WorldWideScience

Sample records for beam dynamics calculations

  1. Beam dynamics calculations for fault-tolerance

    International Nuclear Information System (INIS)

    Biarrotte, J.L.; Uriot, D.

    2007-10-01

    The European Transmutation Demonstration requires a high-power proton accelerator operating in CW mode. This accelerator is also expected to have a very limited number of unexpected beam interruptions per year. To reach such an ambitious goal, it is clear that reliability-oriented design practices need to be followed from the early stage of components design and fault-tolerance capabilities have to be introduced to the maximum extent. The goal of this document is precisely to investigate in more details the fault-tolerance capability of the XT-ADS linac. From previous analysis, it appears that if nothing is done, a cavity's failure leads in nearly all the cases to a complete beam loss, due to the non-relativistic varying velocity of the particles. To avoid such a total beam loss, it is clear that some kind of retuning has to be performed to compensate the lack of acceleration due to the faulty cavity. We have to identify and develop fast failure recovery scenarios to ensure that such retuning can be performed in less than 1 second. 2 ways are investigated. The first way is to stop the beam to achieve the retuning (Scenario 1). The other way is to try to perform the retuning without stopping the beam (Scenario 2). The present analysis demonstrates on the beam dynamics point of view that a fast retuning procedure can be envisaged without stopping the beam (Scenario 2). Nevertheless, this Scenario 2 implies stringent specifications, especially on: - the fault detection time, that has to be extremely short (order of magnitude: 100 μs) and - the margins required on the accelerating field and RF power point of view, that are higher than in Scenario 1

  2. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  3. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  4. Beam dynamics calculations and particle tracking using massively parallel processors

    International Nuclear Information System (INIS)

    Ryne, R.D.; Habib, S.

    1995-01-01

    During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking

  5. Calculation of dynamic stresses in viscoelastic sandwich beams using oma

    DEFF Research Database (Denmark)

    Pelayo, F.; Aenlle, M. L.; Ismael, G.

    2017-01-01

    The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...

  6. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    International Nuclear Information System (INIS)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table

  7. Refined Calculation of Beam Dynamics During UMER Injection

    CERN Document Server

    Bai, Gang; Godlove, Terry; Haber, Irving; Kishek, Rami A; Quinn, Bryan; Reiser, Martin; Thangaraj, Jayakar C T; Walter, Mark

    2005-01-01

    The University of Maryland Electron Ring (UMER) is built as a low-cost testbed for intense beam physics for benefit of larger ion accelerators. The beam intensity is designed to be variable, spanning the entire range from low current operation to highly space-charge-dominated transport. The ring has recently been closed and multi-turn commissioning has begun. Although we have conducted many experiments at high space charge during UMER construction, lower-current beams have become quite useful in this commissioning stage for assisting us with beam steering, measurement of phase advance, etc. One of the biggest challenges of multi-turn operation of UMER is correctly operating the Y-shaped injection section, hence called the Y-section, which is specially designed for UMER multi-turn operation. It is a challenge because the system requires several quadrupoles and dipoles in a very stringent space, resulting in mechanical, electrical, and beam control complexities. This paper presents a simulation study of the bea...

  8. Tests and calculations of reinforced concrete beams subject to dynamic reversed loads

    International Nuclear Information System (INIS)

    Livolant, M.; Hoffmann, A.; Gauvain, J.

    1978-01-01

    This study presents the tests of a reinforced concrete beam conducted by the Department of Mechanical and Thermal Studies at the Centre d'Etudes Nucleaires, Saclay, France. The actual behavior of nuclear power plant buildings submitted to seismic loads is generally non linear even for moderate seismic levels. The non linearity is specially important for reinforced concrete beams type buildings. To estimate the safety factors when the building is designed by standard methods, accurate non linear calculations are necessary. For such calculations one of the most difficult point is to define a correct model for the behavior of a reinforced beam subject to reversed loads. For that purpose, static and dynamic experimental tests on a shaking table have been carried out and a model reasonably accurate has been established and checked on the tests results

  9. Linac beam dynamics calculations for low-current large-emittance beams

    International Nuclear Information System (INIS)

    Swain, G.R.; Butler, H.S.

    1992-01-01

    The beam in PILAC, a superconducting linac for pions proposed at LAUFF, will have a lager momentum spread (7% dp/p) and occupy a larger transverse space (13 cm dia. bore) than is usual in high-beta linacs. To find the effects of this large phase space, a cavity element is being added to the MOTER code. With this addition, pions and other particles may be tracked through the injection line and the PILAC linac. In one option, the particles may be cell by cell through a multicell cavity using formulas. The formulas are derived by integrating the energy gain and transverse impulse from the fields in a cell along the path of the particle. What is new in this analysis is that the transverse momentum is considered to be a significant part of the total momentum. The effect of a difference in velocity from the design velocity of the structure is considered. In another option still under development, field information is specified, and the particles may be tracked by stepwise integration

  10. Beam dynamics

    International Nuclear Information System (INIS)

    Abell, D; Adelmann, A; Amundson, J; Dragt, A; Mottershead, C; Neri, F; Pogorelov, I; Qiang, J; Ryne, R; Shalf, J; Siegerist, C; Spentzouris, P; Stern, E; Venturini, M; Walstrom, P

    2006-01-01

    We describe some of the accomplishments of the Beam Dynamics portion of the SciDAC Accelerator Science and Technology project. During the course of the project, our beam dynamics software has evolved from the era of different codes for each physical effect to the era of hybrid codes combining start-of-the-art implementations for multiple physical effects to the beginning of the era of true multi-physics frameworks. We describe some of the infrastructure that has been developed over the course of the project and advanced features of the most recent developments, the interplay betwen beam studies and simulations and applications to current machines at Fermilab. Finally we discuss current and future plans for simulations of the International Linear Collider

  11. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  12. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  13. Matrix-operator method for calculation of dynamics of intense beams of charged particles

    International Nuclear Information System (INIS)

    Kapchinskij, M.I.; Korenev, I.L.; Rinskij, L.A.

    1989-01-01

    Calculation algorithm for particle dynamics in high-current cyclic and linear accelerators is suggested. Particle movement in six-dimensional phase space is divided into coherent and incoherent components. Incoherent movement is described by envelope method; particle cluster is considered to be even-charged by tri-axial ellipsoid. Coherent movement is described in para-axial approximation; each structure element of the accelerator transport channel is characterized by six-dimensional matrix of phase coordinate transformation of cluster centre and by shift vector resulting from deviation of focusing element parameters from calculated values. Effect of space charge reflected forces is taken into account in the element matrix. Algorithm software is realized using well-known TRANSPORT program

  14. The calculation, simulation, and measurement of longitudinal beam dynamics in electron injectors

    International Nuclear Information System (INIS)

    Dunham, B.; Liu, H.; Kazimi, R.

    1997-01-01

    Polarized electrons are a valuable commodity for nuclear physics research and every effort must be made to preserve them during transport Measurements of the beam emitted from the polarized source at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) have shown a considerable bunch lengthening with increasing beam current. This lengthening leads to unacceptable loss as the beam passes through the injector chopping system. We present an application of the longitudinal envelope equation to describe the bunch lengthening and compare the results to measurements and simulations using PARMELA. In addition, a possible solution to the problem by adding a low power buncher to the beamline is described and initial results are shown

  15. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    International Nuclear Information System (INIS)

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.

    2011-01-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  16. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  17. Longitudinal beam dynamics

    International Nuclear Information System (INIS)

    Tecker, F

    2014-01-01

    The course gives a summary of longitudinal beam dynamics for both linear and circular accelerators. After discussing different types of acceleration methods and synchronism conditions, it focuses on the particle motion in synchrotrons

  18. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  19. Reactor dynamics calculations

    International Nuclear Information System (INIS)

    Devooght, J.; Lefvert, T.; Stankiewiez, J.

    1981-01-01

    This chapter deals with the work done in reactor dynamics within the Coordinated Research Program on Transport Theory and Advanced Reactor Calculations by three groups in Belgium, Poland, Sweden and Italy. Discretization methods in diffusion theory, collision probability methods in time-dependent neutron transport and singular perturbation method are represented in this paper

  20. INDIANA: Beam dynamics experiments

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Beam dynamics experiments at the Indiana University Cooler Facility (IUCF) are helping to trace complicated non-linear effects in proton machines and could go on to pay important dividends in the detailed design of big new high energy proton storage rings

  1. Beam dynamics group summary

    International Nuclear Information System (INIS)

    Peggs, S.

    1994-01-01

    This paper summarizes the activities of the beam dynamics working group of the LHC Collective Effects Workshop that was held in Montreux in 1994. It reviews the presentations that were made to the group, the discussions that ensued, and the consensuses that evolved

  2. Statics and rotational dynamics of composite beams

    CERN Document Server

    Ghorashi, Mehrdaad

    2016-01-01

    This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...

  3. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  4. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  5. Cyclotron beam dynamic simulations in MATLAB

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.

    2008-01-01

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  6. Exploring the dynamics of reaction N((2)D)+C2H4 with crossed molecular-beam experiments and quantum-chemical calculations.

    Science.gov (United States)

    Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun

    2011-05-14

    We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

  7. Calculation of particle dynamics in CI-10 cyclotron

    International Nuclear Information System (INIS)

    Samsonov, E.V.; Karamysheva, G.A.; Vorozhtsov, S.B.

    1999-01-01

    The calculations of beam dynamic characteristics of High-Intensity Cyclotron-Injector CI-10 for deuteron beam of 15 MeV energy are presented. Analytical estimations of space charge effects are given. In order to increase the intensity of the accelerator beam some ideas about the cyclotron design modification are given too. (author)

  8. ICFA Beam Dynamics Newsletter

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-11-21

    Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a better EBIS.

  9. CALCULATION ALGORITHM TRUSS UNDER CRANE BEAMS

    Directory of Open Access Journals (Sweden)

    N. K. Akaev1

    2016-01-01

    Full Text Available Aim.The task of reducing the deflection and increase the rigidity of single-span beams are made. In the article the calculation algorithm for truss crane girders is determined.Methods. To identify the internal effort required for the selection of cross section elements the design uses the Green's function.Results. It was found that the simplest truss system reduces deflection and increases the strength of design. The upper crossbar is subjected not only to bending and shear and compression work due to tightening tension. Preliminary determination of the geometrical characteristics of the crane farms elements are offered to make a comparison with previous similar configuration of his farms, using a simple approximate calculation methods.Conclusion.The method of sequential movements (incrementally the two bridge cranes along the length of the upper crossbar truss beams is suggested. We give the corresponding formulas and conditions of safety.

  10. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    International Nuclear Information System (INIS)

    Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.

    2009-01-01

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.

  11. Beam dynamics in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-09-01

    In this paper, we discuss some basic beam dynamics issues related to obtaining and preserving the luminosity of a next generation linear collider. The beams are extracted from a damping ring and compressed in length by the first bunch compressor. They are then accelerated in a preaccelerator linac up to an energy appropriate for injection into a high gradient linac. In many designs this pre-acceleration is followed by another bunch compression to reach a short bunch. After acceleration in the linac, the bunches are finally focused transversely to a small spot. 27 refs., 1 fig

  12. Stochastic beam dynamics in storage rings

    International Nuclear Information System (INIS)

    Pauluhn, A.

    1993-12-01

    In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)

  13. 'Pipetron' beam dynamics with noise

    International Nuclear Information System (INIS)

    Shiltsev, V.D.

    1996-10-01

    Extra-large hadron collider, ''Pipetron'', at 100 TeV energy is currently under consideration. In this article we study the Pipetron transverse and longitudinal beam dynamics under influence of external noises. The major effects are growths of transverse and longitudinal emittances of the beam caused by noisy forces which vary over the revolution period or synchrotron oscillation period, respectively; and closed orbit distortions induced by slow drift of magnet positions. Based on analytical consideration of these phenomena, we estimate tolerable levels of these noises and compare them with available experimental data. Although it is concluded that transverse and, probably, longitudinal feedback systems are necessary for the emittance's preservation, and sophisticated beam-based orbit correction methods should be used at the Pipetron, we observe no unreasonable requirements which present and impenetrable barrier to the project

  14. Dose calculations algorithm for narrow heavy charged-particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Barna, E A; Kappas, C [Department of Medical Physics, School of Medicine, University of Patras (Greece); Scarlat, F [National Institute for Laser and Plasma Physics, Bucharest (Romania)

    1999-12-31

    The dose distributional advantages of the heavy charged-particles can be fully exploited by using very efficient and accurate dose calculation algorithms, which can generate optimal three-dimensional scanning patterns. An inverse therapy planning algorithm for dynamically scanned, narrow heavy charged-particle beams is presented in this paper. The irradiation `start point` is defined at the distal end of the target volume, right-down, in a beam`s eye view. The peak-dose of the first elementary beam is set to be equal to the prescribed dose in the target volume, and is defined as the reference dose. The weighting factor of any Bragg-peak is determined by the residual dose at the point of irradiation, calculated as the difference between the reference dose and the cumulative dose delivered at that point of irradiation by all the previous Bragg-peaks. The final pattern consists of the weighted Bragg-peaks irradiation density. Dose distributions were computed using two different scanning steps equal to 0.5 mm, and 1 mm respectively. Very accurate and precise localized dose distributions, conform to the target volume, were obtained. (authors) 6 refs., 3 figs.

  15. Dynamical calculations for RHEED intensity oscillations

    Science.gov (United States)

    Daniluk, Andrzej

    2005-03-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and

  16. Beam dynamics in CIME for third harmonic

    International Nuclear Information System (INIS)

    Chautard, F.; Bourgarel, M.P.

    2000-01-01

    This report presents the results from simulations for beam dynamics in CIME third harmonics. Details are given regarding the procedures to reach the adaptation at the inflector exit. The aim of these simulation is to determine, for any given ion, the beam correlations at the inflector exit as well as the current values in the isochronous coils for all the field levels. Although not all the steps of the simulation are thoroughly displayed, the report gathers all the the elements necessary for CIME control. Information useful for controlling the Very Low Energy line, the main field and the isochronous coils are also presented. The report has the following content: I. Introduction. II. The field maps and the used codes. A. The maps of CIME magnetic fields; B. The 3D map of CIME electric potentials; C. The maps of 3D electric potentials in the CIME central region; D. Code LIONS and sorting codes. III. Central region. A. An outlook. B.Central rays; IV. Determination of beam correlations. A. Analytical calculation of adaptation conditions; B. Calculation of adaptation conditions based on particle distributions; C. Creating the beam matrices. D. Calculation method for inverse return correlations. V. Results of simulations. VI. Interpolation of isochronous coils at the referential frequency. VII. The interpolation code PARAM. VIII. Conclusions. The paper is supplemented by 4 appendices. The harmonics 2, 4 and 5 are currently under way and the results will be reported in a future paper

  17. Complex approach of beam dynamic investigation in SC LINAC

    International Nuclear Information System (INIS)

    Samoshin, A.V.

    2012-01-01

    Beam dynamic investigation is difficult for superconducting linac consisting from periodic sequences of independently phased accelerating cavities and focusing solenoids. The matrix calculation was preferably used for previous estimate of accelerating structure parameters. The matrix calculation does not allow properly investigate the longitudinal motion. The smooth approximation can be used to investigate the nonlinear ion beam dynamics in such accelerating structure and to calculate the longitudinal and transverse acceptances. The potential function and equation of motion in the Hamiltonian form are devised by the smooth approximation. The advantages and disadvantages of each method will describe, the results of investigation will compare. Application package for ion beam dynamic analysis will create. A numerical simulation of beam dynamics in the full field will carry out for the different variants of the accelerator structure based on analytically obtained results.

  18. Beam dynamics issues for linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1987-09-01

    In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set

  19. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Toader, D; Craciun, G; Manaila, E; Oproiu, C [National Institute of Research for Laser, Plasma and Radiation Physics Bucuresti (Romania); Marghitu, S [ICPE Electrostatica S.A - Bucuresti (Romania)

    2009-11-15

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES{sub L}V) with a plasma electron source (PES{sub L}V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP{sub L}V source.

  20. Calculation of ballistic focusing of ion beams

    International Nuclear Information System (INIS)

    Astrelin, V.T.; Syresin, E.M.

    1984-01-01

    The motion of ions passing from the homogeneous magnetic field into a conical one is treated analytically in paraxial approximation. Further ions transform into neutral particles at the recharging target which is placed in the conical area of field. The optimal conditions for maximum compression of the beams of neutral particles are investigated. An influence of the initial angular spread on the beam compression is analysed. The computation results together with the those of analytical treatment are presented

  1. Introduction to Transverse Beam Dynamics

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  2. Introduction to Transverse Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, B J [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  3. Dynamic beam cleaning by a nonlinear resonance

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W; Month, M [Brookhaven National Lab., Upton, N.Y. (USA)

    1976-03-15

    The general framework for the dynamic cleaning of a stored proton beam by passing the beam through a nonlinear resonance is developed. The limitations and advantages of this technique are discussed. The method is contrasted with physical beam scraping, which is currently in use at the CERN ISR.

  4. Dynamical calculation of nuclear temperature

    International Nuclear Information System (INIS)

    Zheng Yuming

    1998-01-01

    A new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the microcanonical ensemble of thermodynamics is presented. It shows that under the hypothesis of ergodicity the temperature can be computed as a time average of a function on the energy surface. This method not only yields an efficient computational approach for determining the temperature, but also provides an intrinsic link between dynamical system theory and the statistical mechanics of Hamiltonian system

  5. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  6. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  7. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  8. Beam-gas background calculation for DEAR

    International Nuclear Information System (INIS)

    Guiducci, S.

    1997-01-01

    The present paper describes the results obtained from a Monte Carlo simulation of the particles lost in the DAY-ONE Interaction Region (IR) of the DAFNE machine. Coulomb scattering on the nuclei of residual gas and beam-gas Bremsstrahlung, which are the main sources of background in the initial phase of machine operation, were considered. A ray-tracking program (TURTLE) was used to follow the trajectories of the particles in the rings and to evaluate the number of particles that hit the vacuum chamber in the interaction region

  9. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  10. Beam-dynamics codes used at DARHT

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  11. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  12. Calculation of beam neutralization in the IPNS-Upgrade RCS

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1995-01-01

    The author calculated the neutralization of circulating beam in this report. In the calculation it is assumed that all electrons liberated from the background molecules due to the collisional processes are trapped in the potential well of the proton beam. Including the dependence of ionization cross sections on the kinetic energy of the incident particle, the author derived the empirical formula for beam neutralization as a function of time and baseline vacuum pressure, which is applicable to the one acceleration cycle of the IPNS-Upgrade RCS

  13. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  14. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  15. Automated Calculation of DIII-D Neutral Beam Availability

    International Nuclear Information System (INIS)

    Phillips, J.C.; Hong, R.M.; Scoville, B.G.

    1999-01-01

    The neutral beam systems for the DIII-D tokamak are an extremely reliable source of auxiliary plasma heating, capable of supplying up to 20 MW of injected power, from eight separate beam sources into each tokamak discharge. The high availability of these systems for tokamak operations is sustained by careful monitoring of performance and following up on failures. One of the metrics for this performance is the requested injected power profile as compared to the power profile delivered for a particular pulse. Calculating this was a relatively straightforward task, however innovations such as the ability to modulate the beams and more recently the ability to substitute an idle beam for one which has failed during a plasma discharge, have made the task very complex. For example, with this latest advance it is possible for one or more beams to have failed, yet the delivered power profile may appear perfect. Availability used to be manually calculated. This paper presents the methods and algorithms used to produce a system which performs the calculations based on information concerning the neutral beam and plasma current waveforms, along with post-discharge information from the Plasma Control System, which has the ability to issue commands for beams in real time. Plots representing both the requested and actual power profiles, along with statistics, are automatically displayed and updated each shot, on a web-based interface viewable both at DIII-D and by our remote collaborators using no-cost software

  16. Linear beam-beam tune shift calculations for the Tevatron Collider

    International Nuclear Information System (INIS)

    Johnson, D.

    1989-01-01

    A realistic estimate of the linear beam-beam tune shift is necessary for the selection of an optimum working point in the tune diagram. Estimates of the beam-beam tune shift using the ''Round Beam Approximation'' (RBA) have over estimated the tune shift for the Tevatron. For a hadron machine with unequal lattice functions and beam sizes, an explicit calculation using the beam size at the crossings is required. Calculations for various Tevatron lattices used in Collider operation are presented. Comparisons between the RBA and the explicit calculation, for elliptical beams, are presented. This paper discusses the calculation of the linear tune shift using the program SYNCH. Selection of a working point is discussed. The magnitude of the tune shift is influenced by the choice of crossing points in the lattice as determined by the pbar ''cogging effects''. Also discussed is current cogging procedures and presents results of calculations for tune shifts at various crossing points in the lattice. Finally, a comparison of early pbar tune measurements with the present linear tune shift calculations is presented. 17 refs., 13 figs., 3 tabs

  17. Quantum fluctuations in beam dynamics

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1998-01-01

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects

  18. Calculation of the muon contamination in a π- meson beam

    International Nuclear Information System (INIS)

    Tran, A.H.

    1965-01-01

    We present here a method for calculating the μ contamination of a π-meson beam which is parallel and of cylindrical symmetry, and also the so-called 'CONTAMU' programme which makes it possible to carry out this calculation. An evaluation of the μ contamination is necessary for correcting the experimental values (gross) of the cross-sections of the various reactions using the π-meson beam as a beam of incident particles. The following two cases are dealt with: 1 - The beam is defined by an S 1 counter: the μ contamination is calculated when the beam passes through this counter. 2 - The beam is defined by 2 counters, S 1 and S 2 : the μ contamination is calculated when the beam passes through the 2 counters successively. After presenting the problem in the first introductory paragraph, we deal in detail in paragraph II with the calculation, following the order of the programme. At the end of paragraph II will be found definitions of a certain number of values which the programme calculates; these are the values of the contamination in one of the two preceding cases integrated in certain well-defined disintegration volumes. In paragraph III is given as an example a table of results for a few values of the parameters. The listing of the 'CONTAMU' programme is given in the appendix. This programme was established in 1963 for correcting the experimental values of the cross-sections obtained during an experiment carried out on the synchrotron Saturne by the Falk-Vairant group. (author) [fr

  19. Parallel beam dynamics simulation of linear accelerators

    International Nuclear Information System (INIS)

    Qiang, Ji; Ryne, Robert D.

    2002-01-01

    In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies

  20. Calculation of proton beam initial orbit at cyclotron central region

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2012-01-01

    A calculation of proton beam initial orbits at cyclotron central region was carried out using Scilab 5.2.0. The calculation was done in 2 dimensions in a homogeneous magnetic field of 1.66 tesla at frequency of fourth harmonics. The positions of ion source, dees, and dummy dees follow those of GE Minitrace cyclotron, peak dee voltage 30 kV. The calculation yields result comparable to those simulated at KIRAMS-13 cyclotron. (author)

  1. Electron beam dynamics in Pasotron microwave sources

    International Nuclear Information System (INIS)

    Carmel, Y.; Shkvarunets, A.; Nusinovich, G.S.; Rodgers, J.; Bliokh, Yu.P.; Goebel, D.M.

    2003-01-01

    The Pasotron is a high efficiency (∼50%), plasma-assisted microwave generator in which the beam electrons exhibit two-dimensional motion in the slow wave structure. The electron beam propagates in the ion-focusing regime (Bennett pinch regime) because there is no applied magnetic field. Since initially only the neutral gas is present in the vacuum system and the ions in the neutralizing plasma channel are produced only due to the beam impact ionization, the beam dynamics in Pasotrons is inherently a nonstationary process, and important for efficient operation. The present paper contains results of experimental studies of stationary and nonstationary effects in the beam dynamics in Pasotrons and their theoretical interpretation

  2. Calculation of the beam injector steering system using Helmholtz coils

    International Nuclear Information System (INIS)

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  3. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  4. The CEASEMT system (Calculation and Analysis of Structures in Mechanics and Thermics). Program TRICO. Analysis of tridimensionnal structures made of shells and beams. Statics - Dynamics - Elasticity - Plasticity - Collapse - Large displacements

    International Nuclear Information System (INIS)

    Hoffmann, Alain; Jeanpierre, Francoise.

    1976-01-01

    The TRICO subroutine of the CEASEMT system is especially intended for elastic or plastic computation of structures made of thin shells and beams. TRICO involves the finite element method for shells and beams, and is also suitable for a dynamic structural analysis: eigenmode and eigenfrequency analysis, and analysis of the response to various sinusoidal excitations, or time dependent elastic and plastic loading. Structures may have various shapes composed of a number of materials. Data are distributed between different optional commands having a precise physical sense, corresponding to a sequential program. A dynamic memory control provides the adaptation of the size of the program to that of the problem to be solved [fr

  5. molecular dynamics simulations and quantum chemical calculations

    African Journals Online (AJOL)

    ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.

  6. SciDAC advances and applications in computational beam dynamics

    International Nuclear Information System (INIS)

    Ryne, R; Abell, D; Adelmann, A; Amundson, J; Bohn, C; Cary, J; Colella, P; Dechow, D; Decyk, V; Dragt, A; Gerber, R; Habib, S; Higdon, D; Katsouleas, T; Ma, K-L; McCorquodale, P; Mihalcea, D; Mitchell, C; Mori, W; Mottershead, C T; Neri, F; Pogorelov, I; Qiang, J; Samulyak, R; Serafini, D; Shalf, J; Siegerist, C; Spentzouris, P; Stoltz, P; Terzic, B; Venturini, M; Walstrom, P

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  7. SciDAC Advances and Applications in Computational Beam Dynamics

    International Nuclear Information System (INIS)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  8. Parametrisation of linear accelerator electron beam for computerised dosimetry calculations

    International Nuclear Information System (INIS)

    Millan, P.E.; Millan, S.; Hernandez, A.; Andreo, P.

    1979-01-01

    A previously published age-diffusion model has been adapted to obtain parameters for the Saggittaire linear accelerator electron beams. The calculations are shown and the results discussed. A comparison is presented between measured and predicted percentage depth doses for electron beams at various energies between 10 and 32 MeV. Theoretical isodose curves are compared, for an energy of 10 MeV, with experimental curves. The parameters obtained are used for computer electron isodose curve calculation in a program called FIJOE adapted from a previously published program. This program makes it possible to correct for irregular body contours, but not for internal inhomogeneities. (UK)

  9. Beam Stability and Nonlinear Dynamics. Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1997-01-01

    These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database

  10. Beam transport calculations for BARC-TIFR 14UD pelletron

    International Nuclear Information System (INIS)

    Prasad, K.G.

    1993-01-01

    The 14UD pelletron tandem accelerator installed at Tata Institute of Fundamental Research (TIFR) as a joint BARC-TIFR project, is supplied by National Electrostatic Corporation (NEC), U.S.A. To optimise the parameters of various elements along the beam path, it is essential to work out the beam optics of the entire system. There are various computer codes in use for such calculations. All these codes, except the detailed ray tracing programs, use matrix formulation. Thus each ion optical element is characterised in terms of a transport matrix, whose elements are assumed to be independent of particle trajectory. We have performed only the first order calculations, meaning thereby that no aberrations are included. Further, all calculations are carried out assuming ideal conditions like axial beam injection, perfectly aligned beam line elements, etc. The main code that has been employed in our calculations is based on the one at the Australian National University, Canberra, suitably modified for use with CYBER 170/730 computer at TIFR. However, codes at NEC and Stony Brook were also used for the checking the results. The results of calculations are given and discussed. (author). 2 figs

  11. Calculation of beam quality correction factor using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kawachi, T.; Saitoh, H.; Myojoyama, A.; Katayose, T.; Kojima, T.; Fukuda, K.; Inoue, M.

    2005-01-01

    In recent years, a number of the CyberKnife systems (Accuray C., U.S.) have been increasing significantly. However, the CyberKnife has unique treatment head structure and beam collimating system. Therefore, the global standard protocols can not be adopted for absolute absorbed dose dosimetry in CyberKnife beam. In this work, the energy spectrum of photon and electron from CyberKnife treatment head at 80 cm SSD and several depths in water are simulated with conscientious geometry using by the EGS Monte Carlo method. Furthermore, for calculation of the beam quality correction factor k Q , the mean restricted mass stopping power and the mass energy absorption coefficient of air, water and several chamber wall and waterproofing sleeve materials are calculated. As a result, the factors k Q CyberKnife beam for several ionization chambers are determined. And the relationship between the beam quality index PDD(10) x in CyberKnife beam and k Q is described in this report. (author)

  12. Experimental evaluation of analytical penumbra calculation model for wobbled beams

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Kanematsu, Nobuyuki; Yusa, Ken; Kanai, Tatsuaki

    2004-01-01

    The goal of radiotherapy is not only to apply a high radiation dose to a tumor, but also to avoid side effects in the surrounding healthy tissue. Therefore, it is important for carbon-ion treatment planning to calculate accurately the effects of the lateral penumbra. In this article, for wobbled beams under various irradiation conditions, we focus on the lateral penumbras at several aperture positions of one side leaf of the multileaf collimator. The penumbras predicted by an analytical penumbra calculation model were compared with the measured results. The results calculated by the model for various conditions agreed well with the experimental ones. In conclusion, we found that the analytical penumbra calculation model could predict accurately the measured results for wobbled beams and it was useful for carbon-ion treatment planning to apply the model

  13. Nonlinear beam dynamics experimental program at SPEAR

    International Nuclear Information System (INIS)

    Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.

    1995-01-01

    Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR

  14. Single-particle beam dynamics in Boomerang

    International Nuclear Information System (INIS)

    Jackson, Alan; Nishimura, Hiroshi

    2003-01-01

    We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime

  15. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  16. LTRACK: Beam-transport calculation including wakefield effects

    International Nuclear Information System (INIS)

    Chan, K.C.D.; Cooper, R.K.

    1988-01-01

    LTRACK is a first-order beam-transport code that includes wakefield effects up to quadrupole modes. This paper will introduce the readers to this computer code by describing the history, the method of calculations, and a brief summary of the input/output information. Future plans for the code will also be described

  17. Calculated LET Spectrum from Antiproton Beams Stopping in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    2009-01-01

    significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. In the plateau region of the simulated...

  18. Beam brightness calculation for analytical and empirical distribution functions

    International Nuclear Information System (INIS)

    Myers, T.J.; Boulais, K.A.; O, Y.S.; Rhee, M.J.

    1992-01-01

    The beam brightness, a figure of merit for a beam quality useful for high-current low-emittance beams, was introduced by van Steenbergen as B = I/V 4 , where I is the beam current and V 4 is the hypervolume in the four-dimensional trace space occupied by the beam particles. Customarily, the brightness is expressed in terms of the product of emittances ε x ε y as B = ηI/(π 2 ε x ε y ), where η is a form factor of order unity which depends on the precise definition of emittance and hypervolume. Recently, a refined definition of the beam brightness based on the arithmetic mean value defined in statistics is proposed. The beam brightness is defined as B triple-bond 4 > = I -1 ∫ ρ 4 2 dxdydx'dy', where I is the beam current given by I ∫ ρ 4 dxdydx'dy'. Note that in this definition, neither the hypervolume V 4 nor the emittance, are explicitly used; the brightness is determined solely by the distribution function. Brightnesses are unambiguously calculated and expressed analytically in terms of the respective beam current and effective emittance for a few commonly used distribution functions, including Maxwellian and water-bag distributions. Other distributions of arbitrary shape frequently encountered in actual experiments are treated numerically. The resulting brightnesses are expressed in the form B = ηI/(π 2 ε x ε y ), and η is found to be weakly dependent on the form of velocity distribution as well as spatial distribution

  19. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  20. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  1. A contemporary guide to beam dynamics

    International Nuclear Information System (INIS)

    Forest, E.; Hirata, Kohji

    1992-09-01

    A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases

  2. A contemporary guide to beam dynamics

    International Nuclear Information System (INIS)

    Forest, E.; Hirata, Kohji.

    1992-08-01

    A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases. (author)

  3. Biased Brownian dynamics for rate constant calculation.

    OpenAIRE

    Zou, G; Skeel, R D; Subramaniam, S

    2000-01-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampl...

  4. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  5. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  6. Beam-Induced Damage Mechanisms and their Calculation

    CERN Document Server

    Bertarelli, A

    2016-01-01

    The rapid interaction of highly energetic particle beams with matter induces dynamic responses in the impacted component. If the beam pulse is sufficiently intense, extreme conditions can be reached, such as very high pressures, changes of material density, phase transitions, intense stress waves, material fragmentation and explosions. Even at lower intensities and longer time-scales, significant effects may be induced, such as vibrations, large oscillations, and permanent deformation of the impacted components. These lectures provide an introduction to the mechanisms that govern the thermomechanical phenomena induced by the interaction between particle beams and solids and to the analytical and numerical methods that are available for assessing the response of impacted components. An overview of the design principles of such devices is also provided, along with descriptions of material selection guidelines and the experimental tests that are required to validate materials and components exposed to interactio...

  7. Molecular beam studies of adsorption dynamics

    International Nuclear Information System (INIS)

    Arumainayagam, C.R.; McMaster, M.C.; Madix, R.J.

    1991-01-01

    We have investigated the trapping dynamics of C 1 -C 3 alkanes and Xe on Pt(111) using supersonic molecular beams and a direct technique to measure trapping probabilities. We have extended a one-dimensional model based on classical mechanics to include trapping and have found semiquantitative agreement with experimental results for the dependence of the initial trapping probability on incident translational energy at normal incidence. Our measurements of the initial trapping probability as a function of incident translational energy at normal incidence are in agreement with previous mean translational energy measurements for Xe and CH 4 desorbing near the surface normal, in accordance with detailed balance. However, the angular dependence of the initial trapping probability shows deviations from normal energy scaling, demonstrating the importance of parallel momentum in the trapping process and the inadequacy of one-dimensional models. The dependence of the initial trapping probability of Xe on incident translational energy and angle is quite well fit by three-dimensional stochastic classical trajectory calculations utilizing a Morse potential. Angular distributions of the scattered molecules indicate that the trapping probability is not a sensitive function of surface temperature. The trapping probability increases with surface coverage in quantitative agreement with a modified Kisliuk model which incorporates enhanced trapping onto the monolayer. We have also used the direct technique to study trapping onto a saturated monolayer state to investigate the dynamics of extrinsic precursor adsorption and find that the initial trapping probability onto the monolayer is higher than on the clean surface. The initial trapping probability onto the monolayer scales with total energy, indicating a highly corrugated interaction potential

  8. Laser acceleration and nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    This research contract covers the period April 1990, September 1991. The work to be done under the contract was theoretical research in the areas of nonlinear beam dynamics and laser acceleration. In this final report we will discuss the motivation for this work and the results obtained

  9. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  10. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  11. Calculated LET spectrum from antiproton beams stopping in water

    CERN Document Server

    Bassler, Niels

    2009-01-01

    Antiprotons have been proposed as a potential modality for radiotherapy because the annihilation at the end of range leads to roughly a doubling of physical dose in the Bragg peak region. So far it has been anticipated that the radiobiology of antiproton beams is similar to that of protons in the entry region of the beam, but very different in the annihilation region, due to the expected high-LET components resulting from the annihilation. On closer inspection we find that calculations of dose averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity, which seems to warrant closer inspection of the radiobiology in this region. Materials and Methods. Monte Carlo simulations using FLUKA were performed for calculating the entire particle spectrum of a beam of 126 MeV antiprotons hitting a water phantom. Results and Discussion. In the plateau region of the simulated antiproton beam we observe a dose-averaged unrestrict...

  12. Shielding calculations for the TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Santoro, R.T.; Lillie, R.A.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1979-07-01

    Two-dimensional discrete ordinates calculations have been performed to determine the location and thickness of concrete shielding around the Tokamak Fusion Test Reactor (TFTR) neutral beam injectors. Two sets of calculations were performed: one to determine the dose equivalent rate on the roof and walls of the test cell building when no injectors are present, and one to determine the contribution to the dose equivalent rate at these locations from radiation streaming through the injection duct. Shielding the side and rear of the neutral beam injector with 0.305 and 0.61 m of concrete, respectively, and lining the inside of the test cell wall with an additional layer of concrete having a thickness of 0.305 m and a height above the axis of deuteron injection of 3.10 m are sufficient to maintain the biological dose equivalent rate outside the test cell to approx. 1 mrem/DT pulse

  13. Proton beam induced dynamics of tungsten granules

    Science.gov (United States)

    Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.

    2018-03-01

    This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  14. Proton beam induced dynamics of tungsten granules

    Directory of Open Access Journals (Sweden)

    O. Caretta

    2018-03-01

    Full Text Available This paper reports the results from single-pulse experiments of a 440  GeV/c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ∼45  μm diameter spheres (not compacted reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45  μm grain results and with a previous experiment carried out with sub-250  μm mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014PRABFM1098-440210.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.

  15. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  16. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    Beams of charged particles are of interest in various fields of research including particle and nuclear physics, material and medical science and many more. In synchrotron accelerators the accelerating section is passed periodically. A closed loop trajectory is enforced, by increasing the frequency of the accelerating electric field and the magnitude of the dipolar magnetic guide field synchronously. A synchrotron therefore consists of a circular assembly of various beamline elements which serve the purposes of accelerating and guiding the particle beam. For the flawless operation of such a machine it has to be assured that the particles perform a controlled motion along predefined trajectories. Amongst others, the fulfillment of the corresponding stability criteria is in close conjuction with the so-called beam coupling impedances which are an important figure of merit for collective effects in synchrotron accelerators. This work focuses on analytical and numerical methods for the calculation of beam coupling impedances. One of the primary objectives is to gain a better understanding of the electrodynamics related to charged particle beams, furthermore to recapitulate the mathematical description of charged particle beams in both time and frequency domain and finally establish the links between actual physics and numerical modeling. Analytical methods are usually restricted to symmetrical geometry and may solely serve for the approximate determination of the field distribution in real geometries or to validate certain numerical methods. More accurate prognosis is only possible with three-dimensional simulation models. Numerical simulation techniques have been established in the second half of the last century accompanying the evolution of many particle accelerators. Classical time domain codes were the prevailing simulation tools where the actual process of the particle motion sequence is reproduced. For the present case of a heavy ion synchrotron accelerator

  17. Introduction to Longitudinal Beam Dynamics

    International Nuclear Information System (INIS)

    Holzer, B J

    2014-01-01

    This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related to that, the issue of synchronization between the particles and the accelerating field. Beginning with the trivial case of electrostatic accelerators, the synchronization condition is explained for a number of driven accelerators like Alvarez linacs, cyclotrons and finally synchrotrons and storage rings, where it plays a crucial role. In the case of the latter, the principle of phase focusing is motivated qualitatively as well as on a mathematically more correct level and the problem of operation below and above the transition energy is discussed. Throughout, the main emphasis is more on physical understanding rather than on a mathematically rigorous treatment

  18. Introduction to Longitudinal Beam Dynamics

    CERN Document Server

    Holzer, B J

    2014-01-01

    This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related to that, the issue of synchronization between the particles and the accelerating field. Beginning with the trivial case of electrostatic accelerators, the synchronization condition is explained for a number of driven accelerators like Alvarez linacs, cyclotrons and finally synchrotrons and storage rings, where it plays a crucial role. In the case of the latter, the principle of phase focusing is motivated qualitatively as well as on a mathematically more correct level and the problem of operation below and above the transition energy is discussed. Throughout, the main emphasis is more on physical understanding rather than on a mathematically rigorous treatment.

  19. Introduction to Longitudinal Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, B J [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related to that, the issue of synchronization between the particles and the accelerating field. Beginning with the trivial case of electrostatic accelerators, the synchronization condition is explained for a number of driven accelerators like Alvarez linacs, cyclotrons and finally synchrotrons and storage rings, where it plays a crucial role. In the case of the latter, the principle of phase focusing is motivated qualitatively as well as on a mathematically more correct level and the problem of operation below and above the transition energy is discussed. Throughout, the main emphasis is more on physical understanding rather than on a mathematically rigorous treatment.

  20. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Directory of Open Access Journals (Sweden)

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  1. Parallel processing of dose calculation for external photon beam therapy

    International Nuclear Information System (INIS)

    Kunieda, Etsuo; Ando, Yutaka; Tsukamoto, Nobuhiro; Ito, Hisao; Kubo, Atsushi

    1994-01-01

    We implemented external photon beam dose calculation programs into a parallel processor system consisting of Transputers, 32-bit processors especially suitable for multi-processor configuration. Two network conformations, binary-tree and pipeline, were evaluated for rectangular and irregular field dose calculation algorithms. Although computation speed increased in proportion to the number of CPU, substantial overhead caused by inter-processor communication occurred when a smaller computation load was delivered to each processor. On the other hand, for irregular field calculation, which requires more computation capability for each calculation point, the communication overhead was still less even when more than 50 processors were involved. Real-time responses could be expected for more complex algorithms by increasing the number of processors. (author)

  2. TRACK The New Beam Dynamics Code

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Schnirman-Lessner, Eliane

    2005-01-01

    The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and ...

  3. Improvements in the error calculation of the action of a kicked beam

    CERN Document Server

    Sherman, Alexander Charles

    2013-01-01

    This report details a new calculation for the action performed in the optics measurement and correction software. The action of a kicked beam is used to calculate the dynamic aperture and detuning with amplitude. The current method of calculation has a large uncertainty due to the use of all BPMs (including those near interaction points and ones which are malfunctioning) and the model beta function. Instead, only good BPMs are kept and the measured beta function from phase is used, and significant decreases are seen in the relative uncertainty of the action.

  4. Laser Beam and Resonator Calculations on Desktop Computers.

    Science.gov (United States)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

  5. Calculation of beam injection and modes of acceleration for the JINR phasotron

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.; Dmitrievsky, V.P.

    1981-01-01

    On the basis of computer simulation of particles motion from the injection region up to the final radius of the accelerated proton beam behaviour together with different modes of the JINR high current synchrocyclotron operation is investigated. The THOUR modified computer code is used for calculations. The calculations have been performed with allowance for particle radial-phase motion and particle axial motion and although with beam collective effects. Beam dynamics during first turns of particles has been considered by integrating equations of motion. Tolerances for magnetic field structure in the region of first phase oscillation are obtained. Verifications of time dependences of accelerated voltage amplitude are performed. Time dependences of beam intensity (with and without account for space charge effect) and of mean magnetic field disturbance and the dependence of the separatrice dimension on the orbit radius of the accelerated beam are given. The conclusion is drawn on the correctness of the earlier appreciation of beam intensity equaling 40-45 mkA

  6. Beam Dynamics Challenges for the ILC

    International Nuclear Information System (INIS)

    Kubo, Kiyoshi; Seryi, Andrei; Walker, Nicholas; Wolski, Andy

    2008-01-01

    The International Linear Collider (ILC) is a proposal for 500 GeV center-of-mass electron-positron collider, with a possible upgrade to ∼1 TeV center-of-mass. At the heart of the ILC are the two ∼12 km 1.3 GHz superconducting RF (SCRF) linacs which will accelerate the electron and positron beams to an initial maximum energy of 250 GeV each. The Global Design Effort (GDE)--responsible for the world-wide coordination of this uniquely international project--published the ILC Reference Design Report in August of 2007 [1]. The ILC outlined in the RDR design stands on a legacy of over fifteen-years of R and D. The GDE is currently beginning the next step in this ambitious project, namely an Engineering Design phase, which will culminate with the publication of an Engineering Design Report (EDR) in mid-2010. Throughout the history of linear collider development, beam dynamics has played an essential role. In particular, the need for complex computer simulations to predict the performance of the machine has always been crucial, not least because the parameters of the ILC represent in general a large extrapolation from where current machines operate today; many of the critical beam-dynamics features planned for the ILC can ultimately only be truly tested once the ILC has been constructed. It is for this reason that beam dynamics activities will continue to be crucial during the Engineering Design phase, as the available computer power and software techniques allow ever-more complex and realistic models of the machine to be developed. Complementary to the computer simulation efforts are the need for well-designed experiments at beam-test facilities, which--while not necessarily producing a direct demonstration of the ILC-like parameters for the reasons mentioned above--can provide important input and benchmarking for the computer models

  7. RIA Beam Dynamics Comparing TRACK to IMPACT

    CERN Document Server

    Mustapha, Brahim; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D

    2005-01-01

    In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and I...

  8. Fast optimization and dose calculation in scanned ion beam therapy

    International Nuclear Information System (INIS)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-01-01

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min

  9. Dynamic beam filtering for miscentered patients.

    Science.gov (United States)

    Mao, Andrew; Shyr, William; Gang, Grace J; Stayman, J Webster

    2018-02-01

    Accurate centering of the patient within the bore of a CT scanner takes time and is often difficult to achieve precisely. Patient miscentering can result in significant dose and image noise penalties with the use of traditional bowtie filters. This work describes a system to dynamically position an x-ray beam filter during image acquisition to enable more consistent image performance and potentially lower dose needed for CT imaging. We propose a new approach in which two orthogonal low-dose scout images are used to estimate a parametric model of the object describing its shape, size, and location within the field of view (FOV). This model is then used to compute an optimal filter motion profile by minimizing the variance of the expected detector fluence for each projection. Dynamic filtration was implemented on a cone-beam CT (CBCT) test bench using two different physical filters: 1) an aluminum bowtie and 2) a structured binary filter called a multiple aperture device (MAD). Dynamic filtration performance was compared to a static filter in studies of dose and reconstruction noise as a function of the degree of miscentering of a homogeneous water phantom. Estimated filter trajectories were found to be largely sinusoidal with an amplitude proportional to the amount of miscentering. Dynamic filtration demonstrated an improved ability to keep the spatial distribution of dose and reconstruction noise at baseline levels across varying levels of miscentering, reducing the maximum noise and dose deviation from 53% to 15% and 42% to 14% respectively for the bowtie filter, and 25% to 8% and 24% to 15% respectively for the MAD filter. Dynamic positioning of beam filters during acquisition improves dose utilization and image quality over static filters for miscentered patients. Such dynamic filters relax positioning requirements and have the potential to reduce set-up time and lower dose requirements.

  10. Experimental studies of nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.

    1992-01-01

    The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced

  11. Computational studies of beam dynamics in the ETA gun

    International Nuclear Information System (INIS)

    Paul, A.C.; Neil, V.K.

    1979-03-01

    A new general purpose computer code call EBQ, has been written to simulate the beam dynamics of the ETA, find its beam emittance and evaluate effects of changes in the electrode positions and external magnetic fields. The original calculations of the ETA were made with EGUN and yielded considerable insight into the operation of the device in the non-relativistic regime. The EBQ code was written specifically to attend to the special problems associated with high current relativistic beam propagation in axially symmetric machines possessing external 2-dimensional electric and magnetic fields. The coherent electric and magnetic self-fields of the beam must be calculated accurately. Special care has been used in the relativistic regime where a high degree of cancellation occurs between the self-magnetic and self electric forces of the beam. Additionally, EBQ can handle equally well non-relativistic problems involving multiple ion species where the space charge from each must be included in its mutual effect on the others. Such problems arise in the design of ion sources where different charge and mass states are present

  12. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  13. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  14. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  15. Development of Dynamic Environmental Effect Calculation Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il

    2010-01-01

    The short-term, long-term decay heat, and radioactivity are considered as main environmental parameters of SF and HLA. In this study, the dynamic calculation models for radioactivity, short-term decay heat, and long-term heat load of the SF are developed and incorporated into the Doneness code. The spent fuel accumulation has become a major issue for sustainable operation of nuclear power plants. If a once-through fuel cycle is selected, the SF will be disposed into the repository. Otherwise, in case of fast reactor or reuse cycle, the SF will be reprocessed and the high level waste will be disposed

  16. Sweeping-window arc therapy: an implementation of rotational IMRT with automatic beam-weight calculation

    International Nuclear Information System (INIS)

    Cameron, C

    2005-01-01

    Sweeping-window arc therapy (SWAT) is a variation of intensity-modulated radiation therapy (IMRT) with direct aperture optimization (DAO) that is initialized with a leaf sequence of sweeping windows that move back and forth periodically across the target as the gantry rotates. This initial sequence induces modulation in the dose and is assumed to be near enough to a minimum to allow successful optimization, done with simulated annealing, without requiring excessive leaf speeds. Optimal beam weights are calculated analytically, with easy extension to allow for variable beam weights. In this paper SWAT is tested on a phantom model and clinical prostate case. For the phantom, constant and variable beam weights are used. Although further work (in particular, improving the dose model) is required, the results show SWAT to be a feasible approach to generating deliverable dynamic arc treatments that are optimized

  17. Sweeping-window arc therapy: an implementation of rotational IMRT with automatic beam-weight calculation

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C [Division of Radiation Physics, Department of Radiation Oncology, Stanford Cancer Center, 875 Blake Wilbur Drive, Rm G-233, Stanford, CA 94305-5847 (United States)

    2005-09-21

    Sweeping-window arc therapy (SWAT) is a variation of intensity-modulated radiation therapy (IMRT) with direct aperture optimization (DAO) that is initialized with a leaf sequence of sweeping windows that move back and forth periodically across the target as the gantry rotates. This initial sequence induces modulation in the dose and is assumed to be near enough to a minimum to allow successful optimization, done with simulated annealing, without requiring excessive leaf speeds. Optimal beam weights are calculated analytically, with easy extension to allow for variable beam weights. In this paper SWAT is tested on a phantom model and clinical prostate case. For the phantom, constant and variable beam weights are used. Although further work (in particular, improving the dose model) is required, the results show SWAT to be a feasible approach to generating deliverable dynamic arc treatments that are optimized.

  18. Beam dynamics of alternating-phase-focused linac

    CERN Document Server

    Iwata, Y; Kapin, V

    2004-01-01

    A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...

  19. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  20. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  1. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  2. Beam stability & nonlinear dynamics. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  3. Wide dynamic range beam profile monitor

    International Nuclear Information System (INIS)

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1

  4. Beam stability ampersand nonlinear dynamics. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  5. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  6. Scattering calculation and image reconstruction using elevation-focused beams.

    Science.gov (United States)

    Duncan, David P; Astheimer, Jeffrey P; Waag, Robert C

    2009-05-01

    Pressure scattered by cylindrical and spherical objects with elevation-focused illumination and reception has been analytically calculated, and corresponding cross sections have been reconstructed with a two-dimensional algorithm. Elevation focusing was used to elucidate constraints on quantitative imaging of three-dimensional objects with two-dimensional algorithms. Focused illumination and reception are represented by angular spectra of plane waves that were efficiently computed using a Fourier interpolation method to maintain the same angles for all temporal frequencies. Reconstructions were formed using an eigenfunction method with multiple frequencies, phase compensation, and iteration. The results show that the scattered pressure reduces to a two-dimensional expression, and two-dimensional algorithms are applicable when the region of a three-dimensional object within an elevation-focused beam is approximately constant in elevation. The results also show that energy scattered out of the reception aperture by objects contained within the focused beam can result in the reconstructed values of attenuation slope being greater than true values at the boundary of the object. Reconstructed sound speed images, however, appear to be relatively unaffected by the loss in scattered energy. The broad conclusion that can be drawn from these results is that two-dimensional reconstructions require compensation to account for uncaptured three-dimensional scattering.

  7. Dynamics of snapping beams and jumping poppers

    Science.gov (United States)

    Pandey, A.; Moulton, D. E.; Vella, D.; Holmes, D. P.

    2014-01-01

    We consider the dynamic snapping instability of elastic beams and shells. Using the Kirchhoff rod and Föppl-von Kármán plate equations, we study the stability, deformation modes, and snap-through dynamics of an elastic arch with clamped boundaries and subject to a concentrated load. For parameters typical of everyday and technological applications of snapping, we show that the stretchability of the arch plays a critical role in determining not only the post-buckling mode of deformation but also the timescale of snapping and the frequency of the arch's vibrations about its final equilibrium state. We show that the growth rate of the snap-through instability and its subsequent ringing frequency can both be interpreted physically as the result of a sound wave in the material propagating over a distance comparable to the length of the arch. Finally, we extend our analysis of the ringing frequency of indented arches to understand the “pop” heard when everted shell structures snap-through to their stable state. Remarkably, we find that not only are the scaling laws for the ringing frequencies in these two scenarios identical but also the respective prefactors are numerically close; this allows us to develop a master curve for the frequency of ringing in snapping beams and shells.

  8. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  9. Improving the accuracy of dynamic mass calculation

    Directory of Open Access Journals (Sweden)

    Oleksandr F. Dashchenko

    2015-06-01

    Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.

  10. Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator

    CERN Document Server

    Schulte, Daniel

    2000-01-01

    A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.

  11. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  12. Crossed molecular beam studies of unimolecular reaction dynamics

    International Nuclear Information System (INIS)

    Buss, R.J.

    1979-04-01

    The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF 3 I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol -1 . In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum

  13. Beam transport calculations for the EN tandem installation

    International Nuclear Information System (INIS)

    Sparks, R.J.

    1980-12-01

    Transport of a charged particle beam through the new EN tandem accelerator installation of the Institute of Nuclear Sciences has been analysed using simplified mathematical models. The purpose is to identify the factors affecting transmission of the beam, and to arrive at a design for the system to inject the beam into the accelerator

  14. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  15. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  16. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  17. Shielding calculation of slow extracted beam facility at KEK proton synchrotron

    International Nuclear Information System (INIS)

    Hirabayashi, Hiromi; Katoh, Kazuaki

    1978-01-01

    The KEK proton synchrotron has two external beam lines, i.e. a fast extracted beam line for a bubble chamber and a slow extracted beam line for counter experiments. The maximum total intensity of the slow beam is estimated as 5 x 10 12 protons per sec. For beam losses along the line, shielding calculation was made, and on the basis of these results, adequacy of the current shielding construction plans was discussed. (Mori, K.)

  18. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  19. Dynamic modelling and experimental study of cantilever beam with clearance

    International Nuclear Information System (INIS)

    Li, B; Jin, W; Han, L; He, Z

    2012-01-01

    Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.

  20. Dynamic modelling and experimental study of cantilever beam with clearance

    Science.gov (United States)

    Li, B.; Jin, W.; Han, L.; He, Z.

    2012-05-01

    Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.

  1. Multiscale, multiphysics beam dynamics framework design and applications

    International Nuclear Information System (INIS)

    Amundson, J F; Spentzouris, P; Dechow, D; Stoltz, P; McInnes, L; Norris, B

    2008-01-01

    Modern beam dynamics simulations require nontrivial implementations of multiple physics models. We discuss how component framework design in combination with the Common Component Architecture's component model and implementation eases the process of incorporation of existing state-of-the-art models with newly-developed models. We discuss current developments in componentized beam dynamics software, emphasizing design issues and distribution issues

  2. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  3. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  4. Beam dynamics prior to extraction in Kolkata superconducting cyclotron

    International Nuclear Information System (INIS)

    Paul, S.; Debnath, J.; Dey, M.K.; Mallik, C.; Bhandari, R.K.

    2011-01-01

    The Kolkata Superconducting Cyclotron has already accelerated test beams up to its extraction radius. Efforts are underway to extract the internal beam with the aid of the various extraction elements. A detailed study of the accelerated beams dynamics has been carried out to ensure that before extraction, optimum turn separation is achieved and the beam does not cross the harmful third order coupling resonance, while keeping distortions to a manageable levels. This paper discusses those results and the studies conducted. (author)

  5. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  6. Effective and efficient method of calculating Bessel beam fields

    CSIR Research Space (South Africa)

    Litvin, IA

    2005-01-01

    Full Text Available Bessel beams have gathered much interest of late due to their properties of near diffraction free propagation and self reconstruction after obstacles. Such laser beams have already found applications in fields such as optical tweezers and as pump...

  7. Beam Dynamics Challenges for Future Circular Colliders

    CERN Multimedia

    Zimmermann, Frank

    2004-01-01

    The luminosity of hadron colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. Also beam losses caused by various mechanisms may affect the performance. The limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I discuss such mitigating measures and related research efforts, with special emphasis on the LHC and its upgrade.

  8. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  9. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, John P., E-mail: john.gibbons@marybird.com [Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809 (United States); Antolak, John A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Followill, David S. [Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Huq, M. Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Klein, Eric E. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Lam, Kwok L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Palta, Jatinder R. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Roback, Donald M. [Department of Radiation Oncology, Cancer Centers of North Carolina, Raleigh, North Carolina 27607 (United States); Reid, Mark [Department of Medical Physics, Fletcher-Allen Health Care, Burlington, Vermont 05401 (United States); Khan, Faiz M. [Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-15

    A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D{sub 0}{sup ′}, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D{sub 0}{sup ′} = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D{sub 0}{sup ′} ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of d{sub m}, with D{sub 0}{sup ′} = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.

  10. Beam-dynamics simulation of a polarized source for the S-DALINAC (SPIN)

    International Nuclear Information System (INIS)

    Steiner, Georg Bastian

    2009-01-01

    First the physical and mathematical foundations are explained. Thereby especially those aspects are pronounced, which are necessary for the optimization of the beam dynamics and the field calculation of the single components. For this the foundations of beam dynamics, the method of the finite integration, and the Vlasov approach are described. Then the new injector concept is presented. Beside the description of the principal injector construction the tasks for the single beam-guiding elements are presented and the design requirements specified. The next chapter contains the study, optimization, and the design of the single beam-guiding components. Thereby the source, the alpha-magnet, the quadrupole triplets, the Wien filter, and the chopper/prebuncher system are considered. Finally the study and optimization of the whole beam guiding for the test facility and the injector at the S-DALINAC are described and the optimized design of the test facility and injector presented.

  11. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    Science.gov (United States)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  12. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  13. Model-Independent Beam Dynamics Analysis

    International Nuclear Information System (INIS)

    Irwin, J.; Wang, C.X.; Yan, Y.T.; Bane, K.L.; Cai, Y.; Decker, F.; Minty, M.G.; Stupakov, G.V.; Zimmermann, F.

    1999-01-01

    Using a singular value decomposition of a beam line matrix, composed of many beam position measurements for a large number of pulses, together with the measurement of pulse-by-pulse beam properties or machine attributes, the contributions of each variable to the beam centroid motion can be identified with a greatly improved resolution. The eigenvalues above the noise floor determine the number of significant physical variables. This method is applicable to storage rings, linear accelerators, and any system involving a number of sources and a larger number of sensors with unknown correlations. Applications are presented from the Stanford Linear Collider. copyright 1999 The American Physical Society

  14. A calculation technique of passing of a powerful relativistic beam through substance

    International Nuclear Information System (INIS)

    Pobitko, A.I.; Sal'nikov, L.I.; Sukhovitskij, E.Sh.

    1995-01-01

    The calculation algorithm of passing powerful relativistic beam through substance is developed. Algorithm of calculation is separated on the following problems: 1) a trial charge movement in electromagnetic field of the cylindrical geometry; 2) a computing of own electromagnetic field arising at movement of a particle heavy-current beam in a target; 3) accounting of an interaction of a beam with target atoms; 4) accounting of change of the target properties in a time; 5) geometry and construction of an iterative procedure of calculation. The calculation of passing heavy-current beams of charged particles for transient case is carried out by Monte Carlo method. A conclusion of equations of movement trial charge and technique of calculation own electromagnetic field of the powerful relativistic beam at passing through substance are resulted. 6 refs

  15. Model Independent Analysis of Beam Centroid Dynamics in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi

    2003-04-21

    Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map

  16. Model Independent Analysis of Beam Centroid Dynamics in Accelerators

    International Nuclear Information System (INIS)

    Wang, Chun-xi

    2003-01-01

    Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map

  17. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code

  18. Beam dynamics simulations using a parallel version of PARMILA

    International Nuclear Information System (INIS)

    Ryne, Robert

    1996-01-01

    The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code. (author)

  19. Molecular dynamics simulations and quantum chemical calculations ...

    African Journals Online (AJOL)

    Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...

  20. 108 NUMERICAL CALCULATIONS IN THE GENERAL DYNAMICAL ...

    African Journals Online (AJOL)

    DR. AMINU

    Dynamical Principles and Laws and compare to construct a corresponding theory of Gravitational. Time Dilation and compute the ratio of the ... mass mi and passive and mass mp and active mass mA of a photon of frequency ν is given by. 2 ... Conservation of mechanical Energy in gravitational fields that the instantaneous ...

  1. Calculation of integrated luminosity for beams stored in the Tevatron collider

    International Nuclear Information System (INIS)

    Finley, D.A.

    1989-01-01

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing β function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs

  2. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    International Nuclear Information System (INIS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-01-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  3. Calculated neutron spectrum from 800-MeV protons incident on a copper beam stop

    International Nuclear Information System (INIS)

    Perry, D.G.

    1975-10-01

    A Monte Carlo calculation was performed to obtain the neutron spectrum generated by 800-MeV protons incident on the LAMPF main copper beam stop. The total flux is calculated to be of the order of 10 13 n/cm 2 -sec-mA at full-beam intensity of 1 mA, with flux spectra calculated for angles of 20 0 , 30 0 , 60 0 , 90 0 , 120 0 , and 150 0 . (auth)

  4. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  5. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, John P.; Gabor, Rachel; Neubauer, Janelle

    2001-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or 'wobbled' beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  6. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents

    International Nuclear Information System (INIS)

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-01-01

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material

  7. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  8. Studies of Beam Dynamics in Cooler Rings

    International Nuclear Information System (INIS)

    Dietrich, J.; Stein, J.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-01-01

    This report describes the numerical simulation of the crystalline proton beam formation in COSY using BETACOOL code. The study includes the description of experimental results at NAP-M storage ring where the large reduction of the momentum spread was observed for first time. The present simulation shows that this behavior of proton beam can not be explained as ordered state of protons. The numerical simulation of crystalline proton beams was done for COSY parameters. The number of protons when the ordering state can be observed is limited by value 106 particles and momentum spread less then 10-6. Experimental results for the attempt to achieve of ordered state of proton beam for COSY is presented. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584

  9. A modified space charge routine for LINAC beam dynamics codes

    International Nuclear Information System (INIS)

    Valero, S.; Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Warner, D.

    1994-01-01

    In 1991 a space charge calculation for bunched beams with three-dimensional ellipsoidal symmetry was proposed for the PARMILA code, replacing the usual SCHEFF routines: it removes the cylindrical symmetry needed for the Fast Fourier Transform method and avoids the point to point interaction computation, where the number of simulation points is limited. This routine has now been improved with the introduction of two (or more) ellipsoids, giving a good representation of actual, pear-shaped bunches (unlike the 3-D ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty caused by statistical effects, encountered near the centre (the axis in 2-D problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Introduced in the new, versatile beam dynamics code, DYNAC, it should provide a good tool for the study of the effects of the various parameters responsible for the halo formation in high intensity linacs. (authors). 11 refs

  10. Viscosity calculations at molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kirova, E M; Norman, G E

    2015-01-01

    Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)

  11. Validation of flexible multibody dynamics beam formulations using benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: obauchau@umd.edu [University of Maryland (United States); Betsch, Peter [Karlsruhe Institute of Technology (Germany); Cardona, Alberto [CIMEC (UNL/Conicet) (Argentina); Gerstmayr, Johannes [Leopold-Franzens Universität Innsbruck (Austria); Jonker, Ben [University of Twente (Netherlands); Masarati, Pierangelo [Politecnico di Milano (Italy); Sonneville, Valentin [Université de Liège (Belgium)

    2016-05-15

    As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.

  12. Investigation of propagation dynamics of truncated vector vortex beams.

    Science.gov (United States)

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  13. Study of dose calculation and beam parameters optimization with genetic algorithm in IMRT

    International Nuclear Information System (INIS)

    Chen Chaomin; Tang Mutao; Zhou Linghong; Lv Qingwen; Wang Zhuoyu; Chen Guangjie

    2006-01-01

    Objective: To study the construction of dose calculation model and the method of automatic beam parameters selection in IMRT. Methods: The three-dimension convolution dose calculation model of photon was constructed with the methods of Fast Fourier Transform. The objective function based on dose constrain was used to evaluate the fitness of individuals. The beam weights were optimized with genetic algorithm. Results: After 100 iterative analyses, the treatment planning system produced highly conformal and homogeneous dose distributions. Conclusion: the throe-dimension convolution dose calculation model of photon gave more accurate results than the conventional models; genetic algorithm is valid and efficient in IMRT beam parameters optimization. (authors)

  14. Beam Dynamics Challenges for FCC-ee

    CERN Document Server

    AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli

    2015-01-01

    The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...

  15. Dynamics of optical beams with finite beam width

    International Nuclear Information System (INIS)

    Deng Ximing

    1993-01-01

    A postulation of the pseudo-polarization energy was introduced to the electromagnetic field in the free space. The angular momentum, velocity of the energy flow, static mass density, diffracted divergence, generalization of the principle of Fermat etc. of the electromagnetic field can be described satisfactorily by using this postulation. In the authors research on the transmission of optical beams for more than ten years, the movement of the electromagnetic field has been divided to an orbital motion and an intrinsic motion, and these motions have been described by only a single cartesian coordinate and its first-order partial differential. In this paper, on the basis of past results, the author uses the energy density of the field to replace the single cartesian coordinate component to make the description more precise and complete. On the other hand, as a basic postulation, a pseudo-polarization energy density is introduced to make the description and analysis of the field movement more abstract, deeper, and clearer. 3 refs

  16. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  17. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Allen, B.J.

    1998-01-01

    Recent advances in synchrotron generated x-ray beams with a high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. (author)

  18. Optics calculations and beam line design for the JANNuS facility in Orsay

    International Nuclear Information System (INIS)

    Chauvin, N.; Henry, S.; Flocard, H.; Fortuna, F.; Kaitasov, O.; Pariset, P.; Pellegrino, S.; Ruault, M.O.; Serruys, Y.; Trocelier, P.

    2007-01-01

    JANNuS (Joint Accelerators for Nano-Science and Nuclear Simulation) will be a unique user facility in Europe dedicated to material modification by ion beam implantation and irradiation. The main originality of the project is that it will be possible to perform implantation and irradiation with simultaneous multiple ions beams and in situ characterization by transmission electron microscopy (TEM) observation or ion beam analysis. This facility will be composed of two experimental platforms located in two sites: the CEA-SRMP in Saclay and the CNRS-CSNSM in Orsay. This paper will focus on the design of two new transport beam lines for the Orsay site. One of the most challenging parts of the JANNuS project (Orsay site) is to design two new beam lines in order to inject, into a 200 kV TEM, two different ion beams (low and medium energy) coming from two existing pieces of equipment: a 2 MV Tandem accelerator and a 190 kV ion implanter. For these new beam lines, first order beam calculations have been done using transfer matrix formalism. A genetic algorithm has been written and adapted to perform the optimization of the beam line parameters. Then, using the SIMION code, field maps of the electrostatic elements (quadrupoles, spherical sectors) have been calculated and ion trajectories have been simulated. We studied specifically the optical aberrations induced by the electrostatic spherical deflectors. Finally, the results of the first order calculations and the field map simulations show a good agreement

  19. Beam dynamics design of an SP-FEL compact THz source

    International Nuclear Information System (INIS)

    Dai Dongdong; Dai Zhimin

    2010-01-01

    In recent years, people are looking for a new compact THz source with high emission power, one potential choice is to build small accelerator with Smith-Purcell radiation. The main difficulty is how to obtain high quality electron beam. In this paper, the beam dynamics design of a compact THz source is presented. The electron beam is produced by an electron gun and compressed by permanent magnets. The electron gun is similar to the Shanghai EBIT, but permanent magnets are used, instead of the superconducting magnets in Shanghai EBIT. With this design, we can reduce the size and cost of the whole device. Poisson/Pandira was employed to simulate and optimize the magnetic field. Egun was used to simulate the beam trajectories from the electron gun to the collector. Within 2 centimeters around the center of longitudinal magnetic field, the calculation showed that the beam satisfies to our design aim. (authors)

  20. Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry

    Science.gov (United States)

    Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.

    1996-02-01

    The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.

  1. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.

  2. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  3. A computer code 'BEAM' for the ion optics calculation of the JAERI tandem accelerator system

    International Nuclear Information System (INIS)

    Kikuchi, Shiroh; Takeuchi, Suehiro

    1987-11-01

    The computer code BEAM is described, together with an outline of the formalism used for the ion optics calculation. The purpose of the code is to obtain the optimum parameters of devices, with which the ion beam is transported through the system without losses. The procedures of the calculation, especially those of searching for the parameters of quadrupole lenses, are discussed in detail. The flow of the code is illustrated as a whole and its constituent subroutines are explained individually. A few resultant beam trajectories and the parameters used to obtain them are shown as examples. (author)

  4. Transverse particle dynamics in a Bessel beam

    Czech Academy of Sciences Publication Activity Database

    Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel

    2007-01-01

    Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  5. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  6. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  7. Program for calculating multi-component high-intense ion beam transport

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Prejzendorf, V.A.

    1985-01-01

    The CANAL program for calculating transport of high-intense beams containing ions with different charges in a channel consisting of dipole magnets and quadrupole lenses is described. The equations determined by the method of distribution function momenta and describing coordinate variations of the local mass centres and r.m.s. transverse sizes of beams with different charges form the basis of the calculation. The program is adapted for the CDC-6500 and SM-4 computers. The program functioning is organized in the interactive mode permitting to vary the parameters of any channel element and quickly choose the optimum version in the course of calculation. The calculation time for the CDC-6500 computer for the 30-40 m channel at the integration step of 1 cm is about 1 min. The program is used for calculating the channel for the uranium ion beam injection from the collective accelerator into the heavy-ion synchrotron

  8. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  9. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  10. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  11. Beam dynamics simulation of W-band photo injector

    International Nuclear Information System (INIS)

    Zhu Xiongwei

    2002-01-01

    The authors present a beam dynamics simulation study on 1.6 cell, high gradient W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. The authors study the beam dynamics in high frequency and high gradient; due to the high gradient, the ponderomotive effect plays an important role in beam dynamics; the authors found the ponderomotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  12. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  13. Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    O'Brien, M; Taylor, J; Procassini, R

    2004-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  14. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  15. Longitudinal beam dynamics with rf noise

    International Nuclear Information System (INIS)

    Shih, H.J.; Ellison, J.A.; Cogburn, R.; Newberger, B.S.

    1993-06-01

    The Dome-Krinsky-Wang (DKW) diffusion-inaction theory for rf-noise-induced emittance dilution is reviewed and related to recent work on the approximation of stochastic processes by Markov processes. An accurate and efficient numerical procedure is developed to integrate the diffusion equation of the DKW theory. Tracking simulations are undertaken to check the validity of the theory in the parameter range of the Superconducting Super Collider (SSC) and to provide additional information. The study of effects of rf noise is applied to two problems of interest at the SSC: (1) determination of noise tolerance levels in the rf system, and (2) feasibility of beam extraction using crystal channeling

  16. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    Science.gov (United States)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  17. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    Science.gov (United States)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  18. Comparison of calculated neutral beam shine through with measured shine-through in DIII-D

    International Nuclear Information System (INIS)

    Chiu, H.K.; Hong, R.

    1997-11-01

    A comparison of the calculated shine through of neutral particle beams in the DIII-D plasma to measured values inferred from the target temperature rise is reported. This provides an opportunity to verify the shine through calculations and makes them more reliable in those cases where the shine through can not be measured. The DIII-D centerpost neutral beam target tiles are safe-guarded against excessive beam shine-through by pyrometry and thermocouple (TC) arrays on the tiles. Shine-through beam power is calculated from the measured temperature changes reported by the target tile TC array. These measurements are performed at the beginning of each operational year at DIII-D. Theoretically, the beam energy deposited into the plasma can be expressed as a function of the change in beam density. Neutral beam energy deposition in plasma (of known density) is inferred by comparing the results of a series of shine-through measurements for the 1997 campaign at DIII-D to the expected shine-through given by theory

  19. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  20. arXiv Cyclotrons: Magnetic Design and Beam Dynamics

    CERN Document Server

    Zaremba, Simon

    Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...

  1. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  2. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  3. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  4. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    International Nuclear Information System (INIS)

    Semenova, V A; Kulya, M S; Bespalov, V G

    2016-01-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)

  5. On the dynamics of viscous masonry beams

    Czech Academy of Sciences Publication Activity Database

    Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.

    2015-01-01

    Roč. 27, č. 3 (2015), s. 349-365 ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.849, year: 2015 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y

  6. Internal dynamics of intense twin beams and their coherence

    Czech Academy of Sciences Publication Activity Database

    Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2016-01-01

    Roč. 6, Feb (2016), 1-8, č. článku 22320. ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : dynamics of intense * twin beams * pump-depleted parametric * down-conversion * coherence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016

  7. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    International Nuclear Information System (INIS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-01-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case

  8. Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion

    International Nuclear Information System (INIS)

    Gemmel, A; Rietzel, E; Kraft, G; Durante, M; Bert, C

    2011-01-01

    We present an algorithm suitable for the calculation of the RBE-weighted dose for moving targets with a scanned particle beam. For verification of the algorithm, we conducted a series of cell survival measurements that were compared to the calculations. Calculation of the relative biological effectiveness (RBE) with respect to tumor motion was included in the treatment planning procedure, in order to fully assess its impact on treatment delivery with a scanned ion beam. We implemented an algorithm into our treatment planning software TRiP4D which allows determination of the RBE including its dependence on target tissue, absorbed dose, energy and particle spectra in the presence of organ motion. The calculations are based on time resolved computed tomography (4D-CT) and the corresponding deformation maps. The principal of the algorithm is illustrated in in silico simulations that provide a detailed view of the different compositions of the energy and particle spectra at different target positions and their consequence on the resulting RBE. The calculations were experimentally verified with several cell survival measurements using a dynamic phantom and a scanned carbon ion beam. The basic functionality of the new dose calculation algorithm has been successfully tested in in silico simulations. The algorithm has been verified by comparing its predictions to cell survival measurements. Four experiments showed in total a mean difference (standard deviation) of −1.7% (6.3%) relative to the target dose of 9 Gy (RBE). The treatment planning software TRiP is now capable to calculate the patient relevant RBE-weighted dose in the presence of target motion and was verified against cell survival measurements.

  9. Calculation of ion storage in electron beams with account of ion-ion interactions

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.; Shirkov, G.D.

    1979-01-01

    Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage

  10. Molecular dynamics calculation of shear viscosity for molten salt

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru

    1993-12-01

    A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)

  11. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  12. Calculations of the beam transport through the low energy side of the Lund Pelletron accelerator

    International Nuclear Information System (INIS)

    Dymnikov, A.; Hellborg, R.; Pallon, J.; Skog, G.; Yang, C.

    1993-01-01

    A new recursive technique has been used to solve the equations of motion of charged particles in electric and magnetic fields taking into account the effect of space charge. Based on this technique a computer code has been written and calculations have been carried out for the beam optics, from the ion-source to the terminal, stripper of the Lund Pelletron tandem accelerator. The code has been found capable of describing the beam-optics of the existing setup and will in future be used together with a library of typical field descriptions to design new beam lines. (orig.)

  13. Calculation of the 5th AER dynamic benchmark with APROS

    International Nuclear Information System (INIS)

    Puska, E.K.; Kontio, H.

    1998-01-01

    The model used for calculation of the 5th AER dynamic benchmark with APROS code is presented. In the calculation of the 5th AER dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic VVER-440 plant model created by IVO PE. (author)

  14. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...

  15. Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2012-09-21

    The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.

  16. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  17. Kowledge-based dynamic network safety calculations. Wissensbasierte dynamische Netzsicherheitsberechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Kulicke, B [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany); Schlegel, S [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany)

    1993-06-28

    An important part of network operation management is the estimation and maintenance of the security of supply. So far the control personnel has only been supported by static network analyses and safety calculations. The authors describe an expert system, which is coupled to a real time simulation program on a transputer basis, for dynamic network safety calculations. They also introduce the system concept and the most important functions of the expert system. (orig.)

  18. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    Science.gov (United States)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  19. Methods for calculating energy and current requirements for industrial electron beam processing

    International Nuclear Information System (INIS)

    Cleland, M.R.; Farrell, J.P.

    1976-01-01

    The practical problems of determining electron beam parameters for industrial irradiation processes are discussed. To assist the radiation engineer in this task, the physical aspects of electron beam absorption are briefly described. Formulas are derived for calculating the surface dose in the treated material using the electron energy, beam current and the area thruput rate of the conveyor. For thick absorbers electron transport results are used to obtain the depth-dose distributions. From these the average dose in the material, anti D, and the beam power utilization efficiency, F/sub p/, can be found by integration over the distributions. These concepts can be used to relate the electron beam power to the mass thruput rate. Qualitatively, the thickness of the material determines the beam energy, the area thruput rate and surface dose determine the beam current while the mass thruput rate and average depth-dose determine the beam power requirements. Graphs are presented showing these relationships as a function of electron energy from 0.2 to 4.0 MeV for polystyrene. With this information, the determination of electron energy and current requirements is a relatively simple procedure

  20. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  1. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  2. Yield calculations for a facility for short-lived nuclear beams

    CERN Document Server

    Jiang, C L; Gomes, I; Heinz, A M; Nolen, Jerry A; Rehm, K E; Savard, G; Schiffer, J P

    2002-01-01

    Yields for a broad range of radioactive nuclei produced by spallation reactions, neutron-induced fission, in-flight projectile fragmentation and in-flight fission have been calculated for beams of stable nuclei at energies of 100-1000 MeV/u. Calculations of cross-sections and yields, attenuation effects due to absorption, production from secondary reactions, and transport efficiencies for mass selection are discussed. Rare isotope yields as functions of bombarding energies for both reaccelerated and directly produced fast-fragmentation beams are presented. This information provides a foundation for a cost-effective design of a next generation rare isotope accelerator.

  3. Fe IX CALCULATIONS FOR THE SOLAR DYNAMICS OBSERVATORY

    International Nuclear Information System (INIS)

    Foster, Adam R.; Testa, Paola

    2011-01-01

    New calculations of the energy levels, radiative transition rates, and collisional excitation rates of Fe IX have been carried out using the Flexible Atomic Code, paying close attention to experimentally identified levels and extending existing calculations to higher energy levels. For lower levels, R-matrix collisional excitation rates from earlier work have been used. Significant emission is predicted by these calculations in the 5f-3d transitions, which will impact analysis of Solar Dynamics Observatory Atmospheric Imaging Assembly observations using the 94 A filter.

  4. Longitudinal beam dynamics at transition crossing

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, S.A.

    1991-11-01

    A brief outline of the longitudinal single particle dynamics at transition is presented in terms of phase-space mappings. Simple quantitative prediction about the phase-space dilution is made. More realistic simulation (ESME) of the transition crossing is carried out (including various collective and single particle effects contributing to the longitudinal emittance blow up). The simulation takes into account the longitudinal space-charge force (bunch length oscillation), the transverse space-charge (the Umstaetter effect) and finally the dispersion of the momentum compaction factor (the Johnsen effect). As a result of this simulation one can separate relative strengths of the above mechanisms and study their individual effects on the longitudinal phase-space evolution, especially filamentation of the bunch and formation of a galaxy-like'' pattern. 7 refs., 2 figs.

  5. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.

    2011-01-01

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  6. Proceedings of the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)

    International Nuclear Information System (INIS)

    Chen, Pisin

    2002-01-01

    The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics were actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics

  7. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  8. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  9. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  10. Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.

    Science.gov (United States)

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-06-21

    Although proton therapy delivered using scanned pencil beams has the potential to produce better dose conformity than conventional radiotherapy, the created dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of adaptive treatment techniques where the dose can be monitored as it is being delivered is highly desirable. We present a GPU-based dose calculation engine relying on the widely used pencil beam algorithm, developed for on-line dose calculation. The calculation engine was implemented from scratch, with each step of the algorithm parallelized and adapted to run efficiently on the GPU architecture. To ensure fast calculation, it employs several application-specific modifications and simplifications, and a fast scatter-based implementation of the computationally expensive kernel superposition step. The calculation time for a skull base treatment plan using two beam directions was 0.22 s on an Nvidia Tesla K40 GPU, whereas a test case of a cubic target in water from the literature took 0.14 s to calculate. The accuracy of the patient dose distributions was assessed by calculating the γ-index with respect to a gold standard Monte Carlo simulation. The passing rates were 99.2% and 96.7%, respectively, for the 3%/3 mm and 2%/2 mm criteria, matching those produced by a clinical treatment planning system.

  11. Monte Carlo calculations of kQ, the beam quality conversion factor

    International Nuclear Information System (INIS)

    Muir, B. R.; Rogers, D. W. O.

    2010-01-01

    Purpose: To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors, k Q , for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of k Q . These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for calibrating external radiotherapy beams. Methods: Ionization chambers are modeled either from blueprints or manufacturers' user's manuals. The dose-to-air in the chamber is calculated using the EGSnrc user-code egs c hamber using 11 different tabulated clinical photon spectra for the incident beams. The dose to a small volume of water is also calculated in the absence of the chamber at the midpoint of the chamber on its central axis. Using a simple equation, k Q is calculated from these quantities under the assumption that W/e is constant with energy and compared to TG-51 protocol and measured values. Results: Polynomial fits to the Monte Carlo calculated k Q factors as a function of beam quality expressed as %dd(10) x and TPR 10 20 are given for each ionization chamber. Differences are explained between Monte Carlo calculated values and values from the TG-51 protocol or calculated using the computer program used for TG-51 calculations. Systematic uncertainties in calculated k Q values are analyzed and amount to a maximum of one standard deviation uncertainty of 0.99% if one assumes that photon cross-section uncertainties are uncorrelated and 0.63% if they are assumed correlated. The largest components of the uncertainty are the constancy of W/e and the uncertainty in the cross-section for photons in water. Conclusions: It is now possible to calculate k Q directly using Monte Carlo simulations. Monte Carlo calculations for most ionization chambers give results which are comparable to TG-51 values. Discrepancies can be explained using individual Monte Carlo calculations of various correction factors which are more

  12. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

    International Nuclear Information System (INIS)

    Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M

    2004-01-01

    The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams

  13. The influence of the beam charge state on the analytical calculation of RBS and ERDA spectra

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, Nuno P., E-mail: nunoni@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Kosmata, Marcel [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Globalfoundries, Wilschdorfer Landstraße 101, 01109 Dresden (Germany); Hanf, Daniel; Munnik, Frans [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2016-03-15

    Analytical codes dedicated to the analysis of Ion Beam Analysis data rely on the accuracy of both the calculations and of basic data such as scattering cross sections and stopping powers. So far, the effect of the beam charge state of the incoming beam has been disregard by general purpose analytical codes such as NDF. In fact, the codes implicitly assume that the beam always has the equilibrium charge state distribution, by using tabulated stopping power values e.g. from SRIM, which are in principle valid for the effective charge state. The dependence of the stopping power with the changing charge state distribution is ignored. This assumption is reasonable in most cases, but for high resolution studies the actual change of the charge state distribution from the initial beam charge state towards equilibrium as it enters and traverses the sample must be taken into account, as it influences the shape of the observed data. In this work, we present an analytical calculation, implemented in NDF, that takes this effect into account. For elastic recoil detection analysis (ERDA), the changing charge state distribution of the recoils can also be taken into account. We apply the calculation to the analysis of experimental high depth resolution ERDA data for various oxide layers collected using a magnetic spectrometer.

  14. A Pearson VII distribution function for fast calculation of dechanneling and angular dispersion of beams

    International Nuclear Information System (INIS)

    Shao Lin; Peng Luohan

    2009-01-01

    Although multiple scattering theories have been well developed, numerical calculation is complicated and only tabulated values have been available, which has caused inconvenience in practical use. We have found that a Pearson VII distribution function can be used to fit Lugujjo and Mayer's probability curves in describing the dechanneling phenomenon in backscattering analysis, over a wide range of disorder levels. Differentiation of the obtained function gives another function to calculate angular dispersion of the beam in the frameworks by Sigmund and Winterbon. The present work provides an easy calculation of both dechanneling probability and angular dispersion for any arbitrary combination of beam and target having a reduced thickness ≥0.6, which can be implemented in modeling of channeling spectra. Furthermore, we used a Monte Carlo simulation program to calculate the deflection probability and compared them with previously tabulated data. A good agreement was reached.

  15. Ion trajectories calculation in a three dimensional beam subjected to a space charge

    International Nuclear Information System (INIS)

    Tauth, T.

    1978-04-01

    Physical and geometrical conditions allowing a first approximation of necessary sizes to numerical integration of the ions movement equations subjected to electrical and magnetic crossed fields and space charge action are investigated here. To take into consideration the effect of the last one, two artifices are put forward: replacing charged particles by equivalent particles in calculating the coulomb force, electrical field calculation produced in different points situated on the beam envelope by the uniform charges distribution [fr

  16. Calculation of the residual bearing capacity of reinforced concrete beams by the rigidity (deflection) criterion

    OpenAIRE

    V.S. Utkin; S.A. Solovyov

    2015-01-01

    The article proposes the method of calculating the bearing capacity of reinforced concrete beams at the operational stage by the rigidity (deflection) criterion. The methods, which were used in the article, are integral test and probabilistic methods for describing random variables. The author offers a new technique of calculating a deflection limit by a criterion of residual deformations. The article exemplifies the usage of the evidence theory for statistical information processing in the f...

  17. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...... mechanism. The ultimate load is calculated on the basis of large plastic strain analysis. Analysis of one aluminum and one titanium membrane is shown....

  18. Radiation transport calculations for the ANS [Advanced Neutron Source] beam tubes

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Lillie, R.A.; Slater, C.O.

    1988-01-01

    The Advanced Neutron Source facility (ANS) will incorporate a large number of both radial and no-line-of-sight (NLS) beam tubes to provide very large thermal neutron fluxes to experimental facilities. The purpose of this work was to obtain comparisons for the ANS single- and split-core designs of the thermal and damage neutron and gamma-ray scalar fluxes in these beams tubes. For experimental locations far from the reactor cores, angular flux data are required; however, for close-in experimental locations, the scalar fluxes within each beam tube provide a credible estimate of the various signal to noise ratios. In this paper, the coupled two- and three-dimensional radiation transport calculations employed to estimate the scalar neutron and gamma-ray fluxes will be described and the results from these calculations will be discussed. 6 refs., 2 figs

  19. Design data for calculating neutral beam penetration into Z/sub eff/ > 1 plasmas

    International Nuclear Information System (INIS)

    Olson, R.E.; Berkner, K.H.; Graham, W.G.; Pyle, R.V.; Schlachter, A.S.; Stearns, J.W.

    1978-01-01

    Impurities such as C, N, O, Fe, and Mo in a confined plasma reduce the penetration of the energetic neutral deuterium or hydrogen beam injected for heating or fueling the plasma, thus affecting the energy- and fuel-deposition profiles. New calculations, confirmed by recent experimental results, show that previous estimates of the reduction of neutral beam penetration due to impurities in the plasma were overly pessimistic. Until recently, the cross sections used to calculate beam attenuation had been assumed to be q 2 times the cross section for H + + H obtained from the Born approximation, where q is the charge state of the ion. This led to very large cross sections for large values of q, and thus to very stringent requirements on the acceptable level of impurity ions in the plasma

  20. Diagnosis and dynamics of low energy electron beams using DIADYN

    International Nuclear Information System (INIS)

    Marghitu, S.; Oproiu, C.; Toader, D.; Ruset, C.; Grigore, E.; Marghitu, O.; Vasiliu, M.

    2008-01-01

    The paper presents original results concerning electron beam diagnosis and dynamics using DIADYN, a low energy (10 - 50 kV), medium intensity (0.1 - 1 A) laboratory equipment. A key stage in the operation of DIADYN is the beam diagnosis, performed by the non-destructive, modified three-gradient method (MTGM). We concentrate on the better use of experimental and computational techniques, in order to improve the consistency of the results. At present, DIADYN is equipped with a hot filament vacuum electron source (VES), consisting of a convergent Pierce diode, working in a pulse mode. Since the plasma electron sources (PES) have a longer lifetime and produce higher beam currents, we discuss the possibility to replace the VES with a PES. Special attention is given to VES results in a functioning regime typical for a low energy glow discharge PES. (authors)

  1. Diagnosis and dynamics of low energy electron beams using DIADYN

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S [Electrostatica, ICPE-CA S.A., Spaiul Unirii 313, Sector 3, RO-74204 Bucharest (Romania); Oproiu, C; Toader, D; Ruset, C; Grigore, E [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, 409 Atomistilor Street, RO-76900 Bucharest-Magurele (Romania); Marghitu, O [Institute for Space Sciences, INCDLPFR, PO Box MG-23, RO-76911 Bucharest-Magurele (Romania); Vasiliu, M [Politehnica University, 313 Splaiul Independentei, RO-060032, Bucharest (Romania)

    2008-07-01

    The paper presents original results concerning electron beam diagnosis and dynamics using DIADYN, a low energy (10 - 50 kV), medium intensity (0.1 - 1 A) laboratory equipment. A key stage in the operation of DIADYN is the beam diagnosis, performed by the non-destructive, modified three-gradient method (MTGM). We concentrate on the better use of experimental and computational techniques, in order to improve the consistency of the results. At present, DIADYN is equipped with a hot filament vacuum electron source (VES), consisting of a convergent Pierce diode, working in a pulse mode. Since the plasma electron sources (PES) have a longer lifetime and produce higher beam currents, we discuss the possibility to replace the VES with a PES. Special attention is given to VES results in a functioning regime typical for a low energy glow discharge PES. (authors)

  2. Beam dynamics in rf guns and emittance correction techniques

    International Nuclear Information System (INIS)

    Serafini, L.

    1994-01-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results. (orig.)

  3. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  4. A pencil beam dose calculation model for CyberKnife system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bin; Li, Yongbao; Liu, Bo; Zhou, Fugen [Image Processing Center, Beihang University, Beijing 100191 (China); Xu, Shouping [Department of Radiation Oncology, PLA General Hospital, Beijing 100853 (China); Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2016-10-15

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensity profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation

  5. Beam dynamics and optics studies for the LHC injectors upgrade

    CERN Document Server

    Bartosik, Hannes; Benedikt, Michael

    The Large Hadron Collider (LHC) upgrade, which aims at reaching significantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the first part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...

  6. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    Science.gov (United States)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  7. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  8. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  9. Beam dynamics problems for next generation linear colliders

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1990-01-01

    The most critical issue for the feasibility of high-energy e + e - linear colliders is obviously the development of intense microwave power sources. Remaining problems, however, are not trivial and in fact some of them require several order-of-magnitude improvement from the existing SLC parameters. The present report summarizes the study status of the beam dynamics problems of high energy linear colliders with an exaggeration on the beam-beam phenomenon at the interaction region. There are four laboratories having linear collider plans, SLAC, CERN, Novosibirsk-Protovino, and KEK. The parameters of these projects scatter in some range but seem to converge slowly if one recalls the status five years ago. The beam energy will be below 500GeV. The basic requirements to the damping ring are the short damping time and small equilibrium emittance. All the proposed designs make use of tight focusing optics and strong wiggler magnets to meet these requirements and seem to have no major problems at least compared with other problems in the colliders. One of the major problems in the linac is the transverse beam blow-up due to the wake field created by the head of the bunch and, in the case of multiple bunches per pulse, by the preceeding bunches. (N.K.)

  10. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  11. Structure-dynamic model verification calculation of PWR 5 tests

    International Nuclear Information System (INIS)

    Engel, R.

    1980-02-01

    Within reactor safety research project RS 16 B of the German Federal Ministry of Research and Technology (BMFT), blowdown experiments are conducted at Battelle Institut e.V. Frankfurt/Main using a model reactor pressure vessel with a height of 11,2 m and internals corresponding to those in a PWR. In the present report the dynamic loading on the pressure vessel internals (upper perforated plate and barrel suspension) during the DWR 5 experiment are calculated by means of a vertical and horizontal dynamic model using the CESHOCK code. The equations of motion are resolved by direct integration. (orig./RW) [de

  12. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  13. Some topics in beam dynamics of storage rings

    International Nuclear Information System (INIS)

    Mais, H.

    1996-06-01

    In the following report we want to review some beam dynamics problems in accelerator physics. Theoretical tools and methods are introduced and discussed, and it is shown how these concepts can be applied to the study of various problems in storage rings. The first part treats Hamiltonian systems (proton accelerators) whereas the second part is concerned with explicitly stochastic systems (e.g. electron storage rings). (orig.)

  14. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  15. Dynamics of beam pair coupled by visco-elastic interlayer

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Hračov, Stanislav

    2015-01-01

    Roč. 9, č. 2 (2015), s. 127-140 ISSN 1802-680X R&D Projects: GA ČR(CZ) GP13-41574P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : double-beam dynamics * visco-elastic interlayer * kinematic damping Subject RIV: JM - Building Engineering http://www.kme.zcu.cz/acm/acm/article/view/292

  16. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  17. Modelling lateral beam quality variations in pencil kernel based photon dose calculations

    International Nuclear Information System (INIS)

    Nyholm, T; Olofsson, J; Ahnesjoe, A; Karlsson, M

    2006-01-01

    Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error

  18. Investigations of the Dynamics of Space Charged Dominated Beams

    International Nuclear Information System (INIS)

    York, Richard C.

    2002-01-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool

  19. Investigations of the Dynamics of Space Charged Dominated Beams

    Energy Technology Data Exchange (ETDEWEB)

    York, Richard C.

    2002-08-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool.

  20. Beam profiles in the nonwedged direction for dynamic wedges

    International Nuclear Information System (INIS)

    Lydon, J.M.; Rykers, K.L.

    1996-01-01

    One feature of the dynamic wedge is the improved flatness of the beam profile in the nonwedged direction when compared to fixed wedges. Profiles in the nonwedged direction for fixed wedges show a fall-off in dose away from the central axis when compared to the open field profile. This study will show that there is no significant difference between open field profiles and nonwedged direction profiles for dynamically wedged beams. The implications are that the dynamic wedge offers an improved dose distribution in the nonwedged direction that can be modelled by approximating the dynamically wedged field to an open field. This is possible as both the profiles and depth doses of the dynamically wedged fields match those of the open fields, if normalized to d max of the same field size. For treatment planning purposes the effective wedge factor (EWF) provides a normalization factor for the open field depth dose data set. Data will be presented to demonstrate that the EWF shows relatively little variation with depth and can be treated as being independent of field size in the nonwedged direction. (author)

  1. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ′}) are provided. These

  2. Calculation of electron-beam induced displacement in thin films by using parameter-reduced formulas

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Chen, Di [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Wang, Qingyu; Li, Zhongyu [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-01

    Based on the Mott cross sections of relativistic electron collisions with atoms, we calculate displacement creation by electron beams of arbitrary energies (up to 100 MeV) in thin films of arbitrary atomic numbers (up to Z = 90). In a comparison with Mont Carlo full damage cascade simulations, we find that total number of displacements in a film can be accurately estimated as the product of average displacements created per collision and average collision numbers in the film. To calculate average displacements per electron-atom collision, energy transfer from Mott cross section is combined with NRT model. To calculate collision numbers, mean deflection angles and multi-scattering theory are combined to extract collision number dependence on film thickness. For each key parameter, parameter-reduced formulas are obtained from data fitting. The fitting formulas provide a quick and accurate method to estimate radiation damage caused by electron beams.

  3. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  4. Oblique incidence of electron beams - comparisons between calculated and measured dose distributions

    International Nuclear Information System (INIS)

    Karcher, J.; Paulsen, F.; Christ, G.

    2005-01-01

    Clinical applications of high-energy electron beams, for example for the irradiation of internal mammary lymph nodes, can lead to oblique incidence of the beams. It is well known that oblique incidence of electron beams can alter the depth dose distribution as well as the specific dose per monitor unit. The dose per monitor unit is the absorbed dose in a point of interest of a beam, which is reached with a specific dose monitor value (DIN 6814-8[5]). Dose distribution and dose per monitor unit at oblique incidence were measured with a small-volume thimble chamber in a water phantom, and compared to both normal incidence and calculations of the Helax TMS 6.1 treatment planning system. At 4 MeV and 60 degrees, the maximum measured dose per monitor unit at oblique incidence was decreased up to 11%, whereas at 18MeV and 60 degrees this was increased up to 15% compared to normal incidence. Comparisons of measured and calculated dose distributions showed that the predicted dose at shallow depths is usually higher than the measured one, whereas it is smaller at depths beyond the depth of maximum dose. On the basis of the results of these comparisons, normalization depths and correction factors for the dose monitor value were suggested to correct the calculations of the dose per monitor unit. (orig.)

  5. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  6. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  7. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  8. CFD calculations on the IFMIF Li-jet fluid dynamics

    International Nuclear Information System (INIS)

    Casal, N.

    2007-01-01

    IFMIF is an accelerator-based neutron source to test fusion candidate materials, in which two deuteron beams will strike a target of liquid lithium. The deuteron-lithium stripping reactions will produce the required energy neutron flux to simulate the fusion reactor irradiation. The lithium jet must remove up to 10 MW of beam power deposited on it, so a lithium velocity as high as 20 m/s is required in the target. In addition, in the beam power deposition area, the lithium flows over a concave backwall so that the centrifugal forces avoid lithium boiling. A stable liquid free surface is a very critical requirement of the target system, otherwise the neutron field could be altered. In this line, 1mm of amplitude has been established as the limit of lithium free surface perturbations in IFMIF present design. The experimental results of a number of water and lithium facilities together with previous fluiddynamics calculations show that the lithium free surface stability can hardly fulfill or even will exceed this design requirement. Other effects, like lithium jet thickness variation, have also been observed and predicted by calculations. Therefore, hydrodynamical stability of the lithium jet is a major issue and the possible occurrences that could affect it must be examined. To look into these problems, a simulation of the target area has been carried out by means of a CFX 5.7 code calculation. RANS (Reynolds-Averaged Navier Stokes) CFD codes are a very useful tool to supply information of main flow parameters, but there is the necessity to validate the models supporting the results by experimental data. In addition, owing to the uncertainties associated with modelling the free surface of liquid metal with the available turbulent approaches, efforts have been devoted to support the results by means of model assessment. The behaviour of the free surface and lithium jet thickness has been studied considering the liquid fraction volume as a first rough indicator of the

  9. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  10. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  11. The Beam Dynamics and Beam Related Uncertainties in Fermilab Muon $g-2$ Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wanwei [Mississippi U.

    2018-05-01

    The anomaly of the muon magnetic moment, $a_{\\mu}\\equiv (g-2)/2$, has played an important role in constraining physics beyond the Standard Model for many years. Currently, the Standard Model prediction for $a_{\\mu}$ is accurate to 0.42 parts per million (ppm). The most recent muon $g-2$ experiment was done at Brookhaven National Laboratory (BNL) and determined $a_{\\mu}$ to 0.54 ppm, with a central value that differs from the Standard Model prediction by 3.3-3.6 standard deviations and provides a strong hint of new physics. The Fermilab Muon $g-2$ Experiment has a goal to measure $a_{\\mu}$ to unprecedented precision: 0.14 ppm, which could provide an unambiguous answer to the question whether there are new particles and forces that exist in nature. To achieve this goal, several items have been identified to lower the systematic uncertainties. In this work, we focus on the beam dynamics and beam associated uncertainties, which are important and must be better understood. We will discuss the electrostatic quadrupole system, particularly the hardware-related quad plate alignment and the quad extension and readout system. We will review the beam dynamics in the muon storage ring, present discussions on the beam related systematic errors, simulate the 3D electric fields of the electrostatic quadrupoles and examine the beam resonances. We will use a fast rotation analysis to study the muon radial momentum distribution, which provides the key input for evaluating the electric field correction to the measured $a_{\\mu}$.

  12. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  13. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  14. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  15. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  16. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  17. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  18. Emittance compensation with dynamically optimized photoelectron beam profiles

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States)]. E-mail: rosen@physics.ucla.edu; Cook, A.M. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); England, R.J. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Dunning, M. [Department of Physics and Astronomy, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Anderson, S.G. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Ferrario, Massimo [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionale di Frascati, Via E. Fermi 41, Frascati, Rome (Italy)

    2006-02-01

    Much of the theory and experimentation concerning creation of a high-brightness electron beam from a photocathode, and then applying emittance compensation techniques, assumes that one must strive for a uniform density electron beam, having a cylindrical shape. On the other hand, this shape has large nonlinearities in the space-charge field profiles near the beam's longitudinal extrema. These nonlinearities are known to produce both transverse and longitudinal emittance growth. On the other hand, it has recently been shown by Luiten that by illuminating the cathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped bunch is dynamically formed, which then has linear space-charge fields in all dimensions inside of the bunch. We study here this process, and its marriage to the standard emittance compensation scenario that is implemented in most recent photoinjectors. It is seen that the two processes are compatible, with simulations indicating a very high brightness beam can be obtained. The robustness of this scheme to systematic errors is examined. Prospects for experimental tests of this scheme are discussed.

  19. Emittance compensation with dynamically optimized photoelectron beam profiles

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cook, A.M.; England, R.J.; Dunning, M.; Anderson, S.G.; Ferrario, Massimo

    2006-01-01

    Much of the theory and experimentation concerning creation of a high-brightness electron beam from a photocathode, and then applying emittance compensation techniques, assumes that one must strive for a uniform density electron beam, having a cylindrical shape. On the other hand, this shape has large nonlinearities in the space-charge field profiles near the beam's longitudinal extrema. These nonlinearities are known to produce both transverse and longitudinal emittance growth. On the other hand, it has recently been shown by Luiten that by illuminating the cathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped bunch is dynamically formed, which then has linear space-charge fields in all dimensions inside of the bunch. We study here this process, and its marriage to the standard emittance compensation scenario that is implemented in most recent photoinjectors. It is seen that the two processes are compatible, with simulations indicating a very high brightness beam can be obtained. The robustness of this scheme to systematic errors is examined. Prospects for experimental tests of this scheme are discussed

  20. Dynamical gluon masses in perturbative calculations at the loop level

    International Nuclear Information System (INIS)

    Machado, Fatima A.; Natale, Adriano A.

    2013-01-01

    Full text: In the phenomenology of strong interactions one always has to deal at some extent with the interplay between perturbative and non-perturbative QCD. On one hand, the former has quite developed tools, yielded by asymptotic freedom. On the other, concerning the latter, we nowadays envisage the following scenario: 1) There are strong evidences for a dynamically massive gluon propagator and infrared finite coupling constant; 2) There is an extensive and successful use of an infrared finite coupling constant in phenomenological calculations at tree level; 3) The infrared finite coupling improves the perturbative series convergence; 4) The dynamical gluon mass provides a natural infrared cutoff in the physical processes at the tree level. Considering this scenario it is natural to ask how these non-perturbative results can be used in perturbative calculations of physical observables at the loop level. Recent papers discuss how off-shell gauge and renormalization group invariant Green functions can be computed with the use of the Pinch Technique (PT), with IR divergences removed by the dynamical gluon mass, and using a well defined effective charge. In this work we improve the former results by the authors, which evaluate 1-loop corrections to some two- and three-point functions of SU(3) pure Yang-Mills, investigating the dressing of quantities that could account for an extension of loop calculations to the infrared domain of the theory, in a way applicable to phenomenological calculations. One of these improvements is maintaining the gluon propagator transverse in such a scheme. (author)

  1. Dose distributions of a proton beam for eye tumor therapy: Hybrid pencil-beam ray-tracing calculations

    International Nuclear Information System (INIS)

    Rethfeldt, Ch.; Fuchs, H.; Gardey, K.-U.

    2006-01-01

    For the case of eye tumor therapy with protons, improvements are introduced compared to the standard dose calculation which implies straight-line optics and the constant-density assumption for the eye and its surrounding. The progress consists of (i) taking account of the lateral scattering of the protons in tissue by folding the entrance fluence distribution with the pencil beam distribution widening with growing depth in the tissue, (ii) rescaling the spread-out Bragg peak dose distribution in water with the radiological path length calculated voxel by voxel on ray traces through a realistic density matrix for the treatment geometry, yielding a trajectory dependence of the geometrical range. Distributions calculated for some specific situations are compared to measurements and/or standard calculations, and differences to the latter are discussed with respect to the requirements of therapy planning. The most pronounced changes appear for wedges placed in front of the eye, causing additional widening of the lateral falloff. The more accurate prediction of the dose dependence at the field borders is of interest with respect to side effects in the risk organs of the eye

  2. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    García-Garduño, O. A., E-mail: oagarciag@innn.edu.mx, E-mail: amanda.garcia.g@gmail.com [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México and Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Legaria 694, México City 11500, México (Mexico); Rodríguez-Ponce, M. [Departamento de Biofísica, Instituto Nacional de Cancerología, Mexico City 14080, México (Mexico); Gamboa-deBuen, I. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Rodríguez-Villafuerte, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510 (Mexico); Galván de la Cruz, O. O. [Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, México (Mexico); and others

    2014-09-15

    Purpose: To assess the impact of the detector used to commission small photon beams on the calculated dose distribution in stereotactic radiosurgery (SRS). Methods: In this study, six types of detectors were used to characterize small photon beams: three diodes [a silicon stereotactic field diode SFD, a silicon diode SRS, and a silicon diode E], an ionization chamber CC01, and two types of radiochromic film models EBT and EBT2. These detectors were used to characterize circular collimated beams that were generated by a Novalis linear accelerator. This study was conducted in two parts. First, the following dosimetric data, which are of particular interest in SRS, were compared for the different detectors: the total scatter factor (TSF), the tissue phantom ratios (TPRs), and the off-axis ratios (OARs). Second, the commissioned data sets were incorporated into the treatment planning system (TPS) to compare the calculated dose distributions and the dose volume histograms (DVHs) that were obtained using the different detectors. Results: The TSFs data measured by all of the detectors were in good agreement with each other within the respective statistical uncertainties: two exceptions, where the data were systematically below those obtained for the other detectors, were the CC01 results for all of the circular collimators and the EBT2 film results for circular collimators with diameters below 10.0 mm. The OAR results obtained for all of the detectors were in excellent agreement for all of the circular collimators. This observation was supported by the gamma-index test. The largest difference in the TPR data was found for the 4.0 mm circular collimator, followed by the 10.0 and 20.0 mm circular collimators. The results for the calculated dose distributions showed that all of the detectors passed the gamma-index test at 100% for the 3 mm/3% criteria. The aforementioned observation was true regardless of the size of the calculation grid for all of the circular collimators

  3. Calculations of Neutral Beam Ion Confinement for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Redi, M.H.; Darrow, D.S.; Egedal, J.; Kaye, S.M.; White, R.B.

    2002-01-01

    The spherical torus (ST) concept underlies several contemporary plasma physics experiments, in which relatively low magnetic fields, high plasma edge q, and low aspect ratio combine for potentially compact, high beta and high performance fusion reactors. An important issue for the ST is the calculation of energetic ion confinement, as large Larmor radius makes conventional guiding center codes of limited usefulness and efficient plasma heating by RF and neutral beam ion technology requires minimal fast ion losses. The National Spherical Torus Experiment (NSTX) is a medium-sized, low aspect ratio ST, with R=0.85 m, a=0.67 m, R/a=1.26, Ip*1.4 MA, Bt*0.6 T, 5 MW of neutral beam heating and 6 MW of RF heating. 80 keV neutral beam ions at tangency radii of 0.5, 0.6 and 0.7 m are routinely used to achieve plasma betas above 30%. Transport analyses for experiments on NSTX often exhibit a puzzling ion power balance. It will be necessary to have reliable beam ion calculations to distinguish among the source and loss channels, and to explore the possibilities for new physics phenomena, such as the recently proposed compressional Alfven eigenmode ion heating

  4. Calculation of Coherent Synchrotron Radiation Impedance for a Beam Moving in a Curved Trajectory

    Science.gov (United States)

    Zhou, Demin; Ohmi, Kazuhito; Oide, Katsunobu; Zang, Lei; Stupakov, Gennady

    2012-01-01

    Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ, was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The method adopted in the code was originated by Agoh and Yokoya [Phys. Rev. ST Accel. Beams 7 (2004) 054403]. It solves the parabolic equation in the frequency domain in a curvilinear coordinate system. The chamber considered has uniform rectangular cross-section along the beam trajectory. The code was used to investigate the properties of CSR impedance of a single or a series of bending magnets. The calculation results indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. The CSR fields reflected by the outer wall may interfere with each other along a series of bending magnets and lead to sharp narrow peaks in the CSR impedance. In a small storage ring, such interference effect can be significant and may cause microwave instability, according to a simple estimate of instability threshold.

  5. Second advanced ICFA beam dynamics workshop on aperture-related limitations of the performance and beam lifetime in storage rings

    International Nuclear Information System (INIS)

    Hagel, J.; Keil, E.

    1988-01-01

    These proceedings contain the papers presented at the 'Second advanced beam dynamics workshop on aperture-related limitations of the performance and beam lifetime in storage rings', which was organized in Lugano, Switzerland, from 11 to 16 April 1988, by the Beam Dynamics Panel of the International Committee for Future Accelerators (ICFA). The papers cover experiments on existing accelerators, analytical methods for determining amplitude limitations, criteria for the properties of the circulating beam and for the quality of accelerator components, and compensation schemes for field defects. (orig.)

  6. Calculation of channels for forming and transport of medical proton beams at the JINR phasotron

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Mirokhin, I.V.; Molokanov, A.G.; Obukhov, Yu.L.; Savchenko, O.V.

    1984-01-01

    Results of numerical simulation of shaping and transporting processes of therapeutic proton beams with a modified Bragg curve at the JINR phasotron are presented. The mean energy of proton beams are about 100, 130 and 200 MeV. To provide the flat-topped depth-dose distributions with a steep back slope, the method of shaping with a necessary energy spectrum from a nonmonoenergetic beam is used. It is shown by the calculations that it is possible to choose such modes of the channel operation at which clinical-physical requirements to the parameters of medical proton beams are satisfied. Extensions of flat-tops of dose peaks are 1.3 g/cm 2 , 1.7 g/cm 2 and 3.5 g/cm 2 for the 100 MeV, 130 MeV and 200 MeV beam energies, respectively. Dose rate in the peaks of modified distributions are not less than 100 rad per minute

  7. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)

  8. Neutron and gamma ray streaming calculations for the ETF neutral beam injectors

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.

    1981-02-01

    Two-dimensional radiation transport methods have been used to estimate the effects of neutron and gamma ray streaming on the performance of the Engineering Test Facility (ETF) neutral beam injectors. The calculations take into account the spatial, angular, and spectral distributions of the radiation entering the injector duct. The instantaneous nuclear heating rate averaged over the length of the cryopumping panel in the injector is 7.5 x 10 -3 MW/m 3 which implies a total heat load of 2.2 x 10 -4 MW. The instantaneous dose rate to the ion gun insulators was estimated to be 3200 rad/s. The radial dependence of the instantaneous dose equivalent rate in the neutral beam injector duct shield was also calculated

  9. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  10. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 γ-ray beams. Either the Klein--Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source--surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  11. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    identifying and analyzing the betatron oscillation sourced from the kick based on its mixing and temporal patterns. The accelerator magnets can generate unwanted spurious linear and non-linear fields due to fabrication errors or aging. These error fields in the magnets can excite undesired resonances leading together with the space charge tune spread to long term beam losses and reducing dynamic aperture. Therefore, the knowledge of the linear and non-linear magnets errors in circular accelerator optics is very crucial for controlling and compensating resonances and their consequent beam losses and beam quality deterioration. This is indispensable, especially for high beam intensity machines. Fortunately, the relationship between the beam offset oscillation signals recorded at the BPMs is a manifestation of the accelerator optics, and can therefore be exploited in the determination of the optics linear and non-linear components. Thus, beam transversal oscillations can be excited deliberately for purposes of diagnostics operation of particle accelerators. In this thesis, we propose a novel method for detecting and estimating the optics lattice non-linear components located in-between the locations of two BPMs by analyzing the beam offset oscillation signals of a BPMs-triple containing these two BPMs. Depending on the non-linear components in-between the locations of the BPMs-triple, the relationship between the beam offsets follows a multivariate polynomial accordingly. After calculating the covariance matrix of the polynomial terms, the Generalized Total Least Squares method is used to find the model parameters, and thus the non-linear components. A bootstrap technique is used to detect the existing polynomial model orders by means of multiple hypothesis testing, and determine confidence intervals for the model parameters.

  12. Charged beam dynamics, particle accelerators and free electron lasers

    CERN Document Server

    Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello

    2017-01-01

    Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.

  13. Crossed-beam studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.

  14. Effects of wigglers and undulators on beam dynamics

    International Nuclear Information System (INIS)

    Smith, L.

    1986-08-01

    Synchrotron light facilities are making ever increasing use of wigglers and undulators, to the extent that these devices are becoming a significant part of the beam optical system of the storage ring itself. This paper presents a theoretical formulation for investigating the effect of wigglers and undulators on beam dynamics in the approximation that the wiggler parameter, K, divided by γ is a small number and that the number of wiggler periods in one device is large. In addition to the linear forces which must be taken into account when tuning and matching the ring, nonlinear stop bends are created, with even orders more serious than odd orders. Some numerical examples are given for devices similar to those proposed for the 1-2 GeV Synchrotron Radiation Source at Lawrence Berkeley Laboratory

  15. Nuclear structure calculations in the dynamic-interaction propagator approach

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Hahne, F.J.W.; Heiss, W.D.

    1978-01-01

    The dynamic-interaction propagator approach provides a natural method for the handling of energy-dependent effective two-body interactions induced by collective excitations of a many-body system. In this work this technique is applied to the calculation of energy spectra and two-particle strengths in mass-18 nuclei. The energy dependence is induced by the dynamic exchange of the lowest 3 - octupole phonon in O 16 , which is described within a normal static particle-hole RPA. This leads to poles in the two-body self-energy, which can be calculated if other fermion lines are restricted to particle states. The two-body interaction parameters are chosen to provide the correct phonon energy and reasonable negative-parity mass-17 and positive-parity mass-18 spectra. The fermion lines must be dressed consistently with the same exchange phonon to avoid redundant solutions or ghosts. The negative-parity states are then calculated in a parameter-free way which gives good agreement with the observed spectra [af

  16. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  17. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  18. A simple formula for depth dose calculation for Co-60 teletherapy beam dosimetry

    International Nuclear Information System (INIS)

    Tripathi, U.B.; Kelkar, N.Y.

    1979-01-01

    Knowledge of dose at all points of interest in the plane of tumour is essential for treatment planning. A very simple formula for scatter dose calculation along the central axis of a Co-60 beam has been derived. This formula uses primary dose at depth d, scatter air ratio at the depth of maximum ionisation and the effective depth of the volume, irradiating the medium. The method for calculation of percentage depth dose at any point in the principal plane has been explained in detail. The simple form of the formulation will help in improving the treatment plans for treatments of lesions using Co-60 teletherapy machines. (orig.) [de

  19. Calculation of high power relativistic beams with consideration of collision effects

    International Nuclear Information System (INIS)

    Sveshnikov, V.M.

    1986-01-01

    This paper considers the numerical calculation of relativistic charged particle beams moving in axisymmetric systems in which the presence of a residual neutral gas is possible. It is essential to consider phenomena related to collisions between charged particles and neutrals. Algorithms are constructed for numerical modeling of ionization processes within the framework of the ERA program complex. Solutions of model and practical problems are presented as examples. Such problems were studied where ionization processes were considered by a more complex method requiring a greater volume of calculations but valid at lower pressures

  20. Calculation of doses of fast electrons in formation of the beam with the aid of grids

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Telesh, L V; Chifonenko, V V; Shishov, V A

    1976-04-01

    The authors describe the method of finding dose distributions of electron beams formed with the aid of grids. Calculation of fields for different grids is made with the help of the mentioned method. The authors analyzed the relation between the depth of location, extension of the homogeneous area, and the engagement factor and size of the grid holes. The effect of electron scattering on the hole edges on the shape of the dose field is considered. The comparison of calculated and experimental results shows that the method is sufficiently accurate to be used for practical radiation therapy.

  1. Transient Beam Dynamics in the LBL 2 MV Injector

    International Nuclear Information System (INIS)

    Henestroza, E; Grote, D

    1999-01-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV gun pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam, and simultaneously accelerates the ions to 2 MeV. A matching section is being built to match the beam to the electrostatic accelerator ELISE. The gun preinjector, designed to hold up to 1 MV with minimal breakdown risks, consists of a hot aluminosilicate source with a large curved emitting surface surrounded by a thick ''extraction electrode''. During beam turn-on the voltage at the source is biased from a negative potential, enough to reverse the electric field on the emitting surface and avoid emission, to a positive potential to start extracting the beam; it stays constant for about 1 (micro)s, and is reversed to turn-off the emission. Since the Marx voltage applied on the accelerating quadrupoles and the main pre-injector gap is a long, constant pulse (several (micro)s), the transient behavior is dominated by the extraction pulser voltage time profile. The transient longitudinal dynamics of the beam in the injector was simulated by running the Particle in Cell codes GYMNOS and WARP3d in a time dependent mode. The generalization and its implementation in WAIW3d of a method proposed by Lampel and Tiefenback to eliminate transient oscillations in a one-dimensional planar diode will be presented

  2. Halo control, beam matching, and new dynamical variables for beam distributions

    International Nuclear Information System (INIS)

    Lysenko, W.; Parsa, Z.

    1997-01-01

    We present the status of our work on physics models that relate release to the understanding and control of beam halo, which is a cause of particle loss in high power ion linear accelerators. We can minimize these particle losses, even in the presence of nonlinearities, by ensuring the beam is matched to high order. Our goal is to determine new dynamical variables that enable us to more directly solve for the evolution of the halo. We considered moments and several new variables, using a Lie-Poisson formulation whenever possible. Using symbolic techniques, we computed high-order matches and mode invariants (analogs of moment invariants) in the new variables. A promising new development developments is that of the variables we call weighted moments, which allow us to compute high-order nonlinear effects (like halos) while making use of well-developed existing results and computational techniques developed for studying first order effects. copyright 1997 American Institute of Physics

  3. Incorporating partial shining effects in proton pencil-beam dose calculation

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Lii Mingfwu; Sahoo, Narayan; Zhu, Ron X; Gillin, Michael; Mohan, Radhe

    2008-01-01

    A range modulator wheel (RMW) is an essential component in passively scattered proton therapy. We have observed that a proton beam spot may shine on multiple steps of the RMW. Proton dose calculation algorithms normally do not consider the partial shining effect, and thus overestimate the dose at the proximal shoulder of spread-out Bragg peak (SOBP) compared with the measurement. If the SOBP is adjusted to better fit the plateau region, the entrance dose is likely to be underestimated. In this work, we developed an algorithm that can be used to model this effect and to allow for dose calculations that better fit the measured SOBP. First, a set of apparent modulator weights was calculated without considering partial shining. Next, protons spilled from the accelerator reaching the modulator wheel were simplified as a circular spot of uniform intensity. A weight-splitting process was then performed to generate a set of effective modulator weights with the partial shining effect incorporated. The SOBPs of eight options, which are used to label different combinations of proton-beam energy and scattering devices, were calculated with the generated effective weights. Our algorithm fitted the measured SOBP at the proximal and entrance regions much better than the ones without considering partial shining effect for all SOBPs of the eight options. In a prostate patient, we found that dose calculation without considering partial shining effect underestimated the femoral head and skin dose

  4. Advanced Dynamics Analytical and Numerical Calculations with MATLAB

    CERN Document Server

    Marghitu, Dan B

    2012-01-01

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...

  5. Dynamic performance of the beam position monitor support at the SSRF.

    Science.gov (United States)

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  6. Dynamic calculation of structures in seismic zones. 2. ed.

    International Nuclear Information System (INIS)

    Capra, Alain; Davidovici, Victor

    1982-01-01

    The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr

  7. Approximate dynamic fault tree calculations for modelling water supply risks

    International Nuclear Information System (INIS)

    Lindhe, Andreas; Norberg, Tommy; Rosén, Lars

    2012-01-01

    Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

  8. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1984-01-01

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  9. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  10. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    Science.gov (United States)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  11. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system

    International Nuclear Information System (INIS)

    Tansho, Ryohei; Takada, Yoshihisa; Mizutani, Shohei; Kohno, Ryosuke; Hotta, Kenji; Akimoto, Tetsuo; Hara, Yousuke

    2013-01-01

    A beam delivery system using a single-radius-beam-wobbling method has been used to form a conformal irradiation field for proton radiotherapy in Japan. A proton beam broadened by the beam-wobbling system provides a non-Gaussian distribution of projection angle different in two mutually orthogonal planes with a common beam central axis, at a certain position. However, the conventional initial beam model for dose calculations has been using an approximation of symmetric Gaussian angular distribution with the same variance in both planes (called here a Gaussian model with symmetric variance (GMSV)), instead of the accurate one. We have developed a more accurate initial beam model defined as a non-Gaussian model with asymmetric variance (NonGMAV), and applied it to dose calculations using the simplified Monte Carlo (SMC) method. The initial beam model takes into account the different distances of two beam-wobbling magnets from the iso-center and also the different amplitudes of kick angle given by each magnet. We have confirmed that the calculation using the SMC with NonGMAV reproduced the measured dose distribution formed in air by a mono-energetic proton beam passing through a square aperture collimator better than with the GMSV and with a Gaussian model with asymmetric variance (GMAV) in which different variances of angular distributions are used in the two mutually orthogonal planes. Measured dose distributions in a homogeneous phantom formed by a modulated proton beam passing through a range shifter and an L-shaped range compensator, were consistent with calculations using the SMC with GMAV and NonGMAV, but in disagreement with calculations using the SMC with GMSV. Measured lateral penumbrae in a lateral direction were reproduced better by calculations using the SMC with NonGMAV than by those with GMAV, when an aperture collimator with a smaller opening was used. We found that such a difference can be attributed to the non-Gaussian angular distribution of the

  12. Optodynamics: dynamic aspects of laser beam-surface interaction

    International Nuclear Information System (INIS)

    Možina, J; Diaci, J

    2012-01-01

    This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.

  13. Beam dynamics simulation of the S-DALINAC injector section

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2013-07-01

    In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.

  14. Chaotic dynamics of flexible Euler-Bernoulli beams

    Energy Technology Data Exchange (ETDEWEB)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

  15. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  16. An Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams.

    Science.gov (United States)

    Seif, F; Tahmasebi-Birgani, M J; Bayatiani, M R

    2017-09-01

    In this study, a method for linear attenuation coefficient calculation was introduced. Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury. The values of calculated linear attenuation coefficient with this new method are in acceptable range. Also, the linear attenuation coefficient decreases slightly as the thickness of attenuating filter (Cerrobend or mercury) increased, so the procedure of linear attenuation coefficient variation is in agreement with other documents. The results showed that the attenuation ability of mercury was about 1.44 times more than Cerrobend. The method that was introduced in this study for linear attenuation coefficient calculation is general enough to treat beam modifiers with any shape or material by using the same formalism; however, calculating was made only for mercury and Cerrobend attenuator. On the other hand, it seems that this method is suitable for high energy shields or protector designing.

  17. Beam Dynamics Studies for a Laser Acceleration Experiment

    CERN Document Server

    Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert

    2005-01-01

    The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...

  18. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  19. The fifth AER dynamic benchmark calculation with hextran-smabre

    International Nuclear Information System (INIS)

    Haemaelaeinen, A.; Kyrki-Rajamaeki, R.

    1998-01-01

    The first AER benchmark for coupling of the thermohydraulic codes and three-dimensional reactordynamic core models is discussed. HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models, the Loviisa model and standard VVER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 1/6 symmetry is used in the core. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark. (author)

  20. Shielding calculations in support of the Spallation Neutron Source (SNS) proton beam transport system

    International Nuclear Information System (INIS)

    Johnson, Jeffrey O.; Gallmeier, Franz X.; Popova, Irina

    2002-01-01

    Determining the bulk shielding requirements for accelerator environments is generally an easy task compared to analyzing the radiation transport through the complex shield configurations and penetrations typically associated with the detailed Title II design efforts of a facility. Shielding calculations for penetrations in the SNS accelerator environment are presented based on hybrid Monte Carlo and discrete ordinates particle transport methods. This methodology relies on coupling tools that map boundary surface leakage information from the Monte Carlo calculations to boundary sources for one-, two-, and three-dimensional discrete ordinates calculations. The paper will briefly introduce the coupling tools for coupling MCNPX to the one-, two-, and three-dimensional discrete ordinates codes in the DOORS code suite. The paper will briefly present typical applications of these tools in the design of complex shield configurations and penetrations in the SNS proton beam transport system

  1. Glass formation of the Fe-Hf system studied by thermodynamic calculation and ion beam mixing

    International Nuclear Information System (INIS)

    Wang, T.L.; Wang, W.C.; Li, J.H.; Liu, B.X.

    2010-01-01

    For the Fe-Hf system characterized by a negative heat of formation, the glass-forming range/ability (GFR/GFA) was studied by thermodynamic calculation based on Miedema's model and Alonso's method. It was found that amorphous phase could be formed in a composition range of 24-86 atom% Hf and that alloy with composition of Fe 58 Hf 42 has the best GFA in the system. Experimentally, ion beam mixing was carried out to synthesize amorphous alloys in the Fe-Hf system. It turned out that in the samples with overall compositions located in the calculated GFR, amorphous phases were indeed obtained, whereas no amorphous phase was obtained if the overall compositions were located outside of the predicted region favoring for amorphous alloy formation, showing a good agreement between the experimental results and the thermodynamic calculation.

  2. Amplitude calculations for 3D Gaussian beam migration using complex-valued traveltimes

    International Nuclear Information System (INIS)

    Bleistein, Norman; Gray, Samuel H

    2010-01-01

    Gaussian beams are often used to represent Green's functions in three-dimensional Kirchhoff-type true-amplitude migrations because such migrations made using Gaussian beams yield superior images to similar migrations using classical ray-theoretic Green's functions. Typically, the integrand of a migration formula consists of two Green's functions—each describing propagation to the image point—one from the source and the other from the receiver position. The use of Gaussian beams to represent each of these Green's functions in 3D introduces two additional double integrals when compared to a Kirchhoff migration using ray-theoretic Green's functions, thereby adding a significant computational burden. Hill (2001 Geophysics 66 1240–50) proposed a method for reducing those four integrals to two, compromising slightly on the full potential quality of the Gaussian beam representations for the sake of more efficient computation. That approach requires a two-dimensional steepest descent analysis for the asymptotic evaluation of a double integral. The method requires evaluation of the complex traveltimes of the Gaussian beams as well as the amplitudes of the integrands at the determined saddle points. In addition, it is necessary to evaluate the determinant of a certain (Hessian) matrix of second derivatives. Hill (2001 Geophysics 66 1240–50) did not report on this last part; thus, his proposed migration formula is kinematically correct but lacks correct amplitude behavior. In this paper, we derive a formula for that Hessian matrix in terms of dynamic ray tracing quantities. We also show in a simple example how the integral that we analyze here arises in a true amplitude migration formula

  3. Dynamic studies of multiple configurations of CERN's Antiproton Decelerator Target core under proton beam impact

    CERN Document Server

    AUTHOR|(CDS)2248381

    Antiprotons, like many other exotic particles, are produced by impacting high energy proton beams onto fixed targets. At the European Organization for Nuclear Research (CERN), this is done in the Antiproton Decelerator (AD) Facility. The engineering challenges related to the design of an optimal configuration of the AD-Target system derive from the extremely high energy depositions reached in the very thin target core as a consequence of each proton beam impact. A new target design is foreseen for operation after 2021, triggering multiple R&D activities since 2013 for this purpose. The goal of the present Master Thesis is to complement these activities with analytical and numerical calculations, delving into the phenomena associated to the dynamic response of the target core. In this context, two main studies have been carried out. First, the experimental data observed in targets subjected to low intensity proton pulses was cross-checked with analytical and computational methods for modal analysis, applie...

  4. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  5. Comparison of measured and Monte Carlo calculated dose distributions from circular collimators for radiosurgical beams

    International Nuclear Information System (INIS)

    Esnaashari, K. N.; Allahverdi, M.; Gharaati, H.; Shahriari, M.

    2007-01-01

    Stereotactic radiosurgery is an important clinical tool for the treatment of small lesions in the brain, including benign conditions, malignant and localized metastatic tumors. A dosimetry study was performed for Elekta 'Synergy S' as a dedicated Stereotactic radiosurgery unit, capable of generating circular radiation fields with diameters of 1-5 cm at iso centre using the BEAM/EGS4 Monte Carlo code. Materials and Methods: The linear accelerator Elekta Synergy S equipped with a set of 5 circular collimators from 10 mm to 50 mm in diameter at iso centre distance was used. The cones were inserted in a base plate mounted on the collimator linac head. A PinPoint chamber and Wellhofer water tank chamber were selected for clinical dosimetry of 6 MV photon beams. The results of simulations using the Monte Carlo system BEAM/EGS4 to model the beam geometry were compared with dose measurements. Results: An excellent agreement was found between Monte Carlo calculated and measured percentage depth dose and lateral dose profiles which were performed in water phantom for circular cones with 1, 2, 3, 4 and 5 cm in diameter. The comparison between calculation and measurements showed up to 0.5 % or 1 m m difference for all field sizes. The penumbra (80-20%) results at 5 cm depth in water phantom and SSD=95 ranged from 1.5 to 2.1 mm for circular collimators with diameter 1 to 5 cm. Conclusion: This study showed that BEAMnrc code has been accurate in modeling Synergy S linear accelerator equipped with circular collimators

  6. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  7. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  8. Calculation of generalized Lorenz-Mie theory based on the localized beam models

    International Nuclear Information System (INIS)

    Jia, Xiaowei; Shen, Jianqi; Yu, Haitao

    2017-01-01

    It has been proved that localized approximation (LA) is the most efficient way to evaluate the beam shape coefficients (BSCs) in generalized Lorenz-Mie theory (GLMT). The numerical calculation of relevant physical quantities is a challenge for its practical applications due to the limit of computer resources. The study presents an improved algorithm of the GLMT calculation based on the localized beam models. The BSCs and the angular functions are calculated by multiplying them with pre-factors so as to keep their values in a reasonable range. The algorithm is primarily developed for the original localized approximation (OLA) and is further extended to the modified localized approximation (MLA). Numerical results show that the algorithm is efficient, reliable and robust. - Highlights: • In this work, we introduce the proper pre-factors to the Bessel functions, BSCs and the angular functions. With this improvement, all the quantities involved in the numerical calculation are scaled into a reasonable range of values so that the algorithm can be used for computing the physical quantities of the GLMT. • The algorithm is not only an improvement in numerical technique, it also implies that the set of basic functions involved in the electromagnetic scattering (and sonic scattering) can be reasonably chosen. • The algorithms of the GLMT computations introduced in previous references suggested that the order of the n and m sums is interchanged. In this work, the sum of azimuth modes is performed for each partial wave. This offers the possibility to speed up the computation, since the sum of partial waves can be optimized according to the illumination conditions and the sum of azimuth modes can be truncated by selecting a criterion discussed in . • Numerical results show that the algorithm is efficient, reliable and robust, even in very exotic cases. The algorithm presented in this paper is based on the original localized approximation and it can also be used for the

  9. Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method

    CERN Document Server

    Tsutsui, H

    2002-01-01

    In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.

  10. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  11. Analysis of the Dynamic Response in Blast-Loaded CFRP-Strengthened Metallic Beams

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2013-01-01

    Full Text Available Carbon fiber-reinforced polymer composites (CFRPs are good candidates in enhancing the blast resistant performance of vulnerable public buildings and in reinforcing old buildings. The use of CFRP in retrofitting and strengthening applications is traditionally associated with concrete structures. Nevertheless, more recently, there has been a remarkable aspiration in strengthening metallic structures and components using CFRP. This paper presents a relatively simple analytical solution for the deformation and ultimate strength calculation of hybrid metal-CFRP beams when subjected to pulse loading, with a particular focus on blast loading. The analytical model is based on a full interaction between the metal and the FRP and is capable of producing reasonable results in a dynamic loading scenario. A nonlinear finite element (FE model is also developed to reveal the full dynamic behavior of the CFRP-epoxy-steel hybrid beam, considering the detailed effects, that is, large strains, high strain rates in metal, and different failure modes of the hybrid beam. Experimental results confirm the analytical and the FE results and show a strong correlation.

  12. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  13. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    International Nuclear Information System (INIS)

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab

  14. Calculation and construction of a beam-transport system for polarized electrons

    International Nuclear Information System (INIS)

    Marschke, G.

    1987-09-01

    In the framework of the ELSA-SAPHIR project a transfer channel between ELSA and the large-space detector SAPHIR was calculated and constructed. Existing optical elements were modified corresponding to their application and the missing racks constructed and ordered for fabrication. Furthermore the vacuum system was designed as the whole as well as in the single components. Starting from the architectonic conditions and the optics to be realized the coordinates of the elements were calculated as preconditions fo the geodetic measurements and calibrations. It was shown that both for a polarized and for an unpolarized electron beam an optic was realized corresponding to the requirements up to an energy of 3.5 GeV. Under the given conditions, the applied method of the rotation of the polarization vector, and the geometrical preconditions up to 3.0 GeV also an acceptable longitudinal polarization was reached. (orig./HSI) [de

  15. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  16. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  17. Final Report for 'Design calculations for high-space-charge beam-to-RF conversion'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference 'cut-cell' boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT's, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of 'stair-step' geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other

  18. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  19. ORBIT: A CODE FOR COLLECTIVE BEAM DYNAMICS IN HIGH INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, J.F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK, the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  20. ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings

    Science.gov (United States)

    Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-12-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  1. ORBIT: A code for collective beam dynamics in high-intensity rings

    International Nuclear Information System (INIS)

    Holmes, J.A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  2. Use of Monte Carlo simulation software for calculating effective dose in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    This study aimed to develop a geometry of irradiation applicable to the software PCXMC and the consequent calculation of effective dose in applications of the Computed Tomography Cone Beam (CBCT). We evaluated two different CBCT equipment s for dental applications: Care stream Cs 9000 3-dimensional tomograph; i-CAT and GENDEX GXCB-500. Initially characterize each protocol measuring the surface kerma input and the product kerma air-area, P{sub KA}, with solid state detectors RADCAL and PTW transmission chamber. Then we introduce the technical parameters of each preset protocols and geometric conditions in the PCXMC software to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for 3-dimensional computer 9000 Cs; within the range 44.5 to 89 μSv for GXCB-500 equipment and in the range of 62-111 μSv for equipment Classical i-CAT. These values were compared with results obtained dosimetry using TLD implanted in anthropomorphic phantom and are considered consistent. Os effective dose results are very sensitive to the geometry of radiation (beam position in mathematical phantom). This factor translates to a factor of fragility software usage. But it is very useful to get quick answers to regarding process optimization tool conclusions protocols. We conclude that use software PCXMC Monte Carlo simulation is useful assessment protocols for CBCT tests in dental applications. (Author)

  3. Model-based calculations of off-axis ratio of conic beams for a dedicated 6 MV radiosurgery unit

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. N.; Ding, X.; Du, W.; Pino, R. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Methodist Hospital, Houston, Texas 77030 (United States)

    2010-10-15

    Purpose: Because the small-radius photon beams shaped by cones in stereotactic radiosurgery (SRS) lack lateral electronic equilibrium and a detector's finite cross section, direct experimental measurement of dosimetric data for these beams can be subject to large uncertainties. As the dose calculation accuracy of a treatment planning system largely depends on how well the dosimetric data are measured during the machine's commissioning, there is a critical need for an independent method to validate measured results. Therefore, the authors studied the model-based calculation as an approach to validate measured off-axis ratios (OARs). Methods: The authors previously used a two-component analytical model to calculate central axis dose and associated dosimetric data (e.g., scatter factors and tissue-maximum ratio) in a water phantom and found excellent agreement between the calculated and the measured central axis doses for small 6 MV SRS conic beams. The model was based on that of Nizin and Mooij [''An approximation of central-axis absorbed dose in narrow photon beams,'' Med. Phys. 24, 1775-1780 (1997)] but was extended to account for apparent attenuation, spectral differences between broad and narrow beams, and the need for stricter scatter dose calculations for clinical beams. In this study, the authors applied Clarkson integration to this model to calculate OARs for conic beams. OARs were calculated for selected cones with radii from 0.2 to 1.0 cm. To allow comparisons, the authors also directly measured OARs using stereotactic diode (SFD), microchamber, and film dosimetry techniques. The calculated results were machine-specific and independent of direct measurement data for these beams. Results: For these conic beams, the calculated OARs were in excellent agreement with the data measured using an SFD. The discrepancies in radii and in 80%-20% penumbra were within 0.01 cm, respectively. Using SFD-measured OARs as the reference data, the

  4. SU-E-T-167: Evaluation of Mobius Dose Calculation Engine Using Out of the Box Preconfigured Beam Data

    Energy Technology Data Exchange (ETDEWEB)

    Cardan, R [UAB University of Alabama, Birmingham, Birmingham, AL (United States); Faught, A [MD Anderson Cancer Center, Houston, TX (United States); Huang, M; Benhabib, S [University of Alabama at Birmingham, Birmingham, AL (United States); Brezovich, I; Popple, R [University of Alabama Birmingham, Birmingham, AL (United States); Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Determine the dose calculation accuracy of a preconfigured Mobius server for use in secondary checks of a treatment planning system. Methods: 10 plans were created for irradiation on two of the IROC (formerly RPC) accreditation phantoms: 4 for the head and neck phantom and 6 for the lung phantom. The plans each were created using one of four different photon energies (6FFF, 10 FFF, 6X, and 15X) and were varied in treatment type including VMAT, step and shoot IMRT, dynamic MLC IMRT (DMLC), and conformal RT (CRT). The TLDs in the phantoms were contoured, and each plan was sent for calculation to Mobius software (Mobius Medical Systems, Houston, TX) with a default configuration. Each plan was then irradiated on the planned phantom 3 times to create an average reading across 56 TLDs. These readings were then compared against the corresponding Mobius calculation at each TLD location. Results: The mean difference (MD) normalized to the plan prescription dose between each TLD and Mobius calculation for all measurements was 0.5 ± 3.3%, with a maximum difference of 8.4%. The MD was 0.6 ± 3.8%, − 2.0 ± 1.9%, 1.7 ± 3.7%, and 1.9 ± 1.2% across the 6FFF, 10FFF, 6X and 15X energies respectively. The MD was −1.2 ± 2.3% for lung plans and 1.8 ± 3.5% for head/neck plans. Across treatment types, the MD ranged from − 1.8 ± 1.7% for CRT to 4.3 ± 2.4 % for DMLC. Conclusion: Out of the box and preconfigured, Mobius provides accurate dose calculations with respect to beam energy, treatment type, and treatment site.

  5. Transverse acceptance calculation for continuous ion beam injection into the electron beam ion trap charge breeder of the ReA post-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-11-11

    The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.

  6. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    Bambade, P.S.

    1987-06-01

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  7. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  8. Control and calculation of the titanium sublimation pumping speed and re-ionisation in the MAST neutral beam injectors

    International Nuclear Information System (INIS)

    McAdams, R.

    2015-01-01

    Highlights: • The titanium sublimation pumps for the MAST neutral beam injectors are described. • Evaporation regimes are established to give constant pumping speed for the titanium sublimation pumps. • The MCNP code is used to calculate the pumping speeds and gas profiles in the neutral beam injectors. • The gas profiles are then used to calculate the level of re-ionisation in the beamline. - Abstract: A high pumping speed is required in neutral beam injectors to minimise re-ionisation of the neutral beams. The neutral beam injectors on MAST use titanium sublimation pumps. These pumps do not have a constant pumping speed; their pumping speed depends on the gettering surface history and on both the integrated and applied gas load. In this paper we describe a method of maintaining a constant pumping speed, through different evaporation schemes, specifically suitable for operations of the MAST neutral beam injector beamlines for both short and relatively long beam pulses by measurement of the pressure in the beamline. In addition the MCNP code is then used to calculate the pumping speed and gas profile in the beamline by adjusting the input pumping speed to match the measured pressure. This allows the resulting gas profile to be used for calculation of the re-ionisation levels and an example is given

  9. Chaotic dynamics of flexible beams driven by external white noise

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Papkova, I. V.; Zakharov, V. M.; Erofeev, N. P.; Krylova, E. Yu.; Mrozowski, J.; Krysko, V. A.

    2016-10-01

    Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear).

  10. Complex calculation and improvement of beam shaping and accelerating system of the ''Sokol'' small-size electrostatic accelerator

    International Nuclear Information System (INIS)

    Simonenko, A.V.; Pistryak, V.M.; Zats, A.V.; Levchenko, Yu.Z.; Kuz'menko, V.V.

    1987-01-01

    Features of charged particle accelerated beam shaping in the electrostatic part of the ''Sokol'' small-size accelerator are considered in complex taking into account the electrode real geometry. Effect of the extracting, accelerating electorde potential and accelerator total voltage on beam behaviour is investigated. A modified variation of the beam shaping system, allowing to decrease 2 times the required interval of accelerating electrode potential adjustment and to decrease the beam size in the starting acceleration region, is presented. It permits to simplify the construction and to improve accelerator operation. Comparison of experimental and calculational data on the beam in the improved accelerator variation is carried out. Effect of peripheral parts of accelerating tube electrodes on the beam is investigated

  11. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  12. Dynamic stability calculations for power grids employing a parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K

    1982-06-01

    The aim of dynamic contingency calculations in power systems is to estimate the effects of assumed disturbances, such as loss of generation. Due to the large dimensions of the problem these simulations require considerable computing time and costs, to the effect that they are at present only used in a planning state but not for routine checks in power control stations. In view of the homogeneity of the problem, where a multitude of equal generator models, having different parameters, are to be integrated simultaneously, the use of a parallel computer looks very attractive. The results of this study employing a prototype parallel computer (SMS 201) are presented. It consists of up to 128 equal microcomputers bus-connected to a control computer. Each of the modules is programmed to simulate a node of the power grid. Generators with their associated control are represented by models of 13 states each. Passive nodes are complemented by 'phantom'-generators, so that the whole power grid is homogenous, thus removing the need for load-flow-iterations. Programming of microcomputers is essentially performed in FORTRAN.

  13. CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-02-01

    Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the

  14. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  15. Fiber coupled diode laser beam parameter product calculation and rules for optimized design

    Science.gov (United States)

    Wang, Zuolan; Segref, Armin; Koenning, Tobias; Pandey, Rajiv

    2011-03-01

    The Beam Parameter Product (BPP) of a passive, lossless system is a constant and cannot be improved upon but the beams may be reshaped for enhanced coupling performance. The function of the optical designer of fiber coupled diode lasers is to preserve the brightness of the diode sources while maximizing the coupling efficiency. In coupling diode laser power into fiber output, the symmetrical geometry of the fiber core makes it highly desirable to have symmetrical BPPs at the fiber input surface, but this is not always practical. It is therefore desirable to be able to know the 'diagonal' (fiber) BPP, using the BPPs of the fast and slow axes, before detailed design and simulation processes. A commonly used expression for this purpose, i.e. the square root of the sum of the squares of the BPPs in the fast and slow axes, has been found to consistently under-predict the fiber BPP (i.e. better beam quality is predicted than is actually achievable in practice). In this paper, using a simplified model, we provide the proof of the proper calculation of the diagonal (i.e. the fiber) BPP using BPPs of the fast and slow axes as input. Using the same simplified model, we also offer the proof that the fiber BPP can be shown to have a minimum (optimal) value for given diode BPPs and this optimized condition can be obtained before any detailed design and simulation are carried out. Measured and simulated data confirms satisfactory correlation between the BPPs of the diode and the predicted fiber BPP.

  16. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

    International Nuclear Information System (INIS)

    Papanikolaou, Niko; Stathakis, Sotirios

    2009-01-01

    Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.

  17. Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code

    CERN Document Server

    Stancari, Giulio; Redaelli, Stefano

    2014-01-01

    Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.

  18. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  19. Poster — Thur Eve — 30: 4D VMAT dose calculation methodology to investigate the interplay effect: experimental validation using TrueBeam Developer Mode and Gafchromic film

    Energy Technology Data Exchange (ETDEWEB)

    Teke, T; Milette, MP [BC Cancer Agency Centre for the Southern Interior (Canada); Huang, V; Thomas, SD [BC Cancer Agency Fraser Valley Cancer Centre (Canada)

    2014-08-15

    The interplay effect between the tumor motion and the radiation beam modulation during a VMAT treatment delivery alters the delivered dose distribution from the planned one. This work present and validate a method to accurately calculate the dose distribution in 4D taking into account the tumor motion, the field modulation and the treatment starting phase. A QUASAR™ respiratory motion phantom was 4D scanned with motion amplitude of 3 cm and with a 3 second period. A static scan was also acquired with the lung insert and the tumor contained in it centered. A VMAT plan with a 6XFFF beam was created on the averaged CT and delivered on a Varian TrueBeam and the trajectory log file was saved. From the trajectory log file 10 VMAT plans (one for each breathing phase) and a developer mode XML file were created. For the 10 VMAT plans, the tumor motion was modeled by moving the isocentre on the static scan, the plans were re-calculated and summed in the treatment planning system. In the developer mode, the tumor motion was simulated by moving the couch dynamically during the treatment. Gafchromic films were placed in the QUASAR phantom static and irradiated using the developer mode. Different treatment starting phase were investigated (no phase shift, maximum inhalation and maximum exhalation). Calculated and measured isodose lines and profiles are in very good agreement. For each starting phase, the dose distribution exhibit significant differences but are accurately calculated with the methodology presented in this work.

  20. Dynamics of heavy ion beams during longitudinal compression

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Bangerter, R.O.; Lee, E.P.; Brandon, S.; Mark, J.W.K.

    1987-01-01

    Heavy ion beams with initially uniform line charge density can be compressed longitudinally by an order of magnitude in such a way that the compressed beam has uniform line charge density and velocity-tilt profiles. There are no envelope mismatch oscillations during compression. Although the transverse temperature varies along the beam and also varies with time, no substantial longitudinal and transverse emittance growth has been observed. Scaling laws for beam radius and transport system parameters are given

  1. Comparison of ONETRAN calculations of electron beam dose profiles with Monte Carlo and experiment

    International Nuclear Information System (INIS)

    Garth, J.C.; Woolf, S.

    1987-01-01

    Electron beam dose profiles have been calculated using a multigroup, discrete ordinates solution of the Spencer-Lewis electron transport equation. This was accomplished by introducing electron transport cross-sections into the ONETRAN code in a simple manner. The authors' purpose is to ''benchmark'' this electron transport model and to demonstrate its accuracy and capabilities over the energy range from 30 keV to 20 MeV. Many of their results are compared with the extensive measurements and TIGER Monte Carlo data. In general the ONETRAN results are smoother, agree with TIGER within the statistical error of the Monte Carlo histograms and require about one tenth the running time of Monte Carlo

  2. High-current beam dynamics and transport, theory and experiment

    International Nuclear Information System (INIS)

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching

  3. Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI

    Science.gov (United States)

    Xiao, C.; Du, X. N.; Groening, L.

    2018-04-01

    Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.

  4. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by

  5. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  6. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ''parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8σ Ox sptm where σ Ox sptm is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on

  7. Dynamic evaluation of swallowing disorders with electron-beam tomography

    International Nuclear Information System (INIS)

    Raith, J.; Lindbichler, F.; Kern, R.; Groell, R.; Rienmueller, R.

    1996-01-01

    Three cases preselected by videofluorography were studied to evaluate whether electron beam tomography (EBT) permits more detailed dynamic imaging of swallowing disorders focusing on the mesonasopharyngeal segment, the hypopharynx and the upper esophageal sphincter (UES). Immediately after videofluorographic examination of the oropharyngeal deglutition, EBT is performed. The patient is in a supine position and while the patient swallows a 20 ml bolus of water or diluted iodine containing contrast agent, a sequence of 20 images per level is scanned. The levels, which are determined by using the scout view, are oriented parallel to the hard palate either at the level of the hard palate to image the mesonasopharyngel segment or just above the hyoid bone to focus on the hypopharynx or at the location of the USE. The scan technique is a single-slice cinemode with a slice thickness of 3 mm (exposure time 100 ms, interscan delay 16 ms, 130 kV, 620 mA). The following structural interactions that we have so far been unable to image can be clearly demonstrated with EBT: During normal swallowing, the mesonasopharyngeal segment is completely and symmetrically closed by the soft palate and Passavant's cushion; lateral hypopharyngeal pouches can be located more precisely; and disorders of the UES can be differentiated into functional or morphologically caused disorders (e.g., goiter or cervical osteophytes). Videofluorography and cinematography are still the gold standard in functional evaluation of swallowing disorders. However, EBT permits dynamic imaging of pharyngeal deglutition in a preselected transverse plane and can give useful additional information concerning functional anatomical changes in the pharynx during swallowing. Further clinical evaluation is needed. (orig.) [de

  8. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  9. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

    Directory of Open Access Journals (Sweden)

    R. Naz

    2015-01-01

    Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

  10. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  11. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  12. THE CALCULATION OF STRESS-STRAIN STATE OF THREE-LAYER BEAM TAKING INTO ACCOUNT EDGE EFFECTS

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2015-01-01

    Full Text Available The work is dedicated to the calculation of the stress-strain state (SSS of the three-layer beam (TLB subject to boundary effects.In this paper, a system of differential equations of equilibrium of the threelayer beam. To solve these equations, it is necessary to know the 12 boundary conditions, co-which depend on support conditions and loading of sandwich beams under study. This system of equations is solved by the application package of mathematical modeling "Maple 5.4." The solution of this system we obtain expressions for determining de-formations and stress all components (bearing layers and filler, a three-layer beam anywhere under specified conditions of fastening the ends of the beam and its loading. 

  13. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    International Nuclear Information System (INIS)

    Zhang, Bo; Li, Yueming; Lu, Wei Zhen

    2016-01-01

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape

  14. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Li, Yueming [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace, Xi' an Jiaotong UniversityXi' an (China); Lu, Wei Zhen [Dept. of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong (China)

    2016-09-15

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape.

  15. Transverse wakefield of waveguide damped structures and beam dynamics

    International Nuclear Information System (INIS)

    Lin, X.

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield

  16. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  17. Comparison of beam position calculation methods for application in digital acquisition systems

    Science.gov (United States)

    Reiter, A.; Singh, R.

    2018-05-01

    Different approaches to the data analysis of beam position monitors in hadron accelerators are compared adopting the perspective of an analog-to-digital converter in a sampling acquisition system. Special emphasis is given to position uncertainty and robustness against bias and interference that may be encountered in an accelerator environment. In a time-domain analysis of data in the presence of statistical noise, the position calculation based on the difference-over-sum method with algorithms like signal integral or power can be interpreted as a least-squares analysis of a corresponding fit function. This link to the least-squares method is exploited in the evaluation of analysis properties and in the calculation of position uncertainty. In an analytical model and experimental evaluations the positions derived from a straight line fit or equivalently the standard deviation are found to be the most robust and to offer the least variance. The measured position uncertainty is consistent with the model prediction in our experiment, and the results of tune measurements improve significantly.

  18. Design study of longitudinal dynamics of the drive beam in 1 TeV relativistic klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Yu, S.S.; Sessler, A.M.

    1994-10-01

    In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the open-quotes adiabatic captureclose quotes scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the open-quotes after burnerclose quotes scheme which is implemented in their RK-TBA design for efficiency enhancement

  19. A comparison of techniques for calculating protein essential dynamics

    NARCIS (Netherlands)

    van Aalten, D.M.F.; de Groot, B.L.; Findlay, J.B.C.; Berendsen, H.J.C.; Amadei, A

    1997-01-01

    Recently the basic theory of essential dynamics, a method for extracting large concerted motions from protein molecular dynamics trajectories, was described. Here, we introduce and test new aspects. A method for diagonalizing large covariance matrices is presented. We show that it is possible to

  20. Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks

    Science.gov (United States)

    Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.

    2018-05-01

    An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.

  1. Dynamics of the off axis intense beam propagation in a spiral inflector

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, A., E-mail: animesh@vecc.gov.in; Sing Babu, P., E-mail: psb@vecc.gov.in; Pandit, V.S., E-mail: pandit@vecc.gov.in

    2017-01-01

    In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.

  2. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  3. Electron beam dynamics in the LIU-30/250 accelerator

    International Nuclear Information System (INIS)

    Vakhrushin, Yu.P.; Kuznetsov, V.S.; Tikhomirov, A.S.

    1989-01-01

    Results of numerical simulation of coherent oscillations of electron beam in the LIU-30/250 accelerating system are presented. Transport systems both with continuous field and the discrete ones are considered. The following conclusions are made: amplitude of coherent oscillations inevitably grows in the real transport channel; the presence of correctors can lead to sufficient losses of beam pulse duration; discrete system is the optimal system for beam transport without sufficient losses. 7 refs.; 3 figs

  4. Correction factors for photon beam quality for cylindrical ionization chambers: Monte Carlo calculations by using the PENELOPE code

    International Nuclear Information System (INIS)

    Barreras Caballero, A. A.; Hernandez Garcia, J.J.; Alfonso Laguardia, R.

    2009-01-01

    Were directly determined correction factors depending on the type camera beam quality, k, Q, and kQ, Qo, instead of the product (w, air p) Q, for three type cylindrical ionization chambers Pinpoint and divergent monoenergetic beams of photons in a wide range of energies (4-20 MV). The method of calculation used dispenses with the approaches taken in the classic procedure considered independent of braking power ratios and the factors disturbance of the camera. A detailed description of the geometry and materials chambers were supplied by the manufacturer and used as data input for the system 2006 of PENELOPE Monte Carlo calculation using a User code that includes correlated sampling, and forced interactions division of particles. We used a photon beam Co-60 as beam reference for calculating the correction factors for beam quality. No data exist for the cameras PTW 31014, 31015 and 31016 in the TRS-398 at they do not compare the results with data calculated or determined experimentally by other authors. (author)

  5. Bremsstrahlung scattering calculations for the beam stops and collimators in the APS insertion-device beamlines

    International Nuclear Information System (INIS)

    Job, P.K.; Haeffner, D.R.; Shu, D.

    1994-12-01

    Bremsstrahlung is produced in the APS storage ring by the interaction of positrons with the residual gas molecules in the vacuum chamber of the storage ring. The bremsstrahlung production causes a serious challenge in shielding the insertion-device beamlines because the entire straight section (15 meters) is in the line of sight of the beamline. The radiation emerges in a narrow cone tangential to the beam path with the characteristic emission angle 1/γ, where γ is E/mc 2 which is the ratio of the kinetic energy to the rest mass for the positrons. This high-energy gamma radiation has an approximate 1/E spectrum with the maximum energy extending up to the particle energy (7 GeV for the APS). Bremsstrahlung, being high-energy photons, produces an electromagnetic shower when it encounters the beamline elements. A beamline element not thick enough to fully contain an electromagnetic shower can cause considerable scatter of the high-energy bremsstrahlung radiation. The low-energy component of the bremsstrahlung can also be scattered and create high dose rates in the first-optical and white-beam enclosures. The fully developed electromagnetic shower will have a photon spectrum almost independent of the material. The electromagnetic showers in the high-Z materials can also produce photoneutrons. This note reports the summary of EGS4 calculations performed on bremsstrahlung scattering from different beamline components in a typical APS insertion-device beamline. The related recommendations for shielding are also given. The shielding criterion adopted is a total dose rate of 2.5μSv/h (0.25 mrem/h) at 30 cm from the shield

  6. Calculation of the muon contamination in a {pi}- meson beam; Calcul de la contamination en muons d'un faisceau de mesons {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We present here a method for calculating the {mu} contamination of a {pi}-meson beam which is parallel and of cylindrical symmetry, and also the so-called 'CONTAMU' programme which makes it possible to carry out this calculation. An evaluation of the {mu} contamination is necessary for correcting the experimental values (gross) of the cross-sections of the various reactions using the {pi}-meson beam as a beam of incident particles. The following two cases are dealt with: 1 - The beam is defined by an S{sub 1} counter: the {mu} contamination is calculated when the beam passes through this counter. 2 - The beam is defined by 2 counters, S{sub 1} and S{sub 2}: the {mu} contamination is calculated when the beam passes through the 2 counters successively. After presenting the problem in the first introductory paragraph, we deal in detail in paragraph II with the calculation, following the order of the programme. At the end of paragraph II will be found definitions of a certain number of values which the programme calculates; these are the values of the contamination in one of the two preceding cases integrated in certain well-defined disintegration volumes. In paragraph III is given as an example a table of results for a few values of the parameters. The listing of the 'CONTAMU' programme is given in the appendix. This programme was established in 1963 for correcting the experimental values of the cross-sections obtained during an experiment carried out on the synchrotron Saturne by the Falk-Vairant group. (author) [French] Nous presentons ici une methode de calcul de la contamination en {mu} dans un faisceau de mesons {pi} parallele et a symetrie cylindrique, ainsi que le programme, appele 'CONTAMU', qui permet d'effectuer ce calcul. L'estimation de la contamination en {mu} est necessaire pour faire des corrections aux valeurs experimentales (brutes) des sections efficaces des differentes reactions utilisant le faisceau de mesons {pi} comme faisceau de particules

  7. SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Tian, Z; Song, T; Jia, X; Gu, X; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accounting for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.

  8. Fundamentals of particle beam dynamics and phase space

    International Nuclear Information System (INIS)

    Weng, W.T.; Mane, S.R.

    1991-01-01

    This report discusses the following topics on synchrotron accelerators: Transverse motion---betatron oscillations; machine lattice; representation of a particle beam; and longitudinal motion---synchrotron oscillations

  9. Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry

    International Nuclear Information System (INIS)

    Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis

    2008-01-01

    A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments

  10. Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

    International Nuclear Information System (INIS)

    Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Saris, F.W.; Koudijs, R.; Dubbelman, P.; Koelewijn, W.

    1989-01-01

    MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators. (orig.)

  11. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    Directory of Open Access Journals (Sweden)

    R. Tarkeshian

    2018-05-01

    Full Text Available Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today’s free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  12. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    International Nuclear Information System (INIS)

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-01-01

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation

  13. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  14. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    Science.gov (United States)

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  15. SU-E-T-209: Independent Dose Calculation in FFF Modulated Fields with Pencil Beam Kernels Obtained by Deconvolution

    International Nuclear Information System (INIS)

    Azcona, J; Burguete, J

    2014-01-01

    Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated

  16. Beam dynamics issues of high-luminosity asymmetric collider rings

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-01-01

    Machines for use in high-energy physics are advancing along two frontiers. First, there is the frontier of energy, currently being pressed by the Fermilab collider (p bar p), and SLC and LEP (e + e - ) and in the near future by HERA (ep), the LHC, and the SSC (pp). Second, there is the frontier of intensity, currently being pressed by a variety of low-energy machines and, at higher energies, by various linacs such as those at KEK. Fermilab, GSI, and LAMPF (p) and CEBAF (e - ). In the future there should be, along this frontier, various ''factories'' such as those for Kaons at TRIUMF, and those proposed for var-phi mesons, τ-charm particles, and B mesons. It is with the intensity frontier that these proceedings are concerned. The elementary particle motivation to study the nonconservation of PC in the B-stringB system (which topic is not covered in these Proceedings, but is treated extensively in the literature) has motivated the study of very high intensity asymmetric collider rings. It was for this purpose that a Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric Collider Rings was held, in Berkeley, during February 12--16, 1990. A general introduction to the subject has been given in an article which is reprinted here as an Appendix. The nonexpert may wish to start there. The volume consists of four parts. The first part consists of Summaries; first an overall summary of the Workshop and then, second, more detailed summaries from each of the working groups. The second part consists of the Invited Talks at the workshop. The third part contains various Contributed Papers, most of which represent work that came out of the workshop. Finally, there are, in the fourth part, brief Summaries of the Various Proposed B-Factory Projects in the world

  17. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  18. A molecular dynamics calculation of solid phase of malonic acid ...

    Indian Academy of Sciences (India)

    Sathya S R R Perumal

    Keywords. Hydrogen bond chain; elastic constants; molecular dynamics. 1. Introduction ... theory - a probabilistic model to determine the hydro- gen bonds within the .... compares poorly with the experimental value of 108.5. Similarly β and γ ...

  19. Experimental validation of flexible multibody dynamics beam formulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)

    2015-08-15

    In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

  20. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  1. End to End Beam Dynamics of the ESS Linac

    DEFF Research Database (Denmark)

    Thomsen, Heine Dølrath

    2012-01-01

    The European Spallation Source, ESS, uses a linear accelerator to deliver a high intensity proton beam to the target station. The nominal beam power on target will be 5 MW at an energy of 2.5 GeV. We briefly describe the individual accelerating structures and transport lines through which we have...

  2. Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load

    Science.gov (United States)

    Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai

    2018-04-01

    In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.

  3. Evaluation of dose calculation algorithms for the electron beams used in radiotherapy. Comparison with radiochromic film measurements

    International Nuclear Information System (INIS)

    El Barouky, Jad

    2011-01-01

    In radiotherapy, the dose calculation accuracy is crucial for the quality and the outcome of the treatments. The purpose of our study was to evaluate the accuracy of dose calculation algorithms for electron beams in situations close to clinical conditions. A new practical approach of radiochromic film dosimetry was developed and validated especially for difficult situations. An accuracy of 3.1% and 2.6% was achieved for absolute and relative dosimetry respectively. Using this technique a measured database of dose distributions was developed to form the basis of several fast and efficient Quality Assurance tests. Such tests are intended to be used also when the dose calculation algorithm is changed or the Treatment Planning System replaced. Pencil Beam and Monte Carlo dose calculations were compared to the measured data for simple geometrical phantom setups. They both gave similar results for obliquity, surface irregularity and extended SSD tests but the Monte Carlo calculation was more accurate in presence of heterogeneities. The same radiochromic film dosimetry method was applied to film cuts inserted into anthropomorphic phantoms providing a 2D dose distribution for any transverse plan. This allowed us to develop clinical test that can be also used for internal Quality Assurance purposes. As for simpler geometries, the Monte Carlo calculations showed better agreement with the measured data than the Pencil Beam calculation, especially in presence of heterogeneities such as lungs, cavities and bones. (author) [fr

  4. Beam dynamics study in the C235 cyclotron for proton therapy

    International Nuclear Information System (INIS)

    Karamysheva, G.A.; Kostromin, S.A.

    2008-01-01

    Study of the beam dynamics in the C235 cyclotron dedicated to the proton therapy is presented. Results of the computer simulations of the particle motion in the measured magnetic field are given. Study of the resonance influence on the acceleration process was carried out. The corresponding tolerances on the magnetic field imperfections and transverse beam parameters were defined using these simulations

  5. Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide

    DEFF Research Database (Denmark)

    Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.

    1996-01-01

    We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through ...

  6. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  7. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  8. Dynamics of ion–molecule reactions from beam experiments: A historical survey

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk; Futrell, J. H.

    2015-01-01

    Roč. 377, FEB 2015 (2015), s. 84-92 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Ion–molecule reactions * Dynamics * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015

  9. Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Younis, Mohammad I.

    2016-01-01

    This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario

  10. Comparison of the calculated neutral beam shinethrough of the Wendelstein VII-A injection with calorimetric measurements

    International Nuclear Information System (INIS)

    Penningsfeld, F.P.

    1987-06-01

    Density profiles of the Wendelstein VII-A plasma as measured by Thomson scattering are used to calculate the temporally and spatially varying power density of the neutral beam shinethrough on the torus calorimeter for several shot series. The total energy deposited by the three beam species is obtained by integrating the transmitted power density in space and time. This global quantity is compared with the calorimetric measurements routinely performed for each shot. The agreement between calculated and measured energy is found to be ΔE/E = 2.3 ± 11% confirming the error estimation for the NEUDEN program used, which was only slightly modified to calculate the power density transmitted in the target plane. From this good agreement it is concluded that the program contains a realistic beam model and reliable cross-sections for the beam attenuation which is important for further applications. Furthermore, the same comparison was done with old results of the ODIN code by analyzing the corresponding raw data as far as they could be recovered, obtaining a similarly good consistency. A possible increase of 10 to 20% of the beam stopping cross section which could be expected for Wendelstein VII-A conditions by the effect of multistep collision processes as suggested by Boley et al. is discussed also. (orig.)

  11. Comparison between dose calculation in XiO® and dosimetric measurements in virtual wedge photon beams

    International Nuclear Information System (INIS)

    Almeida, Laila G.; Amaral, Leonardo L.; Oliveira, Harley F.; Maia, Ana F.

    2012-01-01

    The virtual wedge is useful tool in the radiation treatment planning since it has series of advantages over the hard wedge. Quality control tests ensure correct performance of the planning done in treatment planning systems (TPS). This study aimed to compare doses calculated by TPS and doses measured by ionization chamber (CI) and an ionization chambers array in virtual wedge photon beams of 6 MV. Measures carried out in Primus linear accelerator with a solid water phantom and dosimeter positioned at 10 cm depth with gantry at 0° in many fields sizes and angles in the virtual wedge. Measurements on the central axis used as dosimeter an IC and on off-axis used an IC array. The simulation in CMS-XiO used the CT images of the phantom in the same configuration of the irradiation. Maximum and minimum values of the percentage differences between the doses provided by TPS and measurements with ionization chamber on the central axis were 1.43 and -0.10%, respectively, with average percentage difference of 0.08% and confidence limit of Δ=1.72%. In the region off-axis, the average percentage difference was 0.04%, with a maximum of 1.9%, minimum of 0% and confidence limit of Δ=1.91%. All values for dose percentage differences were below 2% and lower confidence limit of 3% are thus, according to the recommendations of the Technical Report Series - TRS-430. (author)

  12. A new Monte Carlo program for calculations of dose distributions within tissue equivalent phantoms irradiated from π--meson beams

    International Nuclear Information System (INIS)

    Przybilla, G.

    1980-11-01

    The present paper reports on the structure and first results from a new Monte Carlo programme for calculations of energy distributions within tissue equivalent phantoms irradiated from π - -beams. Each pion or generated secondary particle is transported until to the complete loss of its kinetic energy taking into account pion processes like multiple Coulomb scattering, pion reactions in flight and absorption of stopped pions. The code uses mainly data from experiments, and physical models have been added only in cases of lacking data. Depth dose curves for a pensil beam of 170 MeV/c within a water phantom are discussed as a function of various parameters. Isodose contours are plotted resulting from a convolution of an extended beam profile and the dose distribution of a pencil beams. (orig.) [de

  13. Nonlinear Dynamics of High-Brightness Electron Beams and Beam-Plasma Interactions: Theories, Simulations, and Experiments

    International Nuclear Information System (INIS)

    Bohn, C.L.; Piot, P.; Erdelyi, B.

    2008-01-01

    According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.

  14. Beam Dynamics in a Muon Ionisation Cooling Channel

    International Nuclear Information System (INIS)

    Rogers, Chris

    2008-01-01

    The Neutrino Factory has been proposed as a facility to provide an intense source of neutrinos suitable for the measurement of neutrino oscillation parameters and a possible CP violating phase to unprecedented precision. In the Neutrino Factory, neutrinos are produced by the decay of a muon beam with 20-50 GeV per muon. Initially, the muon beam occupies a large volume in phase space, which must be reduced before the beam can be accelerated. The proposed method to achieve this is to use a solenoidal ionisation colling channel.

  15. Beam dynamics verification in linacs of linear colliders

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1989-01-01

    The SLAC two-mile linac has been upgraded to accelerate high current, low emittance electron and positron beams to be used in the SLAC Linear Collider (SLC). After the upgrade was completed, extensive beam studies were made to verify that the design criteria have been met. These tests involved the measurement of emittance, beam phase space orientation, energy dispersion, trajectory oscillations, bunch length, energy spectrum and wakefields. The methods, the systems and the data cross checks are compared for the various measurements. Implications for the next linear collider are discussed. 12 refs., 13 figs., 2 tabs

  16. A Dynamic Alignment System for the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Ruland, R.E.; Bressler, V.E.; Fischer, G.; Plouffe, D.; SLAC

    2005-01-01

    The Final Focus Test Beam (FFTB) was conceived as a technological stepping stone on the way to the next linear collider. Nowhere is this more evident than with the alignment subsystems. Alignment tolerances for components prior to beam turn are almost an order of magnitude smaller than for previous projects at SLAC. Position monitoring systems which operate independent of the beam are employed to monitor motions of the components locally and globally with unprecedented precision. An overview of the FFTB alignment system is presented herein

  17. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  18. Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164

    International Nuclear Information System (INIS)

    Dilmac, Sukran; Guner, Abdurrahman; Senkal, Filiz; Kartal, Semiha

    2007-01-01

    The international standards for calculation of energy consumption for heating are ISO 9164 and EN 832. Although they are based on similar principles, there are significant differences in the calculation procedure of transmission heat loss coefficient, H T , especially in the evaluation of thermal bridges. The calculation of H T and the way thermal bridges are to be taken into consideration are explained in detail in EN 832 and in a series of other linked standards. In ISO 9164, the parameters used in the relevant equations are cited, but there is a lack of explanation about how they will be determined or calculated. Although in ISO 6946-2, the earlier version of the same standard, the calculation methods of these quantities were explained for column-wall intersections; in the revised ISO 6946, these explanations have been removed. On the other hand, these parameters had never been defined for floor/beam-wall intersections. In this paper, a new method is proposed for calculation of the parameters cited in ISO 9164 for floor/beam-wall intersections. The results obtained by the proposed method for typical floor with beam sections are compared with the results obtained by the methods stated in EN 832/EN 13789/EN ISO 14683 and the results obtained from 2D analysis. Different methods are evaluated as to their simplicity and agreement

  19. Accurate model of photon beams as a tool for commissioning and quality assurance of treatment planning calculations

    International Nuclear Information System (INIS)

    Linares Rosales, Haydee M.; Lara Mas, Elier; Alfonso Laguardia, Rodolfo

    2015-01-01

    Simulation of a linear accelerator (linac) head requires determining the parameters that characterize the primary electron beam striking on the target which is a step that plays a vital role in the accuracy of Monte Carlo calculations. In this work, the commissioning of photon beams (6 MV and 15 MV) of an Elekta Precise accelerator, using the Monte Carlo code EGSnrc, was performed. The influence of the primary electron beam characteristics on the absorbed dose distribution for two photon qualities was studied. Using different combinations of mean energy and radial FWHM of the primary electron beam, deposited doses were calculated in a water phantom, for different field sizes. Based on the deposited dose in the phantom, depth dose curves and lateral dose profiles were constructed and compared with experimental values measured in an arrangement similar to the simulation. Taking into account the main differences between calculations and measurements, an acceptability criteria based on confidence limits was implemented. As expected, the lateral dose profiles for small field sizes were strongly influenced by the radial distribution (FWHM). The combinations of energy/FWHM that best reproduced the experimental results were used to generate the phase spaces, in order to obtain a model with the motorized wedge included and to calculate output factors. A good agreement was obtained between simulations and measurements for a wide range of fi eld sizes, being all the results found within the range of tolerance. (author)

  20. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  1. Working group II report: Production and dynamics of high brightness beams

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1996-01-01

    This paper summarizes the main discussions of the Working Group on the Production and Dynamics of High Brightness Beams. The following topics are covered in this paper. Proposed new electron sources and needed research on existing sources is covered. The discussions on issues relating to the description of phase space on non-thermalized electron beam distributions and the theoretical modeling on non-thermalized electron beam distributions is presented. Finally, the present status of the theoretical modeling of beam transport in bends is given

  2. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    Science.gov (United States)

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  3. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    Yeh, Y-L; Jang, M-J; Wang, C-C; Lin, Y-P; Chen, K-S

    2008-01-01

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  4. Beam-dynamic effects at the CMS BRIL van der Meer scans

    CERN Document Server

    Babaev, Anton

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC. BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-beta effect. Both effects are important to luminosity measurements and influence calibrat...

  5. OCCURRENCE OF ACCELERATING FIELD, FORMATION AND DYNAMICS OF RELATIVISTIC ELECTRON BEAM NEAR JUPITER

    Directory of Open Access Journals (Sweden)

    V. I. Maslov

    2018-06-01

    Full Text Available The possible dynamics of the electron beam, formed in the vicinity of Io, the natural satellite of Jupiter, and injected toward Jupiter, has been investigated analytically. When a beam penetrates the Jupiter plasma to a certain depth, the beam-plasma instability can be developed. In this case, the distribution function of electrons is expanded additionally by excited oscillations. These electrons, when their energy is of order of a required certain value, cause UV polar light. For closing of a current, the formation of a double electric layer is necessary. The necessary parameters and conditions for the formation of a double layer with a large jump of an electric potential at a certain height have been formulated, its properties, stability, behavior over time and beam reflection in its field for closing of a current have been described. Reflection of the beam can lead to its vortex dynamics.

  6. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  7. Finite element formulation for dynamics of planar flexible multi-beam system

    International Nuclear Information System (INIS)

    Liu Zhuyong; Hong Jiazhen; Liu Jinyang

    2009-01-01

    In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation

  8. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  9. A comparison study for dose calculation in radiation therapy: pencil beam Kernel based vs. Monte Carlo simulation vs. measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Suh, Tae-Suk; Lee, Hyoung-Koo; Choe, Bo-Young [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Hoi-Nam; Yoon, Sei-Chul [Kangnam St. Mary' s Hospital, Seoul (Korea, Republic of)

    2002-07-01

    Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant. However in general clinical situation, pencil beam kernel based convolution algorithm is thought to be a valuable tool to calculate the dose.

  10. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    Science.gov (United States)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  11. Influence on dose calculation by difference of dose calculation algorithms in stereotactic lung irradiation. Comparison of pencil beam convolution (inhomogeneity correction: batho power law) and analytical anisotropic algorithm

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    The monitor unit (MU) was calculated by pencil beam convolution (inhomogeneity correction algorithm: batho power law) [PBC (BPL)] which is the dose calculation algorithm based on measurement in the past in the stereotactic lung irradiation study. The recalculation was done by analytical anisotropic algorithm (AAA), which is the dose calculation algorithm based on theory data. The MU calculated by PBC (BPL) and AAA was compared for each field. In the result of the comparison of 1031 fields in 136 cases, the MU calculated by PBC (BPL) was about 2% smaller than that calculated by AAA. This depends on whether one does the calculation concerning the extension of the second electrons. In particular, the difference in the MU is influenced by the X-ray energy. With the same X-ray energy, when the irradiation field size is small, the lung pass length is long, the lung pass length percentage is large, and the CT value of the lung is low, and the difference of MU is increased. (author)

  12. Shielding requirements for constant-potential diagnostic x-ray beams determined by a Monte Carlo calculation

    International Nuclear Information System (INIS)

    Simpkin, D.J.

    1989-01-01

    A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP

  13. Shielding requirements for constant-potential diagnostic x-ray beams determined by a Monte Carlo calculation.

    Science.gov (United States)

    Simpkin, D J

    1989-02-01

    A Monte Carlo calculation has been performed to determine the transmission of broad constant-potential x-ray beams through Pb, concrete, gypsum wallboard, steel and plate glass. The EGS4 code system was used with a simple broad-beam geometric model to generate exposure transmission curves for published 70, 100, 120 and 140-kVcp x-ray spectra. These curves are compared to measured three-phase generated x-ray transmission data in the literature and found to be reasonable. For calculation ease the data are fit to an equation previously shown to describe such curves quite well. These calculated transmission data are then used to create three-phase shielding tables for Pb and concrete, as well as other materials not available in Report No. 49 of the NCRP.

  14. Beam dynamics studies at DAΦNE: from ideas to experimental results

    Science.gov (United States)

    Zobov, M.; DAΦNE Team

    2017-12-01

    DAΦNE is the electron-positron collider operating at the energy of Φ-resonance, 1 GeV in the center of mass. The presently achieved luminosity is by about two orders of magnitude higher than that obtained at other colliders ever operated at this energy. Careful beam dynamic studies such as the vacuum chamber design with low beam coupling impedance, suppression of different kinds of beam instabilities, investigation of beam-beam interaction, optimization of the beam nonlinear motion have been the key ingredients that have helped to reach this impressive result. Many novel ideas in accelerator physics have been proposed and/or tested experimentally at DAΦNE for the first time. In this paper we discuss the advanced accelerator physics studies performed at DAΦNE.

  15. Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS

    CERN Document Server

    Yang Bing Xin

    2005-01-01

    The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread...

  16. Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core

    Science.gov (United States)

    Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.

    2012-01-01

    The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.

  17. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  18. Dynamic Analysis of Thick Plates Including Deep Beams on Elastic Foundations Using Modified Vlasov Model

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2013-01-01

    Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.

  19. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  20. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  1. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  2. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  3. Beam-breakup calculations for the Los Alamos free-electron laser (FEL) linac

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1984-01-01

    In addition to the usual circularly symmetric TM/sub 010/ mode used to accelerate particles in an rf linac, there is a large number of modes with cos phi or sin phi dependence, for example the TM/sub 1xx/ modes. These latter modes possess a uniform magnetic (dipole) field near the axis of symmetry and therefore can deflect the beam away from the axis. Any portion of an accelerated beam that is off-axis will drive these modes, so that subsequent portions of the beam will be deflected. This deflected beam will then resonantly drive the same modes in downstream cavities, so that still later portions of the beam will be more severely deflected, and so on. In this paper are reported the results of numerical simulations of this so-called cumulative beam-breakup instability. The simulation assumes that only the TM/sub 110/ mode acts to deflect the beam, and further assumes that this mode does not couple from one accelerating cavity to the next

  4. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar{sup +} beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ∼5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  5. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  6. Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron

    CERN Document Server

    AUTHOR|(CDS)2082016; Benedikt, Michael

    With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...

  7. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    Directory of Open Access Journals (Sweden)

    Chen Yong Jian

    2018-01-01

    Full Text Available The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  8. A program for monitor unit calculation for high energy photon beams in isocentric condition based on measured data

    International Nuclear Information System (INIS)

    Gesheva-Atanasova, N.

    2008-01-01

    The aim of this study is: 1) to propose a procedure and a program for monitor unit calculation for radiation therapy with high energy photon beams, based on data measured by author; 2) to compare this data with published one and 3) to evaluate the precision of the monitor unit calculation program. From this study it could be concluded that, we reproduced with a good agreement the published data, except the TPR values for dept up to 5 cm. The measured relative weight of upper and lower jaws - parameter A was dramatically different from the published data, but perfectly described the collimator exchange effect for our treatment machine. No difference was found between the head scatter ratios, measured in a mini phantom and those measured with a proper brass buildup cap. Our monitor unit calculation program was found to be reliable and it can be applied for check up of the patient's plans for irradiation with high energy photon beams and for some fast calculations. Because of the identity in the construction, design and characteristics of the Siemens accelerators, and the agreement with the published data for the same beam qualities, we hope that most of our experimental data and this program can be used after verification in other hospitals

  9. Nonlinear beam dynamics of accelerators and storage rings. Progress report, June 1985-April 1986

    International Nuclear Information System (INIS)

    Helleman, R.H.G.

    1986-01-01

    Research has concentrated on the stability problems and resonances involved in the two-dimensional beam-beam effect. Of course, the results are applicable also to coupled nonlinear two-dimensional (x,y) accelerator lattices. From a nonlinear dynamics point of view this means that we investigated how to extend existing methods that worked satisfactorily for the one-dimensional beam-beam effect to the higher dimensional world of two-dimensional nonlinear lattices. This requires study of four coupled nonlinear lattice equations (for x, y, p/sub x/,p/sub y/), i.e., study of four-dimensional conservative nonlinear maps. Until our investigation this year, such maps had not yet been studied in nonlinear dynamics. One of the main results is the conclusion that the very successful ''residue'' method to determine stability (of whole regions of orbits) for the one-dimensional beam-beam effect cannot, in its present form, be used for the two- or three-dimensional case. The second main result is that we have been successful in demonstrating and unraveling the complete Period Doubling structure of the resonances in these four-dimensional maps (two-dimensional beam-beam effect), including the most minute resonances. This is essential for an understanding of such maps. In addition, it is the ''self-similarity'' of these resonances which inspires, and guides, most of our efforts in redesigning the residue criterion mentioned above

  10. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  11. Beam-dynamics driven design of the LHeC energy-recovery linac

    Directory of Open Access Journals (Sweden)

    Dario Pellegrini

    2015-12-01

    Full Text Available The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ∼150  mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  12. Static and dynamic testing of a damaged post tensioned concrete beam

    Directory of Open Access Journals (Sweden)

    Limongelli M.P.

    2015-01-01

    Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.

  13. Use of a standard set of profiles of open fields for photon beams in hand-held calculator (tele)

    International Nuclear Information System (INIS)

    Perez Guevara, Adrian; Rodriguez Zayas, Michael; Reyes Gonzalez, Tommy; Gonzalez Perez, Yelina; Sola Rodriguez, Yeline; Sanchez Zamora, Luis; Caballero, Roberto

    2009-01-01

    Clinical Dosimetry has gone through different stages in their evolution to our days advanced computer programs for treatment planning show the 3D dose distribution, complex algorithms for calculating 3D dose, complex treatment techniques, etc. All this has made the verification field treatment time or dose given to the PTV using calculations manuals are increasingly uncertain, reaching values that can exceed ±10%. It is proposed a calculation tool that uses EXCEL parameters obtained by fitting model profiles open fields. This calculator (TELE) taking information from the fields of PTV and treatments patient anatomical data allows verification of the dose contributions any point, correction of surface heterogeneity of the tissues present in the beam to the point of calculation. (Author)

  14. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  15. Dynamics of Pierce instability of hot electron beams

    International Nuclear Information System (INIS)

    Ignatov, A.M.; Novikov, V.N.

    1986-01-01

    On the base of a new method of numerical solution of the Vlasov equation evolution of complete function of electron distribution at the injection of hot electron beams into plasma bounded with electrodes is investigated. It is shown that despite the development of electrostatic instabilities in the system the currents can run substantially exceeding the Pierce critical current

  16. Body drop into a fluid tank and dynamic loads calculation

    Directory of Open Access Journals (Sweden)

    Komarov Aleksandr Andreevich

    2014-05-01

    Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.

  17. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    Science.gov (United States)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous

  18. Calculation And Design Of A New Configuration For Radiation Shielding At Neutron Beam No.3 For Fundamental And Applied Researches

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Tran Tuan Anh; Nguyen Kien Cuong; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Ngoc Son; Ho Huu Thang

    2011-01-01

    The tangential horizontal channel of No. 3 of the Dalat Research Reactor has been opened and used during the 1990s. The utilizations of the thermal neutron beam at this channel were the Neutron Radiography and the Prompt Gamma Neutron Activation Analysis method (PGNAA). At present, the neutron beam used for nuclear structure data researches based on the Summing of Amplitude Coincident Pulses system (SACP). Beside, several related research equipments have been set up and operated for the research purposes. A renovation of the neutron channel, therefore, will play an important role in safe and effective utilizations of the neutron beam in fields of nuclear physic training and researches. A new configuration for radiation shielding has been simulated by MCNP code. The calculated results of dose rates for neutron and gamma at working positions are in range of dose rate limit. (author)

  19. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    OpenAIRE

    Ju, Minkwan; Oh, Hongseob; Lim, Junhyun; Sim, Jongsung

    2016-01-01

    The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached,...

  20. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory

    Science.gov (United States)

    Hua, Yingyu; Wong, Waion; Cheng, Li

    2018-05-01

    The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.

  1. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  2. Lipid Dynamics Studied by Calculation of 31P Solid-State NMR Spectra Using Ensembles from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh; Vestergaard, Mikkel; Thøgersen, Lea

    2014-01-01

    , for example, order parameters. Therefore, valuable insight into the dynamics of biomolecules may be achieved by the present method. We have applied this method to study the dynamics of lipid bilayers containing the antimicrobial peptide alamethicin, and we show that the calculated 31P spectra obtained...

  3. Dynamic aperture calculation for 100 GeV Au-Au and 250 GeV pp lattices with near third order resonance working point

    International Nuclear Information System (INIS)

    Gu, X.; Luo, Y.; Fischer, W.

    2010-01-01

    In the preparation for the 2011 RHIC 250 GeV polarized proton (pp) run, both experiment and simulation were carried out to investigate the possibility to accelerate the proton beam with a vertical tune near 2/3. It had been found experimentally in Run-9 that accelerating the proton beam with a vertical tune close to 2/3 will greatly benefit the transmission of the proton polarization. In this note, we report the calculated dynamic apertures with the 100 GeV Au run and 250 GeV proton run lattices with vertical tunes close to the third order resonance. We will compare the third order resonance band width between the beam experiment and the simulation with the 100 GeV Au lattices. And we also will compare the calculated resonance band width between the 100 GeV Au and 250 GeV proton run lattices.

  4. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Satadru Das [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Li, Bing, E-mail: cbli@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Fujikake, Kazunori [Department of Civil and Environmental Engineering, National Defense Academy, Yokosuka 239 8686 (Japan)

    2013-06-15

    Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading.

  5. Development of RFQ particle dynamics simulation tools and validation with beam tests

    Energy Technology Data Exchange (ETDEWEB)

    Maus, Johannes M.

    2010-07-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  6. Development of RFQ particle dynamics simulation tools and validation with beam tests

    International Nuclear Information System (INIS)

    Maus, Johannes M.

    2010-01-01

    Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was

  7. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  8. Calculation of Residual Dose Rates and Intervention Scenarios for the LHC Beam Cleaning Insertions-Constraints and Optimization

    CERN Document Server

    Brugger, Markus; Assmann, R W; Forkel-Wirth, Doris; Menzel, Hans Gregor; Roesler, Stefan; Vincke, Helmut H

    2005-01-01

    Radiation protection of the personnel who will perform interventions in the LHC Beam Cleaning Insertions is mandatory and includes the design of equipment and the establishment of work procedures. Residual dose rates due to activated equipment are expected to reach significant values such that any maintenance has to be planned and optimized in advance. Three-dimensional maps of dose equivalent rates at different cooling times after operation of the LHC have been calculated with FLUKA. The simulations are based on an explicit calculation of induced radioactivity and of the transport of the radiation from the radioactive decay. The paper summarizes the results for the Beam Cleaning Insertions and discusses the estimation of individual and collective doses received by personnel during critical interventions, such as the exchange of a collimator or the installation of Phase 2. The given examples outline the potential and the need to optimize, in an iterative way, the design of components as well as the layout of ...

  9. Structural dynamic response of target container against proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  10. Structural dynamic response of target container against proton beam

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro

    1997-01-01

    Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)

  11. Dynamics and adsorption of gas molecules using proton beams

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, E. K.; Lee, J. K.

    2008-04-01

    We irradiated nano sized MgO powders and carbon nanotubes by proton beams with energy of 35 MeV for different dosing time and the difference before and after the irradiation was investigated by using NO and Ar gas adsorptions studies. Particular interest was given to the irradiation of proton beams on quasicrystals made with Ti-Zr-Ni to remove the oxygen layer on the surface of the sample. Quasicrystals are known to exhibit a 5-fold rotational symmetry which is theoretically forbidden in a concept of solid state physics, and have a potential applications on large amount of hydrogen loading due to their structural complexity and chemical affinity with hydrogen. The results are summarized as four major accomplishments. 1) Proton irradiated MgO powders demonstrated the increased number of NO atomic layers in a layer-by-layer fashion suggesting that the surface of the sample became homogeneous compare to the pure samples. 2) the synchrotron based X-ray diffraction data suggests that NO molecules form an 1x1 commensurate structure on MgO (100) surface evidenced by the NO peak location at the Q values of 2.12 A -1 . 3) Proton irradiated SWCNTs exhibit the uniform Ar atomic layer formation suggesting that the surface of the CNTs can be homonized by the proton beam irradiation, and 4) 20 MeV of proton beam can effectively remove the oxygen layer on metal oxides so that Ti-Zr-Ni quasicrystals can load a large amount of hydrogen (exceeding to the density of liquid hydrogen) at room temperature.

  12. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  13. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  14. Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    CERN Document Server

    Goddard, B; Presland, A; Weterings, W

    2006-01-01

    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.

  15. Recent Progress on the Marylie/Impact Beam Dynamics Code

    International Nuclear Information System (INIS)

    Ryne, R.D.; Qiang, J.; Bethel, E.W.; Pogorelov, I.; Shalf, J.; Siegerist, C.; Venturini, M.; Dragt, A.J.; Adelmann, A.; Abell, D.; Amundson, J.; Spentzouris, P.; Neri, F.; Walstrom, P.; Mottershead, C.T.; Samulyak, R.

    2006-01-01

    MARYLIE/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of MARYLIE with the parallel Particle-In-Cell capabilities of IMPACT. In addition to combining the capabilities of these codes, ML/I has a number of powerful features, including a choice of Poisson solvers, a fifth-order rf cavity model, multiple reference particles for rf cavities, a library of soft-edge magnet models, representation of magnet systems in terms of coil stacks with possibly overlapping fields, and wakefield effects. The code allows for map production, map analysis, particle tracking, and 3D envelope tracking, all within a single, coherent user environment. ML/I has a front end that can read both MARYLIE input and MAD lattice descriptions. The code can model beams with or without acceleration, and with or without space charge. Developed under a US DOE Scientific Discovery through Advanced Computing (SciDAC) project, ML/I is well suited to large-scale modeling, simulations having been performed with up to 100M macroparticles. The code inherits the powerful fitting and optimizing capabilities of MARYLIE augmented for the new features of ML/I. The combination of soft-edge magnet models, high-order capability, space charge effects, and fitting/optimization capabilities, make ML/I a powerful code for a wide range of beam optics design problems. This paper provides a description of the code and its unique capabilities

  16. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  17. Beam dynamics in a TeV linear collider

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1984-01-01

    The author's group at KEK has investigated the feasibility of an electron-positron linear collider of 1x1 TeV region using the Lasertron. In this report, three major problems are discussed. That is, beam-beam interaction; beam instability in the linac; and the damping ring. As the most important parameter, the luminosity of the linear collider is analyzed, taking into account the pinch effect and the beamstrahlung. The problems in the development of final focusing system are also considered. As for the wake field in the linac, the transverse wake field is more important than the longitudinal one. The misalignment of cavity is discussed as a cause of inducing the transverse wake field. Finally, the design requirement for the damping ring is considered, and the values of some important design parameters are given: These include energy, radius, bending radius, number of bunch, transverse damping time, natural emittance, vertical-horizontal coupling, the time constant of extraction kicker, and the structure of the FODO cell. (Aoki, K.)

  18. Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations

    Directory of Open Access Journals (Sweden)

    J. Xu

    2007-01-01

    Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.

  19. Calculation of uncertainties in the protocol of dosimetry for Co 60 beams in Radiotherapy

    International Nuclear Information System (INIS)

    Velazquez M, S.; Carrera M, F.; Sanchez S, J.

    1998-01-01

    The objective in this work is to show how the uncertainty is possible to know in the determination of the absorbed dose in Co 60 photon beams and to establish in a rational form, tolerance levels for this. It is took as base the spanish protocol of dosimetry in Radiotherapy. We have been centered in a Co 60 beam. We utilized the statistical theory of little samples. We allowed to suggest a new approach about the treatment of the tolerance levels and the uncertainty of the measurement. After two years of experience in the practical hospitable application we have gotten to put around 1 % uncertainty in the absolute dosimetry of the Co 60 beam. The presented protocol allows to execute the accuracy requirements in the determination of absorbed doses. (Author)

  20. Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)

    2012-04-16

    Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.

  1. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    International Nuclear Information System (INIS)

    Slopsema, R. L.; Flampouri, S.; Yeung, D.; Li, Z.; Lin, L.; McDonough, J. E.; Palta, J.

    2014-01-01

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  2. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.; Li, Z. [University of Florida Proton Therapy Institute, 2015 North Jefferson Street, Jacksonville, Florida 32205 (United States); Lin, L.; McDonough, J. E. [Department of Radiation Oncology, University of Pennsylvania, 3400 Civic Boulevard, 2326W TRC, PCAM, Philadelphia, Pennsylvania 19104 (United States); Palta, J. [VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298 (United States)

    2014-09-15

    Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations to the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of

  3. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Science.gov (United States)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  4. Beams dynamics optimisation of LINAC4 structures for increased operational flexibility

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J

    2010-01-01

    Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...

  5. SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.

    Science.gov (United States)

    Yuan, Y; Duan, J; Popple, R; Brezovich, I

    2012-06-01

    To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.

  6. Calculation of beam source geometry of electron accelerator for radiation technologies

    International Nuclear Information System (INIS)

    Balalykin, N.I.; Derendyaev, Yu.S.; Dolbilov, G.V.; Karlov, A.A.; Korenev, S.A.; Petrov, V.A.; Smolyakova, T.F.

    1994-01-01

    ELLIPT and GRAFOR programmes written in FORTRAN language were developed to calculate the geometry of an electron source. The programmes enable calculation of electromagnetic field of the source and electron trajectories in the source under preset boundary and initial conditions. The GRAFOR programme allows to display electric field curves and calculated trajectories of large particles. 4 refs., 1 fig

  7. Evaluation of a dose distribution calcul algorithm in patients treated photons beams in radiotherapy

    International Nuclear Information System (INIS)

    Castellanos, M. E.; Barreto, G.

    2001-01-01

    The acceptance criteria proposed by J. Van Dyck et. al. is fulfilled in the case of symmetrical fields, while in the asymmetric ones a particular evaluation is required, taking in counts the possibility of a flattening filter influence of beam quality outside the central axis [es

  8. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... with a rotationally flexible root and carrying a lumped mass at an intermediate position along its span. Based on the simple EBM, the variational integral of the non-linear conservative system is established, and the Fourier series expansion is employed to address the governing algebraic equations. An alternate...

  9. Global dynamics and control of a comprehensive nonlinear beam equation

    International Nuclear Information System (INIS)

    You Yuncheng; Taboada, M.

    1994-01-01

    A nonlinear hinged extensible elastic beam equation with the structural damping and Balakrishnan-Taylor damping of full exponent is studied as a general model for large space structures. It is proved that there exists an absorbing set in the energy space and that there exist inertial manifolds whose exponential attracting rates however are nonuniform. The control spillover problem associated with the stabilization of this equation is resolved by constructing a linear finite-dimensional feedback control based on the existence of inertial manifolds of the uncontrolled equation. Moreover, the results obtained are robust with respect to uncertainty in the structural parameters. (author). 5 refs

  10. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA

  11. Imaging properties of scintillators for heavy-ion-beams and related model calculations

    International Nuclear Information System (INIS)

    Guetlich, Eiko

    2011-08-01

    This thesis is treating the imaging properties of scintillating screens for high-current ion beams as delivered by the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, Germany. Scintillating screens are mainly used to measure and rate the tansversal beam parameters in nearly every particle accelerator. During daily operation, scintillating screens can be used to determine and optimize the position of the beam inside the beam-pipe as well as the transversal intensity distribution. Although scintillating screens are widely used in many measurement systems, their imaging properties are not well characterized. Within the framework of this thesis, accelerator based experiments were planed and carried out which allowed to compare the results of beam profile measurements of the different materials with reference methods. Parameters such as the screen temperature and particle energies have been varied. Additionaly, possible image distortions within the optical system have been investigated. To determine the influence of the emission spectra of the screens onto the profile measurement a novel experimental setup for the spectroscopic investigations has been established. The setup allows to investigate the emission spectrum along one spatial axes on the beamspot. The investigations focus on ceramic materials such as zirconium oxide doped e.g. with Mg (ZrO 2 :Mg) or aluminium oxide (Al 2 O 3 ). The materials have been irradiated with different ion species (e.g. Calcium and Uranium) with kinetic energies of 4.8 MeV/u (10% c) and 11.4 MeV (15% c). The results for different parameters are discussed and interpreted. The measured beam profiles show dependences of four parameters: - The material itself. - The screen temperature. - The accumulated fluence [ (Ions)/(cm 2 )]. - The excitation density [(Electron-Hole-Pairs)/(cm 3 )], which is proportional to the dose rate [(J)/(kg . s)] within the volume element. Among the above, the last one depends on the

  12. Fast computation of statistical uncertainty for spatiotemporal distributions estimated directly from dynamic cone beam SPECT projections

    International Nuclear Information System (INIS)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2001-01-01

    The estimation of time-activity curves and kinetic model parameters directly from projection data is potentially useful for clinical dynamic single photon emission computed tomography (SPECT) studies, particularly in those clinics that have only single-detector systems and thus are not able to perform rapid tomographic acquisitions. Because the radiopharmaceutical distribution changes while the SPECT gantry rotates, projections at different angles come from different tracer distributions. A dynamic image sequence reconstructed from the inconsistent projections acquired by a slowly rotating gantry can contain artifacts that lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying regions of interest on the images. If cone beam collimators are used and the focal point of the collimators always remains in a particular transaxial plane, additional artifacts can arise in other planes reconstructed using insufficient projection samples [1]. If the projection samples truncate the patient's body, this can result in additional image artifacts. To overcome these sources of bias in conventional image based dynamic data analysis, we and others have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modeling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view [2-8]. In our previous work we developed a computationally efficient method for fully four-dimensional (4-D) direct estimation of spatiotemporal distributions from dynamic SPECT projection data [5], which extended Formiconi's least squares algorithm for reconstructing temporally static distributions [9]. In addition, we studied the biases that result from modeling various orders temporal continuity and using various time samplings [5]. the present work, we address computational issues associated with evaluating the statistical uncertainty of

  13. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James [Univ. of New Mexico, Albuquerque, NM (United States); Lau, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Heinemann, Klaus [Univ. of New Mexico, Albuquerque, NM (United States); Bizzozero, David [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-03-12

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused

  14. Implementation of an algorithm for absorbed dose calculation in high energy photon beams at off axis points

    International Nuclear Information System (INIS)

    Matos, M.F.; Alvarez, G.D.; Sanz, D.E.

    2008-01-01

    Full text: A semiempirical algorithm for absorbed dose calculation at off-axis points in irregular beams was implemented. It is well known that semiempirical methods are very useful because of their easy implementation and its helpfulness in dose calculation in the clinic. These methods can be used as independent tools for dosimetric calculation in many applications of quality assurance. However, the applicability of such methods has some limitations, even in homogeneous media, specially at off axis points, near beam fringes or outside the beam. Only methods derived from tissue-air-ratio (TAR) or scatter-maximum-ratio (SMR) have been devised for those situations, many years ago. Despite there have been improvements for these manual methods, like the Sc-Sp ones, no attempt has been made to extend their usage at off axis points. In this work, a semiempirical formalism was introduced, based on the works of Venselaar et al. (1999) and Sanz et al. (2004), aimed to the Sc-Sp separation. This new formalism relies on the separation of primary and secondary components of the beam although in a relative way. The data required by the algorithm are reduced to a minimal, allowing for experimental easy. According to modern recommendations, reference measurements in water phantom are performed at 10 cm depth, keeping away electron contamination. Air measurements are done using a mini phantom instead of the old equilibrium caps. Finally, the calculation at off-axis points are done using data measured on the central beam axis; but correcting the results with the introduction of a measured function which depends on the location of the off axis point. The measurements for testing the algorithm were performed in our Siemens MXE linear accelerator. The algorithm was used to determine specific dose profiles for a great number of different beam configurations, and the results were compared with direct measurements to validate the accuracy of the algorithm. Additionally, the results were

  15. Validation of flexible multibody dynamics beam formulations using benchmark problems

    NARCIS (Netherlands)

    Bauchau, O.A.; Wu, Genyong; Betsch, P.; Cardona, A.; Gerstmayr, J.; Jonker, Jan B.; Masarati, P.; Sonneville, V.

    2016-01-01

    As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the

  16. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  17. Monte Carlo electron-transport calculations for clinical beams using energy grouping

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S P; Anderson, D W; Lindstrom, D G

    1986-01-01

    A Monte Carlo program has been utilized to study the penetration of broad electron beams into a water phantom. The MORSE-E code, originally developed for neutron and photon transport, was chosen for adaptation to electrons because of its versatility. The electron energy degradation model employed logarithmic spacing of electron energy groups and included effects of elastic scattering, inelastic-moderate-energy-loss-processes and inelastic-large-energy-loss-processes (catastrophic). Energy straggling and angular deflections were modeled from group to group, using the Moeller cross section for energy loss, and Goudsmit-Saunderson theory to describe angular deflections. The resulting energy- and electron-deposition distributions in depth were obtained at 10 and 20 MeV and are compared with ETRAN results and broad beam experimental data from clinical accelerators.

  18. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David

    2003-01-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations

  19. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-01-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1km long SSC arc section where the beam tube pressure in one of the dipoles is increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very high locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the cold mass due to beam-gas scattering remains low despite the increase in the beam tube temperature

  20. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-03-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1 km long SSC arc section where the beam tube pressure in one of the dipoles in increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1 W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the coldmass due to beam-gas scattering remains low despite the increase in the beam tube temperature