe the dynamic characteristics of a planar rotation beam with clearance joint. The spherical contact model was introduced to calculate the collision forces for the planar revolute joint. Unlike previous research, to acquire an accurate and convergent solution, the second-order coupling term of the beam axial deformation is taken into account. Then, the flexible beam was divided into discrete elements via the finite element method. The dynamic equations of the model were deduced via the Hamilton's principle. Further, the dynamic responses were obtained and analyzed in the non-inertial and inertial coordinates. To prove the validity of the presented methodology, a virtual prototype model with identical conditions was created in ADAMS. A numerical example was simultaneously calculated by the two different approaches. Comparison of the results shows that the two approaches match quite well. Finally, some valuable conclusions describing the inner-joint collision process are extracted and summarized.

  16. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel [JLAB; Douglas, David R. [JLAB; Legg, Robert A. [JLAB; Tennant, Christopher D. [JLAB

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  17. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel E. [JLAB; Douglas, David R. [JLAB

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  18. Intense ion-beam dynamics in the NICA collider

    Science.gov (United States)

    Kozlov, O. S.; Meshkov, I. N.; Sidorin, A. O.; Trubnikov, G. V.

    2016-12-01

    The problems of intense ion-beam dynamics in the developed and optimized optical structure of the NICA collider are considered. Conditions for beam collisions and obtaining the required parameters of luminosity in the operation energy range are discussed. The restriction on collider luminosity is related to effects of the domination of the space charge and intrabeam scattering. Applying methods of cooling, electron and stochastic ones, will permit one to suppress these effects and reach design luminosity. The work also deals with systems of magnetic field correction and problems of calculating the dynamic aperture of the collider.

  19. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line

    NARCIS (Netherlands)

    van Goethem, M. J.; van der Meer, R.; Reist, H. W.; Schippers, J. M.

    2009-01-01

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the GANTR

  20. Numerical Simulations of Tungsten Targets Hit by LHC Proton Beam

    CERN Document Server

    Peroni, L; Bertarelli, A; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a tungsten component due to the impact with a proton ...

  1. Numerical simulation of hot stamping of side impact beam

    Institute of Scientific and Technical Information of China (English)

    Guo Yihui; Ma Mingtu; Fang Gang; Song Leifeng; Liu Qiang; Wang Xiaona; Zhou Dianwu

    2012-01-01

    Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.

  2. DARHT-II Long-Pulse Beam-Dynamics Experiments

    CERN Document Server

    Ekdahl, Carl; Bartsch, Richard; Bender, Howard; Briggs, Richard J; Broste, William; Carlson, Carl; Caudill, Larry; Chan, Kwok-Chi D; Chen Yu Jiuan; Dalmas, Dale; Durtschi, Grant; Eversole, Steven; Eylon, Shmuel; Fawley, William M; Frayer, Daniel; Gallegos, Robert J; Harrison, James; Henestroza, Enrique; Holzscheiter, M H; Houck, Timothy L; Hughes, Thomas P; Jacquez, Edward; Johnson, Douglas; Johnson, Jeffrey; Jones, Kenneth; McCuistian, Brian T; Meidinger, Alfred; Montoya, Nicholas; Mostrom, Chris; Moy, Kenneth; Nath, Subrata; Nielsen, Kurt; Oro, David; Rodriguez, Leroy; Rodriguez, Patrick; Rowton, Larry J; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin; Schulze, Martin E; Simmons, David; Studebaker, Jan; Sturgess, Ronald; Sullivan, Gary; Swinney, Charles; Tang, Yan; Temple, Rodney; Tipton, Angela; Tom, C Y; Vernon Smith, H; Yu, Simon

    2005-01-01

    When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 18-MeV electron beam with more than 1500-ns current/energy "flat-top." In initial tests DARHT-II has already accelerated beams with current pulse lengths from 500-ns to 1200-ns full-width at half maximum (FWHM) with more than1.2-kA, 12.5-MeV peak current and energy. Experiments are now underway with a ~2000-ns pulse length, but reduced current and energy. These pulse lengths are all significantly longer than any other multi-MeV LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated absence of BBU, the pulse lengths were too short to test the predicted protection against ion-hose instability. The present experiments are designed to resolve these and other beam-dynamics issues with a ~2000-ns pulse length beam.

  3. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  4. Dynamically loaded beam failure under corroded conditions

    NARCIS (Netherlands)

    Veerman, R.P.; Koenders, E.A.B.

    2014-01-01

    De-icing salts, used on roads in heavy winters, may enter reinforced concrete (RC) structures via its capillary pore system or via cracks, initiating reinforcement corrosion and reducing its remaining service-life. Vehicles passing real bridges exert a dynamic impact action that might activate a fat

  5. SciDAC Advances and Applications in Computational Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  6. SciDAC advances and applications in computational beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R [Lawrence Berkeley National Laboratory (United States); Abell, D [Tech-X Corporation (United States); Adelmann, A [Paul Scherrer Institute, (Switzerland); Amundson, J [Fermi National Accelerator Laboratory (United States); Bohn, C [Fermi National Accelerator Laboratory (United States); Cary, J [Tech-X Corporation (United States); Colella, P [Lawrence Berkeley National Laboratory (United States); Dechow, D [Tech-X Corporation (United States); Decyk, V [University of California at Los Angeles (United States); Dragt, A [University of Maryland (United States); Gerber, R [Lawrence Berkeley National Laboratory (United States); Habib, S [Los Alamos National Laboratory (United States); Higdon, D [Los Alamos National Laboratory (United States); Katsouleas, T [University of Southern California (United States); Ma, K-L [University of California at Davis (United States); McCorquodale, P [Lawrence Berkeley National Laboratory (United States); Mihalcea, D [Northern Illinois University (United States); Mitchell, C [University of Maryland (United States); Mori, W [University of California at Los Angeles (United States); Mottershead, C T [Los Alamos National Laboratory (United States); Neri, F [Los Alamos National Laboratory (United States); Pogorelov, I [Lawrence Berkeley National Laboratory (United States); Qiang, J [Lawrence Berkeley National Laboratory (United States); Samulyak, R [Brookhaven National Laboratory (United States); Serafini, D [Lawrence Berkeley National Laboratory (United States); Shalf, J [Lawrence Berkeley National Laboratory (United States); Siegerist, C [Lawrence Berkeley National Laboratory (United States); Spentzouris, P [Fermi National Accelerator Laboratory (United States); Stoltz, P [Tech-X Corporation (United States); Terzic, B [Northern Illinois University (United States); Venturini, M [Lawrence Berkeley National Laboratory (United States); Walstrom, P [Los Alamos National Laboratory (United States)

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  7. Helical tractor beam: analytical solution of Rayleigh particle dynamics.

    Science.gov (United States)

    Carretero, Luis; Acebal, Pablo; Garcia, Celia; Blaya, Salvador

    2015-08-10

    We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories. Therefore, by tuning the intensity value the particle can describe helical trajectories upstream and downstream, a circular trajectory in a fixed plane, or a linear displacement in the propagation direction. The approximated analytical solutions show good agreement to the corresponding numerical solutions of the exact dynamical differential equations.

  8. Fermilab Booster Transition Crossing Simulations and Beam Studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Tan, C. Y. [Fermilab

    2016-01-01

    The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 x $10^{12}$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $10^{12}$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.

  9. Cold atom dynamics in crossed laser beam waveguides

    CERN Document Server

    Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G

    2010-01-01

    We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".

  10. Parallel Beam Dynamics Code Development for High Intensity Cyclotron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>1 Parallel PIC algorithm Self field solver is the key part of a high intensity beam dynamic PIC code which usually adopts the P-M (Particle-Mesh) method to solve the space charge. The P-M method is composed of four major

  11. Studies on the Dynamic Buckling of Circular Plate Irradiated by Laser Beam

    Institute of Scientific and Technical Information of China (English)

    黄晨光; 段祝平

    2002-01-01

    The dynamic buckling of thin copper plate induced by laser beam, was analyzed with the numerical integration and disturbance methods of controlling equation. The buckling and post-buckling of thin plate were shown, with the consideration of the temperature distribution, inertia effect and initial deflection. At last, the buckling criterion about the circular plate was obtained and used to investigate the relation between the critical laser intensity and the ratio of thickness and diameter of the plate. The results fit the experimental observation and the FEM simulation very well, and benefit to the understanding of failure phenomenon of structures irradiated by laser beam.

  12. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  13. Simulations on pair creation from beam-beam interaction in linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Tauchi, T. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Yokoya, K. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1991-05-01

    It has been recognized that e{sup +}e{sup {minus}} pair creation during the collision of intense beams in linear colliders will cause potential background problems for high energy experiments. Detailed knowledge of the angular-momentum spectrum of these low energy pairs is essential to the design of the interaction region. In this paper, we modify the computer code ABEL (Analysis of Beam-beam Effects in Linear colliders) to include the pair creation processes, using the equivalent photon approximation. Special care has been taken on the non-local nature of the virtual photon exchanges. The simulation results are then compared with known analytic formulas, and applied to the next generation colliders such as JLC. 10 refs., 2 figs.

  14. Numerical simulation of broadband vortex terahertz beams propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    Orbital angular momentum (OAM) represents new informational degree of freedom for data encoding and multiplexing in fiber and free-space communications. OAM-carrying beams (also called vortex beams) were successfully used to increase the capacity of optical, millimetre-wave and radio frequency communication systems. However, the investigation of the OAM potential for the new generation high-speed terahertz communications is also of interest due to the unlimited demand of higher capacity in telecommunications. Here we present a simulation-based study of the propagating in non-dispersive medium broadband terahertz vortex beams generated by a spiral phase plate (SPP). The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the vortex beam in the frequency range from 0.1 to 3 THz at the distances 20-80 mm from the SPP. The simulation results show that the amplitude and phase distributions without unwanted modulation are presented in the wavelengths ranges with centres on the wavelengths which are multiple to the SPP optical thickness. This fact may allow to create the high-capacity near-field communication link which combines OAM and wavelength-division multiplexing.

  15. Monte Carlo simulation of electron beam air plasma characteristics

    Institute of Scientific and Technical Information of China (English)

    Deng Yong-Feng; Han Xian-Wei; Tan Chang

    2009-01-01

    A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.

  16. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  17. Computer simulation of ion beam analysis of laterally inhomogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.

    2016-03-15

    The program STRUCTNRA for the simulation of ion beam analysis charged particle spectra from arbitrary two-dimensional distributions of materials is described. The code is validated by comparison to experimental backscattering data from a silicon grating on tantalum at different orientations and incident angles. Simulated spectra for several types of rough thin layers and a chessboard-like arrangement of materials as example for a multi-phase agglomerate material are presented. Ambiguities between back-scattering spectra from two-dimensional and one-dimensional sample structures are discussed.

  18. Sub-impacts of simply supported beam struck by steel sphere—part II: Numerical simulations

    Directory of Open Access Journals (Sweden)

    Xiaoli Qi

    2016-12-01

    Full Text Available This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.

  19. Dual-Beam Atom Laser Driven by Spinor Dynamics

    Science.gov (United States)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  20. REX-ISOLDE RFQ Beam Dynamics Studies using CST EM Studio

    CERN Document Server

    Fraser, M A

    2014-01-01

    The original CNC milling files used to machine the electrodes of the REX-ISOLDE RFQ were acquired in late 2012 and electrostatic simulations were carried out using CST EM Studio in order to attain a 3D field map of the electric fields in the region around the beam axis. The objective was to construct a beam dynamics simulation tool that frees us from the constraints of the PARMTEQM code, which was used to design the RFQ, and that will afford us more flexibility in the studies needed for pre-bunching into the RFQ with an external multi-harmonic buncher. This note details the geometry of the electrodes and their simulation in CST EM Studio, the implementation of particle tracking in the computed field map using TRACK and benchmarking studies with PARMTEQM v3.09.

  1. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...

  2. Beam dynamics design for uranium drift tube linear accelerator

    Science.gov (United States)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  3. KONUS Beam Dynamics Design of Uranium DTL for HIAF

    CERN Document Server

    Dou, W P; Lu, Y R

    2013-01-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0emA, is accelerated from injection energy of 0.35MeV/u to output energy of 1.3MeV/u by IH-DTL operated at 81.25MHz in HIAF project at IMP of CAS. It achieves transmission efficiency of 94.95% with the cavity length 267.8cm. Optimization aims are the reduction of emittance growth, of beam loss and of project costs. Because of the requirements of CW mode operation,the designed average acceleration gradient is about 2.48MV/m. Maximum axial filed is 10.2MV/m, meanwhile Kilpatrick breakdown field is 10.56MV/m at 81.25MHz.

  4. Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas

    Science.gov (United States)

    Thurgood, Jonathan O.; Tsiklauri, David

    2016-12-01

    Previous theoretical considerations of electron beam relaxation in inhomogeneous plasmas have indicated that the effects of the irregular solar wind may account for the poor agreement of homogeneous modelling with the observations. Quasi-linear theory and Hamiltonian models based on Zakharov's equations have indicated that when the level of density fluctuations is above a given threshold, density irregularities act to de-resonate the beam-plasma interaction, restricting Langmuir wave growth on the expense of beam energy. This work presents the first fully kinetic particle-in-cell (PIC) simulations of beam relaxation under the influence of density irregularities. We aim to independently determine the influence of background inhomogeneity on the beam-plasma system, and to test theoretical predictions and alternative models using a fully kinetic treatment. We carry out one-dimensional (1-D) PIC simulations of a bump-on-tail unstable electron beam in the presence of increasing levels of background inhomogeneity using the fully electromagnetic, relativistic EPOCH PIC code. We find that in the case of homogeneous background plasma density, Langmuir wave packets are generated at the resonant condition and then quasi-linear relaxation leads to a dynamic increase of wavenumbers generated. No electron acceleration is seen - unlike in the inhomogeneous experiments, all of which produce high-energy electrons. For the inhomogeneous experiments we also observe the generation of backwards-propagating Langmuir waves, which is shown directly to be due to the refraction of the packets off the density gradients. In the case of higher-amplitude density fluctuations, similar features to the weaker cases are found, but also packets can also deviate from the expected dispersion curve in -space due to nonlinearity. Our fully kinetic PIC simulations broadly confirm the findings of quasi-linear theory and the Hamiltonian model based on Zakharov's equations. Strong density fluctuations

  5. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    Science.gov (United States)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  6. Effect of finite beam width on current separation in beam plasma system: Particle-in-Cell simulations

    CERN Document Server

    Shukla, Chandrasekhar; Patel, Kartik

    2015-01-01

    The electron beam propagation in a plasma medium is susceptible to several instabilities. In the relativistic regime typically the weibel instability leading to the current separation dominates. The linear instability analysis is carried out for a system wherein the transverse extent of the beam is infinite. Even in simulations, infinite transverse extent of the beam has been chosen. In real situations, however, beam width will always be finite. keeping this in view the role of finite beam width on the evolution of the beam plasma system has been studied here using Particle - in - Cell simulations. It is observed that the current separation between the forward and return shielding current for a beam with finite beam occurs at the scale length of the beam width itself. Consequently the magnetic field structures that form have maximum power at the scale length of the beam width. This behaviour is distinct from what happens with a beam with having an infinite extent represented by simulations in a periodic box, ...

  7. Distributed processing (DP) based e-beam lithography simulation with long range correction algorithm in e-beam machine

    Science.gov (United States)

    Ki, Won-Tai; Choi, Ji-Hyeon; Kim, Byung-Gook; Woo, Sang-Gyun; Cho, Han-Ku

    2008-05-01

    As the design rule with wafer process is getting smaller down below 50nm node, the specification of CDs on a mask is getting more tightened. Therefore, more tight and accurate E-Beam Lithography simulation is highly required in these days. However, in reality most of E-Beam simulation cases, there is a trade-off relationship between the accuracy and the simulation speed. Moreover, the necessity of full chip based simulation has been increasing in order to estimate more accurate mask CDs based on real process condition. Therefore, without consideration of long range correction algorithm such as fogging effect and loading effect correction in E-beam machine, it would be impossible and meaningless to pursue the full chip based simulation. In this paper, we introduce a breakthrough method to overcome the obstacles of E-Beam simulation. In-house E-beam simulator, ELIS (E-beam LIthography Simulator), has been upgraded to solve these problems. First, DP (Distributed Processing) strategy was applied to improve calculation speed. Secondly, the long range correction algorithm of E-beam machine was also applied to compute intensity of exposure on a full chip based (Mask). Finally, ELIS-DP has been evaluated possibility of expecting or analyzing CDs on full chip base.

  8. Development of a Beam-Beam Simulation Code for e+e- Colliders

    CERN Document Server

    Zhang, Yuan

    2005-01-01

    BEPC will be upgraded into BEPCII, and the luminosity will be about 100 times higher. We developed a three dimensional strong-strong PIC code to study the beam-beam effects in BEPCII. The transportation through the arc is the same as that in Hirata's weak-strong code. The beam-beam force is computed directly by solving the Poisson equation using the FACR method, and the boundary potential is computed by circular convolution. The finite bunch length effect is included by longitudinal slices. An interpolation scheme is used to reduce the required slice number in simulations. The standard message passing interface (MPI) is used to parallelize the code. The computing time increases linearly with (n+1), where n is the slice number. The calculated luminosity of BEPCII at the design operating point is less than the design value. The best area in the tune space is near (0.505,0.57) according to the survey, where the degradation of luminosity can be improved.

  9. Self-consistent simulation of radiation and space-charge in high-brightness relativistic electron beams

    Science.gov (United States)

    Gillingham, David R.

    2007-12-01

    The ability to preserve the quality of relativistic electron beams through transport bend elements such as a bunch compressor chicane is increasingly difficult as the current increases because of effects such as coherent synchrotron radiation (CSR) and space-charge. Theoretical CSR models and simulations, in their current state, often make unrealistic assumptions about the beam dynamics and/or structures. Therefore, we have developed a model and simulation that contains as many of these elements as possible for the purpose of making high-fidelity end-to-end simulations. Specifically, we are able to model, in a completely self-consistent, three-dimensional manner, the sustained interaction of radiation and space-charge from a relativistic electron beam in a toroidal waveguide with rectangular cross-section. We have accomplished this by combining a time-domain field solver that integrates a paraxial wave equation valid in a waveguide when the dimensions are small compared to the bending radius with a particle-in-cell dynamics code. The result is shown to agree with theory under a set of constraints, namely thin rigid beams, showing the stimulation resonant modes and including comparisons for waveguides approximating vacuum, and parallel plate shielding. Using a rigid beam, we also develop a scaling for the effect of beam width, comparing both our simulation and numerical integration of the retarded potentials. We further demonstrate the simulation calculates the correct longitudinal space-charge forces to produce the appropriate potential depression for a converging beam in a straight waveguide with constant dimensions. We then run fully three-dimensional, self-consistent end-to-end simulations of two types of bunch compressor designs, illustrating some of the basic scaling properties and perform a detailed analysis of the output phase-space distribution. Lastly, we show the unique ability of our simulation to model the evolution of charge/energy perturbations on a

  10. Sensitivity Analysis of Fire Dynamics Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.

    2007-01-01

    equations require solution of the issues of combustion and gas radiation to mention a few. This paper performs a sensitivity analysis of a fire dynamics simulation on a benchmark case where measurement results are available for comparison. The analysis is performed using the method of Elementary Effects......In case of fire dynamics simulation requirements to reliable results are most often very high due to the severe consequences of erroneous results. At the same time it is a well known fact that fire dynamics simulation constitutes rather complex physical phenomena which apart from flow and energy...

  11. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Pourbaix, J C; Ainsley, C G; Dolney, D; Carabe, A

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ∼9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  12. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  13. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  14. Nonlinear Dynamical analysis of an AFM tapping mode microcantilever beam

    Directory of Open Access Journals (Sweden)

    Choura S.

    2012-07-01

    Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM microcantilever beam. This latter is subjected to a harmonic excitation of its base displacement and to Van der Waals and DMT contact forces at its free end. For AFM design purposes, we derive a mathematical model for accurate description of the AFM microbeam dynamics. We solve the resulting equations of motions and associated boundary conditions using the Galerkin method. We find that using one-mode approximation in tapping mode operating in the neighborhood of the contact region one-mode approximation may lead to erroneous results.

  15. Simulation of beam-induced plasma in gas-filled rf cavities

    Science.gov (United States)

    Yu, Kwangmin; Samulyak, Roman; Yonehara, Katsuya; Freemire, Ben

    2017-03-01

    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. space, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code space is capable of predictive simulations of muon cooling devices.

  16. End-to-End Beam Simulations for the MSU RIA Driver Linac

    CERN Document Server

    Wu, X; Gorelov, D; Grimm, T L; Marti, F; York, R C; Zhao, Q

    2004-01-01

    The Rare Isotope Accelerator (RIA) driver linac proposed by Michigan State University (MSU) will use a 10th sub-harmonic based, superconducting, cw linac to accelerate light and heavy ions to final energies of ≤400 MeV/u with beam powers of 100 to 400 kW. The driver linac uses superconducting quarter-wave, half-wave, and six-cell elliptical cavities with frequencies ranging from 80.5 MHz to 805 MHz for acceleration, and superconducting solenoids and room temperature quadrupoles for transverse focusing. For the heavier ions, two stages of charge-stripping and multiple-charge-state acceleration will be used to meet the beam power requirements and to minimize the requisite accelerating voltage. End-to-end, three-dimensional (3D), beam dynamics simulations from the ECR to the radioactive beam production targets have been performed. These studies include a 3D analysis of multi-charge-state beam acceleration, evaluation of transverse misalignment and rf errors on the machine performance, modeling of the c...

  17. Dynamic Simulation for Missile Erection System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to study the dynamic characteristics of the missile erection system, it can be considered as a rigid-flexible coupling multi-body system. Firstly, the actual system is abstracted as an equal and simplified one and then the forces applied to it are analyzed. Secondly, the rigid-flexible coupling dynamic simulation for erection system is accomplished by use of the system simulation software, for example Pro/E, ADAMS, ANSYS, MATLAB/Simulink, etc. Finally, having the aid of simulation results, the kinetic and dynamic characteristics of the flexible bodies in erection system are analyzed.The simulation considering the erection system as a rigid-flexible coupling system can provide valuable results to the research of its kinetic, dynamic and vibrational characteristics.

  18. High performance computation on beam dynamics problems in high intensity compact cyclotrons

    Institute of Scientific and Technical Information of China (English)

    ADELMANN; Andreas

    2011-01-01

    This paper presents the research progress in the beam dynamics problems for future high intensity compact cyclotrons by utilizing the state-of-the-art high performance computation technology. A "Start-to-Stop" model, which includes both the interaction of the internal particles of a single bunch and the mutual interaction of neighboring multiple bunches in the radial direction, is established for compact cyclotrons with multi-turn extraction. This model is then implemented in OPAL-CYCL, which is a 3D object-oriented parallel code for large scale particle simulations in cyclotrons. In addition, to meet the running requirement of parallel computation, we have constructed a small scale HPC cluster system and tested its performance. Finally, the high intensity beam dynamics problems in the 100 MeV compact cyclotron, which is being constructed at CIAE, are studied using this code and some conclusions are drawn.

  19. Nonlinear and long-term beam dynamics in low energy storage rings

    Science.gov (United States)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2013-06-01

    Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF+ ions at 93keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3-30 keV ions with a gas jet target are summarized.

  20. Chaotic dynamics of flexible Euler-Bernoulli beams.

    Science.gov (United States)

    Awrejcewicz, J; Krysko, A V; Kutepov, I E; Zagniboroda, N A; Dobriyan, V; Krysko, V A

    2013-12-01

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c(2)) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q(0) and frequency ω(p) of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

  1. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  2. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron(positron) storage rings

    CERN Document Server

    Duan, Zhe; Barber, Desmond P; Qin, Qing

    2015-01-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called "correlated" crossing of spin resonances ...

  3. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    J. QIANG; R. RYNE; S. HABIB

    2000-05-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the friction and diffusion coefficients are computed from first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  4. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  5. Simulating Flexible-Spacecraft Dynamics and Control

    Science.gov (United States)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  6. Molecular Dynamics Simulations of Simple Liquids

    Science.gov (United States)

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  7. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  8. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    OpenAIRE

    Cai, Weixing; zhao,binghui; Conover, David; Liu, Jiangkun; Ning, Ruola

    2012-01-01

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan.

  9. Multiscale Model Approach for Magnetization Dynamics Simulations

    CERN Document Server

    De Lucia, Andrea; Tretiakov, Oleg A; Kläui, Mathias

    2016-01-01

    Simulations of magnetization dynamics in a multiscale environment enable rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with f...

  10. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  11. Advanced SAR simulator with multi-beam interferometric capabilities

    Science.gov (United States)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  12. Crossed-beam studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.

  13. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  14. Experimental Dynamic Analysis of Nonlinear Beams under Moving Loads

    Directory of Open Access Journals (Sweden)

    A. Bellino

    2012-01-01

    Full Text Available It is well known that nonlinear systems, as well as linear time-varying systems, are characterized by non-stationary response signals. In this sense, they both show natural frequencies that are not constant over time; this variation has however different origins: for a time-varying system the mass, and possibly the stiffness distributions, are changing over time, while for a nonlinear system the natural frequencies are amplitude-dependent. An interesting case of time-varying system occurs when analyzing the transit of a train over a railway bridge, easily simulated by the crossing of a moving load over a beam. In this case, the presence of a nonlinearity in the beam behaviour can cause a significant alteration of the modal parameters extracted from the linearized model, such that the contributions of the two effects are no more distinguishable.

  15. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The....... The simulation sheds light on issues that are not amenable to analytical solutions, such as the spectral content of the wave forms, cross talk in three-beam interaction, and the range of applications of the band-transport model. (C) 1998 Optical Society of America....

  16. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results

    Science.gov (United States)

    Scandale, W.; Kovalenko, A. D.; Taratin, A. M.

    2017-03-01

    The extraction of the SPS beam of 270 GeV/c protons assisted by a bent crystal was studied by simulation. Two methods for delivering the SPS beam onto a crystal were considered: transverse diffusion and orbit bump of the beam. It was shown that the main condition for high efficient beam extraction with a bent crystal, which is a small divergence of the incident beam, can be fulfilled. Extraction efficiency up to 99% can be reached for both methods of the beam delivering. The irradiation of the electrostatic septum wires during the beam extraction can be considerably reduced.

  17. Dynamical Model for an Interharmonic Property of a Piezoelectric Bimorph Cantilever Beam with Self-Sensing Function

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2016-01-01

    Full Text Available A piezoelectric bimorph cantilevered beam is analyzed dynamically by a longitudinal and transverse coupling theory. When a sinusoidal voltage is applied on the actuating layer of the bimorph, the output voltage of the sensing layer appears as interharmonic component signal. The interharmonic frequency is noninteger harmonic frequency of the applied voltage. A dynamic model is proposed to describe the interharmonic property of the piezoelectric bimorph beam. Through some simulations and experiments, the theoretical model is verified effectively to express the nonlinear characteristic. Furthermore, when the piezoelectric bimorph resonance happens, some interharmonic response at low frequency will modulate with the resonance response.

  18. Beam Dynamics for the CTF3 Preliminary Phase

    CERN Document Server

    Corsini, R; Rinolfi, Louis; Risselada, Thys; Royer, P; Tecker, F A

    2001-01-01

    In the framework of the CLIC RF power source studies, the new scheme of electron pulse compression and bunch frequency multiplication, using injection by RF deflectors into an isochronous ring, will be tested at CERN during the CTF3 preliminary phase. The present LPI complex will be modified in order to allow a test of this scheme at low charge. The design of the new front-end, of the modified linac, of the matched transfer line, and of the isochronous ring lattice is presented here.The results of the related beam dynamics studies are also discussed.

  19. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  20. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    Science.gov (United States)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  1. Multibody dynamic simulation of knee contact mechanics.

    Science.gov (United States)

    Bei, Yanhong; Fregly, Benjamin J

    2004-11-01

    Multibody dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to knee joint degeneration and restoration. Current three-dimensional multibody knee models are either quasi-static with deformable contact or dynamic with rigid contact. This study proposes a computationally efficient methodology for combining multibody dynamic simulation methods with a deformable contact knee model. The methodology requires preparation of the articular surface geometry, development of efficient methods to calculate distances between contact surfaces, implementation of an efficient contact solver that accounts for the unique characteristics of human joints, and specification of an application programming interface for integration with any multibody dynamic simulation environment. The current implementation accommodates natural or artificial tibiofemoral joint models, small or large strain contact models, and linear or nonlinear material models. Applications are presented for static analysis (via dynamic simulation) of a natural knee model created from MRI and CT data and dynamic simulation of an artificial knee model produced from manufacturer's CAD data. Small and large strain natural knee static analyses required 1 min of CPU time and predicted similar contact conditions except for peak pressure, which was higher for the large strain model. Linear and nonlinear artificial knee dynamic simulations required 10 min of CPU time and predicted similar contact force and torque but different contact pressures, which were lower for the nonlinear model due to increased contact area. This methodology provides an important step toward the realization of dynamic musculoskeletal models that can predict in vivo knee joint motion and loading simultaneously.

  2. Molecular dynamics and quasidynamics simulations of the annealing of bulk and near-surface interstitials formed in molecular-beam epitaxial Si due to low-energy particle bombardment during deposition

    Science.gov (United States)

    Kitabatake, M.; Fons, P.; Greene, J. E.

    1991-01-01

    The relaxation, diffusion, and annihilation of split and hexagonal interstitials resulting from 10 eV Si irradiation of (2x1)-terminated Si(100) are investigated. Molecular dynamics and quasidynamics simulations, utilizing the Tersoff many-body potential are used in the investigation. The interstitials are created in layers two through six, and stable atomic configurations and total potential energies are derived as a function of site symmetry and layer depth. The interstitial Si atoms are allowed to diffuse, and the total potential energy changes are calculated. Lattice configurations along each path, as well as the starting configurations, are relaxed, and minimum energy diffusion paths are derived. The results show that the minimum energy paths are toward the surface and generally involved tetrahedral sites. The calculated interstitial migration activation energies are always less than 1.4 eV and are much lower in the near-surface region than in the bulk.

  3. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  4. Zakharov simulations of beam-induced turbulence in the auroral ionosphere

    Science.gov (United States)

    Akbari, H.; Guio, P.; Hirsch, M. A.; Semeter, J. L.

    2016-05-01

    Recent detections of strong incoherent scatter radar echoes from the auroral F region, which have been explained as the signature of naturally produced Langmuir turbulence, have motivated us to revisit the topic of beam-generated Langmuir turbulence via simulation. Results from one-dimensional Zakharov simulations are used to study the interaction of ionospheric electron beams with the background plasma at the F region peak. A broad range of beam parameters extending by more than 2 orders of magnitude in average energy and electron number density is considered. A range of wave interaction processes, from a single parametric decay, to a cascade of parametric decays, to formation of stationary density cavities in the condensate region, and to direct collapse at the initial stages of turbulence, is observed as we increase the input energy to the system. The effect of suprathermal electrons, produced by collisional interactions of auroral electrons with the neutral atmosphere, on the dynamics of Langmuir turbulence is also investigated. It is seen that the enhanced Landau damping introduced by the suprathermal electrons significantly weakens the turbulence and truncates the cascade of parametric decays.

  5. Measurement and Simulation of Beam Centering on CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The beam centering is very important for the compact cyclotron, especially for the cyclotrons with the axial injection. It is critical that the cyclotron has a good beam centering to increase the beam current and reduce the beam loss. In the accelerating process,

  6. GEANT4 simulation of slow positron beam implantation profiles

    Science.gov (United States)

    Dryzek, Jerzy; Horodek, Paweł

    2008-09-01

    The paper presents the positron implantation profiles, which are important for proper interpretation of data produced in slow-positron depth defect spectroscopy (VEPAS). In the paper, we compared the profiles reported in other publications and those obtained using the GEANT4 codes, which are used for the simulation of interaction of energetic particles with matter. The comparison shows that the GEANT4 codes produce profiles which match fairly well with those generated by other codes, which take into account more accurately processes at low energies when positrons interact with core electrons, valence electrons, plasmons etc. The profiles in different materials simulated for different implant energies were parameterized using two analytical formulas: the Makhovian profile and the profile proposed by Ghosh et al. [V.J. Ghosh, D.O. Welch, K.G. Lynn, in: E. Ottewite, A.H. WeissSlow (Eds.), Positron Beam Techniques for Solids and Surfaces, Jackson Hole, Wyoming, AIP Conference Proceedings, Vol. 303, New York, 1994, p. 37]. The adjustable parameters obtained are presented in Tables 1 and 2. The total backscattering probability obtained from the GEANT4 simulations is in agreement with experimental data reported.

  7. Dynamic Procedure for Filtered Gyrokinetic Simulations

    CERN Document Server

    Morel, Pierre; Albrecht-Marc, Michel; Carati, Daniele; Merz, Florian; Görler, Tobias; Jenko, Frank

    2011-01-01

    Large Eddy Simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the GENE code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved Direct Numerical Simulations (DNS). Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in Ion Temperature Gradient (ITG) driven turbulence. Moreover, the degree of anisotropy of the problem, that can vary with parameters, can be adapted dynamically by the method that shows Gyrokinetic Large Eddy Simulation (GyroLES) to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  8. Chaotic dynamics of flexible Euler-Bernoulli beams

    Energy Technology Data Exchange (ETDEWEB)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

  9. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  10. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    Science.gov (United States)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  11. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  12. A Dynamical Simulation Facility for Hybrid Systems

    CERN Document Server

    Back, A; Myers, M; Back, Allen; Guckenheimer, John; Myers, Mark

    1993-01-01

    Abstract: This paper establishes a general framework for describing hybrid dynamical systems which is particularly suitable for numerical simulation. In this context, the data structures used to describe the sets and functions which comprise the dynamical system are crucial since they provide the link between a natural mathematical formulation of a problem and the correct application of standard numerical algorithms. We describe a partial implementation of the design methodology and use this simulation tool for a specific control problem in robotics as an illustration of the utility of the approach for practical applications.

  13. Effects of Structural Damage on Dynamic Behavior at Sandwich Composite Beams - Part I-Theoretical Approach

    Directory of Open Access Journals (Sweden)

    Tufoi Marius

    2014-07-01

    Full Text Available This paper series presents an analysis regarding the dynamics of sandwich composite beams, embedded at one end, in order to highlight the effect of geometrical and material discontinuities upon the natural frequencies. In first part (Part I, analysis was performed with EulerBernoulli analytical method for determining the vibration modes and in second part (Part II, analysis was performed with numerical simulation in SolidWorks software for a five-layer composite. In the last section of the paper, an example is shown regarding how to interpret the obtained results.

  14. Towards Four-Flavour Dynamical Simulations

    CERN Document Server

    Herdoiza, Gregorio

    2010-01-01

    The inclusion of physical effects from sea quarks has been one of the main advances in lattice QCD simulations over the last few years. We report on recent studies with four flavours of dynamical quarks and address some of the potential issues arising in this new setup. First results for physical observables in the light, strange and charm sectors are presented together with the status of dedicated simulations to perform the non-perturbative renormalisation in mass-independent schemes.

  15. Towards four-flavour dynamical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica e Inst. de Fiscia Teorica

    2011-03-15

    The inclusion of physical effects from sea quarks has been one of the main advances in lattice QCD simulations over the last few years. We report on recent studies with four flavours of dynamical quarks and address some of the potential issues arising in this new setup. First results for physical observables in the light, strange and charm sectors are presented together with the status of dedicated simulations to perform the non-perturbative renormalisation in mass-independent schemes. (orig.)

  16. Testing dynamic stabilisation in complex Langevin simulations

    CERN Document Server

    Attanasio, Felipe

    2016-01-01

    Complex Langevin methods have been successfully applied in theories that suffer from a sign problem such as QCD with a chemical potential. We present and illustrate a novel method (dynamic stabilisation) that ensures that Complex Langevin simulations stay close to the SU(3) manifold, which lead to correct and improved results in the framework of pure Yang-Mills simulations and QCD in the limit of heavy quarks.

  17. Improved snowmelt simulations with a canopy model forced with photo-derived direct beam canopy transmissivity

    Science.gov (United States)

    Musselman, Keith N.; Molotch, Noah P.; Margulis, Steven A.; Lehning, Michael; Gustafsson, David

    2012-10-01

    The predictive capacity of a physically based snow model to simulate point-scale, subcanopy snowmelt dynamics is evaluated in a mixed conifer forest, southern Sierra Nevada, California. Three model scenarios each providing varying levels of canopy structure detail were tested. Simulations of three water years initialized at locations of 24 ultrasonic snow depth sensors were evaluated against observations of snow water equivalent (SWE), snow disappearance date, and volumetric soil water content. When canopy model parameters canopy openness and effective leaf area index were obtained from satellite and literature-based sources, respectively, the model was unable to resolve the variable subcanopy snowmelt dynamics. When canopy parameters were obtained from hemispherical photos, the improvements were not statistically significant. However, when the model was modified to accept photo-derived time-varying direct beam canopy transmissivity, the error in the snow disappearance date was reduced by as much as one week and positive and negative biases in melt-season SWE and snow cover duration were significantly reduced. Errors in the timing of soil meltwater fluxes were reduced by 11 days on average. The optimum aggregated temporal model resolution of direct beam canopy transmissivity was determined to be 30 min; hourly averages performed no better than the bulk canopy scenarios and finer time steps did not increase overall model accuracy. The improvements illustrate the important contribution of direct shortwave radiation to subcanopy snowmelt and confirm the known nonlinear melt behavior of snow cover.

  18. Quantum Simulation for Open-System Dynamics

    Science.gov (United States)

    Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry

    2013-03-01

    Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.

  19. Effects of Structural Parameters on the Dynamics of a Beam Structure with a Beam-Type Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Mothanna Y. Abd

    2012-01-01

    Full Text Available A beam-type absorber has been known as one of the dynamic vibration absorbers used to suppress excessive vibration of an engineering structure. This paper studies an absorbing beam which is attached through a visco-elastic layer on a primary beam structure. Solutions of the dynamic response are presented at the midspan of the primary and absorbing beams in simply supported edges subjected to a stationary harmonic load. The effect of structural parameters, namely, rigidity ratio, mass ratio, and damping of the layer and the structure as well as the layer stiffness on the response is investigated to reduce the vibration amplitude at the fundamental frequency of the original single primary beam. It is found that this can considerably reduce the amplitude at the corresponding troublesome frequency, but compromised situation should be noted by controlling the structural parameters. The model is also validated with measured data with reasonable agreement.

  20. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    . It is found to be possible to include a transient model in dynamic stability tools and, then, obtain correct results also in dynamic tools. The representation of the rotating system influences on the voltage recovery shape which is an important observation in case of windmills, where a heavy mill is connected......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  1. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  2. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  3. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  4. Measurement and simulation of the impact of coherent synchrotron radiation on the Jefferson Laboratory energy recovery linac electron beam

    Science.gov (United States)

    Hall, C. C.; Biedron, S. G.; Edelen, A. L.; Milton, S. V.; Benson, S.; Douglas, D.; Li, R.; Tennant, C. D.; Carlsten, B. E.

    2015-03-01

    In an experiment conducted on the Jefferson Laboratory IR free-electron laser driver, the effects of coherent synchrotron radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR recirculator. Here we examine the impact of CSR on the average energy loss as a function of bunch compression as well as the impact of CSR on the energy spectrum of the bunch. Simulation of beam dynamics in the machine, including the one-dimensional CSR model, shows very good agreement with the measured effect of CSR on the average energy loss as a function of compression. Finally, a well-defined structure is observed in the energy spectrum with a feature in the spectrum that varies as a function of the compression. This effect is examined in simulations, as well, and a simple explanation for the variation is proposed.

  5. Simulations of ion beams for NDCX-II

    Energy Technology Data Exchange (ETDEWEB)

    Grote, D.P., E-mail: dpgrote@lbl.gov [LBNL MS47-112, 1 Cyclotron Rd, Bekerley, CA 94720 (United States); Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Friedman, A., E-mail: afriedman@lbl.gov [Lawrence Livermore National Lab, Livermore, CA 94550 (United States); Sharp, W.M. [Lawrence Livermore National Lab, Livermore, CA 94550 (United States)

    2014-01-01

    NDCX-II, the second neutralized drift compression experiment, is a moderate energy, high current accelerator designed to drive targets for warm dense matter and IFE-relevant energy coupling studies, and to serve as a testbed for high current accelerator physics. As part of the design process, studies were carried out to assess the sensitivities of the accelerator to errors, and to further optimize the design in concert with the evolving pulsed power engineering. The Warp code was used to carry out detailed simulations in both axisymmetric and full 3-D geometry. Ensembles of simulations were carried out to characterize the effects of errors, such as timing jitter and noise on the accelerator waveforms, noise on the source waveform, and solenoid and source offsets. In some cases, the ensemble studies resulted in better designs, revealing operating points with improved performance and showing possible means for further improvement. These studies also revealed a new non-paraxial effect of the final focus solenoid on the beam, which must be taken into account in designing an optimal final focusing system.

  6. Simulation of ion beam losses in LHC magnets

    CERN Document Server

    AUTHOR|(CDS)2068843; Jowett, John M; Riklund, R

    2005-01-01

    At the particle physics laboratory CERN, the largest accelerator ever, the Large Hadron Collider (LHC), is under construction. In the LHC ultra relativistic particles, mainly protons but also lead ions, will be brought into collision. One problem that arises in the operation is that colliding ion beams in the machine have a very large cross section for electromagnetic interactions, in particular Bound Free Pair Production (BFPP). An electron-positron pair is created by the electromagnetic field between two colliding particles and the electron is created in a bound state of one of the ions. Because of this reaction the ion changes its charge and therefore leaves the wanted trajectory and crashes in a superconducting magnet, depositing heat. The impact of the wrongly charged ions on the inside of the vacuum pipe was simulated with the simulation program FLUKA. It was concluded that it is not likely that enough heat is deposited in the coils of the superconducting magnet to induce a quench, although some uncerta...

  7. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  8. Beam Dynamics Investigation of the 101.28 MHz IH Structure as Injector for the HIE-ISOLDE SC Linac

    CERN Document Server

    Fraser, M A; Jones, R M; Voulot, D

    2010-01-01

    The first phase of the HIE-ISOLDE project at CERN consists of a superconducting (SC) linac upgrade in order to increase the energy of post-accelerated radioactive ion beams from 2.8 MeV/u to over 10 MeV/u (for A/q = 4.5). In preparation for the upgrade, we present beam dynamics studies of the booster section of the normal conducting (NC) REX-ISOLDE linac, focused on the longitudinal development of the beam in the 101.28 MHz Interdigital H-mode Structure (IHS), employing a Combined Zero Degree Structure (KONUS), pulsing at a high gradient of over 3 MV/m. The evolution of the transverse emittance in the SC linac depends critically on the injected longitudinal phase space distribution of particles from the existing linac and, with a better understanding of the beam dynamics upstream, the performance of the upgrade can be optimised. Data taken during the commissioning phase of the REX-ISOLDE linac is analysed to understand the properties of the beam in the booster and combined with beam dynamics simulations which...

  9. Analytical estimation of the beam-beam interaction limited dynamic apertures and lifetimes in e{sup +}e{sup -} circular colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J

    2000-12-01

    Physically speaking, the delta function like beam-beam nonlinear forces at interaction points (IPs) act as a sum of delta function nonlinear multipoles. By applying the general theory established in ref. [1], in this paper we investigate analytically the beam-beam interaction limited dynamic apertures and the corresponding beam lifetimes for both the round and the flat beams. Relations between the beam-beam limited beam lifetimes and the beam-beam tune shifts are established, which show clearly why experimentally one has always a maximum beam-beam tune shift, {zeta}{sub y,max}, around 0.045 for e{sup +}e{sup -} circular colliders, and why one can use round beams to double this value approximately. Comparisons with some machine parameters are given. Finally, we discuss the mechanism of the luminosity reduction due to a definite collision crossing angle. (author)

  10. Mitigation of Numerical Noise for Beam Loss Simulations Proc. HB2016 Malmo, Sweden

    CERN Document Server

    Kesting, Frederik

    2017-01-01

    Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.

  11. Molecular dynamics simulations of magnetized dusty plasmas

    Science.gov (United States)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  12. Molecular Dynamics Simulations of Janus Particle Dynamics in Uniform Flow

    CERN Document Server

    Archereau, Aurelien Y M; Willmott, Geoff R

    2016-01-01

    We use molecular dynamics simulations to study the dynamics of Janus particles, micro- or nanoparticles which are not spherically symmetric, in the uniform flow of a simple liquid. In particular we consider spheres with an asymmetry in the solid-liquid interaction over their surfaces and calculate the forces and torques experienced by the particles as a function of their orientation with respect to the flow. We also examine particles that are deformed slightly from a spherical shape. We compare the simulation results to the predictions of a previously introduced theoretical approach, which computes the forces and torques on particles with variable slip lengths or aspherical deformations that are much smaller than the particle radius. We find that there is good agreement between the forces and torques computed from our simulations and the theoretical predictions, when the slip condition is applied to the first layer of liquid molecules adjacent to the surface.

  13. Computer simulation of confined liquid crystal dynamics

    CERN Document Server

    Webster, R E

    2001-01-01

    are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results...

  14. Halo and tail simulations with applications to the CLIC drive beam

    CERN Document Server

    Fitterer, M; Adli, E; Burkhardt, H; Dalena, B; Rumolo, G; Schulte, D; Latina, A; Ahmed, I

    2010-01-01

    We report about generic halo and tail simulations and estimates. Previous studies weremainly focused on very high energies as relevant for the beam delivery systems of linear colliders. We have now studied, applied and extended these simulations to lower energies as relevant for the CLIC drive beam.

  15. Wavefront aberrations of x-ray dynamical diffraction beams.

    Science.gov (United States)

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  16. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    fields generated by beam-plasma instabilities can be responsible for defocusing and distorting beams propagating in background plasma. This can be problematic in inertial fusion applications where the beam is intended to propagate ballistically as the background plasma neutralizes the beam space charge and current. We used particle-in-cell (PIC) code LSP to numerically investigate the defocusing effects in an ion beam propagating in background plasma experiences as it is exposed to the non-linear fields generated by Two-Stream instability between beam ions and plasma electrons. Supported by theory and benchmarked by the numerical solutions of governing E&M equations, the simulations were used to find and check scaling laws for the defocusing forces in the parameter space of beam and plasma density as well as the beam ion mass. A transition region where the defocusing fields peak has been identified, which should be avoided in the design of experimental devices. We further proposed a diagnostic tool to identify the presence of the two-stream instability in a system with parameters similar to the National Drift Compression Experiment II (NDCX-II) and conducted proof-of concept simulations. In the case of electron beam propagating in background plasma instability driven collisionless scattering and plasma heating is observed. 1-D simulations conducted in EDIPIC were benchmarked in LSP to study the excitation and time-evolution of electron-electron Two-Stream instability. Coupling of electron dynamics via non-linear ponderomotive force created by instability generated fields with ion cavities and Ion-Acoustic mode excitation was observed. Furthermore 2-D simulations of an electron-beam in a background plasma was performed. Many of the effects in observed in 1-D simulations were replicated. Morever generation of oblique modes with transverse wave numbers were observed in the simulations, which resulted in significant transverse scattering of beam electrons and the time

  17. Accelerated molecular dynamics simulations of protein folding.

    Science.gov (United States)

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies.

  18. Atomic dynamics of alumina melt: A molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    S.Jahn

    2008-03-01

    Full Text Available The atomic dynamics of Al2O3 melt are studied by molecular dynamics simulation. The particle interactions are described by an advanced ionic interaction model that includes polarization effects and ionic shape deformations. The model has been shown to reproduce accurately the static structure factors S(Q from neutron and x-ray diffraction and the dynamic structure factor S(Q,ω from inelastic x-ray scattering. Analysis of the partial dynamic structure factors shows inelastic features in the spectra up to momentum transfers, Q, close to the principal peaks of partial static structure factors. The broadening of the Brillouin line widths is discussed in terms of a frequency dependent viscosity η(ω.

  19. Simulation of transition radiation based beam imaging from tilted targets

    Science.gov (United States)

    Sukhikh, L. G.; Kube, G.; Potylitsyn, A. P.

    2017-03-01

    Transverse beam profile diagnostics in linear electron accelerators is usually based on direct imaging of a beam spot via visible transition radiation. In this case the fundamental resolution limit is determined by radiation diffraction in the optical system. A method to measure beam sizes beyond the diffraction limit is to perform imaging dominated by a single-particle function (SPF), i.e. when the recorded image is dominated not by the transverse beam profile but by the image function of a point source (single electron). Knowledge of the SPF for an experimental setup allows one to extract the transverse beam size from an SPF dominated image. This paper presents an approach that allows one to calculate two-dimensional SPF dominated beam images, taking into account the target inclination angle and the depth-of-field effect. In conclusion, a simple fit function for beam size determination in the case under consideration is proposed and its applicability is tested under various conditions.

  20. Mesoscopic Simulation Methods for Polymer Dynamics

    Science.gov (United States)

    Larson, Ronald

    2015-03-01

    We assess the accuracy and efficiency of mesoscopic simulation methods, namely Brownian Dynamics (BD), Stochastic Rotation Dynamics (SRD) and Dissipative Particle Dynamics (DPD), for polymers in solution at equilibrium and in flows in microfluidic geometries. Both SRD and DPD use solvent ``particles'' to carry momentum, and so account automatically for hydrodynamic interactions both within isolated polymer coils, and with other polymer molecules and with nearby solid boundaries. We assess quantitatively the effects of artificial particle inertia and fluid compressibility and show that they can be made small with appropriate choice of simulation parameters. We then use these methods to study flow-induced migration of polymer chains produced by: 1) hydrodynamic interactions, 2) streamline curvature or stress-gradients, and 3) convection of wall depletion zones. We show that huge concentration gradients can be produced by these mechanisms in microfluidic geometries that can be exploited for separation of polymers by size in periodic contraction-expansion geometries. We also assess the range of conditions for which BD, SRD or DPD is preferable for mesoscopic simulations. Finally, we show how such methods can be used to simulate quantitatively the swimming of micro-organisms such as E. coli. In collaboration with Lei Jiang and Tongyang Zhao, University of Michigan, Ann Arbor, MI.

  1. Information field dynamics for simulation scheme construction

    Science.gov (United States)

    Enßlin, Torsten A.

    2013-01-01

    Information field dynamics (IFD) is introduced here as a framework to derive numerical schemes for the simulation of physical and other fields without assuming a particular subgrid structure as many schemes do. IFD constructs an ensemble of nonparametric subgrid field configurations from the combination of the data in computer memory, representing constraints on possible field configurations, and prior assumptions on the subgrid field statistics. Each of these field configurations can formally be evolved to a later moment since any differential operator of the dynamics can act on fields living in continuous space. However, these virtually evolved fields need again a representation by data in computer memory. The maximum entropy principle of information theory guides the construction of updated data sets via entropic matching, optimally representing these field configurations at the later time. The field dynamics thereby become represented by a finite set of evolution equations for the data that can be solved numerically. The subgrid dynamics is thereby treated within auxiliary analytic considerations. The resulting scheme acts solely on the data space. It should provide a more accurate description of the physical field dynamics than simulation schemes constructed ad hoc, due to the more rigorous accounting of subgrid physics and the space discretization process. Assimilation of measurement data into an IFD simulation is conceptually straightforward since measurement and simulation data can just be merged. The IFD approach is illustrated using the example of a coarsely discretized representation of a thermally excited classical Klein-Gordon field. This should pave the way towards the construction of schemes for more complex systems like turbulent hydrodynamics.

  2. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  3. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    CERN Document Server

    Wu, Lixiang; Fu, Shaojun

    2016-01-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. We have conducted two experiments. In the experiment on parametric modeling of shielding rate profiles, its result shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. And the experimental result of fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  4. Neutron transport study of a beam port based dynamic neutron radiography facility

    Science.gov (United States)

    Khaial, Anas M.

    -Carlo simulations (using MCNP-4B code) are conducted to confirm the neutron parameters along the beam path and at the imaging plane. Good agreement between the analytical and the numerical values for the thermal neutron flux at the imaging plane to within 5% has been achieved. The MCNP simulations show that neutron back scattering, due to the presence of the back-wall biological shielding and the beam catcher, have an insignificant effect on the thermal neutron flux at the imaging plane, however, the epithermal and fast neutron fluxes have increased by 4-11%. Experimental results show that the thermal neutron flux is nearly uniform over an imaging area of 20.0-cm diameter. The thermal neutron flux ranges from 1.0x107 -- 1.26x107 n/cm 2-s at a reactor operating power of 3.0 MW. The measured value for the neutron-to-gamma ratio is 6.0x105 n/cm2-muSv and the Cadmium-ratio is observed to be 1.22. These values promote real-time neutron radiography with relatively high neutron attenuating materials such as light water and high-speed neutron radiography with relatively low neutron attenuating materials such as heavy water and Freon type fluids with a minimal contrast degradation resulting from non-thermal neutron content of the beam. A dynamic neutron radiography system has been developed and modified to obtain less neutron damage to the low-light level video camera. The system is used to visualize air-water two-phase flow in a natural-circulation loop to examine the dynamic capabilities of the radiography facility. Measurements of bubble velocity, void fraction, and phase distribution are successfully made. Single frames (˜33 ms) of neutron images were captured using the dynamic neutron radiography system for air-water two-phase flow. The system was able to resolve single bubbles interfaces with an image spatial resolution of approximately 0.44 mm. Thermal neutron detectors are placed at the periphery of the neutron beam to detect neutrons scattered by a non-flowing two-phase object

  5. Chaotic dynamics of flexible beams driven by external white noise

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Papkova, I. V.; Zakharov, V. M.; Erofeev, N. P.; Krylova, E. Yu.; Mrozowski, J.; Krysko, V. A.

    2016-10-01

    Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear).

  6. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  7. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading.

    Science.gov (United States)

    Dung, Cao Vu; Sasaki, Eiichi

    2016-04-27

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the "stress-averaging" mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam's modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor's output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  8. Simulation of Gas-Surface Dynamical Interactions

    Science.gov (United States)

    2007-07-01

    Brenig, Z. Phys. B 36, 81 (1979). [39] J. Böheim and W. Brenig, Z. Phys. B 41, 243 (1981). [40] G. B. Arfken and H. J. Weber, Mathematical Methods for...excitation of the substrate have to be taken into account. In this lecture, the quantum and classical methods required for the simulation of gas-surface...well-defined conditions [2]. In this chapter, I will briefly review the theoretical methods necessary to determine the dynamics of processes at surfaces

  9. Study of Nanowires Using Molecular Dynamics Simulations

    OpenAIRE

    Monk, Joshua D

    2007-01-01

    In this dissertation I present computational studies that focus on the unique characteristics of metallic nanowires. We generated virtual nanowires of nanocrystalline nickel (nc-Ni) and single crystalline silver (Ag) in order to investigate particular nanoscale effects. Three-dimensional atomistic molecular dynamics studies were performed for each sample using the super computer System X located at Virginia Tech. Thermal grain growth simulations were performed on 4 nm grain size nc-Ni by o...

  10. Dynamic simulation of flywheel-type fuses

    OpenAIRE

    Editorial Office

    1996-01-01

    Rounds of ammunition are normally armed with a fuse. In this study, a fuse is developed which uses a flywheel-type mechanism controlled by time or distance. Due to its simplicity of operation and construction, the concept is expected to have high reliabil­ity. The dynamic response of all the components of this flywheel-type fuse is mathematically modelled. Simulation software was developed which connects the mathematical models of the various components. With the definition of boundary value...

  11. Comparison of beam simulations with measurements for a 1.25-MeV, CW RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.V. Jr.; Bolme, G.O.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.; Zaugg, T.J.

    1998-12-31

    The Low-Energy Demonstration Accelerator (LEDA) injector is tested using the Chalk River Injector Test Stand (CRITS) radio-frequency quadrupole (RFQ) as a diagnostic instrument. Fifty-keV, dc proton beams are injected into the 1.25-MeV, CW RFQ and transported to a beamstop. Computer-simulation-code predictions of the expected beam performance are compared with the measured beam currents and beam profiles. Good agreement is obtained between the measurements and the simulations at the 75-mA design RFQ output current.

  12. Ion beam analysis of rubies and their simulants

    Energy Technology Data Exchange (ETDEWEB)

    Juncomma, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Department of General Science (Gems and Jewelry), Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Tippawan, U., E-mail: beary1001@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-07-15

    Ion beam analysis (IBA) is a set of well known powerful analytical techniques which use energetic particle beam as a probe. Among them, two techniques are suitable for gemological analysis, i.e., Particle Induced X-rays Emission (PIXE) and Ionoluminescence (IL). We combine these two techniques for the investigations of rubies and their simulants. The main objective is to find a reference fingerprint of these gemstones. The data are collected from several natural rubies, synthetic rubies, red spinels, almandine garnets and rubellite which very much resemble and are difficult to distinguish with the gemologist loupe. From our measurements, due to their different crystal structures and compositions, can be clearly distinguished by the IL and PIXE techniques. The results show that the PIXE spectra consist of a few dominant lines of the host matrix elements of each gemstone and some weaker lines due to trace elements of transition metals. PIXE can easily differentiate rubies from other stones by evaluating their chemical compositions. It is noticed that synthetic rubies generally contain fewer impurities, lower iron and higher chromium than the natural ones. Moreover, the IL spectrum of ruby is unique and different from those of others stones. The typical spectrum of ruby is centered at 694 nm, with small sidebands that can be ascribed to a Cr{sup 3+} emission spectrum which is dominated by an R-line at the extreme red end of the visible part of the electromagnetic spectrum. Although the spectrum of synthetic ruby is centered at the same wavelength, the peak is stronger due to higher concentration of Cr and lower concentration of Fe than for natural rubies. For spinel, the IL spectrum shows strong deformation where the R-line is split due to the presence of MgO. For rubellite, the peak center is shifted to 692 nm which might be caused by the replacement of Mn{sup 3+} at the Al{sup 3+} site of the host structure. It is noticed that almandine garnet is not luminescent due

  13. Design of phase plates for shaping partially coherent beams by simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Long; Lü Bai-Da

    2008-01-01

    Taking the Gaussian Schell-model beam as a typical example of partially coherent beams,this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams.A flow diagram is presented to illustrate the procedure of phase optimization by the SA algorithm.Numerical examples demonstrate the advantages of the SA algorithm in shaping partially coherent beams.An uniform flat-topped beam profile with maximum reconstruction error RE < 1.74% is achieved.A further extension of the approach is discussed.

  14. Simulation of the microtron electron beam profile formation using flattening filters

    Science.gov (United States)

    Miloichikova, I. A.; Stuchebrov, S. G.; Danilova, I. B.; Naumenko, G. A.

    2016-12-01

    The development of new modern methods of electron beam profile forming becomes an important problem with the expansion of the application spectrum of electrons, both in industry and in medicine. This paper presents the results of a numerical simulation of the electron beam profile formed by flattening filters of different materials (aluminum and ABS-plastic). The model corresponding to the actual beam was developed based on the experimental estimation of shape and profile of the extracted microtron electron beam. Next, the geometry of flattening filters made of aluminum and ABS-plastic was calculated, and the electron beam profile was theoretically analyzed.

  15. IGCC Dynamic Simulator and Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.; Erbes, M.R. (Enginomix, LLC)

    2006-10-01

    Integrated Gasification Combined Cycle (IGCC) is emerging as the technology of choice for providing clean, low-cost electricity for the next generation of coal-fired power plants and will play a central role in the development of high-efficiency, zero-emissions power plants such as FutureGen. Several major utilities and developers recently announced plans to build IGCC plants and other major utilities are evaluating IGCC’s suitability for base-load capacity additions. This recent surge of attention to IGCC power generation is creating a growing demand for experience with the analysis, operation, and control of commercial-scale IGCC plants. To meet this need, the National Energy Technology Laboratory (NETL) has launched a project to develop a generic, full-scope, IGCC dynamic plant simulator for use in establishing a state-of-the-art simulator training center at West Virginia University’s (WVU) National Research Center for Coal and Energy (NRCCE). The IGCC Dynamic Simulator & Training (DS&T) Center will be established under the auspices of the Collaboratory for Process & Dynamic Systems Modeling (“Collaboratory”) organized between NETL, WVU, the University of Pittsburgh, and Carnegie Mellon University.

  16. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  17. Expected damage to accelerator equipment due to the impact of the full LHC beam: beam instrumentation, experiments and simulations

    CERN Document Server

    Burkart, Florian

    The Large Hadron Collider (LHC) is the biggest and most powerful particle accelerator in the world, designed to collide two proton beams with particle momentum of 7 TeV/c each. The stored energy of 362MJ in each beam is sufficient to melt 500 kg of copper or to evaporate about 300 liter of water. An accidental release of even a small fraction of the beam energy can cause severe damage to accelerator equipment. Reliable machine protection systems are necessary to safely operate the accelerator complex. To design a machine protection system, it is essential to know the damage potential of the stored beam and the consequences in case of a failure. One (catastrophic) failure would be, if the entire beam is lost in the aperture due to a problem with the beam dumping system. This thesis presents the simulation studies, results of a benchmarking experiment, and detailed target investigation, for this failure case. In the experiment, solid copper cylinders were irradiated with the 440GeV proton beam delivered by the ...

  18. Molecular Dynamics Simulations of Network Glasses

    Science.gov (United States)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  19. SIMULATION OF INTERLINE DYNAMIC VOLTAGE RESTORER

    Directory of Open Access Journals (Sweden)

    J.Singaravelan

    2011-08-01

    Full Text Available This paper presents a new approach for the dynamic control of a current source inverter (CSI using Super Conductive Magnetic energy storage (SMES based Interline DVR. The dynamic voltage restorer (DVR provides a technically advanced and economical solution to voltage-sag problem. As the voltage-restoration process involves the real-power injection into the distribution system, the capability ofa DVR, especially for compensating long-duration voltage sags, it depends on the energy storage capacity of the DVR. The interline DVR proposed in this paper provides a way to replenish Dc-link energy storage dynamically. The IDVR consists of several DVRs connected to different distribution feeders in the power system. The DVRs in the IDVR system shares the common energy storage. When one of the DVRcompensates for voltage sag appearing in that feeder, the other DVRs replenish the energy in the common dc-link dynamically. Thus, one DVR in the IDVR system works in voltage-sag compensation mode whilethe other DVRs in the IDVR system operate in power-flow control mode. The proposed topology is simulated using Matlab/Simulink and total IDVR system is simulated using Matlab/Simulink.

  20. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  1. Dynamic simulator for PEFC propulsion plant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.

  2. Nanodrop contact angles from molecular dynamics simulations

    Science.gov (United States)

    Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim

    2016-11-01

    The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.

  3. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  4. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  5. Dynamic simulation of regulatory networks using SQUAD

    Directory of Open Access Journals (Sweden)

    Xenarios Ioannis

    2007-11-01

    Full Text Available Abstract Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject

  6. FLUKA simulations for the optimization of the Beam Loss Monitors

    CERN Document Server

    Brugger, M; Ferrari, A; Magistris, M; Santana-Leitner, M; Vlachoudis, V; CERN. Geneva. AB Department

    2006-01-01

    The collimation system in the beam cleaning insertion IR7 of the Large Hadron Collider (LHC) is expected to clean the primary halo and the secondary radiation of a beam with unprecedented energy and intensity. Accidental beam losses can therefore entail severe consequences to the hardware of the machine. Thus, protection mechanisms, e.g. beam abort, must be instantaneously triggered by a set of Beam Loss Monitors (BLM's). The readings in the BLM's couple the losses from various collimators, thus rendering the identification of any faulty unit rather complex. In the present study the detailed geometry of IR7 is upgraded with the insertion of the BLM's, and the Monte Carlo FLUKA transport code is used to estimate the individual contribution of every collimator to the showers detected in each BLM.

  7. Hybrid molecular dynamics simulation for plasma induced damage analysis

    Science.gov (United States)

    Matsukuma, Masaaki

    2016-09-01

    In order to enable further device size reduction (also known as Moore's law) and improved power performance, the semiconductor industry is introducing new materials and device structures into the semiconductor fabrication process. Materials now include III-V compounds, germanium, cobalt, ruthenium, hafnium, and others. The device structure in both memory and logic has been evolving from planar to three dimensional (3D). One such device is the FinFET, where the transistor gate is a vertical fin made either of silicon, silicon-germanium or germanium. These changes have brought renewed interests in the structural damages caused by energetic ion bombardment of the fin sidewalls which are exposed to the ion flux from the plasma during the fin-strip off step. Better control of the physical damage of the 3D devices requires a better understanding of the damage formation mechanisms on such new materials and structures. In this study, the damage formation processes by ion bombardment have been simulated for Si and Ge substrate by Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid simulations and compared to the results from the classical molecular dynamics (MD) simulations. In our QM/MM simulations, the highly reactive region in which the structural damage is created is simulated with the Density Functional based Tight Binding (DFTB) method and the region remote from the primary region is simulated using classical MD with the Stillinger-Weber and Moliere potentials. The learn on the fly method is also used to reduce the computational load. Hence our QM/MM simulation is much faster than the full QC-MD simulations and the original QM/MM simulations. The amorphous layers profile simulated with QM/MM have obvious differences in their thickness for silicon and germanium substrate. The profile of damaged structure in the germanium substrate is characterized by a deeper tail then in silicon. These traits are also observed in the results from the mass selected ion beam

  8. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Prescott; Curtis Smith

    2011-07-01

    provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  9. Behavioural modelling and system-level simulation of micromechanical beam resonators

    Science.gov (United States)

    Khine, Lynn; Palaniapan, Moorthi

    2006-04-01

    This paper presents a behavioural modelling technique for micromechanical beam resonators that enables the simulation of MEMS resonator model in Analog Hardware Description Language (AHDL) format within a system-level circuit simulation. A 1.13 MHz clamped-clamped beam and a 10.4 MHz free-free beam resonators have been modelled into Verilog-A code and successfully simulated with Spectre in Cadence. Analysis has shown that both models behave well and their electrical characteristics are in agreement with the theory.

  10. Dynamic behavior of pre- and post-instability of an axisymmetric elastic beam subjected to axial leakage flow

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Morikazu, H.; Shintani, A. [Osaka Prefectural Univ., Mechanical Systems Engineering, Graduate School of Engineering (Japan)

    2004-07-01

    The dynamic behavior of an axisymmetric elastic beam subjected to axial leakage flow is investigated numerically and experimentally. The coupled equations of motion for a fluid and a beam structure are derived using the Navier-Stokes equation for an axial leakage flow-path and the Euler-Bernoulli beam theory. The variation in the dynamic behavior during pre- and post-instability is investigated with respect to increasing axial leakage flow velocity. The experiment was performed to determine the critical velocity of the unstable dynamic behavior of an axisymmetric elastic beam confined in a concentric cylinder subjected to axial leakage flow through a small annulus, and to measure the variation of the dynamic behavior during pre- and post-instability when the unstable phenomenon with the lower predominant frequency is shifted to the higher. The relationships between the axial flow velocities and the unstable phenomena are clarified for the transition from the lower mode to the higher mode by comparing the numerical simulation results with experimental observations. (authors)

  11. Beam dynamics at the main LEBT of RAON accelerator

    CERN Document Server

    Jin, Hyunchang

    2015-01-01

    The high-intensity rare-isotope accelerator (RAON) of the Rare Isotope Science Project (RISP) in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams. The ion beams, which are generated by Electron Cyclotron Resonance Ion Source (ECR-IS), will be transported through the main Low Energy Beam Transport (LEBT) system to the Radio Frequency Quadrupole (RFQ). While passing the beams through LEBT, we should keep the transverse beam size and longitudinal emittance small. Furthermore, the matching of required twiss parameter at the RFQ entrance will be performed by using electro-static quadrupoles at the main LEBT matching section which is from the multi-harmonic buncher (MHB) to the entrance of RFQ. We will briefly review the new aspects of main LEBT lattice and the beam matching at the main LEBT matching section will be presented. In addition, the effects of various errors on the beam orbit and the correction of distorted orbit will be discussed.

  12. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  13. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  14. Simulation study of LEBT for transversely coupled beam from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangyao@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2016-02-15

    A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.

  15. Simulations of the LEDA LEBT H{sup +} beam

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.V. Jr.; Sherman, J.D.; Stevens, R.R. Jr.; Young, L.M.

    1997-08-01

    The computer codes TRACE and SCHAR model the Low-Energy Demonstration Accelerator (LEDA) Low-Energy Beam Transport (LEBT) for 75-keV, 110-mA, dc H{sup +} beams. Solenoid-lens location studies verify that the proposed LEBT design gives a near-optimum match to the LEDA RFQ. The desired RFQ transmission ({ge} 90%) and output emittance ({le} 0.22 {pi} mm mrad, transverse) are obtained when PARMTEQM transports the file for the SCHAR-generated optimum beam through the RFQ.

  16. QUASI-STATIC AND DYNAMICAL ANALYSIS FOR VISCOELASTIC TIMOSHENKO BEAM WITH FRACTIONAL DERIVATIVE CONSTITUTIVE RELATION

    Institute of Scientific and Technical Information of China (English)

    朱正佑; 李根国; 程昌钧

    2002-01-01

    The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.

  17. Monoamine transporters: insights from molecular dynamics simulations

    Science.gov (United States)

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  18. Monoamine transporters: Insights from molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Julie eGrouleff

    2015-10-01

    Full Text Available The human monoamine transporters facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia and Parkinson’s disease. Inhibition of the monoamine transporters is thus an important strategy for treatment of such diseases. The monoamine transporters are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the monoamine transporters, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors.

  19. Information field dynamics for simulation scheme construction

    CERN Document Server

    Enßlin, Torsten A

    2012-01-01

    Information field dynamics (IFD) is introduced here as a framework to derive numerical schemes for the simulation of physical and other fields. Any simulation scheme updates a discretized field representation, the data in a computer's memory, for the next time step according to a discretized, approximate representation of the underlying field dynamics. Assumptions about the continuum field behavior on sub-grid scales are reflected in these rules, e.g. the field might be assumed to be constant within a grid cell, or to be some weighted average of neighboring data points, and the like. In contrast to such parametrized sub-grid field structures, IFD constructs non-parametric sub-grid field configurations from the combination of the data, representing constraints on possible field configurations, and prior assumptions on the sub-grid field statistics. Each of these field configurations can formally be evolved to a later moment since any differential operator of the dynamics can act on fields living in continuous ...

  20. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

    Directory of Open Access Journals (Sweden)

    R. Naz

    2015-01-01

    Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

  1. Note on quantitatively correct simulations of the kinetic beam-plasma instability

    CERN Document Server

    Lotov, K V; Mesyats, E A; Snytnikov, A V; Vshivkov, V A

    2014-01-01

    A large number of model particles is shown necessary for quantitatively correct simulations of the kinetic beam-plasma instability with the clouds-in-cells method. The required number of particles scales inversely with the expected growth rate, as in the kinetic regime only a narrow interval of beam velocities is resonant with the wave.

  2. Note on quantitatively correct simulations of the kinetic beam-plasma instability

    Energy Technology Data Exchange (ETDEWEB)

    Lotov, K. V.; Timofeev, I. V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Mesyats, E. A.; Snytnikov, A. V.; Vshivkov, V. A. [Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-15

    A large number of model particles are shown necessary for quantitatively correct simulations of the kinetic beam-plasma instability with the clouds-in-cells method. The required number of particles scales inversely with the expected growth rate, as only a narrow interval of beam velocities is resonant with the wave in the kinetic regime.

  3. Modeling and computer simulation of ion beam synthesis of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, M.

    1999-11-01

    The following topics were dealt with: ion beam synthesis of nanoclusters, kinetic three dimensional lattice Monte Carlo method, Ostwald ripening, redistribution of implanted impurities, buried layer formation, comparisation to experimental results.

  4. Intense DC beam nonlinear transport-analysis & simulation

    Institute of Scientific and Technical Information of China (English)

    L(U) Jian-Qin; ZHAO Xiao-Song

    2009-01-01

    The intense dc beam nonlinear transport was analyzed with the Lie algebraic method,and the particle trajectories of the second order approximation were obtained.Based on the theoretical analysis a computer code was designed.To get self-consistent solutions,iteration procedures were used in the code.As an example,we calculated a beam line(drift-electrostatic quadrupole doublet-drift).The results agree to the results calculated by using the PIC method.

  5. Allosteric dynamics of SAMHD1 studied by molecular dynamics simulations

    Science.gov (United States)

    Patra, K. K.; Bhattacharya, A.; Bhattacharya, S.

    2016-10-01

    SAMHD1 is a human cellular enzyme that blocks HIV-1 infection in myeloid cells and non-cycling CD4+T cells. The enzyme is an allosterically regulated triphosphohydrolase that modulates the level of cellular dNTP. The virus restriction is attributed to the lowering of the pool of dNTP in the cell to a point where reverse-transcription is impaired. Mutations in SAMHD1 are also implicated in Aicardi-Goutieres syndrome. A mechanistic understanding of the allosteric activation of the enzyme is still elusive. We have performed molecular dynamics simulations to examine the allosteric site dynamics of the protein and to examine the connection between the stability of the tetrameric complex and the Allosite occupancy.

  6. Molecular Dynamics Simulations of Polyelectrolyte Solutions

    Science.gov (United States)

    Dobrynin, Andrey

    2014-03-01

    Polyelectrolytes are polymers with ionizable groups. In polar solvents, these groups dissociate releasing counterions into solution and leaving uncompensated charges on the polymer backbone. Examples of polyelectrolytes include biopolymers such as DNA and RNA, and synthetic polymers such as poly(styrene sulfonate) and poly(acrylic acids). In this talk I will discuss recent molecular dynamics simulations of static and dynamic properties of polyelectrolyte solutions. These simulations show that in dilute and semidilute polyelectrolyte solutions the electrostatic induced chain persistence length scales with the solution ionic strength as I - 1 / 2. This dependence of the chain persistence length is due to counterion condensation on the polymer backbone. In dilute polyelectrolyte solutions the chain size decreases with increasing the salt concentration as R ~ I- 1 / 5. This is in agreement with the scaling of the chain persistence length on the solution ionic strength, lp ~ I- 1 / 2. In semidilute solution regime at low salt concentrations the chain size decreases with increasing polymer concentration, R ~ cp-1 / 4 . While at high salt concentrations one observes a weaker dependence of the chain size on the solution ionic strength, R ~ I- 1 / 8. Analysis of the simulation data throughout the studied salt and polymer concentration ranges shows that there exist general scaling relations between multiple quantities X (I) in salt solutions and corresponding quantities X (I0) in salt-free solutions, X (I) = X (I0) (I /I0) β . The exponent β = -1/2 for chain persistence length lp , β = 1/4 for solution correlation length, β = -1/5 and β = -1/8 for chain size R in dilute and semidilute solution regimes respectively. Furthermore, the analysis of the spectrum and of the relaxation times of Rouse modes confirms existence of the single length scale (correlation length) that controls both static and dynamic properties of semidilute polyelectrolyte solutions. These findings

  7. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  8. Molecular dynamics simulations of classical stopping power.

    Science.gov (United States)

    Grabowski, Paul E; Surh, Michael P; Richards, David F; Graziani, Frank R; Murillo, Michael S

    2013-11-22

    Molecular dynamics can provide very accurate tests of classical kinetic theory; for example, unambiguous comparisons can be made for classical particles interacting via a repulsive 1/r potential. The plasma stopping power problem, of great interest in its own right, provides an especially stringent test of a velocity-dependent transport property. We have performed large-scale (~10(4)-10(6) particles) molecular dynamics simulations of charged-particle stopping in a classical electron gas that span the weak to moderately strong intratarget coupling regimes. Projectile-target coupling is varied with projectile charge and velocity. Comparisons are made with disparate kinetic theories (both Boltzmann and Lenard-Balescu classes) and fully convergent theories to establish regimes of validity. We extend these various stopping models to improve agreement with the MD data and provide a useful fit to our results.

  9. Design and Simulation of Symmetric Nanostructures Using Two-beam Modulated Interference Lithography Technique

    CERN Document Server

    Raj, A Alfred Kiruba; Devaprakasam, D

    2013-01-01

    Interferometry lithography is a maturing technology for patterning sub-micron structures in arrays covering large areas. This paper presents a method for the measurement of nanoscale surface patterns produced by two-beam laser interference lithography (LIL). The objective in this study is to simulate and design periodic and quasi-periodic 1D, 2D and 3D nanostructures using two-beam interference technique. We designed and simulated periodic and quasi-periodic structures by two-beam interference patterning using a MATLAB program by varying angle of incidence, wavelength and geometry. The simulated patterns show that the symmetries of the interference maxima depend mostly on the angles of incidence and perturbations of incidents beams. Using this technique, we can achieve potentially high-volume of uniformity, throughput, process control, and repeatability. By varying different input parameters, we have optimized simulated patterns with controlled periodicity, density and aspect ratio also it can be programmed t...

  10. Dynamic Analysis of Kineto-Elastic Beam System with Second-order Effect

    Institute of Scientific and Technical Information of China (English)

    LU Nian-li; LUO Bing; XIA Yong-jun

    2009-01-01

    Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis, three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system, dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane, the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.

  11. Molecular Dynamics Simulations of Hypervelocity Impacts

    Science.gov (United States)

    Owens, Eli T.; Bachlechner, Martina E.

    2007-03-01

    Outer space silicon solar cells are exposed to impacts with micro meteors that can destroy the surface leading to device failure. A protective coating of silicon nitride will protect against such failure. Large-scale molecular dynamics simulations are used to study how silicon/silicon nitride fails due to hypervelocity impacts. Three impactors made of silicon nitride are studied. Their cross-sectional areas, relative to the target, are as follows: the same as the target, half of the target, and a quarter of the target. Impactor speeds from 5 to 11 km/second yield several modes of failure, such as deformation of the target by the impactor and delimitation of the silicon nitride from the silicon at the interface. These simulations will give a much clearer picture of how solar cells composed of a silicon/silicon nitride interface will respond to impacts in outer space. This will ultimately lead to improved devices with longer life spans.

  12. Molecular Dynamics Simulations for Predicting Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-06-01

    Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.

  13. Nano-tribology through molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    王慧; 胡元中; 邹鲲; 冷永胜

    2001-01-01

    The solidification and interfacial slip in nanometer-scale lubricating films as well as the contact and adhesion of metal crystals have been studied via molecular dynamics simulations. Results show that the critical pressure for the solid-liquid transition declines as the film thickness decreases, in-dicating that the lubricant in the thin films may exist in a solid-like state. It is also found that the interfa-cial slip may occur in thin films at relatively low shear rate, and there is a good correlation between the slip phenomenon and the lubricant solidification. The simulations reveal that a micro-scale adhesion may take place due to the atomic jump during the process of approaching or separating of two smooth crystal surfaces, which provides important information for understanding the origin of interfacial friction.

  14. Osmosis : a molecular dynamics computer simulation study

    Science.gov (United States)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  15. Molecular Dynamics Simulations of Interface Failure

    Science.gov (United States)

    Bachlechner, Martina E.; Cao, Deng; Leonard, Robert H.; Owens, Eli T.; Swan, Wm. Trevor, III; Ducatman, Samuel C.

    2007-03-01

    The mechanical integrity of silicon/silicon nitride interfaces is of great importance in their applications in micro electronics and solar cells. Large-scale molecular dynamics simulations are an excellent tool to study mechanical and structural failure of interfaces subjected to externally applied stresses and strains. When pulling the system parallel to the interface, cracks in silicon nitride and slip and pit formation in silicon are typical failure mechanisms. Hypervelocity impact perpendicular to the interface plane leads to structural transformation and delamination at the interface. Influence of system temperature, strain rate, impact velocity, and system size on type and characteristics of failure will be discussed.

  16. Schwinger model simulations with dynamical overlap fermions

    CERN Document Server

    Bietenholz, W; Volkholz, J

    2007-01-01

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for $\\Sigma$ that follow closely the analytical predictions in the continuum.

  17. Schwinger model simulations with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2007-11-15

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)

  18. [Oligoglycine surface structures: molecular dynamics simulation].

    Science.gov (United States)

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  19. Dynamic simulation of flywheel-type fuses

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1996-07-01

    Full Text Available Rounds of ammunition are normally armed with a fuse. In this study, a fuse is developed which uses a flywheel-type mechanism controlled by time or distance. Due to its simplicity of operation and construction, the concept is expected to have high reliabil­ity. The dynamic response of all the components of this flywheel-type fuse is mathematically modelled. Simulation software was developed which connects the mathematical models of the various components. With the definition of boundary values, the response of the projectile, flywheel and other components can be determined continuously for firing and in-flight conditions.

  20. Stochastic collective dynamics of charged-particle beams in the stability regime.

    Science.gov (United States)

    Petroni, N C; De Martino, S; De Siena, S; Illuminati, F

    2001-01-01

    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time-reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by lambda(c)sqrt[N], where N is the number of particles in the beam and lambda(c) the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schrödinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so-called "quantum-like approaches" to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam-field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.

  1. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21

    scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis

  2. Parallel Monte Carlo simulation of aerosol dynamics

    KAUST Repository

    Zhou, K.

    2014-01-01

    A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.

  3. Parallel Monte Carlo Simulation of Aerosol Dynamics

    Directory of Open Access Journals (Sweden)

    Kun Zhou

    2014-02-01

    Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.

  4. On the way to high dynamic range beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Jan; Artikova, Sayyora [Max-Planck-Institut fuer Kernphysik (Germany); Welsch, Carsten [University of Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology (United Kingdom)

    2009-07-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the drift chamber and thereby activate the beam pipe, which makes work on the accelerator costly and time consuming. A well-established technique for transverse beam profile measurements is synchrotron radiation (SR) for high energy and high luminosity accelerators like the LHC or CTF3. At much lower beam energies, an alternative for transverse beam profile measurements based on the direct measurement of light is optical transition radiation (OTR) or the insertion of a luminescent screen. What applies for essentially all these light generation processes, is that the light intensity is over a wide range proportional to the particle density, which makes the optical analysis of such light an ideal tool for beam profile measurements. A particular challenge, however, is to distinguish the particles in the tail regions of the beam distribution from the much more intense beam core. In this contribution, we present results from laboratory measurements on two different devices that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system and a flexible masking technique based on a DMD micro mirror array.

  5. Sonar beam dynamics in leaf-nosed bats.

    Science.gov (United States)

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-07-07

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.

  6. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  7. Electron beam simulation from gun to collector: Towards a complete solution

    Energy Technology Data Exchange (ETDEWEB)

    Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F. [CERN, Geneva 23, CH-1211 (Switzerland); Beebe, E.; Pikin, A. [Brookhaven National Lab, Upton, NY 11973 (United States)

    2015-01-09

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters. We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.

  8. Simulation of the layer-by-layer synthesis of articles with an electron beam

    Science.gov (United States)

    Rudskoi, A. I.; Kondrat'ev, S. Yu.; Sokolov, Yu. A.; Kopaev, V. N.

    2015-11-01

    The production of powder articles by layer-by-layer electron-beam synthesis is simulated. The following types of spatial distribution of the specific beam power over the surface of a powder layer are analyzed: truncated Gaussian distribution and β distribution. The mathematical description of the layer-by-layer electron- beam synthesis of articles includes a model for the interaction of a scanning electron beam with an article and a model for the heat-and-mass transfer processes that occur during the formation of an article.

  9. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  10. Cross-beam energy transfer to a single f-20 beam: simulations of previous and upcoming experiments

    Science.gov (United States)

    Chapman, Thomas; Turnbull, David; Kirkwood, Robert; Michel, Pierre; Wilks, Scott; Berger, Richard; Hinkel, Denise; Moody, John; Langer, Steve; Langdon, Bruce; Strozzi, David

    2016-10-01

    Motivated by materials research applications, cross-beam energy transfer can be used to transfer energy from one or more quads of beamlets at the NIF, which have an effective f-number of 8, to a single f-20 beam. Using plasma comprised of a preheated C5H12 gasbag, a preliminary experiment at the NIF demonstrated amplification of a 750 J f-20 beam by a factor of 2 in both power and energy. A witness plate providing gated x-ray images was used to obtain total energies and transmitted spot intensities for the pump quad, seed beamlet, and a calibration quad. These experimental diagnostics offer the opportunity to perform quantitative comparisons with simulations. We use the laser-plasma interaction code pF3D to simulate the energy transfer process, using plasma conditions obtained from the plasma hydrodynamics code HYDRA. Our simulations of the completed single-pump quad experiment recover the measured seed amplification and transmitted spot power distributions. We also show simulation results for the upcoming two-pump quad experiment.

  11. Quasi-static and dynamical bending of a cantilever poroelastic beam

    Institute of Scientific and Technical Information of China (English)

    YANG Yi; LI Li; YANG Xiao

    2009-01-01

    Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending deformation is examined.The initial boundary value problems for dynamical and quasi-static responses are solved with the Laplace transform technique,and the deflections, the bending moments of the solid skeleton and the equivalent couples of the pore fluid pressure are shown in figures. It is shown that the dynamical and quasi-static behavior of the saturated poroelastic beam depends closely on the permeability conditions at the beam ends. Under the different permeability conditions, the deflections of the beam may oscillate or not. The Mandel-Cryer effect also exists in liquid-saturated poroelastic beams.

  12. Modeling and simulation performance of sucker rod beam pump

    Energy Technology Data Exchange (ETDEWEB)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com [Department of Computational Sciences, Institut Teknologi Bandung (Indonesia); Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com [Department of Petroleum Engineering, Institut Teknologi Bandung (Indonesia); Soewono, Edy, E-mail: esoewono@math.itb.ac.id [Department of Mathematics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  13. Modeling and simulation performance of sucker rod beam pump

    Science.gov (United States)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-09-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  14. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  15. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.

    Science.gov (United States)

    Kotakoski, Jani; Santos-Cottin, David; Krasheninnikov, Arkady V

    2012-01-24

    Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage.

  16. End to End Beam Dynamics of the ESS Linac

    DEFF Research Database (Denmark)

    Thomsen, Heine Dølrath

    2012-01-01

    The European Spallation Source, ESS, uses a linear accelerator to deliver a high intensity proton beam to the target station. The nominal beam power on target will be 5 MW at an energy of 2.5 GeV. We briefly describe the individual accelerating structures and transport lines through which we have...

  17. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  18. Experimental validation of flexible multibody dynamics beam formulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)

    2015-08-15

    In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

  19. Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states

    NARCIS (Netherlands)

    Man, Z.; Du, L.; Min, C.; Zhang, Y.; Zhang, C.; Zhu, S.; Urbach, H.P.; Yuan, X.C.

    2014-01-01

    Vector beams, which have space-variant state of polarization (SOP) comparing with scalar beams with spatially homogeneous SOP, are used to manipulate surface plasmon polarizations (SPPs). We find that the excitation, orientation, and distribution of the focused SPPs excited in a high numerical apert

  20. Nano-tribology through molecular dynamics simulations

    Institute of Scientific and Technical Information of China (English)

    WANG; Hui(

    2001-01-01

    [1]Burkert, U., Allinger, N. L., Molecular Mechanics, York: Maple Press Company, 1982.[2]Daw, M. S. , Baskes, M. I., Embedded-atom method: derivation and application to impurities, surface and other defects in metals, Phys. Rev. B, 1984, 29: 6443-6453.[3]Frenke, D., Smit, B., Understanding Molecular Simulation, San Diego: Academic Press, 1996, 60-67, 125-140.[4]Granick, S., Motions and relaxation of confined liquids, Science, 1991, 253: 1374-1379.[5]Koplik, J., Banavar, J., Willemsen, J., Molecular dynamics of Poisewulle flow and moving contact line, Phys. Rev.Lett., 1988, 60: 1282-1285.[6]Hu, Y. Z., Wang, H., Guo, Y. et al., Simulation of lubricant rheology in thin film lubrication, Part I: simulation of Poiseuille flow, Wear, 1996, 196: 243-259.[7]Zou, K., Li, Z. J, Leng, Y. S. et al. , Surface force apparatus and its application in the study of solid contacts, Chinese Science Bulletin, 1999, 44: 268-271.[8]Stevens, M. , Mondello, M., Grest, G. et al. , Comparison of shear flow of hexadecane in a confined geometry and in bulk,J. Chem. Phys., 1997, 106: 7303-7314.[9]Huang, P., Luo, J. B., Wen, S. Z., Theoretical study on the lubrication failure for tthe lubricants with a limiting shear stress, Tribology International, 1999, 32: 421-426.[10]Ryckaert, J. P. , Bellemans. , A molecular dynamics of alkanes, Faraday Soc. , 1978, 66: 95-106.[11]Wang, H. , Hu, Y. Z., A molecular dynamics study on slip phenomenon at solid-liquid interface, in Proceedings of tthe First AICT, Beijing: Tsinghua University Press, 1998, 295-299.[12]Landman, U., Luedtke, W., Burnham, N. et al., Mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science, 1990, 248: 454-461.[13]Leng, Y. S., Hu, Y. Z., Zheng, L. Q., Adhesive contact of flat-ended wedges: theory and computer experiments, Journal of Tribology, 1999, 121: 128-132.

  1. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    Science.gov (United States)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  2. Radiative damping and electron beam dynamics in plasma-based accelerators.

    Science.gov (United States)

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  3. Radiative damping and electron beam dynamics in plasma-based accelerators

    Science.gov (United States)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  4. Beam Dynamics Observations of the 2015 High Intensity Scrubbing Runs at the Cern Sps

    CERN Document Server

    Bartosik, Hannes; Li, Kevin; Mether, Lotta; Romano, Annalisa; Rumolo, Giovanni; Schenk, Michael

    2016-01-01

    Beam quality degradation caused by e-cloud effects has been identified as one of the main performance limitations for high intensity LHC beams with 25 ns bunch spacing in the SPS. In view of the beam parameters targeted with the LHC injectors upgrade (LIU) project, about two weeks of SPS machine time in 2015 were devoted to dedicated scrubbing runs with high intensity LHC 25 ns and dedicated 'doublet' beams in order to study the achievable reduction of e-cloud effects and quantify the consequent beam performance improvements. This paper describes the main observations concerning the coherent instabilities and beam dynamics limitations encountered as well as a detailed characterisation of the performance reach with the highest beam intensity presently available from the pre-injectors.

  5. Beam dynamics in a long-pulse linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mc Cuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rose, Chris R [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Trainham, C [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Scarpetti, Raymond [LLNL; Genoni, Thomas [VOSS; Hughes, Thomas [VOSS; Toma, Carsten [VOSS

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  6. Simulations of Neutral Beam Ion Ripple Loss on EAST

    Institute of Scientific and Technical Information of China (English)

    李吉波; 丁斯晔; 吴斌; 胡纯栋

    2012-01-01

    Predictions on the ripple loss of neutral beam fast ions on EAST are investigated with a guiding center code, including both ripple and collisional effects. A 6% to 16% loss of neutral beam ions is predicted for typical EAST experiments, and a synergistic enhancement of fast ion loss is found for toroidal field (TF) ripples with collisions. The lost ions are strongly localized and will cause a maximum heat load of - 0.05 MW/m^2 on the first wall.

  7. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through...

  8. Beam dynamics and expected RHIC performance with 56MHz RF upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.V.; Ben-Zvi, I.

    2009-05-04

    An upgrade of the RHIC storage RF system with a superconducting 56 MHz cavity was recently proposed. This upgrade will provide a significant increase in the acceptance of the RHIC 197 MHz storage RF bucket. This paper summarizes simulations of beam evolution due to intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvements are shown for Au ions at 100 GeV/nucleon and protons at 250 GeV.

  9. SNOW: a digital computer program for the simulation of ion beam devices

    Energy Technology Data Exchange (ETDEWEB)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented.

  10. Quantum molecular dynamics simulations of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  11. Beam dynamics studies in the driver LINAC pre-stripper section of the RIA facility

    Indian Academy of Sciences (India)

    E S Lessner; P N Ostroumov

    2002-12-01

    The RIA facility driver LINAC consists of about 400 superconducting (SC) independently phased rf cavities. The LINAC is designed to accelerate simultaneously several charge-state beams to generate as much as 400 kW of uranium beam power. The LINAC beam dynamics is most sensitive to the focusing and accelerating structure parameters of the pre-stripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate two charge states (28 and 29) of uranium beam from an ECR ion source. The pre-stripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the pre-stripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic three-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

  12. Dynamic stiffness matrix development and free vibration analysis of a moving beam

    Science.gov (United States)

    Banerjee, J. R.; Gunawardana, W. D.

    2007-06-01

    The dynamic stiffness matrix of a moving Bernoulli-Euler beam is developed and used to investigate its free flexural vibration characteristics. In order to develop the dynamic stiffness matrix, it is necessary to derive and solve the governing differential equation of motion of the moving beam in closed analytical form. The solution is then used to obtain the general expressions for both responses and loads. Boundary conditions are applied to determine the constants in the general solution, leading to the formation of the frequency dependent dynamic stiffness matrix of the moving beam, relating the amplitudes of the harmonically varying loads to those of the corresponding responses. The application of the resulting dynamic stiffness matrix using the Wittrick-Williams algorithm is demonstrated by some illustrative examples. Numerical results for both simply supported and fixed-fixed end conditions of the beam are discussed, and wherever possible, some are compared with those available in the literature.

  13. Dynamics simulations for engineering macromolecular interactions

    Science.gov (United States)

    Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey

    2013-06-01

    The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could

  14. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  15. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  16. Simulations of Axisymmetric Erosion in IFR-Transported Beams

    Science.gov (United States)

    1989-02-21

    energy beam propagation studies. 17 References 1. G. J. Caporaso, F. Rainer, W. E. Martin, D. S. Prono and A. G. Cole, Phys. Rev. Lett. 57, 1591 (1986). 2...Mark, L-477 Dr. William Fawley JA C)R Dr. William Barletta 39(50 Libery Street, Suite 320 Dr. William Sharp Freenont, CA ’.533 Dr. Daniel S. Prono At

  17. On sequential dynamical systems and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  18. Numerical Simulations of Early-Stage Dynamics of Electron Bunches Emitted from Plasmonic Photocathodes

    CERN Document Server

    Lueangaramwong, Anusorn; Andonian, Gerard; Piot, Philippe

    2016-01-01

    High-brightness electron sources are a key ingredient to the development of compact accelerator-based light sources. The electron sources are commonly based on (linear) a photoemission process where a laser pulse with proper wavelength impinges on the surface of a metallic or semiconductor cathode. Very recently the use of plasmonic cathodes--cathodes with a nano-patterned surface--have demonstrated great enhancement in quantum efficiencies [1]. Alternatively, this cathode type could support the formation of structured beams composed of transversely separated beamlets. In this paper we discuss numerical simulations of the early-stage beam dynamics of the emission process from plasmonic cathodes using the Warp [2] framework. The model is used to investigate the properties of beams emitted from this type of cathode and combined with PIC simulation to explore the imaging of cathode pattern after acceleration in a radiofrequency gun.

  19. Wave optics simulation of spatially partially coherent beams: Applications to free space laser communications

    Science.gov (United States)

    Xiao, Xifeng

    One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial

  20. The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures

    Science.gov (United States)

    Caddemi, S.; Caliò, I.

    2013-06-01

    In this paper the closed form expression of the exact dynamic stiffness matrix of an Euler-Bernoulli beam in the presence of an arbitrary number of concentrated cracks is derived. The procedure adopted for the evaluation of the dynamic stiffness matrix is based on the availability of the exact closed form solution of the vibration modes of the multi-cracked beam, derived by the same authors in a previous paper. The knowledge of the exact explicit dynamic stiffness matrix of the multi-cracked beam makes the direct evaluation of the exact global dynamic stiffness matrix of damaged frame structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, consistent with the distributed parameter model, through the application of the well-known Wittrick-Williams algorithm. Some numerical applications, relative to the evaluation of frequencies and the corresponding mode shapes of multi-cracked framed structure, are reported. Furthermore, the closed-form solution has been validated by comparing with some exact results available in the literature, for a simple single cracked frame. Finally, further new results for a multi-cracked frame have been compared with those obtained by a finite element simulation.

  1. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support

    Science.gov (United States)

    Bachmann, Marcel; Avilov, Vjaceslav; Gumenyuk, Andrey; Rethmeier, Michael

    2012-01-01

    A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid-liquid phase transition were taken into account in this model. Solidification was modelled by the Carman-Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations.

  2. Analysis of Static and Dynamic Behavior of T-shape Beam Reinforced by External Prestressing Tendon

    Directory of Open Access Journals (Sweden)

    Dinghai Li

    2013-01-01

    Full Text Available External prestressing has become a primary method for strengthening existing concrete beam and has been increasingly used in the construction of newly erected ones, particularly railroad bridges in recent years. In order to evaluate the effect of this method, the static and dynamic behavior of a T-frame beam reinforced by external prestressed strengthened concrete beam was analyzed by 3D finite element method, and the field test study was also made. The study was carried out to further investigate the simply supported reinforced prestressed concrete beam strengthened by external prestressing through theory analysis and experiment.

  3. Report of the working group on production and dynamics of high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L. [MS H851I, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bisognano, J.; Brau, C.; Hogan, M.; Kim, K.; Milton, S.; Nuhn, H.; Pagani, C.; Pierini, P.; Reiser, M.; Schmerge, J.; Serafini, L.; Teng, L.; Winick, H.; Cornacchia, M.

    1997-02-01

    This paper summarizes the main discussions of the Working Group on the Production and Dynamics of High Brightness Beams. The following topics are covered in this paper: proposed new electron sources and needed research on existing sources, discussions on issues relating to the description of phase space on non-thermalized electron beam distributions and the theoretical modeling on non-thermalized electron beam distributions, and the present status of the theoretical modeling of beam transport in bends. {copyright} {ital 1997 American Institute of Physics.}

  4. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  5. Particle-in-Cell Simulations of the VENUS Ion Beam Transport System

    CERN Document Server

    Todd, Damon; Leitner, Daniela; Lyneis, Claude; Qiang, Ji

    2005-01-01

    The next-generation superconducting ECR ion source VENUS serves as the prototype injector ion source for the linac driver of the proposed Rare Isotope Accelerator (RIA). The high-intensity heavy ion beams required by the RIA driver linac present significant challenges for the design and simulation of an ECR extraction and low energy ion beam transport system. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Typically, beam simulations must take into account the contributions of up to 30 different charge states and ion masses. Two three-dimensional, particle-in-cell codes developed for other purposes, IMPACT and WARP, have been adapted in order to model intense, multi-species DC beams. A discussion of the differences of these codes and the advantages of each in the simulation of the low energy beam transport system of an ECR ion source is given. D...

  6. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  7. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    Science.gov (United States)

    Mathew, Jose V.; Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-01

    A 400 keV deuteron (D+) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H+ and D+ beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D+ beam through the RFQ, while 95% transmission has been measured experimentally.

  8. Astrophysical Fluid Dynamics via Direct Statistical Simulation

    CERN Document Server

    Tobias, S M; Marston, J B

    2010-01-01

    In this paper we introduce the concept of Direct Statistical Simulation (DSS) for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimised for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and MHD on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.

  9. Simulating the dynamics of complex plasmas

    CERN Document Server

    Schwabe, Mierk

    2014-01-01

    Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.

  10. CADS:Cantera Aerosol Dynamics Simulator.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.

    2007-07-01

    This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

  11. Simulation of the magnetic mirror effect on a beam of positrons

    CERN Document Server

    Boursette, Delphine

    2014-01-01

    I simulated a beam of positrons at the entrance of a 5 Tesla magnet for the Aegis experiment. The goal was to show how many positrons are lost because of the magnetic mirror effect. To do my simulation, I used Comsol to create the magnetic field map and Geant4 to draw the trajectories of the positrons in this field map.

  12. MARS Tracking Simulations for the Mu2e Slow Extracted Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nagaslaev, Vladimir [Fermilab; Rakhno, Igor [Fermilab

    2015-06-01

    Particle tracking taking into account interactions with fields and materials is necessary for proper evaluation of the resonant extraction losses and geometry optimization for the extraction beam line. This paper describes the tracking simulations for the Mu2e Resonant Extraction and discusses the geometry choices made based on these simulations.

  13. Control of beam dynamics in high energy induction linacs

    Science.gov (United States)

    Caporaso, G. J.

    1986-07-01

    The Advent of laser-ion-guiding in the Advanced test Accelerator along with the development of accelerator cavities optimized with respect to beam breakup coupling impedence now make it possible to consider a new class of high current, high emergy linear induction accelerators. The control of the beam breakup and other instabilities by laser guiding and by various magnetic focusing schemes will be discussed along with the scaling laws for the design of such machines to minimize the growth of the beam breakup instability. Many linacs, particularly induction linacs are limited in performance by the beam breakup (BBU) instability. The instability is found in two forms. In the first form the accelerating cavities communicate with one another through interaction with the beam and through propagation of cavity fields through the accelerator structure. In the second form which is the more virulent of the two, the cavities couple to each other only through their interactions with the beam. It is this second form of PPU that will be discussed in this paper.

  14. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  15. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  16. Beam dynamics studies on BEPC-Ⅱstorage rings at the commissioning stage

    Institute of Scientific and Technical Information of China (English)

    QIN Qing; HUANG Nan; LIU Wei-Bin; LIU Yu-Dong; PENG Yue-Mei; QIU Jing; WANG Dou; WANG Xin-Hao; WANG Na; WANG Jiu-Qing; WEI Yuan-Yuan; WEN Xue-Mei; XING Jun; XU Gang; Yu Cheng-Hui; ZHANG Chuang; ZHANG Yuan; ZHAO Zheng; ZHOU De-Min

    2009-01-01

    During the 1st and 2nd stages of the commissioning of the upgrade project of the Beijing Electron Positron Collider(BEPC Ⅱ),which started on Nov.12,2006 and Oct.24,2007,respectively,we got the luminosity one tenth of its design value,provided beams to synchrotron radiation users for about 4 months,and studied beam dynamics as well.In this paper,some beam dynamics studies on the storage rings and their preliminary results are given.

  17. Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling

    CERN Document Server

    Hermes, Pascal; Cerutti, Francesco; Ferrari, Alfredo; Jowett, John; Lechner, Anton; Mereghetti, Alessio; Mirarchi, Daniele; Ortega, Pablo; Redaelli, Stefano; Salvachua, Belen; Skordis, Eleftherios; Valentino, Gianluca; Vlachoudis, Vasilis

    2016-01-01

    The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.

  18. Dynamics and Control of Articulated Anisotropic Timoshenko Beams

    Science.gov (United States)

    Balakrishnan, A. V.

    1996-01-01

    The paper illustrates the use of continuum models in control design for stabilizing flexible structures. A 6-DOF anisotropic Timoshenko beam with discrete nodes where lumped masses or actuators are located provides a sufficiently rich model to be of interest for mathematical theory as well as practical application. We develop concepts and tools to help answer engineering questions without having to resort to ad hoc heuristic ("physical") arguments or faith. In this sense the paper is more mathematically oriented than engineering papers and vice versa at the same time. For instance we make precise time-domain solutions using the theory of semigroups of operators rather than formal "inverse Laplace transforms." We show that the modes arise as eigenvalues of the generator of the semigroup, which are then related to the eigenvalues of the stiffness operator. With the feedback control, the modes are no longer orthogonal and the question naturally arises as to whether there is still a modal expansion. Here we prove that the eigenfunctions yield a biorthogonal Riesz basis and indicate the corresponding expansion. We prove mathematically that the number of eigenvalues is nonfinite, based on the theory of zeros of entire functions. We make precise the notion of asymptotic modes and indicate how to calculate them. Although limited by space, we do consider the root locus problem and show for instance that the damping at first increases as the control gain increases but starts to decrease at a critical value, and goes to zero as the gain increases without bound. The undamped oscillatory modes remain oscillatory and the rigid-body modes go over into deadbeat modes. The Timoshenko model dynamics are translated into a canonical wave equation in a Hilbert space. The solution is shown to require the use of an "energy" norm which is no more than the total energy: potential plus kinetic. We show that, under an appropriate extension of the notion of controllability, rate feedback with

  19. A geometrical model for the Monte Carlo simulation of the TrueBeam linac

    CERN Document Server

    Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sauerwein, Wolfgang; Brualla, Lorenzo

    2015-01-01

    Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TrueBeam linac. The upper part of the TrueBeam linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by {\\it ad hoc} thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6~MV and 10~MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from $3\\times3$ to $40\\times40$ cm$^2$. The same comparisons were done for dose profiles ob...

  20. Gaussian beam propagation in anisotropic turbulence along horizontal links: theory, simulation, and laboratory implementation.

    Science.gov (United States)

    Xiao, Xifeng; Voelz, David G; Toselli, Italo; Korotkova, Olga

    2016-05-20

    Experimental and theoretical work has shown that atmospheric turbulence can exhibit "non-Kolmogorov" behavior including anisotropy and modifications of the classically accepted spatial power spectral slope, -11/3. In typical horizontal scenarios, atmospheric anisotropy implies that the variations in the refractive index are more spatially correlated in both horizontal directions than in the vertical. In this work, we extend Gaussian beam theory for propagation through Kolmogorov turbulence to the case of anisotropic turbulence along the horizontal direction. We also study the effects of different spatial power spectral slopes on the beam propagation. A description is developed for the average beam intensity profile, and the results for a range of scenarios are demonstrated for the first time with a wave optics simulation and a spatial light modulator-based laboratory benchtop counterpart. The theoretical, simulation, and benchtop intensity profiles show good agreement and illustrate that an elliptically shaped beam profile can develop upon propagation. For stronger turbulent fluctuation regimes and larger anisotropies, the theory predicts a slightly more elliptical form of the beam than is generated by the simulation or benchtop setup. The theory also predicts that without an outer scale limit, the beam width becomes unbounded as the power spectral slope index α approaches a maximum value of 4. This behavior is not seen in the simulation or benchtop results because the numerical phase screens used for these studies do not model the unbounded wavefront tilt component implied in the analytic theory.

  1. Numerical optimization and multi-particle dynamics simulation of the radial matching section of the RFQ

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; YUE Wei-Ming; ZHAO Hong-Wei; XIA Jia-Wen; HE Yuan; YUAN You-Jin; WANG Zhi-Jun; LIU Yong; HE Shou-Bo; XU Meng-Xin; CHANG Wei; LI Chao

    2011-01-01

    The ABC code is an optimization program for the development of matching channels and dynamical matchers in radio frequency quadrupole (RFQ) structures,and a new approach to this code to define the geometry of the radial matching section of the RFQ has been developed.This approach is based on the application of the numerical optimization step by step.This optimization is intended to search for the initial matching condition of a beam,the optimization of parameters of a cell of the channel on given characteristic parameters and traces of a beam in linear channels in both forward and backward directions.To further verify the results of the optimization,multi-particle beam dynamics simulations have been carried out using the BEAMPATH and TRACK codes.The result of the beam dynamics simulation shows that the optimization result of the ABC code is reasonable and this approach provides an opportunity to redesign the structure of the radial matching section of the RFQ.

  2. In silico FRET from simulated dye dynamics

    Science.gov (United States)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language

  3. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    FERNOW,R.C.

    1999-03-25

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  4. Coarse-grained protein molecular dynamics simulations

    Science.gov (United States)

    Derreumaux, Philippe; Mousseau, Normand

    2007-01-01

    A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Aβ16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50ns time scale. Based on two 220ns trajectories starting from disordered chains, we find that four Aβ16-22 peptides can form a three-stranded β sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.

  5. Cluster beam steering onto silicon surfaces studied by molecular dynamics

    CERN Document Server

    Mazzone, A M

    2002-01-01

    The purpose of this study is to investigate the effects of the impact conditions on cluster deposition in silicon and is motivated by recent results obtained using a variable incidence angle during deposition of metallic clusters and atoms. Therefore deposition of silicon clusters with a kinetic energy in the range from 0.5 to 10 eV/atom directed at normal and grazing incidence onto crystalline silicon has been studied using a molecular dynamics simulation method. The influence of other relevant parameters, such as the interatomic forces and the cluster size and shape, has also been investigated. This study shows that the physics of deposition is almost entirely dictated by the nature of the interatomic forces. When using potentials with the four-fold coordination typical of bulk a clear dependence on the size N is observed and the spreading index eta decreases with the increase of N for all incidence conditions. The cluster binding strength is perceptibly increased when using a potential accounting for the c...

  6. Thermoelastic and Pyroelectric Couplings Effects on Dynamics and Active Control of Smart Piezolaminated Beam Modeled by Finite Element Method

    Directory of Open Access Journals (Sweden)

    M. Sanbi

    2014-01-01

    Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.

  7. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  8. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  9. Propagation dynamics of a light beam in fractional Schr\\"odinger equation

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Zhong, Weiping; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    Dynamics of wavepackets in fractional Schrodinger equation is still an open problem. The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator. We investigate analytically and numerically the propagation of optical beams in fractional Schr\\"odinger equation with a harmonic potential. We find that the propagation of one- and two-dimensional (1D, 2D) input chirped Gaussian beams is not harmonic. In 1D, the beam propagates along a zigzag trajectory in the real space, which corresponds to a modulated anharmonic oscillation in the momentum space. In 2D, the input Gaussian beam evolves into a breathing ring structure in both real and momentum spaces, which forms a filamented funnel-like aperiodic structure. The beams remain localized in propagation, but with increasing distance display increasingly irregular behavior, unless both the linear chirp and the transverse displacement of the incident beam are zero.

  10. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  11. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  12. Energy loss of intergalactic pair beams: Particle-in-Cell simulation

    CERN Document Server

    Kempf, Andreas; Spanier, Felix

    2016-01-01

    The change of the distribution function of electron-positron pair beams determines whether GeV photons can be produced as secondary radiation from TeV photons. We will discuss the instabilities driven by pair beams. The system of a thermal proton-electron plasma and the electron-positron beam is collision free. We have, therefore, used the Particle-in-Cell simulation approach. It was necessary to alter the physical parameters, but the ordering of growth rates has been retained. We were able to show that plasma instabilities can be recovered in particle-in-cell simulations, but their effect on the pair distribution function is negligible for beam-background energy density ratios typically found in blazars.

  13. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [NIU, DeKalb; Faillace, Luigi [RadiaBeam Tech.; Panuganti, Harsha [NIU, DeKalb; Thangaraj, Jayakar C.T. [Fermilab; Piot, Philippe [NIU, DeKalb

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP.

  14. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Science.gov (United States)

    Pena, J.; Franco, L.; Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pazos, A.; Pardo, J.; Pombar, M.; Rodríguez, A.; Sendón, J.

    2004-11-01

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm × 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  15. Commissioning of a medical accelerator photon beam Monte Carlo simulation using wide-field profiles

    Energy Technology Data Exchange (ETDEWEB)

    Pena, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Franco, L [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Gomez, F [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Iglesias, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Lobato, R [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Mosquera, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); Pazos, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pardo, J [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Pombar, M [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain); RodrIguez, A [Departamento de Fisica de PartIculas, Facultade de Fisica, 15782 Santiago de Compostela (Spain); Sendon, J [Hospital ClInico Universitario de Santiago, Santiago de Compostela (Spain)

    2004-11-07

    A method for commissioning an EGSnrc Monte Carlo simulation of medical linac photon beams through wide-field lateral profiles at moderate depth in a water phantom is presented. Although depth-dose profiles are commonly used for nominal energy determination, our study shows that they are quite insensitive to energy changes below 0.3 MeV (0.6 MeV) for a 6 MV (15 MV) photon beam. Also, the depth-dose profile dependence on beam radius adds an additional uncertainty in their use for tuning nominal energy. Simulated 40 cm x 40 cm lateral profiles at 5 cm depth in a water phantom show greater sensitivity to both nominal energy and radius. Beam parameters could be determined by comparing only these curves with measured data.

  16. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: niedermayer@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Eidam, L. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt (Germany); GSI Helmholzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-03-11

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  17. Design and simulation of a beam position monitor for the high current proton linac

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Fang; XU Tao-Guang; FU Shi-Nian

    2009-01-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  18. Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains

    Energy Technology Data Exchange (ETDEWEB)

    Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu

    2014-11-01

    We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.

  19. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  20. Melt pool dynamics during selective electron beam melting

    Science.gov (United States)

    Scharowsky, T.; Osmanlic, F.; Singer, R. F.; Körner, C.

    2014-03-01

    Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part's quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary. Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment. A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution. In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.

  1. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  2. Numerical simulation of the PEP-II beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, N.; Martin, D.; Ng, C.-K.; Smith, S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.

    1996-08-01

    We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)

  3. Generation and dynamics of optical beams with polarization singularities.

    Science.gov (United States)

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  4. Generation and dynamics of optical beams with polarization singularities

    CERN Document Server

    Cardano, Filippo; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-01-01

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as \\qo{lemon}, \\qo{star}, and \\qo{vortex}. Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  5. Chaotic ray dynamics in an optical cavity with a beam splitter

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We investigate the ray dynamics in an optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. Using Hamiltonian optics, we show that such a simple device presents a surprisingly rich chaotic ray dynamics.

  6. High performance stream computing for particle beam transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R; Bailey, D; Higham, J; Salt, M [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)], E-mail: Robert.Appleby@manchester.ac.uk, E-mail: David.Bailey-2@manchester.ac.uk

    2008-07-15

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  7. High performance stream computing for particle beam transport simulations

    Science.gov (United States)

    Appleby, R.; Bailey, D.; Higham, J.; Salt, M.

    2008-07-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  8. Rotational Brownian Dynamics simulations of clathrin cage formation

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, Ioana M.; Briels, Wim J. [Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Otter, Wouter K. den, E-mail: w.k.denotter@utwente.nl [Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  9. Rotational Brownian dynamics simulations of clathrin cage formation.

    Science.gov (United States)

    Ilie, Ioana M; den Otter, Wouter K; Briels, Wim J

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  10. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  11. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  12. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  13. Analytical and simulation studies for diode and triode ion beam extraction systems

    Institute of Scientific and Technical Information of China (English)

    M. M. Abdelrahman1; N. I. Basal; S. G. Zakhary

    2012-01-01

    This work is concerned with ion beam dynamics and compares the emittance to aberration ratios of two-and three-electrode extraction systems.The study is conducted with the aid of Version 7 of SIMION 3D ray-tracing software.The beam dependence on various parameters of the extraction systems is studied and the numerical results lead to qualitative conclusions.Ion beam characteristics using diode and triode extraction systems are investigated with the aid of the computer code SIMION 3 D,Version 7.0. The diode (two electrode extraction system) and triode (threeelectrode extraction,acceleration-deceleration system) extraction systems are designed and optimized with different geometric parameters of the electrode system,voltage applied to the extraction electrode,and plasma parameters inside the ion source chamber,as well as by the ion beam space charge.This work attempts to describe the importance of the acceleration-deceleration extraction system.It shows that besides an increase of the beam energy,the ion beam has lower emittance than the two-electrode extraction system.Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum for which the perveance current intensity and the extraction gap have optimum value.Knowing the electron temperature of the plasma is necessary to determine plasma potential and the exact beam energy.

  14. Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method

    Science.gov (United States)

    Lee, Usik; Kim, Daehwan; Park, Ilwook

    2013-03-01

    The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.

  15. Static and dynamic testing of a damaged post tensioned concrete beam

    Directory of Open Access Journals (Sweden)

    Limongelli M.P.

    2015-01-01

    Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.

  16. Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends

    CERN Document Server

    Li, Rui

    2014-01-01

    In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

  17. Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam.

    Science.gov (United States)

    Méès, Loïc; Grosjean, Nathalie; Chareyron, Delphine; Marié, Jean-Louis; Seifi, Mozhdeh; Fournier, Corinne

    2013-10-01

    Generalized Lorenz-Mie theory (GLMT) for a multilayered sphere is used to simulate holograms produced by evaporating spherical droplets with refractive index gradient in the surrounding air/vapor mixture. Simulated holograms provide a physical interpretation of experimental holograms produced by evaporating Diethyl Ether droplets with diameter in the order of 50 μm and recorded in a digital in-line holography configuration with a divergent beam. Refractive index gradients in the surrounding medium lead to a modification of the center part of the droplet holograms, where the first fringe is unusually bright. GLMT simulations reproduce this modification well, assuming an exponential decay of the refractive index from the droplet surface to infinity. The diverging beam effect is also considered. In both evaporating and nonevaporating cases, an equivalence is found between Gaussian beam and plane wave illuminations, simply based on a magnification ratio to be applied to the droplets' parameters.

  18. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  19. Nanoscale deicing by molecular dynamics simulation

    Science.gov (United States)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  20. Numerical simulation of a triode source of intense radial converging electron beam

    Science.gov (United States)

    Altsybeyev, V.; Engelko, V.; Ovsyannikov, A.; Ovsyannikov, D.; Ponomarev, V.; Fetzer, R.; Mueller, G.

    2016-10-01

    The results of numerical simulations of a triode source of an intense radial converging electron beam are presented. The role of the initial transverse velocity of electrons, defocusing effect of the controlling grid, the beam self-magnetic field, backscattering of electrons, and ion flow from the target is analyzed. It was found that the ion flow from the target essentially increases the value of the electron current. The influence of the beam self-magnetic field on electron trajectories leads to the fact that there is a critical value of the cathode-grid voltage dividing the mode of the source operation into stable and unstable. The influence of initial transverse electron energies on the beam focusing is essentially higher than the influence of the controlling grid. Backscattering of the beam electrons from the target surface increases the target ion current so that the source operation may become unstable and the distribution of the beam power density on the target becomes nonuniform with a maximum in the center. Electrons passing by the target drift along the source axis. This leads to diminishing the power density at the center of the target and to the exit of peripheral electrons from the source. Conditions for achieving required electron beam parameters (the electron kinetic energy—120 keV, the beam energy density on the target ˜40 J/cm2 on a maximum possible length of the target surface) were determined.

  1. Dynamics of Rigid Bodies and Flexible Beam Structures

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre

    of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...

  2. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  3. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  4. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  5. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  6. Numerical laser beam propagation using a Large Eddy Simulation refractive index field representing a jet engine exhaust

    Science.gov (United States)

    Sjöqvist, Lars; Henriksson, Markus; Fedina, Ekaterina; Fureby, Christer

    2010-10-01

    The exhaust from jet engines introduces extreme turbulence levels in local environments around aircrafts. This may degrade the performance of electro-optical missile warning and laser-based DIRCM systems used to protect aircrafts against heat-seeking missiles. Full scale trials using real engines are expensive and difficult to perform motivating numerical simulations of the turbulence properties within the jet engine exhaust. Large Eddy Simulations (LES) is a computational fluid dynamics method that can be used to calculate spatial and temporal refractive index dynamics of the turbulent flow in the engine exhaust. From LES simulations the instantaneous refractive index in each grid point can be derived and interpolated to phase screens for numerical laser beam propagation or used to estimate aberration effects from optical path differences. The high computation load of LES limits the available data in terms of the computational volume and number of time steps. In addition the phase screen method used in laser beam propagation may also be too slow. For this reason extraction of statistical parameters from the turbulence field and statistical beam propagation methods are studied. The temporal variation of the refractive index is used to define a spatially varying structure constant. Ray-tracing through the mean refractive index field provides integrated static aberrations and the path integrated structure constant. These parameters can be used in classical statistical parameterised models describing propagation through turbulence. One disadvantage of using the structure constant description is that the temporal information is lost. Methods for studying the variation of optical aberrations based on models of Zernike coefficients are discussed. The results of the propagation calculations using the different methods are compared to each other and to available experimental data. Advantages and disadvantages of the different methods are briefly discussed.

  7. Monte Carlo simulation of spectrum changes in a photon beam due to a brass compensator

    Energy Technology Data Exchange (ETDEWEB)

    Custidiano, E.R., E-mail: ernesto7661@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Valenzuela, M.R., E-mail: meraqval@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina); Dumont, J.L., E-mail: Joseluis.Dumont@elekta.com [Elekta CMS Software, St.Louis, MO (United States); McDonnell, J., E-mail: josemc@express.com.ar [Cumbres Institute, Riobamba 1745, C.P.2000, Rosario, Santa Fe (Argentina); Rene, L, E-mail: luismrene@gmail.com [Radiotherapy Center, Crespo 953, C.P.2000, Rosario, Santa Fe (Argentina); Rodriguez Aguirre, J.M., E-mail: juakcho@gmail.com [Department of Physics, FaCENA, UNNE, Av., Libertad 5470, C.P.3400, Corrientes (Argentina)

    2011-06-15

    Monte Carlo simulations were used to study the changes in the incident spectrum when a poly-energetic photon beam passes through a static brass compensator. The simulated photon beam spectrum was evaluated by comparing it against the incident spectra. We also discriminated the changes in the transmitted spectrum produced by each of the microscopic processes. (i.e. Rayleigh scattering, photoelectric effect, Compton scattering, and pair production). The results show that the relevant process in the energy range considered is the Compton Effect, as expected for composite materials of intermediate atomic number and energy range considered.

  8. Dynamics Modeling of Heavy Special Driving Simulator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the dynamical characteristic parameters of the real vehicle, the modeling approach and procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the diesel engine, drivetrain system and vehicle multi-body dynamics are introduced. Finally, the running characteristic data of the virtual and real vehicles are compared, which shows that the dynamics model is similar closely to the real vehicle system.

  9. Annual Report 1999 Environmental Dynamics and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    NS Foster-Mills

    2000-06-28

    This annual report describes selected 1999 research accomplishments for the Environmental Dynamics and Simulation (ED and S) directorate, one of six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). These accomplishments are representative of the different lines of research underway in the ED and S directorate. EMSL is one of US Department of Energy's (DOE) national scientific user facilities and is the centerpiece of DOE's commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems. Capabilities in the EMSL include over 100 major instrument systems for use by the resident research staff, their collaborators, and users of the EMSL. These capabilities are used to address the fundamental science that will be the basis for finding solutions to national environmental issues such as cleaning up contamianted areas at DOE sites across the country and developing green technologies that will reduce or eliminate future pollution production. The capabilities are also used to further the understanding of global climate change and environmental issues relevant to energy production and use and health effects resulting from exposure to contaminated environments.

  10. Expansion techniques for collisionless stellar dynamical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meiron, Yohai [Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing 100871 (China); Li, Baile; Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Spurzem, Rainer, E-mail: ymeiron@pku.edu.cn [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-09-10

    We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ∼0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.

  11. Molecular dynamics simulations of vibrated granular gases.

    Science.gov (United States)

    Barrat, Alain; Trizac, Emmanuel

    2002-11-01

    We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a situation often met experimentally, density and temperature fields display heterogeneous profiles in the direction perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients, density, etc.) are analyzed. The validity of a recently proposed random restitution coefficient model is assessed through the study of projected collisions onto the direction perpendicular to that of energy injection. For the binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experimental data and to the case of homogeneous energy injection ("stochastic thermostat"). The rescaled velocity distribution functions are found to be very similar for both species.

  12. Nanoscale deicing by molecular dynamics simulation.

    Science.gov (United States)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-08-14

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.

  13. MOLECULAR DYNAMIC SIMULATION OF PEPTIDE POLYELECTROLYTES

    Directory of Open Access Journals (Sweden)

    I. M. Neelov

    2014-07-01

    Full Text Available The paper deals with investigation of the conformational properties of some charged homopolypeptides in dilute aqueous solutions by computer simulation. A method of molecular dynamics for the full-atomic models of polyaspartic acid and polylysine with explicit account of water and counter-ions is used for this purpose. For systems containing these polypeptides we calculated time trajectories and the size, shape, distribution functions and time correlation functions of inertia radius and the distances between the ends of peptide chains. We have also calculated the solvatation characteristics of considered polyelectrolytes. We have found out that polyaspartic acid in dilute aqueous solution has more compact structure and more spherical shape than polylysine. We have shown that these differences are due to different interaction between the polypeptides and water molecules (in particular, the quality and quantity of hydrogen bonds formed by these peptides with water, and the difference in an amount of ion pairs formed by the charged groups of the peptides and counter-ions. The obtained results should be taken into account for elaboration of new products based on the investigated peptides and their usage in various industrial and biomedical applications.

  14. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  15. An exact dynamic stiffness matrix for axially loaded double-beam systems

    Indian Academy of Sciences (India)

    Li Xiaobin; Xu Shuangxi; Wu Weiguo; Li Jun

    2014-06-01

    An exact dynamic stiffness method is presented in this paper to determine the natural frequencies and mode shapes of the axially loaded double-beam systems,which consist of two homogeneous and prismatic beams with a distributed spring in parallel between them.The effects of the axial force, shear deformation and rotary inertia are considered, as shown in the theoretical formulation. The dynamic stiffness influence coefficients are formulated from the governing differential equations of the axially loaded double-beam system in free vibration by using the Laplace transform method. An example is given to demonstrate the effectiveness of this method, in which ten boundary conditions are investigated and the effect of the axial force on the natural frequencies and mode shapes of the double-beam system are further discussed.

  16. Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams

    CERN Document Server

    Jiménez, Noé; González-Salido, Nuria

    2016-01-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...

  17. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction.

    Science.gov (United States)

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga(+) liquid ion sources towards higher resolution gas field ion sources (He(+) and Ne(+)). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic 'gold' standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne(+) beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  18. A computational procedure for multibody systems including flexible beam dynamics

    Science.gov (United States)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.

  19. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam with a rotationa......An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... procedure for a particular value of the initial condition is then used to estimate the constants. This semi-analytical representation gives excellent approximations to the exact solutions for the whole range of the oscillation amplitude, reducing the respective error of angular frequency in comparison...

  20. Experiences on dynamic simulation software in chemical engineering education

    DEFF Research Database (Denmark)

    Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan

    2012-01-01

    Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics......: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators...

  1. Dynamic Response of Axially Loaded Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Bayat, M.; Barari, Amin; Shahidi, M.

    2011-01-01

    The current research deals with application of a new analytical technique called Energy Balance Method (EBM) for a nonlinear problem. Energy Balance Method is used to obtain the analytical solution for nonlinear vibration behavior of Euler-Bernoulli beams subjected to axial loads. Analytical expr...... to the conventional methods, only one iteration leads to high accuracy of the solutions which are valid for a wide range of vibration amplitudes....

  2. Modeling and Simulation for Nanoparticle Plasma Jet Diagnostic Probe for Runaway Electron Beam-Plasma Interaction

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2016-10-01

    The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.

  3. Influence of Transient Beam Loading on the Longitudinal Beam Dynamics at BESSY VSR

    OpenAIRE

    Ruprecht, M.; Goslawski, P.; Jankowiak, A.; Neumann, A.; Ries, M; Wüstefeld, G.; Weis, T.

    2015-01-01

    BESSY VSR, a scheme where 1.7 ps and 15 ps long bunches rms can be stored simultaneously in the BESSY II storage ring has recently been proposed [1]. The strong longitudinal bunch focusing is achieved by superconducting high gradient RF cavities. If the bunch fill pattern exhibits a significant inhomogeneity, e.g. due to gaps, transient beam loading causes a distortion of the longitudinal phase space which is different for each bunch. The result are variations along the fill pattern...

  4. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    Science.gov (United States)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  5. Control of Dynamic Response of Thin-Walled Composite Beams using Structural Tailoring and Piezoelectric Actuation

    OpenAIRE

    Na, Sungsoo

    1997-01-01

    A dual approach integrating structural tailoring and adaptive materials technology and designed to control the dynamic response of cantilever beams subjected to external excitations is addressed. The cantilevered structure is modeled as a thin-walled beam of arbitrary cross-section and incorporates a number of non-classical effects such as transverse shear, warping restraint, anisotropy of constituent materials and heterogeneity of the construction. Whereas structura...

  6. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases...... of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals....

  7. Comparison of Standard Issue and ANCRA International MILVAN Restraint Beams in Static and Dynamic Environments

    Science.gov (United States)

    1990-04-01

    BEAMS IN STATIC AND DYNAMIC ENVIRONMENTS 93-10168 Prepared fo r: 1 8Distribution unlimited U.S. Army Troop Support Command ATTN: AMSTR-PLBM St. Louis ...ACCESSION NO St. Louis , MO 63120-1798 N 11 TITLE (Include Security Classification) Comparison of Standard Issue and ANCRA International MILVAN Restraint Beams...j * .** 4 ...*.**.*.* ... .* ***.***..***..*** 4-q14 drax @TO 31 aDlu \\t-I ur ne 4-1 r! S.......... .. •o

  8. LHeC ERL Design and Beam-dynamics Issues

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Bogacz, I. Shin, D. Schulte, F. Zimmermann

    2011-09-01

    We discuss machine and beam parameter choices for a Linac-Ring option of the Large Hadron electron Collider (LHeC) based on the LHC. With the total wall-plug power limited to 100 MW and a target current of about 6 mA the desired luminosity of 1033 cm-2 s-1 can be reached, providing one exploits unique features of the Energy Recovery Linac (ERL). Here, we describe the overall layout of such ERL complex located on the LHC site. We present an optimized multi-pass linac optics enabling operation of the proposed 3-pass Recirculating Linear Accelerator (RLA) in the Energy Recovery mode. We also describe emittance preserving return arc optics architecture; including layout and optics of the arc switch-yard. Furthermore, we discuss importance of collective effects such as: beam breakup in the RLA, as well as ion accumulation, with design-integrated mitigation measures, and the electron-beam disruption in collision. Finally, a few open questions are highlighted.

  9. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE

    Science.gov (United States)

    Sempau, J.; Sánchez-Reyes, A.; Salvat, F.; Oulad ben Tahar, H.; Jiang, S. B.; Fernández-Varea, J. M.

    2001-04-01

    The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the `latent' variance in the phase-space file, are discussed in detail.

  10. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    Science.gov (United States)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  11. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  12. Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence

    OpenAIRE

    Ferenc Jordán; Nerta Gjata; Shu Mei; Yule, Catherine M.

    2012-01-01

    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river...

  13. Beams dynamics optimisation of LINAC4 structures for increased operational flexibility

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J

    2010-01-01

    Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...

  14. Beam tracking simulation in the central region of a 13 MeV PET cyclotron

    Science.gov (United States)

    Anggraita, Pramudita; Santosa, Budi; Taufik, Mulyani, Emy; Diah, Frida Iswinning

    2012-06-01

    This paper reports the trajectories simulation of proton beam in the central region of a 13 MeV PET cyclotron, operating with negative proton beam (for easier beam extraction using a stripper foil), 40 kV peak accelerating dee voltage at fourth harmonic frequency of 77.88 MHz, and average magnetic field of 1.275 T. The central region covers fields of 240mm × 240mm × 30mm size at 1mm resolution. The calculation was also done at finer 0.25mm resolution covering fields of 30mm × 30mm × 4mm size to see the effects of 0.55mm horizontal width of the ion source window and the halted trajectories of positive proton beam. The simulations show up to 7 turns of orbital trajectories, reaching about 1 MeV of beam energy. The distribution of accelerating electric fields and magnetic fields inside the cyclotron were calculated in 3 dimension using Opera3D code and Tosca modules for static magnetic and electric fields. The trajectory simulation was carried out using Scilab 5.3.3 code.

  15. Experimental Investigation on Durability of Reinforced Concrete Beams in A Simulated Marine Environment

    Institute of Scientific and Technical Information of China (English)

    HE Shi-qin; GONG Jin-xin; ZHAO Guo-fan

    2005-01-01

    This paper presents some results from a comprehensive experimental program designed to determine the interaction between mechanical loading and corrosion of reinforcing steel, as well as their combined effect on serviceability and residual load- bearing capacity of reinforced concrete beams. Beam specimens with the size of 120mm×200mm×1700mm were subjected to four-point bending at various sustained loading levels (0%, 25%, 45%, and 65% of the ultimate load) during the corrosion test process. The marine tidal zone was simulated by alternating spraying and draining of 3.5% NaCl solution. An external direct current technique was used to accelerate the corrosion of the reinforcement. Residual flexural load-bearing capacity of the beams was evaluated at the end of the experiment. The results indicate that the loading has a significant effect on corrosion. Under simultaneous loading and accelerated corrosion conditions, the time-dependent deflection of the beams increases with the progressive corrosion of the reinforcement. The beams under high-level loading deteriorate more rapidly than those under low-level loading and without loading. As a result, the residual flexural capacity of the beams subjected to higher level loading was much lower than that of the beams subjected to lower level loading and in the absence of loading. The results suggest that, for a rational service-life prediction of reinforced concrete structures, the influence of the service load on the structural performance should be considered in combination with environmental conditions

  16. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    CERN Document Server

    Annenkov, V V; Volchok, E P

    2015-01-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  17. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  18. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    CERN Document Server

    Garcia, J B

    2011-01-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron ( PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with bett...

  19. Simulation of Quasi-Adiabatic Beam Capture into Acceleration at the Nuclotron

    CERN Document Server

    Volkov, V I; Issinsky, I B; Kovalenko, A D

    2003-01-01

    The routine RF system being used at the Nuclotron allows one to inject the beam at ramping magnetic field with following acceleration at constant amplitude of accelerating voltage. At these conditions at least a half of the particles circulating in the vacuum chamber after injection is not captured in longitudinal acceptance. At the same time vacuum chamber sizes permit to extend the momentum spread of the beam enough to make gymnastic with it inside the stable zone of longitudinal phase space on the flat magnetic field at injection. A quasi-adiabatic capture was considered for increasing the Nuclotron beam intensity. Simulation of such a kind of process with subsequent acceleration was performed. It was shown that in this case it is possible to capture and accelerate up to 100 % of the injected beam.

  20. Simulations of the high energy beam transport section (HEBT) at FRANZ

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ole; Claessens, Christine; Heilmann, Manuel; Meusel, Oliver; Noll, Daniel; Reifarth, Rene; Schmidt, Stefan; Schwarz, Malte; Sonnabend, Kerstin [Goethe-Universitaet Frankfurt (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) currently under construction will deliver a proton beam of up to 20 mA constant current with energies between 1.8 MeV and 2.2 MeV. This facility aims at exploring proton- and neutron-induced reactions of astrophysical interest. The high proton flux is well suited for studying nuclear reactions related to the nucleosynthesis of the p-nuclei, which might yield hints on the physics of type Ia supernovae. Furthermore, FRANZ will offer the opportunity to measure radiative neutron capture reactions for unstable branch point nuclei of the s-process. We will present the current status of the beam line up to the BaF{sub 2} calorimeter. This contribution focuses on simulations to optimise beam transport and phase space distribution with respect to an optimised beam spot size.

  1. Dynamical Behavior of Nonlinear Viscoelastic Timoshenko Beams with Damage on a Viscoelastic Foundation

    Institute of Scientific and Technical Information of China (English)

    盛冬发; 张燕; 程昌钧

    2004-01-01

    Based on convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections, the nonlinear equations governing dynamical behavior of Timoshenko beams with damage on viscoelastic foundation were firstly derived. By using the Galerkin method in spatial domain, the nonlinear integro-partial differential equations were transformed into a set of integro-ordinary differential equations. The numerical methods in nonlinear dynamical systems, such as the phase-trajectory diagram, Poincare section and bifurcation figure, were used to solve the simplified systems of equations. It could be seen that simplified dynamical systems possess the plenty of nonlinear dynamical properties. The influence of load and material parameters on the dynamic behavior of nonlinear system were investigated in detail.

  2. Simulations of boundary migration during recrystallization using molecular dynamics

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner; Trautt, Z.T.; Upmanyu, M.

    2007-01-01

    We have applied an atomistic simulation methodology based on molecular dynamics to study grain boundary migration in crystalline materials, driven by the excess energy of dislocation arrangements. This method is used to simulate recrystallization in metals. The simulations reveal that the migration...

  3. TileCal Beam Test Simulation Application in the FADS/Goofy Framework (GEANT4)

    CERN Document Server

    Solodkov, A A

    2003-01-01

    A new application for the Tile Calorimeter (TileCal) beam test simulation has been developed in GEANT4 within the FADS/Goofy framework. The geometry and readout systems for all the different TileCal modules have been implemented in a quite detailed way. This application allows to simulate all the TileCal beam test setup configurations existing so far. Details of the development as well as instructions to install and run the program are presented. The first tests have been performed for a beam test setup consisting of five prototype modules using negative pions with different energies and results of comparison to the experimental data from TileCal TDR are presented as well.

  4. Muon DTBX Chamber Trigger Simulation on H2 Test Beam Data

    CERN Document Server

    Grandi, Claudio

    1998-01-01

    Muon data collected at the H2 test beam during summer 1997 with the MB96 prototype of a DTBX chamber are analyzed using the level 1 trigger simulation code. The trigger chain includes BTI, TRACO and Trigger Server, which generate the muon trigger primitives in the CMS barrel system. The performance of the algorithm is evaluated and it is found in good agreement with published numbers based on simulated tracks.

  5. Nonlinear dynamic analysis of damaged Reddy-Bickford beams supported on an elastic Pasternak foundation

    Science.gov (United States)

    Stojanović, Vladimir; Petković, Marko D.

    2016-12-01

    Geometrically nonlinear free and forced vibrations of damaged high order shear deformable beams resting on a nonlinear Pasternak foundation are investigated in this paper. Equations of motion are derived for the beam which is under subjected combined action of arbitrarily distributed or concentrated transverse loading as well as axial loading. To account for shear deformations, the concept of high order shear deformation is used in comparison with the concept of first order shear deformation theory. Analyses are performed to investigate the effects of the specific stiffness of the foundation on the damaged beam frequencies and displacements with the aim of equalising the response of a damaged and an intact beam. According to that, functions of the foundation stiffness are determined depending on the location and size of the damage as a result of the possibility for the damaged beam to behave like one that is intact. An advanced p-version of the finite element method is developed for geometrically nonlinear vibrations of damaged Reddy-Bickford beams. The present study gives a clear view of the nonlinear dynamical behaviour of four types of beams according to high order shear deformation theory - an intact beam, a damaged beam, a damaged beam on an elastic foundation and intact beam on elastic foundation. The paper also presents the derivation of a new set of two nonlinear partial differential equations where only the transverse and axial displacements figure. The forced nonlinear vibrations problem is solved in the time domain using the Newmark integration method. Free vibration analysis carried out by harmonic balance and the use of continuation methods and backbone curves are constructed.

  6. Design and Simulation of Dynamics of Helixtron

    Institute of Scientific and Technical Information of China (English)

    LI; Jin-hai

    2015-01-01

    The accelerating cavity of the helixtron is adopted for that of the ridgetron.In order to improve the number of the beam pipe in the ridge electrode,the helix trace is put forward.The snake trace is adopted in the ridgetron,which means that the electron is accelerated and transported

  7. Vectorial beam propagation simulation of a novel polarization conversion waveguide structure

    Science.gov (United States)

    Li, Daoping; van Brug, Hedser H.; Frankena, Hans J.; van der Tol, Jos J.; Pedersen, Jorgen W.

    1995-02-01

    The vectorial beam propagation method has successfully been applied to a passive polarization converting waveguide structure. A complete polarization conversion has been simulated. The propagating fields are calculated and the power attenuation is evaluated. The influence of structural changes of the device on the polarization conversion is investigated.

  8. Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers

    NARCIS (Netherlands)

    De Raedt, H; De Raedt, K; Michielsen, K

    2005-01-01

    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit a behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam splitter and Mach-Zehnder interferometer experiments on a causal, event

  9. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine;

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...

  10. Leakage Current Simulation of Insulating Thin Film Irradiated by a Nonpenetrating Electron Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-Bo; LI Wei-Qin; CAO Meng

    2012-01-01

    We perform numerical simulations of the leakage current characteristics of an insulating thin film of SiO2 negatively charged by a low-energy nonpenetrating focused electron beam. For the formation of leakage current, electrons are demonstrated to turn from diffusion to drift after clearing the minimum potential barrier due to electron-hole separation. In the equilibrium state, the leakage current increases approximately linearly with the increasing primary beam current and energy. It also increases with the increasing film thickness and trap density, and with the decreasing electron mobility, in which the film thickness has a greater influence. Validated by some existing experiments, the simulation results provide a new perspective for the negative charging effects of insulating samples due to the low-energy focused electron beam.%We perform numerical simulations of the leakage current characteristics of an insulating thin film of SiO2 negatively charged by a low-energy nonpenetrating focused electron beam.For the formation of leakage current,electrons are demonstrated to turn from diffusion to drift after clearing the minimum potential barrier due to electron-hole separation.In the equilibrium state,the leakage current increases approximately linearly with the increasing primary beam current and energy.It also increases with the increasing film thickness and trap density,and with the decreasing electron mobility,in which the film thickness has a greater influence.Validated by some existing experiments,the simulation results provide a new perspective for the negative charging effects of insulating samples due to the low-energy focused electron beam.

  11. DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; CHEN Li-qun

    2005-01-01

    Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonstrated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.

  12. Simulation of Fatigue Stiffness Degradation in Prestressed Concrete Beams under Cyclic Loading

    Institute of Scientific and Technical Information of China (English)

    Junqing Lei; Shanshan Cao; Guoshan Xu; Yun Xiao

    2016-01-01

    In order to investigate and research the fatigue cracking of prestressed concrete fatigue properties and loading and stiffness degeneration process, cyclic loading tests were carried out on six prestressed concrete beams and the stiffness degradation under fatigue was investigated. A simulation model of stiffness degradation is proposed based on the stiffness analysis of the fatigue⁃damaged section. The elastic modulus of damaged concrete and the effective residual area of steel were introduced as well as an adjusted three⁃stage concrete fatigue damage evolution model. The strip method was used to analyze concrete damage due to changing stress along the depth of the beam section. The simulation and test results were compared and a method of predicting fatigue deflection was presented based on the simulation model. The predicted results were compared with that of the neural network method. It is in good agreement for the simulation results with the test results. It is only less than 5% error for the simulation model which can reveal the two⁃stage degradation of prestressed concrete beams under cyclic loading. It is more precise for the simulation prediction method under proper conditions.

  13. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

    Directory of Open Access Journals (Sweden)

    Cao Vu Dung

    2016-04-01

    Full Text Available Polyvinylidene Flouride (PVDF is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental “stress-averaging” mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  14. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.

    Science.gov (United States)

    Kłodowska, M; Olko, P; Waligórski, M P R

    2015-09-01

    Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.

  15. Effect of the Longitudinal Contact Location on Vehicle Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    N. Burgelman

    2016-01-01

    Full Text Available This paper investigates the effect of the calculation of the longitudinal location of a wheel rail contact point on the wheelset’s motion in a vehicle dynamic simulation. All current vehicle dynamic software programs assume that the contact between wheel and rail takes place in the vertical plane through the wheelset’s rolling axis. However, when the yaw angle of the wheelset is nonzero, the contact point is situated up to 10 mm from that plane. This difference causes a difference in the yaw moment on the wheelset which is used in the vehicle dynamic simulation. To such an end, an existing analytical method to determine the longitudinal method was validated using a numerical approach. Then vehicle dynamic simulations with both the classic and the new contact location were performed, concluding that using a more accurate contact point location results in a smaller wheelset yaw angle in a vehicle dynamic simulation, although the effect is small.

  16. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    Science.gov (United States)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  17. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring_High Energy Ring at the Positron-Electron Project

    Energy Technology Data Exchange (ETDEWEB)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.; /SLAC

    2007-03-06

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored.

  18. Two Dynamic Discrete Choice Estimation Problems and Simulation Method Solutions

    OpenAIRE

    Steven Stern

    1994-01-01

    This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in bot...

  19. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    CERN Document Server

    Tecimer, M; Efimov, S; Gover, A; Sokolowski, J

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 pi mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic i...

  20. Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Giller, L. [LRS, Physics Department, Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland); Filges, U. [LDM, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: uwe.filges@psi.ch; Kuehne, G. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M. [ABE, GFA Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Zanini, L. [ASQ, NUM Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-11

    ICON is the new cold neutron imaging facility at the neutron spallation source SINQ. The ICON facility is placed at beam-line S52 with direct view to the cold liquid D{sub 2} moderator. The beam-line includes a 4.4 m long collimation section followed by a 11 m long flight path to the imaging system. The essential part of the collimation section is composed of six revolving drums and a variable aperture wheel. Depending on the investigated object, different apertures are used. Measurements have shown that each setup has a different spatial neutron flux distribution and specific beam profiles. Measured beam profiles have been used to validate results of simulations coupling the Monte-Carlo program MCNPX with the neutron ray-tracing program McStas. In a first step, MCNPX was used to calculate neutron spectra closed to the SINQ target, at the entrance of the collimation section. These results served as an input for McStas where the beam-line itself was simulated. In the present paper, experimental and theoretical results will be compared and discussed.