WorldWideScience

Sample records for beam dump radiation

  1. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  2. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  3. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  4. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  5. Detailed mechanical design of the LIPAc beam dump radiological shielding

    Energy Technology Data Exchange (ETDEWEB)

    Nomen, Oriol, E-mail: onomen@irec.cat [IREC, Barcelona, Catalonia (Spain); CDEI-UPC, Barcelona, Catalonia (Spain); Martínez, José I.; Arranz, Fernando; Iglesias, Daniel; Barrera, Germán; Brañas, Beatriz [CIEMAT, Madrid (Spain); Ogando, Francisco [UNED, Madrid (Spain); Molla, Joaquín [CIEMAT, Madrid (Spain); Sanmartí, Manel [IREC, Barcelona, Catalonia (Spain)

    2013-10-15

    Highlights: ► Mechanical design of the IFMIF LIPAc beam dump shielding has been performed. ► Lead shutter design performed to shield radiation from beam dump when LIPAc is off. ► External loads, working and dismantling conditions, included as design constraints. -- Abstract: The LIPAc is a 9 MeV, D{sup +} linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings, water tanks and gray cast iron rings. A lead shutter has also been designed to shield the gamma radiation that comes through the beam tube when the linear accelerator is not in operation, in order to allow access inside the building for maintenance tasks. The present work summarizes the detailed mechanical design of the beam dump shielding and the lead shutter taking into account the design constraints, such as working conditions and other external loads, as well as including provisions for dismantling.

  6. Chevron beam dump for ITER edge Thomson scattering system

    International Nuclear Information System (INIS)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-01-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated

  7. Chevron beam dump for ITER edge Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Vayakis, G. [ITER Organization, 13115 St Paul Lez Durance Cedex (France)

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  8. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  9. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  10. A high average power beam dump for an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianghong, E-mail: xl66@cornell.edu [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States); Bazarov, Ivan; Dunham, Bruce M.; Kostroun, Vaclav O.; Li, Yulin; Smolenski, Karl W. [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    The electron beam dump for Cornell University's Energy Recovery Linac (ERL) prototype injector was designed and manufactured to absorb 600 kW of electron beam power at beam energies between 5 and 15 MeV. It is constructed from an aluminum alloy using a cylindrical/conical geometry, with water cooling channels between an inner vacuum chamber and an outer jacket. The electron beam is defocused and its centroid is rastered around the axis of the dump to dilute the power density. A flexible joint connects the inner body and the outer jacket to minimize thermal stress. A quadrant detector at the entrance to the dump monitors the electron beam position and rastering. Electron scattering calculations, thermal and thermomechanical stress analysis, and radiation calculations are presented.

  11. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  12. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  13. Irradiation Effects on RIA Fragmentation Cu Beam Dump

    CERN Document Server

    Reyes, Susana; Boles, Jason; Stein, Werner; Wirth, Brian

    2005-01-01

    Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks...

  14. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  15. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  16. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    International Nuclear Information System (INIS)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-01-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  17. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian [Extreme Light Infrastructure - Nuclear Physics / Horia Hulubei National Institute for R& D in Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2016-03-25

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  18. Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac

    CERN Document Server

    Sinclair, Charles K; Smith, Colin H

    2005-01-01

    The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun test...

  19. Design of the MI40 beam-abort dump

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.; Russell, A.D.

    1995-05-01

    A beam-abort dump for the Fermilab Main Injector to handle 3E13 protons per pulse at 150 Gev has been designed. A 120 GeV beam line goes through the beam-dump off-set by 27cm from its center. The design and the environmental safety aspects of the beam-dump are described here

  20. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  1. Initial results from beam commissioning of the LHC beam dump system

    CERN Document Server

    Goddard, B; Carlier, E; Ducimetière, L; Gallet, E; Gyr, M; Jensen, L; Jones, R; Kain, V; Kramer, T; Lamont, M; Meddahi, M; Mertens, V; Risselada, Thys; Uythoven, J; Wenninger, J; Weterings, W

    2010-01-01

    Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of the extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

  2. LHC beam dump system Consequences of abnormal operation

    CERN Document Server

    Kramer, T; Uythoven, J

    2010-01-01

    The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed.

  3. The charged beam dumps for the international linear collider

    CERN Document Server

    Appleby, R; Broome, T; Densham, C; Vincke, H

    2006-01-01

    The baseline configuration of the International Linear Collider requires 2 beam dumps per interaction region, each rated to 18MW of beam power, together with additional beam dumps for tuning purposes and machine protection. The baseline design uses high pressure moving water dumps, first developed for the SLC and used in the TESLA design, although a gas based dump is also being considered. In this paper we discuss the progress made by the international community on both physics and engineering studies for the beam dumps.

  4. Beam dump experiments at the AGS

    International Nuclear Information System (INIS)

    Soukas, A.; Bregman, M.; Galik, R.

    1978-01-01

    Searches for the prompt production of weak or semi-strongly interacting particles in a neutrino beam dump and their subsequent interaction or decay were performed at the AGS. The experiment is detailed using the totally active liquid scintillator detector, and mention the results of the spark chamber detector. An exposure of a copper beam dump to two orders of magnitude more protons than in previous searches at 28 GeV has yielded 104 neutrino-like events in the detector. The events from the beam dump are compared directly with those from π and K decay neutrinos produced concurrently in the normal long neutrino decay path following a 15 cm brass target. The characteristics of the events are similar. However, when compared to the rate of events predicted by scaling the 15 cm target yields, the beam dump data show an excess of 45 +- 16 events. The excess events from the beam dump appear to deposit energies greater than or equal to 1 GeV. Their source remains puzzling. Future experiments at the AGS could verify the existence of the effect, decrease the uncertainty in the predicted number of events from 30 to 10% by directly measuring the pion absorption length with a variable density target, search for threshold effects, and measure the sign of the charge of the existing muons. 22 references

  5. Beam-dump kicker magnets

    International Nuclear Information System (INIS)

    Bulos, F.; Odian, A.; Tomlin, B.

    1983-01-01

    The beam-dump kicker magnets are located in the final focus region and, in conjunction with septum magnets, extract the beams after they have passed the interaction point (IP) and direct them to their respective dumps. Two schemes for these kickers have been under consideration; ferrite transmission line magnets utilizing technology common with damping rings and positron target kickers, and current loop magnets which are possible only for the dump kickers, where the rise time of the magnetic pulse can be comparatively longer; approximately 400 nanoseconds as compared with 50 nanoseconds for the others. A prototype ferrite kicker has been built and is undergoing tests. Since the current loop requires lower voltage and power plus some additional savings in cost, we decided to build and test a prototype. This note describes in detail an optimized design for the current loop magnets and their associated pulse circuitry

  6. Energy deposition profile for modification proposal of ISOLDE’s HRS Beam Dump, from FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    The current ISOLDE HRS beam dump has been found to be unsuitable on previous simulations, due to thermomechanical stresses. In this paper a proposal for modifying HRS dump is studied using FLUKA. The energy deposited in this modified beam dump and the amount of neutrons streaming to the tunnel area are scored and compared with the simulation of current dump. Two versions of the modification have been assessed, determining which of them is more desirable in terms of influence of radiation on ISOLDE’s tunnel. Finally, a rough estimate of temperature raise in the modified dump is shown. Further conclusions on the adequacy of these modifications need to include the thermomechanical calculations’ results, based on those presented here.

  7. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  8. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  9. Challenges and Plans for Injection and Beam Dump

    Science.gov (United States)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  10. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  11. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  12. The IFMIF-EVEDA accelerator beam dump design

    International Nuclear Information System (INIS)

    Iglesias, D.; Arranz, F.; Arroyo, J.M.; Barrera, G.; Branas, B.; Casal, N.; Garcia, M.; Lopez, D.; Martinez, J.I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 x 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  13. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  14. Resonant production of dark photons in positron beam dump experiments

    Science.gov (United States)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  15. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  16. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  17. ALPtraum. ALP production in proton beam dump experiments

    International Nuclear Information System (INIS)

    Doebrich, Babette; Jaeckel, Joerg

    2015-12-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  18. New concept for a high-power beam dump

    International Nuclear Information System (INIS)

    Moir, R.W.; Taylor, C.E.

    1980-01-01

    A new concept for a dump for the ion and neutral beams used in the controlled nuclear fusion program uses thin sheets of a refractory metal such as tungsten formed into troughs having semi-circular cross sections. High-velocity water flowing circumferentially removes heat by subcooled nucleate boiling. Possible advantages are modular construction, lower water-pumping power, and a lower pressure drop than in conventional beam dumps. An example design calculation is shown for a dump capable of absorbing an incident flux of 10 kW/cm 2

  19. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  20. Design of the LHC beam dump

    International Nuclear Information System (INIS)

    Ferrari, A.; Stevenson, G.R.; Weisse, E.

    1992-01-01

    The severe constraints on the beam dumping system for the proposed Large Hadron Collider (LHC) arising from the beam energy (7.7 TeV) and intensity (5x10 14 protons) call for unusual procedures to dilute the beam. Monte-Carlo cascade simulations which calculated the effectiveness of thin scatterers placed upstream of the main absorber have been corrected and updated. Results are also presented concerning the optimization of the thicknesses of such scatterers. These show that a combined sweeping plus double-scatterer system gives a reasonable safety margin. A system combining the sweeping procedure with a dump where the absorber blocks are interleaved with air gaps could produce comparable dilution of the deposited energy. (author) 6 refs.; 3 figs

  1. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm 2 anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies

  2. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  3. Dilution kicker for the SPS beam dump

    CERN Multimedia

    1974-01-01

    In order to reduce thermal stress on the SPS dump material, the fast-ejected beam was swept horizontally across the dump. This was done with the "dilution kicker" MKDH, still in use at the time of writing. The person on the left is Manfred Mayer. See also 7404072X.

  4. External post-operational checks for the LHC beam dumping system

    International Nuclear Information System (INIS)

    Magnin, N.; Baggiolini, V.; Carlier, E.; Goddard, B.; Gorbonosov, R.; Khasbulatov, D.; Uythoven, J.; Zerlauth, M.

    2012-01-01

    The LHC Beam Dumping System (LBDS) is a critical part of the LHC machine protection system. After every LHC beam dump action the various signals and transient data recordings of the beam dumping control systems and beam instrumentation measurements are automatically analysed by the external Post-Operational Checks (XPOC) system to verify the correct execution of the dump action and the integrity of the related equipment. This software system complements the LHC machine protection hardware, and has to ascertain that the beam dumping system is 'as good as new' before the start of the next operational cycle. This is the only way by which the stringent reliability requirements can be met. The XPOC system has been developed within the framework of the LHC 'Post-Mortem' system, allowing highly dependable data acquisition, data archiving, live analysis of acquired data and replay of previously recorded events. It is composed of various analysis modules, each one dedicated to the analysis of measurements coming from specific equipment. This paper describes the global architecture of the XPOC system and gives examples of the analyses performed by some of the most important analysis modules. It explains the integration of the XPOC into the LHC control infrastructure along with its integration into the decision chain to allow proceeding with beam operation. Finally, it discusses the operational experience with the XPOC system acquired during the first years of LHC operation, and illustrates examples of internal system faults or abnormal beam dump executions which it has detected. (authors)

  5. Upgrade of the LHC Beam Dumping Protection Elements

    CERN Document Server

    Weterings, W; Balhan, B; Borburgh, J; Goddard, B; Maglioni, C; Versaci, R

    2012-01-01

    The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.

  6. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  7. Design studies of the LHC beam dump

    CERN Document Server

    Zazula, J M

    1997-01-01

    This paper is a compilation of the results of the recent 5 years studies of the beam dump system for the LHC proton collider at CERN, with a special emphasis on feasibility of the central absorber. Simulations of energy deposition by particle cascades, optimisation of the beam sweeping system and core layout, and thermal analysis have been completed; the structural deformation, stress and vibration analyses are well advanced, and a new concept of the shielding design has recently been approved. The material characteristics, geometry, performance parameters and safety precautions for different components of the beam dump are actually close to completion, which augurs well for the start of construction work according to schedule.

  8. Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-Triggering Lines

    CERN Document Server

    Gabourin, S; Denz, R; Magnin, N; Uythoven, J; Wollmann, D; Zerlauth, M; Vatansever, V; Bartholdt, M; Bertsche, B; Zeiler, P

    2014-01-01

    To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a rel...

  9. Results from the LHC Beam Dump Reliability Run

    CERN Document Server

    Uythoven, J; Carlier, E; Castronuovo, F; Ducimetière, L; Gallet, E; Goddard, B; Magnin, N; Verhagen, H

    2008-01-01

    The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the whole system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations.

  10. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  11. Changes to the LHC Beam Dumping System for LHC Run 2

    CERN Document Server

    Uythoven, Jan; Borburgh, Jan; Carlier, Etienne; Gabourin, Stéphane; Goddard, Brennan; Magnin, Nicolas; Senaj, Viliam; Voumard, Nicolas; Weterings, Wim

    2014-01-01

    The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance by comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown in order to further improve its safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronisation system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.

  12. Properties and interactions of neutrino (1977-1980) beam dump experiments

    International Nuclear Information System (INIS)

    Tsukerman, I.S.

    1981-01-01

    Data on search of instantaneous muon and electron neutrinos in experiments of beam dump type are presented in the review. Neutrino is formed in decays of particles rusulted from pN interactions. First experiments of the dump beam type have been realized at the CERN/SPS accelerator in 1975 and Serpukhov accelerator by the ITEF-IFVE group in 1977 with proton energies of 26 and 70 GeV, respectively. The results of beam dump experiments of the second generation in 1979 in CERN are considered in detail. These experiments have been intended for measuring the effect of instantaneous neutrino. The conclusion is drawn on the presence of instantaneous muon neutrinos in the above experiments [ru

  13. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Gil, C. S.; Kim, J. H.; Kim, D. H.

    2007-01-01

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  14. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab: an update on PR12-16-001

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Istituto Nazionale di Fisica Nucleare (INFN), Genova (Italy); et. al.

    2017-12-07

    This document is an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016 reporting progress in addressing questions raised regarding the beam-on backgrounds. The concerns are addressed by adopting a new simulation tool, FLUKA, and planning measurements of muon fluxes from the dump with its existing shielding around the dump. First, we have implemented the detailed BDX experimental geometry into a FLUKA simulation, in consultation with experts from the JLab Radiation Control Group. The FLUKA simulation has been compared directly to our GEANT4 simulations and shown to agree in regions of validity. The FLUKA interaction package, with a tuned set of biasing weights, is naturally able to generate reliable particle distributions with very small probabilities and therefore predict rates at the detector location beyond the planned shielding around the beam dump. Second, we have developed a plan to conduct measurements of the muon ux from the Hall-A dump in its current configuration to validate our simulations.

  15. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.

  16. Safety Analysis of the Movable Absorber TCDQ in the LHC Beam Dumping System

    CERN Document Server

    Filippini, R

    2009-01-01

    The LHC Beam Dumping System nominally dumps the beam synchronously with the passage of the particle free beam abort gap at the beam dump extraction kickers. In the case of an asynchronous beam dump the TCDQ absorber protects the machine aperture. It is a single sided collimator, positioned close to the beam and it has to follow the beam position and beam size during the energy ramp. This report assesses the different failure scenarios of TCDQ positioning and their likelihood. The failure probability for the two TCDQ systems together is estimated to be 3.6 E-05 (mean value) for one year of LHC operation. This corresponds to a SIL4 safety level, which is considered sufficient. The three dominant failure modes are highlighted. The calculated failure probability refers to scenarios that are generated and developed inside the TCDQ system. Potential failure sources not included are the interaction with external systems: the transmission of the start signal to the PLC from a dedicated timing card and the manual opti...

  17. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  18. Calibration Measurements of the LHC Beam Dumping System Extraction Kicker Magnets

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Gräwer, G; Olivieri, F; Pereira, L; Vossenberg, Eugène B

    2006-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. They have been produced, tested and calibrated by measuring the integrated magnetic field and the magnet current at different beam energies. The calibration data have been analysed, and the critical parameters are compared with the specifications. Implications for the configuration, control and operation of the beam dumping system are discussed.

  19. Experimental use of neutrinos from ISABELLE beam dumps

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Thorndike, A.M.; Mann, A.K.

    1978-01-01

    The technical feasibility and possible applicability of using ISABELLE beam dumps as powerful sources for directed high-energy neutrino bursts are investigated. In the present machine design two dump systems are applied to absorb the extracted fast beams. The expected normal beam extraction rate is 1 to 2 per day, when about (6.3 to 7.5) x 10 14 protons are hitting the external targets during a pulse length of approx. 50 μs. These protons are considered so far to be useless. The neutrinos produced could be used for the following activities: the study of coherent neutrino regeneration, calibration and permanent testing of cosmic-ray and astrophysical neutrino detectors, research on the practical applicability of neutrinos in telecommunication, and certain astro- and geophysical applications. Tailoring the system to meet these activities is illustrated. 6 figures

  20. Ion beam dump for JT-60 NBI

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Horiike, Hiroshi; Matsuda, Shinzaburo; Morita, Hiroaki; Shibanuma, Kiyoshi

    1981-10-01

    The design of the active cooling type ion beam dump for JT-60 NBI which receives the total beam power of 5.6 MW for 10 sec continuously is described. It is composed of array of many finned tubes which is made of oxygen free copper with 0.2% silver content. The safety margin against thermal and mechanical troubles is estimated by the heat transfer and the thermal stress calculation. (author)

  1. The radiation hazard from the tantalum dumps in Penang

    International Nuclear Information System (INIS)

    1989-01-01

    The radiation level at the dumps are well above background. The readings taken on the dumps themselves range from 1000 mrem/year to 5860 mrem/year. The radiation levels in the houses close to the dump at Hill Railway Road were much lower, in the range of 160 mrem/year to 335 mrem/year. However, the level recorded at a house on Medan Tembaga is higher, being around 650 mrem/year. It is worth noting that the maximum permissible dose as recommended by the International Commission on Radiological Protection for the general public is 500 mrem/year and the average background radiation level is around 80-90 mrem/year. (author)

  2. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. lt is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. lt is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missing MKD elements. Therefore a sophisticated simulation environment was developed based on the use of the MAD-X tracking code. A system of tracking jobs was set up to study failure cases and losses for various dump events. Those jobs can be distributed to available CPU power and be calculated in parallel. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated including an asynchronous dump action, prefire cases, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setup and operation of these protection elements are discussed. Particle distributions can be created according to the used orbit. Simulations with different orbit parameters (including magnet field errors, beam position read out errors

  3. PEP radiation shielding tests in SLAC A Beam

    International Nuclear Information System (INIS)

    Ash, W.; DeStaebler, H.; Harris, J.; Jenkins, T.; Murray, J.

    1977-09-01

    Radiation shielding tests designed to simulate possible conditions in and around the PEP experimental halls were conducted. The SLAC A Beam was targeted in the block tunnel at a point about midway between End Station A and Beam Dump East. At that site it was relatively easy to rearrange the concrete block structure to simulate the various shielding configurations under consideration for PEP. Extensive surveys of neutron and ionizing radiation were made. Complete results of the shielding tests are given

  4. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    International Nuclear Information System (INIS)

    Maslov, M.; Sychev, V.; Schmitz, M.

    2006-08-01

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10 13 electrons in combination with a large amount of dissipated power density (∼1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at σ beam ≥2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  5. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, M.; Sychev, V. [Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Schmitz, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10{sup 13} electrons in combination with a large amount of dissipated power density ({approx}1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at {sigma}{sub beam}{>=}2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  6. Beam Dump TIDV #1 - Vacuum Failure of 17 Oct. 97

    CERN Document Server

    Ross, M; CERN. Geneva. SPS and LEP Division

    1997-01-01

    A vacuum leak on the internal beam dump TIDV precipitated its replacement in the LSS1 on Monday the 20th of October 1997, the SPS consequently being shut down for three days. The dump had fulfilled its design function since it was installed in the SPS at the beginning of 1988. Prior to the intervention, the Vacuum Group LHC/VAC carried out a number of leak tests, which led to the decision being taken to replace the dump. After the successful intervention, normal machine operation was resumed. Out-gassing of the ten-year-old replacement was initially high, but vacuum pressure is slowly descending to the SPS standard level.

  7. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  8. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    Science.gov (United States)

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  9. Fluka studies of the Asynchronous Beam Dump Effects on LHC Point 6

    CERN Document Server

    Versaci, R; Goddard, B; Mereghetti, A; Schmidt, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. Using FLUKA Monte Carlo simulations, we have investigated the effects of an asynchronous beam dump at the LHC Point 6 where beams, with a stored energy of 360 MJ, can instantaneously release up to a few J cm^-3 in the cryogenic magnets which have a quench limit of the order of the mJ cm^-3. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump. We will then analyze the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  10. Performance with lead ions of the LHC beam dump system

    CERN Document Server

    Bruce, R; Jensen, L; Lefèvre, T; Weterings, W

    2007-01-01

    The LHC beam dump system must function safely with 208Pb82+ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.

  11. Design and development of multi-megawatt beam dumps

    International Nuclear Information System (INIS)

    Haughian, J.M.; Cooper, W.S.; Paterson, J.A.

    1976-11-01

    The next generation of U.S. fusion experiments which includes TFTR, MFTF, and Doublet III, will utilize neutral-beam injection for plasma heating. TFTR, for example, desires 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration. In order to meet these requirements, a 15-A, 120-keV, 0.5-sec pulse per minute module is presently under test at the neutral-beam test facility at the Lawrence Berkeley Laboratory. A 65-A, 120-keV, 0.5-sec module is under construction and is scheduled for assembly in April of this year. Some of the features of a calorimeter/beam dump that is presently being used in the testing and evaluation of these neutral beam sources are discussed

  12. Fluka Studies of the Asynchronous Beam Dump Effects on LHC Point 6 for a 7 TeV beam

    CERN Document Server

    VERSACI, R; GODDARD, B; MEREGHETTI, A; SCHMIDT, R; VLACHOUDIS, V

    2012-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. Using FLUKA Monte Carlo simulations, we have investigated the effects of an asynchronous beam dump at the LHC Point 6 where beams, with a stored energy of 360 MJ, can instantaneously release up to a few J cm^{-3} in the cryogenic magnets which have a quench limit of the order of the mJ cm^{-3}. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump of a 7 TeV beam. We will then analyze the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  13. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  14. FLUKA Studies of the Asynchronous Beam Dump Effects on LHC Point 6

    CERN Document Server

    Versaci, R; Goddard, B; Schmidt, R; Vlachoudis, V; Mereghetti, A

    2011-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. FLUKA is the most widely used code for this kind of simulations at CERN because of the high reliability of its results and the ease to custom detailed simulations all along hundreds of meters of beam line. We have investigated the effects of an asynchronous beam dump on the LHC Point 6 where, beams with a stored energy of 360 MJ, can instantaneously release up to a few J cm−3 in the cryogenic magnets which have a quench limit of the order of the mJ cm−3. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump. We will then analyse the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  15. Results from beam dump experiments at CERN

    International Nuclear Information System (INIS)

    Conforto, G.

    1981-01-01

    Two series of proton beam dump experiments are discussed. One of the main goals of the experiment was to test the hypothesis that neutrinos produced in such a setting arose entirely from charm production followed by either electronic or muonic decay. While much of the data is difficult to interpret, it does appear that this hypothesis is not an adequate explanation of the results, in particular the ratio of electron neutrinos to muon neutrinos

  16. Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ

    CERN Document Server

    Goddard, B; Sans-Merce, M; Weterings, W

    2004-01-01

    The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. Another, mobile, diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. This paper describes the conceptual design of the protection elements.

  17. Bounds on light gluinos from the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Parker, M. A.; Sarkar, S.; Aderholz, M.; Bostock, P.; Clayton, E. F.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Schmid, P.; Schmitz, N.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Walck, Ch.; Wachsmuth, H.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require ifm g˜$̆4 GeV for ifm q˜ - minw.

  18. Bounds on light gluinos from the BEBC beam dump experiments

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Aderholz, M.; Schmitz, N.; Bostock, P.; Krstic, J.; Faccini-Turluer, M.L.; Vignaud, D.; Graessler, H.; Guy, J.; Venus, W.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Idschok, U.; Kreutzmann, H.; Nellen, B.; Wuensch, B.

    1985-01-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require msub(g tilde) >= 4 GeV for Msub(q tilde) approx.= msub(w). (orig.)

  19. Radiation protection with regard to sea dumping of radioactive waste

    International Nuclear Information System (INIS)

    Sanderse, R.W.; Worst, J.

    1980-01-01

    The Netherlands Energy Research Foundation (ECN) has been dumping into the Atlantic Ocean radioactive waste cast into concrete since 1965. In the report the Health Physics problems with regard to the transport and dumping of the radioactive waste are discussed. In particular to the following points has been paid attention: tasks and working methods of the radiation protection service, dose evaluation for the people involved by two different kinds of dumping methods, doses received by the personal involved, some contamination problems caused by leaking drums. (orig.) [de

  20. Iodine Beam Dump Design and Fabrication

    Science.gov (United States)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  1. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  2. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  3. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    International Nuclear Information System (INIS)

    Battaglieri, M.

    2016-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a ∼ 1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10 22 electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle χ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  4. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Univ. of Genova (Italy). National Institute for Nuclear Physics. et al

    2016-07-05

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  5. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculationsș results

    Directory of Open Access Journals (Sweden)

    Esposito A.

    2017-01-01

    Full Text Available ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays’ source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps’ placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  6. New exclusion limits for dark gauge forces from beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); CPPM, Aix-Marseille Univ. (France). CNRS/IN2P3

    2011-04-15

    We re-analyze proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. We determine new mass and coupling exclusion bounds for dark gauge bosons. (orig.)

  7. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  8. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  9. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  10. Design of a beam dump for the IFMIF-EVEDA accelerator

    International Nuclear Information System (INIS)

    Branas, B.; Iglesias, D.; Arranz, F.; Barrera, G.; Casal, N.; Garcia, M.; Gomez, J.; Lopez, D.; Martinez, J.I.; Martin-Fuertes, F.; Ogando, F.; Oliver, C.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2009-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.13 MW. The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. In this paper, the mechanical analysis and radioprotection calculations that have led to the choice of the main beam dump parameters will be described. The present design is based on a conical beam stop (2.5 m length, 30 cm diameter, and 3.5 mm thickness) made of copper plus a cylindrical 0.5 m long beam scraper. The cooling system is based on an axial high velocity flow of water. This design is compliant with the mechanical design rules during full power stationary operation of the accelerator. The radioprotection calculations performed demonstrate that, with an adequate local shielding, doses during beam on/off phases are below the limits.

  11. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  12. Activation of the IFMIF prototype accelerator and beam dump by deuterons and protons

    Czech Academy of Sciences Publication Activity Database

    Simakov, S. P.; Bém, Pavel; Burjan, Václav; Fischer, U.; Forrest, R.A.; Götz, Miloslav; Honusek, Milan; Klein, H.; Kroha, Václav; Novák, Jan; Sauer, A.; Šimečková, Eva; Tiede, R.

    2008-01-01

    Roč. 83, 10-12 (2008), s. 1543-1547 ISSN 0920-3796 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z10480505 Keywords : IFMIF * Protons and deuterons accelerator * Beam dump Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.828, year: 2008

  13. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  14. Uncoupled thermoelasticity solutions applied on beam dumps

    Directory of Open Access Journals (Sweden)

    A. Ouzia

    2016-06-01

    Full Text Available In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the

  15. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  16. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  17. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  18. The Performance of the New TCDQ System in the LHC Beam Dumping Region

    CERN Document Server

    Presland, Andrew; Weterings, Wim

    2005-01-01

    The superconducting quadrupole magnet Q4 and other downstream LHC machine elements risk destruction in the event of a beam dump that is not synchronised with the abort gap. In order to protect these elements, a single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and iron shield TCDQM, will be installed in front of Q4. This protection system should also intercept spurious particles in the beam abort gap to prevent quenches from occurring during regular beam aborts, and must also intercept the particles from the secondary halo during low beam lifetime without provoking quenches. The conceptual design of the TCDQ system is briefly presented, with the load conditions and performance criteria. The FLUKA simulations are described results discussed in the context of the expected performance levels for LHC operation.

  19. LHC Asynchronous Beam Dump: Study of new TCDQ model and effects on downstream magnets

    CERN Document Server

    Versaci, R; Vlachoudis, V

    2012-01-01

    An asynchronous beam dump is one of the most critical accidents the LHC could face. In the effort to have a better protection of the machine, and to increase the robustness of the protection device itself, new models for the TCDQ (Target Collimator Dump Quadrupole) have been proposed and are under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition on one of the proposed models and on the downstream quadrupoles, MQY.4R6 and MQY.5R6, in order to evaluate the protection provided by the proposed model. The results of our study are compared to a similar one for a different proposed model and are input for the evaluation of the heat load on the proposed collimator.

  20. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  1. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  2. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  3. New limits on hidden photons from past electron beam dumps

    International Nuclear Information System (INIS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-01

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  4. New limits on hidden photons from past electron beam dumps

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-15

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  5. Hidden photons in beam dump experiments and in connection with dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-12-15

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  6. Hidden photons in beam dump experiments and in connection with dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah

    2012-12-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  7. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  8. Evaluation of the Energy Deposition in the event of an Asynchronous Beam Dump for a 7 TeV beam on the new TCDQ model proposed for the LHC

    CERN Document Server

    Versaci, R; CERN. Geneva. ATS Department

    2012-01-01

    An asynchronous beam dump is one of the most critical accident the LHC could face. In the effort to have a better protection of the machine, a new model for the TCDQ (Target Collimator Dump Quadrupole) has been proposed and is under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition. The results of our simulations are also input for the evaluation of the heat load on the collimator.

  9. Design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider

    International Nuclear Information System (INIS)

    Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.

    2012-01-01

    Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×10 10 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.

  10. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  11. Accelerator physics studies on the effects from an asynchronous beam dump onto the LHC experimental region collimators

    CERN Document Server

    Lari, L; Boccone, V; Bruce, R; Cerutti, F; Rossi, A; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A

    2012-01-01

    Asynchronous beam aborts at the LHC are estimated to occur on average once per year. Accelerator physics studies of asynchronous dumps have been performed at different beam energies and beta-stars. The loss patterns are analyzed in order to identify the losses in particular on the Phase 1 Tertiary Collimators (TCT), since their tungsten-based active jaw insert has a lower damage threshold than the carbon-based other LHC collimators. Settings of the tilt angle of the TCTs are discussed with the aim of reducing the thermal loads on the TCT themselves.

  12. Search for tau-neutrino interactions in the BEBC beam dump experiment

    Science.gov (United States)

    Talebzadeh, M.; Guy, J.; Venus, W.; Aderholz, M.; Barnham, K. W. J.; Bostock, P.; Clayton, E. F.; Cooper-Sarkar, A. M.; Faccini-Turluer, M. L.; Grässler, H.; Hultquist, K.; Hulth, P. O.; Kreutzmann, H.; Krstic, J.; Miller, D. B.; Mobayyen, M. M.; Myatt, G.; Nellen, B.; Parker, M. A.; Schmitz, N.; Sewell, S.; Simopoulou, E.; Vayaki, A.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; BEBC WA66 Collaboration

    A novel and efficient kinematic method is used to estimate the number of ντ charged current interactions with Eν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ντ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P( νe→ ντ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that νe and ντ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high pT photon and a high pT hadron.

  13. Study for a failsafe trigger generation system for the Large Hadron Collider beam dump kicker magnets

    CERN Document Server

    Rampl, M

    1999-01-01

    The 27 km-particle accelerator Large Hadron Collider (LHC), which will be completed at the European Laboratory for Particle Physics (CERN) in 2005, will work with extremely high beam energies (~334 MJ per beam). Since the equipment and in particular the superconducting magnets must be protected from damage caused by these high energy beams the beam dump must be able to absorb this energy very reliable at every stage of operation. The kicker magnets that extract the particles from the accelerator are synchronised with the beam by the trigger generation system. This thesis is a first study for this electronic module and its functions. A special synchronisation circuit and a very reliable electronic switch were developed. Most functions were implemented in a Gate-Array to improve the reliability and to facilitate modifications during the test stage. This study also comprises the complete concept for the prototype of the trigger generation system. During all project stages reliability was always the main determin...

  14. Search for tau-neutrino interactions in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Talebzadeh, M.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Guy, J.; Venus, W.; Cooper-Sarkar, A.M.; Sewell, S.; Bostock, P.; Krstic, J.; Myatt, G.; Simopoulou, E.; Vayaki, A.

    1987-01-01

    A novel and efficient kinematic method is used to estimate the number of ν τ charged current interactions with E ν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ν τ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P(ν c → ν τ ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that ν c and ν τ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high p T photon and a high p T hadron. (orig.)

  15. Search for heavy neutrino decays in the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Haywood, S. J.; Parker, M. A.; Sarkar, S.; Barnham, K. W. J.; Bostock, P.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits | Uøi| 2, | Ue i| 2 < 10 -6-10 -7 are obtained for neutrino mass eigenstates vi of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on | Uøi| 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate v3 in particular, we obtain the limits | Uø3 | 2 < 10 -7-10 -8, | Ue3 | 2 < 10 -9-10 -10 for the mass range 150-190 MeV, assuming the v3 to be produced directly in charmed F meson decays.

  16. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  17. SHiP: a new multipurpose beam-dump experiment at the SPS.

    CERN Document Server

    AUTHOR|(SzGeCERN)387671

    2016-01-01

    SHiP is an experiment to look for very weakly interacting particles at a new to be constructed beam-dum p facility at the CERN SPS. The SHiP Technical Proposal has been submitted to the CERN SPS Committee in April 2015. The 400 GeV/c proton beam extracted from the SPS will be dumped on a heavy target with the aim of integ rating $2\\times 10^{20}$ proton on target in five years. A detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c$^2$. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutral Leptons (HNL). The sensitivity to HNL will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained...

  18. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Guthoff, Moritz; Dabrowski, Anne; De Boer, Wim; Stickland, David; Lange, Wolfgang; Lohmann, Wolfgang

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector ef fi ciency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, becaus...

  19. Performance Studies for Protection Against Asynchronous Dumps in the LHC

    CERN Document Server

    Kramer, T; Bracco, C; Goddard, B; Meddahi, M

    2010-01-01

    The LHC beam dump system has to safely dispose all beams in a wide energy range of 450 GeV to 7 TeV. A 3 ms abort gap in the beam structure for the switch-on of the extraction kicker field ideally allows a loss-free extraction under normal operating conditions. However, a low number of asynchronous beam aborts is to be expected from reliability calculations and from the first year's operational experience with the beam dump kickers. For such cases, MAD-X simulations including all optics and alignment errors have been performed to determine loss patterns around the LHC as a function of the position of the main protection elements in interaction region six. Special attention was paid to the beam load on the tungsten collimators which protect the triplets in the LHC experimental insertions, and the tracking results compared with semi-analytical numerical estimates. The simulations are also compared to the results of beam commissioning of these protection devices.

  20. Results of a beam dump experiment at the CERN SPS neutrino facility

    Directory of Open Access Journals (Sweden)

    T. Hansl

    1978-03-01

    Full Text Available We report results from a beam dump experiment that has been performed at the CERN SPS neutrino facility using the CDHS neutrino counter detector. Limits on dimuon and trimuon production by new penetrating neutral particles are given. A new source of prompt electron and muon neutrinos has been observed giving (1.2±0.4× 10−7 νe or νμ per incident proton with neutrino angle smaller than 1.85 mrad and Eν > 20 GeV. If these prompt neutrinos are attributed to charmed meson pair production, the inclusive DD production cross section could be of the order of 30 ωb. If axions are existing their production rate relative to π0 mesons is found to be less than 0.5 × 10−8.

  1. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  2. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  3. Upgrade of the Super Proton Synchrotron Vertical Beam Dump System

    CERN Document Server

    Senaj, V; Vossenberg, E

    2010-01-01

    The vertical beam dump system of the CERN Super Proton Synchrotron (SPS) uses two matched magnets with an impedance of 2 W and a combined kick strength of 1.152 Tm at 60 kV supply voltage. For historical reasons the two magnets are powered from three 3 W pulse forming networks (PFN) through three thyratronignitron switches. Recently flashovers were observed at the entry of one of the magnets, which lead, because of the electrical coupling between the kickers, to a simultaneous breakdown of the pulse in both magnets. To improve the reliability an upgrade of the system was started. In a first step the radii of surfaces at the entry of the weak magnet were increased, and the PFN voltage was reduced by 4%; the kick strength could be preserved by reducing the magnet termination resistance by 10 %. The PFNs were protected against negative voltage reflections and their last cell was optimised. In a second step the two magnets will be electrically separated and powered individually by new 2 W PFNs with semiconductor ...

  4. Search for Light Dark Matter Produced in a Proton Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Remington Tyler [Indiana Univ., Bloomington, IN (United States)

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  5. Search for heavy neutrino decays in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Haywood, S.J.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Wachsmuth, H.; Barnham, K.W.J.; Mobayyen, M.M.; Talebzadeh, M.; Bostock, P.; Krstic, J.; Graessler, H.

    1985-01-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits vertical strokeUsub(μi)vertical stroke 2 , vertical strokeUsub(ei)vertical stroke 2 -6 -10 -7 are obtained for neutrino mass eigenstates νsub(i) of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on vertical strokeUsub(νi)vertical stroke 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate ν 3 in particular, we obtain the limits vertical strokeUsub(μ3)vertical stroke 2 -7 -10 -8 . vertical strokeUsub(e3)vertical stroke 2 -9 -10 -10 for the mass range 150-190 MeV, assuming the ν 3 to be produced directly in charmed F meson decays. (orig.)

  6. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  7. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  8. Proposal for the award of a contract for the supply of ceramic vacuum chambers for the LHC beam dumping system

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of ceramic vacuum chambers for the LHC beam dumping system. Following a market survey carried out among 22 firms in seven Member States and one firm in the United States, a call for tenders (IT-2765/SL/LHC) was sent on 13 September 2001 to one firm. By the closing date, CERN had received a tender. The Finance Committee is invited to agree to the negotiation of a contract with KYOCERA FINECERAMICS (DE) for the supply of 36 ceramic vacuum chambers for the LHC beam dumping system for a total amount of 681 530 euros (1 013 094 Swiss francs), not subject to revision, with options for six additional vacuum chambers, for an additional amount of 146 768 euros (218 171 Swiss francs), not subject to revision, bringing the total amount to 828 298 euros (1 231 265 Swiss francs), not subject to revision. The rate of exchange which has been used is that applying on the closing date of the call for tenders. The firm has indicated the following distribution by cou...

  9. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  10. Induced radioactivity of materials by stray radiation fields at an electron accelerator

    CERN Document Server

    Rokni, S H; Gwise, T; Liu, J C; Roesler, S

    2002-01-01

    Samples of soil, water, aluminum, copper and iron were irradiated in the stray radiation field generated by the interaction of a 28.5 GeV electron beam in a copper-dump in the Beam Dump East facility at the Stanford Linear Accelerator Center. The specific activity induced in the samples was measured by gamma spectroscopy and other techniques. In addition, the isotope production in the samples was calculated with detailed Monte Carlo simulations using the FLUKA code. The calculated activities are compared to the experimental values and differences are discussed.

  11. Electromagnetic radiation from beam-plasma instabilities

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Whelan, D.A.

    1982-01-01

    This chapter investigates the mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves. Electromagnetic radiation arises from both natural beam-plasma systems (e.g., type III solar bursts and kilometric radiation), and from man-made electron beams injected from rockets and spacecraft. A pulsed magnetized discharge plasma is produced with a 1 m diam. oxide-coated cathode and the discussed experiment is performed in the quiescent afterglow. The primary beam-plasma instability involves the excitation of electrostatic plasma waves. Electromagnetic radiation from the beam-plasma system is observed with microwave antennas outside the plasma (all probes removed) or with coax-fed dipoles which can be inserted radially and axially into the plasma. The physical process of mode coupling by which electromagnetic radiation is generated in an electrostatic beam-plasma instability is identified. The results are relevant to beam injection experiments from rockets or satellites into space plasmas. The limited penetration of the beam current into the plasma due to instabilities is demonstrated

  12. Electromagnetic radiation from beam-plasma instabilities

    Science.gov (United States)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  13. Design and R and D for manufacturing the MITICA Neutraliser and Electron Dump

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sartori, Emanuele; Gonzalez, Winder [Università degli Studi di Padova, Padova (Italy); Tiso, Andrea; Trevisan, Lauro; Zaccaria, Pierluigi [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy)

    2013-10-15

    Highlights: ► Analyses and verifications supporting the design of the MITICA Neutraliser and Electron Dump. ► Instrumentation and control systems have been analysed for protection, calorimetry, interlock. ► Assembly procedure, acceptance tests, and RH compatibility have been verified. ► R and D activities for design validation are ongoing to demonstrate the technical feasibility. -- Abstract: One MeV negative particle beam accelerated in the beam source of the ITER Neutral Beam Injectors (NBIs) will be neutralised in the Neutraliser gas cell. Four narrow beam channels are foreseen in the Neutraliser where the neutralisation process will occur with controlled gas pressure being the four channels delimited by five copper wall panels. Stray particles will be dumped on the copper Electron Dump and CuCrZr leading edges to be installed at the Neutraliser frontal section: the Electron Dump will intercept stray electrons in order to reduce the cryo pump thermal load; enhanced heat transfer in subcooled boiling conditions will occur in the panel leading edges with twisted tapes as turbulence promoters. The copper panels will be thermally controlled by means of embedded cooling circuits; thermo-hydraulic and thermo-mechanical analyses and verifications have been carried out considering several load combinations and satisfying the design rules as for ITER structural design criteria for in vessel components. Gas flow analyses have been carried out with molecular flow in the in-vessel vacuum environment to evaluate the gas pressure profile along the beam line also considering the presence of the Electron Dump. Furthermore, transient analyses of the gas flow inside channels have been performed to simulate the effect of last valve closure; analysis results demonstrate that gas flow variations can be detected by thermal measurements. The Neutraliser assembly, installation, and positioning inside the vacuum vessel have been verified considering alignment requirements and

  14. Observation of an excess of νe, νe events in a beam dump experiment at 400 GeV

    Directory of Open Access Journals (Sweden)

    P. Alibran

    1978-03-01

    Full Text Available A beam dump experiment has been performed at CERN in Gargamelle using the neutrino facility to look for penetrating particles produced either directly in the beam interaction or by prompt decay of new particles. A total of 32 interactions with a visible energy greater than 10 GeV has been found, classified, aftercorrections, into 18 charged current νμ or νμ, 5.1 neutral current and 8.9 νe or νe charged current events. An excess of νe events remains after all subtractions from any established sources. Results are presented in terms of the product of the cross section and the leptonic decay branching ratio of the possible source.

  15. Dump and Current Measurement of Unstripped H`ions at the Injection from the CERN LINAC4 Into the PS Booster

    CERN Document Server

    Chamizo, R; Goddard, B; Mereghetti, A; Versaci, R; Weterings, W

    2010-01-01

    Linac4 is the new H- linear accelerator under construction at CERN aiming to double the brightness of the beam injected to the CERN PS Booster (PSB) for delivering proton beams to experiments or further CERN accelerators, down to the LHC. The injection system in the PSB is based on the H- charge exchange where the 160 MeV H- beam is converted into an H+ beam by stripping the electrons with a carbon foil. A beam dump located inside a pulsed magnet for the injection bump will intercept the unstripped ions (H0 and H-) and measure the collected charge to detect the relative efficiency and degradation of the stripping foil. The challenge of the dump design is to meet the requirements of a beam dump providing a current measurement and at the same time minimizing the perturbation of the magnetic field of the surrounding pulsed magnet. This paper describes all phases of the dump design and the main issues related to its integration in the line.

  16. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  17. Proposal for the award of a contract without competitive tendering for the supply of coaxial high-voltage cable for the LHC beam dumping system

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract without competitive tendering for the supply of two types of coaxial high-voltage cable for the LHC beam dumping system. Following a market survey carried out among 14 firms in four Member States, a call for tenders (IT-2969/SL/LHC) was sent on 10 July 2001 to one firm. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with DRAKA MULTIMEDIA CABLE (DE), the only bidder, for the supply of 14 km of coaxial high-voltage cable for the LHC beam dumping system for a total amount of 530 488 euros (779 900 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 100%.

  18. External Beam Radiation Therapy for Cancer

    Science.gov (United States)

    External beam radiation therapy is used to treat many types of cancer. it is a local treatment, where a machine aims radiation at your cancer. Learn more about different types of external beam radiation therapy, and what to expect if you're receiving treatment.

  19. Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line

    CERN Document Server

    Bergström, Ida; Elfgren, Erik

    2013-06-11

    At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

  20. Dumping convention

    International Nuclear Information System (INIS)

    Roche, P.

    1992-01-01

    Sea dumping of radioactive waste has, since 1983, been precluded under a moratorium established by the London Dumping Convention. Pressure from the nuclear industry to allow ocean dumping of nuclear waste is reported in this article. (author)

  1. Radiation collimator for use with high energy radiation beams

    International Nuclear Information System (INIS)

    Malak, S.P.

    1978-01-01

    A collimator is described for use with a beam of radiation, and in particular, for use in controlling the cross-sectional size and shape of the radiation beam and intercepting undesired off-focus radiation in an x-ray apparatus. The collimator is positioned adjacent to the source of radiation and embodies a plurality longitudinally extending leaves pivotally mounted on and between two supports, the leaves move about their pivots to close overlapping relation to define a hollow cone. The cone defines an aperture at its narrow end which can be adjusted in size and shape by rotation of the two supports which are adaptable to being moved one relative to the other, to cause an expansion or contraction of the hollow cone and correspondingly an increase or decrease of the cross-sectional size and/or shape of the radiation beam passing through the aperture

  2. Ocean dumping of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. The author concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA

  3. Beam systems without failures - What can be done?

    International Nuclear Information System (INIS)

    Solfaroli Camillocci, M.; Uythoven, J.

    2012-01-01

    The beam dumps at 3.5 TeV triggered by interlocks not related to the magnet powering are discussed. This concerns the systems like the RF, the transverse feedbacks, beam instrumentation, beam dumping system, collimators and control systems. An analysis of the reasons of these dumps is presented together with a possible strategy to mitigate the effect of these failures. It is very important to notice that no system has been identified to have any structural problem

  4. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  5. A beam radiation monitoring and protection system for AGS secondary beams

    International Nuclear Information System (INIS)

    Levine, G.S.

    1978-01-01

    A commercially available radiation monitor using a scintillation detector was modified for charged particle beam monitoring. The device controls access to secondary beams of the AGS and limits beam intensity

  6. Radiation Protection Aspects of the Linac Coherent Light Source Front End Enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Vollaire, J.; Fasso, A.; Liu, J.C.; Mao, X.S.; Prinz, A.; Rokni, S.H.; Leitner, M.Santana; /SLAC

    2010-08-26

    The Front End Enclosure (FEE) of the Linac Coherent Light Source (LCLS) is a shielding housing located between the electron dump area and the first experimental hutch. The upstream part of the FEE hosts the commissioning diagnostics for the FEL beam. In the downstream part of the FEE, two sets of grazing incidence mirror and several collimators are used to direct the beam to one of the experimental stations and reduce the bremsstrahlung background and the hard component of the spontaneous radiation spectrum. This paper addresses the beam loss assumptions and radiation sources entering the FEE used for the design of the FEE shielding using the Monte-Carlo code FLUKA. The beam containment system prevents abnormal levels of radiations inside the FEE and ensures that the beam remains in its intended path is also described.

  7. Observation of an excess of nu$_{e}$, n$\\overline{u}_{e}$ events in a beam dump experiment at 400 GeV

    CERN Document Server

    Alibran, P; Arnold, R; Bartley, J H; Bellotti, E; Bertrand, D; Blaes, R; Blondel, A; Blum, D; Bolognese, T; Bonetti, S; Bonneaud, G R; Bourotte, J; Bullock, F W; Burmeister, H; Carnesecchi, G; Cavalli, D; Conforto, G; Degrange, B; Dewit, M; Erriquez, O; Escoubés, B; Fiorini, Ettore; Frodesen, A G; Gillespie, J; Haguenauer, Maurice; Heusse, P; Jacquet, F; Jones, T W; Lutz, A M; Matteuzzi, C; Morfín, J G; Muciaccia, M T; Musset, P; Natali, S; Nguyen-Khac, U; Nuzzo, S; Pascaud, C; Pattison, B; Paty, M; Petitjean, P; Price, M; Pullia, Antonio; Riester, J L; Rognebakke, A; Rollier, M; Romano, F; Sacton, J; Skjeggestad, O; Sleeman, J C; Van Doninck, W K; Vialle, J P; Weerts, H; Welch, L; Willutzky, M; Zanotti, L

    1978-01-01

    A beam dump experiment has been performed at CERN in Gargammelle using the neutrino facility to look for penetrating particles produced either directly in the beam interaction or by prompt decay of new particles. A total of 32 interactions with a visible energy greater than 10 GeV has been found, classified, after corrections, into 18 charged current nu /sub mu / or nu /sub mu /, 5.1 neutral current and 8.9 nu /sub e/ or nu /sub e/ charged current events. An excess of nu /sub e/ events remains after all subtractions from any established sources. Results are presented in terms of the product of the cross section and the leptonic decay branching ratio of the possible source. (11 refs).

  8. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  9. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  10. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  11. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  12. The Conceptional Design of the Shielding Layout and Beam Absorber at the PXIE

    Energy Technology Data Exchange (ETDEWEB)

    Eidelman, Yu.; Kerby, J.; Lebedev, V.; Leibfritz, J.; Leveling, T.; Nagaisev, S.; Stanek, R.; /Fermilab

    2012-05-14

    Project X is a high intensity proton facility conceived to support a world-leading physics program at Fermilab. Project X will provide high intensity beams for neutrino, kaon, muon, and nuclei based experiments and for studies supporting energy applications. The Project X Injector Experiment (PIXIE) is a prototype of the Project X front end. A 30 MeV 50 kW beam will be used to validate the design concept of the Project X. This paper discusses a design of the accelerator enclosure radiation shielding and the beam dump.

  13. Beam-limiting and radiation-limiting interlocks

    International Nuclear Information System (INIS)

    Macek, R.J.

    1996-01-01

    This paper reviews several aspects of beam-limiting and radiation- limiting interlocks used for personnel protection at high-intensity accelerators. It is based heavily on the experience at the Los Alamos Neutron Science Center (LANSCE) where instrumentation-based protection is used extensively. Topics include the need for ''active'' protection systems, system requirements, design criteria, and means of achieving and assessing acceptable reliability. The experience with several specific devices (ion chamber-based beam loss interlock, beam current limiter interlock, and neutron radiation interlock) designed and/or deployed to these requirements and criteria is evaluated

  14. Beam-induced pressure variations in a TFTR neutral-beam injector

    International Nuclear Information System (INIS)

    Willis, J.E.; Berkner, K.H.

    1981-10-01

    In neutral-beam injection systems either all or part of the gas flow into the neutralizer comes from the plasma source. When the beam is switched on, ions from the plasma source, which used to contribute to the gas flow, are converted to an energetic beam and are pumped away: hence reducing the gas input to the neutralizer. The large volume of the neutralizer and its high conductance damp out rapid changes; for example, when the gas to the source is first turned on, there is a 230 msec exponential rise time associated with pressure in the neutralizer. The neutralizer in turn acts as a source of gas to the first chamber and the first chamber to the second and so on. Beam dumps become additional sources of gas in the second chamber and target tank as gas molecules are collisionally desorbed from the surface of the dump. A simple analytical model (the equivalent of an electrical RC circuit) of the volumes and conductances of the system has been used to describe the pressure variations. The use of time dependent sources terms in the model gives an estimate of the desorption rate from the dumps and its time variation during a beam pulse

  15. Box model of radionuclide dispersion and radiation risk estimation for population in case of radioactivity release from nuclear submarine number-sign 601 dumped in the Kara Sea

    International Nuclear Information System (INIS)

    Yefimov, E.I.; Pankratov, D.V.; Ignatiev, S.V.

    1997-01-01

    When ships with nuclear reactors or nuclear materials aboard suffer shipwreck or in the case of burial or dumping of radioactive wastes, atmospheric fallout, etc., radionuclides may be released and spread in the sea, contaminating the sea water and the sea bottom. When a nuclear submarine (NS) is dumped this spread of activity may occur due to gradual core destruction by corrosion over many years. The objective of this paper is to develop a mathematical model of radionuclide dispersion and to assess the population dose and radiation risk for radionuclide release from the NS No. 601, with Pb-Bi coolant that was dumped in the Kara Sea

  16. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  17. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  18. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  19. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  20. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  1. Protection against Accidental Beam Losses at the LHC

    CERN Document Server

    Wenninger, Jörg

    2005-01-01

    Protection of the LHC against uncontrolled beam losses is of prime importance due to the very high stored beam energy. For nominal beam intensities, each of the two 7 TeV/c proton beams has a stored energy of 360 MJ threatening to damage accelerator equipment. At injection a number of passive beam absorbers must be correctly positioned and specific procedures have been proposed to ensure safe injection of high intensity. The LHC beam dump block being the only LHC element that can safety absorb the full LHC beam, it is essential that the beams are extracted unto the dump block in case of emergency. The failure time constants extend from 100 microseconds to few seconds depending on the equipment. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. To ensure safe operation the machine protection system uses a variety of systems to detect such failures. The strategy for protection of the LHC will be illustrated, with emphasis ...

  2. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  3. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  4. Ocean Dumping Control Regulations

    International Nuclear Information System (INIS)

    1978-01-01

    These Regulations were made further to the Ocean Dumping Control Act which provides for restrictions in dumping operations. The Regulations contain model applications for permits to dump or load a series of materials. (NEA)

  5. Design of a Compact Dump Resistor System for LCD Magnet

    CERN Document Server

    Gaddi, A

    2010-01-01

    In this technical note we suggest a possible solution for the choice of the detector magnet dump resistor. The push-pull scenario for Linear Collider Detectors imposes new solutions for magnet powering and protection lines, else than what developed for LHC detectors. The magnet dump resistor is the protecting equipment that has the function of extracting a significant amount of magnetic stored energy, from the coil winding to a dump. The LCD magnet has to move with the experiment from the garage to the beam position, so it has to be compact and reliable at the same time. We make here a proposal for a passive water-cooled dumper, we calculate the minimum amount of water required, the resistor hot-spot temperature, the overall mechanical design. The electrical part is not covered by this note, as it can be assumed that the solutions adopted by LHC detector magnets, in terms of quench instrumentation, energy extraction and maximum voltage, are not significantly affected by the push-pull scenario.

  6. Experience with dose limitation during preparations for sea dumping operations

    International Nuclear Information System (INIS)

    Fieuw, G.; Voorde, N. van de; Baekelandt, L.

    1982-01-01

    Since 1967 low-level radioactive wastes from operational nuclear facilities in Belgium have been dumped into the sea. The dumping is carried out in accordance with the recommendations issued by the IAEA under the London Convention. All these dumping operations have taken place under the surveillance of the Nuclear Energy Agency of the OECD. To limit the doses received by workers and the public during the various phases leading up to sea dumping, appropriate measures are required in connection with waste treatment and packaging, limitation of radiation levels, storage and handling, organization and selection of the means of transport and organization and means of monitoring. Although treatment and handling at the nuclear sites are entrusted to occupationally exposed workers, temporary labour is used for the transport and handling operations. Effective treatment and packaging reduce the risk of internal exposure to a negligible value. Meticulous planning and permanent personnel monitoring reduce the doses received by the workers to acceptable values not exceeding the statutory dose limits. The doses received by personnel involved in the preparations for sea dumping operations from 1967 to 1980 are given and a relationship is established between these doses and the activities handled. Experience shows that sea dumping operations do not entail unacceptable risks either for the workers concerned or for the population and allows us to optimize the methods used for loading, handling and transport. (author)

  7. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  8. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Meier, W.R.; Reyes, S.

    2000-01-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  9. LHC Abort Gap Filling by Proton Beam

    CERN Document Server

    Fartoukh, Stéphane David; Shaposhnikova, Elena

    2004-01-01

    Safe operation of the LHC beam dump relies on the possibility of firing the abort kicker at any moment during beam operation. One of the necessary conditions for this is that the number of particles in the abort gap should be below some critical level defined by quench limits. Various scenarios can lead to particles filling the abort gap. Time scales associated with these scenarios are estimated for injection energy and also coast where synchrotron radiation losses are not negligible for uncaptured particle motion. Two cases are considered, with RF on and RF off. The equilibrium distribution of lost particles in the abort gap defines the requirements for maximum tolerable relative loss rate and as a consequence the minimum acceptable longitudinal lifetime of the proton beam in collision.

  10. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  11. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  12. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  13. Radioactive-waste ocean dumping will have negligible enviromental impact

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This draft report is the result of extensive studies based on the best available information in the field of oceanography, marine radiobiology and health physics. On various basic considerations, assessment was undertaken, and the following conclusion was reached. The quantity of radioactivity to be dumped at one time is assumed to be 500 Ci in the case of test dumping, and 10 5 Ci/year in the case of full-scale dumping. The conditions required for the dumping sea area are that the bottom water flow and upwelling amount are limited, and that the sea bottom is flat. The horizontal dispersion coefficient of 10 7 cm 2 /sec and the vertical dispersion coefficient of 2 x 10 2 cm 2 /sec are assumed. It is assumed that the radionuclides in the disposed package would leached out as soon as it reaches the sea bottom, and would not show any physicochemical behavior. Typycal radionuclides are classified into 5 groups in terms of their half lives, and their estimated concentrations at 1 km depth are tabulated. The maximum level of individual dose and the magnitude of population dose were assessed on the fishermen working in the dumping sea area, and the adults, children and infants who were expected to receive higher dose on account of the larger intake of fish products than average. The dose level given with the dose assessment model and various panamentors under the dumping conditions is much lower than natural radiation and the permissible level recommended by ICRP. (Kobatake, H.)

  14. Radiation dermatitis following electron beam therapy

    International Nuclear Information System (INIS)

    Price, N.M.

    1978-01-01

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads

  15. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  16. Social dumping

    DEFF Research Database (Denmark)

    Pedersen, Klaus

    2010-01-01

    bidrag til, at OK-2010 "landes" fredeligt, fordi aftalen giver fagforeningerne en væsentlig indrømmelse i indsatsen mod social dumping. Aftalen har rigtignok til formål at imødekomme et af fagbevægelsens centrale overenskomstkrav om nye redskaber i indsatsen mod "social dumping". Men hvad er det aftalen...

  17. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  18. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    Rosenberg, M.; Krall, N.A.

    1989-01-01

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  19. Radiation therapy apparatus having retractable beam stopper

    International Nuclear Information System (INIS)

    Coad, G.L.

    1983-01-01

    This invention relates to a radiation therapy apparatus which utilized a linear translation mechanism for positioning a beam stopper. An apparatus is described wherein the beam stopper is pivotally attached to the therapy machine with an associated drive motor in such a way that the beam stopper retracts linearly

  20. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Science.gov (United States)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; de Boer, Wim; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors.

  1. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  2. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  3. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [NICADD, DeKalb; Andorf, M. B. [NICADD, DeKalb; Fagerberg, G. [Northern Illinois U.; Figora, M. [Northern Illinois U.; Sturtz, A. [Northern Illinois U.

    2016-10-19

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  4. Development of beam halo monitors for the European XFEL using radiation hard sensors and demonstration of the technology at FLASH

    International Nuclear Information System (INIS)

    Ignatenko, Alexandr

    2015-05-01

    The European X-Ray Free-Electron Laser (E-XFEL), currently under construction in Hamburg, Germany, is intended to be an international linear accelerator (linac) based user facility. Its electron beam can carry maximal average power of 600 kW. A beam with such a high power needs to be carefully transmitted through the machine and safely dumped after utilization. This is supported by various diagnostics tools. A Beam Halo Monitor (BHM) based on synthetic diamond and sapphire sensors has been designed. Diamond sensors are developed by the company element6 for the detection of ionizing radiation and used previously elsewhere. Sapphire sensors are in this thesis applied for the first time. The BHM concept has been applied already at the Free-electron Laser in Hamburg (FLASH). A module with four diamond and four sapphire sensors was designed, installed inside the beam pipe, commissioned, calibrated and has been successfully operated for 4 years. The system contributed significantly to safe and efficient operation of FLASH. Both types of the sensors for the BHM were characterized. Measurements of radiation tolerance are done in a 10 MeV electron beam for polycrystalline CVD (pCVD) diamond sensors for the first time up to a dose of 10 MGy and for sapphire sensors up to 5 MGy. The charge collection efficiency (CCE) drops as a function of the absorbed dose, is however still sufficient for application as a BHM. To improve a main sensor characteristic, the charge collection efficiency, for sapphire sensors the impurity concentration was reduced and different growth techniques were compared. Finally, charge collection efficiency of about 5 % for a bias voltage of 500 V was reached. The BHM concept for the XFEL is designed and in the construction phase.

  5. Estimations of radiation characteristics of spent fuel in reactors of nuclear submarines and the ice-breaker Lenin dumped near Novaya Zemlya

    International Nuclear Information System (INIS)

    Rubtsov, P.M.; Ruzhanskij, P.A.

    1996-01-01

    Calculations of radionuclide composition and radiation characteristics of actinides and fission products for the reactor spent nuclear fuel of the nuclear submarines and the ice-breaker Lenin dumped near Novaya Zemlya are calculated on the basis of the actual data on the regimes of operation of the above reactors. It is determined that the maximum total activity in 1995 in all reactor sections of the nuclear submarines is concentrated in the fuel (M = 261.9 kg, W = 2.75 GW x day) of the left reactor of the nuclear submarine APL-285 and constitutes 51.9 Ci for actinides and 1.68 x 10 4 Ci for fission products. The corresponding values for the dumped fuel (M = 856 kg, W = 14.2 GW x day) of the ice-breaker Lenin are equal to 3.9 x 10 3 and 5.22 x 10 4 Ci

  6. Observation of the undulator radiation from the positron beam

    International Nuclear Information System (INIS)

    Maezawa, Hideki.

    1986-02-01

    A spectral measurement of the 1st harmonic of the undulator radiation emitted from positron beam was made on Dec. 21, 1985 during a test operation of the Photon Factory storage ring with the 2.5 GeV positron beam which was stored up to 5.5 mA. In comparison to the same measurement performed with the electron beam, no appreciable difference in the spectral properties of the undulator radiation was found between the two cases under the condition of the low beam current of a few mA. (author)

  7. Short and long term ionizing radiation effects on charge-coupled devices in radiation environment of high-intensity heavy ion accelerators

    International Nuclear Information System (INIS)

    Belousov, A; Mustafin, E; Ensinger, W

    2012-01-01

    Radiation effects on semiconductor devices is a topical issue for high-intensity accelerator projects. In particular it concerns Charge-Coupled Device (CCD) cameras, which are widely used for beam profile monitoring and surveillance in high radiation environment. One should have a clear idea of short and long term radiation effects on such devices. To study these effects, a CCD camera was placed in positions less than half meter away from beam loss point. Primary heavy ion beam of 0.95GeV/n Uranium was dumped into a thick aluminium target creating high fluences of secondary particles (e.g., gammas, neutrons, protons). Effects of these particles on CCD camera were scored with LabView based acquisition software. Monte Carlo calculations with FLUKA code were performed to obtain fluence distributions for different particles and make relevant comparisons. Long term total ionising dose effects are represented by dark current increase, which was scored throughout experiment. Instant radiation effects are represented by creation of charge in CCD cells by ionising particles. Relation of this charge to beam intensity was obtained for different camera positions and fluences within 5 orders of magnitude ranges. With high intensities this charge is so high that it may dramatically influence data obtained from CCD camera used in high radiation environment. The linearity of described above relation confirms linear response of CCD to ionizing radiation. It gives an opportunity to find a new application to CCD cameras as beam loss monitors (BLM).

  8. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  9. Development of global data warehouse for beam diagnostics at SSRF

    International Nuclear Information System (INIS)

    Lai Longwei; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2015-01-01

    The beam diagnostic system is adequate during the daily operation and machine study at the Shanghai Synchrotron Radiation Facility (SSRF). Without the effective event detecting mechanism, it is difficult to dump and analyze abnormal phenomena such as the global orbital disturbance, the malfunction of the BPM and the noise of the DCCT. The global beam diagnostic data warehouse was built in order to monitor the status of the accelerator and the beam instruments. The data warehouse was designed as a Soft IOC hosted on an independent server. Once abnormal phenomena happen it will be triggered and will store the relevant data for further analysis. The results show that the data warehouse can detect abnormal phenomena of the machine and the beam diagnostic system effectively, and can be used for calculating confidential indicators of the beam instruments. It provides an efficient tool for the improvement of the beam diagnostic system and accelerator. (authors)

  10. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  11. The radiation monitoring system for the LHC experiments and experimental areas

    CERN Document Server

    Ilgner, C

    2004-01-01

    With the high energies stored in the beams of the LHC, special attention needs to be paid to accident scenarios involving beam losses which may have an impact on the installed experiments. Among others, an unsynchronized beam abort and a D1 magnet failure are considered serious cases. According to simulations, the CMS inner tracker in such accident scenarios can be damaged by instantaneous rates which are many orders of magnitude above normal conditions. Investigations of synthetic diamond as a beam condition monitor sensor, capable of generating a fast beam dump signal, will be presented. Furthermore, a system to monitor the radiation fields in the experimental areas is being developed. It must function in the radiation fields inside and around the experiments, over a large dynamic range. Several new active and passive sensors, such as RadFET, OSL (Optically Stimulated Luminescence) sensors, p-i-n diodes, Polymer-Alanine Dosimeters and TLDs (Thermoluminescent Dosimeters) are under investigation. Recent resul...

  12. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710 Section 892.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... block. (a) Identification. A radiation therapy beam-shaping block is a device made of a highly...

  13. Interaction region

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Interaction Region Group addressed the basic questions of how to collide the SLC beams, how to maximize and monitor the luminosity, and how to minimize the detector backgrounds at the interaction region. In practice, five subgroups evolved to study these questions. The final focus group provided three alternative designs to acheive the 1 to 2 micron beam spot size required by the SLC, as well as studying other problems including: eta, eta' matching from the collider arcs, the implementation of soft bends near the interaction region, beam emittance growth, and magnet tolerances in the final focus. The beam position monitor group proposed two devices, a strip line monitor, and a beamstrahlung monitor, to bring the beams into collision. The luminosity monitor group reviewed the possible QED processes that would be insensitive to weak interaction (Z 0 ) effects. The beam dumping group proposed locations for kicker and septum magnets in the final focus that would achieve a high dumping efficiency and would meet the desired beam tolerances at the Moller scattering target in the beam dump line. Working with the Polarization Group, the Moller experiment was designed into the beam dump beam line. A beam dump was proposed that would maintain radiation backgrounds (penetrating muons) at acceptible levels. The detector backgrounds group proposed soft-bend and masking configurations to shield the detector from synchrotron radiation from the hard/soft bends and from the final focus quadrupoles and evaluated the effectiveness of these designs for the three final focus optics designs. Backgrounds were also estimated from: large angle synchrotron radiation, local and distant beam-gas interactions, 2-photon interactions, and from neutrons and backscattered photons from the beamstrahlung dump

  14. Risk assessment and monitoring at the Farallon Islands (CA) radioactive waste dump sites

    International Nuclear Information System (INIS)

    Curl, H. Jr.; Ueber, E.; Roletto, J.

    1993-01-01

    Between 1946 and 1965 over 47,000 drums, concrete blocks and other containers of radioactive waste were dumped at three sites southwest of the Farallon Islands off the coast of San Francisco, CA. A total of approximately 4,500 Ci of thorium, uranium and other radionuclides was dumped. After 1965, and until 1972, dumping of dredged spoils, laboratory waste, etc. containing unknown amounts of toxic materials, continued. Concerns have arisen from time to time about the integrity of the containers and possible release of radionuclides and toxic materials into the ecosystem and the human food chain. Based on evaluation of all dumping records, sampling of fish and sediments, and modeling the authors conclude: the risk to resources at present is well below the level of concern. Hazard quotients of 4.7 x 10 exp -2 or less were calculated for all target species. The dominant radiation source is from external gamma radiation from the short-lived daughter of 137 Cs, 137 Ba, in sediments. Much of the 137 Cs has already decayed. The long-lived isotopes of Pu and Am will reach maximum advective release rates 80--200 after disposal. The maximum dose from these isotopes is an order of magnitude less than from 137 Cs. Radioanalysis of fish and sediments from one dumpsite in 1992 show values equal to those from two nearby reference sites

  15. Upgrade of the TCDQ: A dumping protection system for the LHC

    CERN Document Server

    Antonakakis, T

    2012-01-01

    In the context of the LHC, an asynchronous beam dump could be destructive. In order to ensure the safety of the machine and its surroundings a model of the TCDQ dump has been designed. The length of the TCDQ dump is increased by 50% and its material distribution along its length is changed from graphite to a carbon composite that clearly withstands higher stresses then its counterpart. There are two different density composites used along the dump‘s length in a similar distribution than that of the TCDS, varying from high density to low then back to high. The power deposition within the duration of a pulse is given by FLUKA simulations and is used to predict temperature and stress distributions in space and time. The results are compared with previous studies in which graphite material was used. The difference in the thermal expansion coefficient of the two materials explains the reduced stresses in the newer design. Due to the high cost of carbon composites an alternative solution is thought without jeopar...

  16. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  17. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  18. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  19. EU Lobbying and Anti-Dumping Policy

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Ulff-Møller; Svendsen, Gert Tinggaard

    2012-01-01

    of petitioning firms and Council voting in the case of anti-dumping policy. If the political position of countries in anti-dumping cases is influenced by domestic lobbying efforts, we expect that the empirical pattern of country distribution of petitioning firms in EU anti-dumping cases corresponds closely...... to the empirical pattern of EU country distribution in Council voting. Our results show a low petitioning intensity for anti-dumping investigations and a high voting intensity against anti-dumping measures in Northern Europe. Thus, it seems likely that domestic lobbying efforts have influenced the political...

  20. Micro-Bunched Beam Production at FAST for Narrow Band THz Generation Using a Slit-Mask

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. [Sokendai, Tsukuba; Crawford, D. [Fermilab; Edstrom Jr, D. [Fermilab; Ruan, J. [Fermilab; Santucci, J. [Fermilab; Thurman-Keup, R. [Fermilab; Sen, T. [Fermilab; Thangaraj, J. C. [Fermilab

    2018-04-01

    We discuss simulations and experiments on creating micro-bunch beams for generating narrow band THz radiation at the Fermilab Accelerator Science and Technology (FAST) facility. The low-energy electron beamline at FAST consists of a photoinjector-based RF gun, two Lband superconducting accelerating cavities, a chicane, and a beam dump. The electron bunches are lengthened with cavity phases set off-crest for better longitudinal separation and then micro-bunched with a slit-mask installed in the chicane. We carried out the experiments with 30 MeV electron beams and detected signals of the micro-bunching using a skew quadrupole magnet in the chicane. In this paper, the details of micro-bunch beam production, the detection of micro-bunching and comparison with simulations are described.

  1. Effect of electron beam radiations on anxiety in experimental animal models

    International Nuclear Information System (INIS)

    Deepa, B; Suchetha Kumari; Sanjeev, Ganesh; Rao, Satheesh

    2013-01-01

    Exposures to ionizing radiation have been an inevitable part of the environment. This type of radiation can disrupt atoms, creating positive and negative charged particles, and cause biological harm. Ionizing radiation includes X-rays, gamma rays, alpha particles, beta particles and neutrons. They have the potential to cause both beneficial and harmful effects. There are concerns about these radiations as they are widely used in hospitals for treatment and diagnosis of various diseases. The present work was designed to test the effect of whole body electron beam radiation on anxiety in mice using the Elevated plus maze and Light dark arena, the commonly used models for assessing anxiety in rodents. Mice were irradiated with three different doses (2 Gy, 4 Gy and 6 Gy) of electron beam radiations. Statistical analysis revealed that whole body irradiation of the moderate dose range (2-6 Gy) of electron beam leads to a significant (p<0.001) anxiogenic activity in irradiated mice. Electron beam induced anxiety can be due to radiation induced reactive oxygen species in brain. (author)

  2. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  3. Spiral kicker for the beam abort system

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost

  4. Dosimetry of beams for negative pi-meson radiation therapy

    International Nuclear Information System (INIS)

    Dicello, J.F.

    1976-01-01

    Several new facilities have been built in the last few years which can produce high intensity beams of pions. As a result, a significant amount of new data related to pion dosimetry is available. Results of beam composition, beam shaping, and collimation are given along with depth dose curves and isodose contours. Experimental data which describe the radiation quality of pion beams and the change in radiation quality with position are presented. Experimental data determining the fraction of the dose resulting from neutrons are discussed. The present techniques used in pion dosimetry are summarized, and those areas of pion dosimetry which require additional effort in order to achieve routine treatment planning for patients are reviewed

  5. Accidental Beam Losses and Protection in the LHC

    Science.gov (United States)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  6. Accidental Beam Losses and Protection in the LHC

    International Nuclear Information System (INIS)

    Schmidt, R.; Wenninger, J.

    2005-01-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection

  7. Cherenkov Radiation from a Pseudospark-sourced Electron Beam

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Yin, H.; Cross, A.W.; He, W.; Ronald, K.

    2003-01-01

    Electron beam generation from a multi-gap pseudospark discharge was investigated. A pseudospark-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. The beam brightness was measured by a field-free collimator to be 109 and 1011 Am-2rad-2 for the hollow cathode phase (HCP) beam and the conductive phase (CP) beam respectively. The initial HCP beam from an eight-gap pseudospark discharge was applied in a Cherenkov interaction between the electron beam and the TM01 mode of a 60-cm long alumina-lined waveguide. It was found experimentally that significant microwave radiation was generated only when the dielectric was present in the interaction space. If there was no dielectric in the cylindrical waveguide, then a very small background microwave output was detected even when the guide B-field was absent. This demonstrated, in conjunction with the observation that the microwave output signal was independent of the guide magnetic field over the range 0.13 to 0.26 T, that the radiation from the experiment was due to the Cherenkov interaction mechanism. In addition, two components of the microwave pulse were observed corresponding to the two energy components of the electron beam during the pseudospark discharge breakdown. These results demonstrated that the microwave radiation was generated by Cherenkov amplification of the broadband emission from the pseudospark discharge itself. A background signal level of around 100 W was measured in the frequency range 20 - 50 GHz with a percentage of (2.7 ± 0.6)% in the frequency range 25.5 - 28.6 GHz, when the dielectric lining was removed from the maser. The frequency of the microwave output after the Cherenkov maser interaction was measured to be mainly around 25.5 GHz and the dominating mode was identified as being TM01. The duration of the microwave pulse was approximately 80 ns, with a peak power of around 2 ± 0.2 kW. The gain of this amplifier was measured

  8. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    Science.gov (United States)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  9. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  10. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  11. A simple method of dosimetry for E-beam radiation

    International Nuclear Information System (INIS)

    Spencer, D.S.; Thalacker, V.P.; Chasman, J.N.; Siegel, S.

    1985-01-01

    A simple method utilizing a photochromic 'intensity label' for monitoring electron-beam sources was evaluated. The labels exhibit a color change upon exposure to UV or e-beam radiation. A correlation was found between absorbed energy and Gardner Color Index at low electron-beam doses. (author)

  12. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  13. Recuperation of ISR Dipole Magnet Yokes for Use as Shielding for the LHC Beam Dumps TDE

    CERN Document Server

    Ross, M

    1999-01-01

    The quantity of iron shielding required for two LHC dumps was estimated at about 1500 tons. Possible sources of slightly irradiated iron shielding were considered, in particular, the ISR dipole yokes, which were stocked in the I2. Of rectangular form and weighing 22 tons each, they were well suited to the LHC dump geometry. Furthermore, they were to all intents and purposes non-radioactive. The preferred solution was to cut off four lifting pads and three support plates using arc/air equipment, seal temporarily each end with shutters, fit two lifting "anchor" pins, and fill with concrete.

  14. Study of hard braking x-ray radiation on the radiation-beam complex ''TEMP''

    International Nuclear Information System (INIS)

    Batrakov, A.B.; Glushko, E.G.; Egorov, A.M.; Zinchenko, A.A.; Litvinenko, V.V.; Lonin, Yu.F.; Ponomarev, A.G.; Rybka, A.V.; Fedotov, S.I.; Uvarov, V.T.

    2015-01-01

    A calculation over of basic parameters of the hard brake x-rayed radiation for the microsecond accelerating of relativistic electronic beam T EMP . Optimization of converters is conducted for these aims. Maximal doses are experimentally got brake x-rayed radiation on beam-radiation complex T EMP . The diagrams of orientation of the brake x-rayed radiation are taken off depending on energies of bunches and forms of electrodes.

  15. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  16. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC. However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  17. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  18. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  19. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Opalka, Lukas [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Martisikova, Maria; Gwosch, Klaus [German Cancer Research Center, Heidelberg (Germany); Jakubek, Jan [Advacam, Prague (Czech Republic)

    2016-07-07

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  20. Influence of beam divergence on form-factor in X-ray diffraction radiation

    International Nuclear Information System (INIS)

    Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.

    2015-01-01

    Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam

  1. Imaging and characterization of primary and secondary radiation in ion beam therapy

    International Nuclear Information System (INIS)

    Granja, Carlos; Opalka, Lukas; Martisikova, Maria; Gwosch, Klaus; Jakubek, Jan

    2016-01-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  2. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  3. High slope waste dumps – a proven possibility

    Directory of Open Access Journals (Sweden)

    Igor Svrkota

    2013-11-01

    Full Text Available This paper is an overview of dumping operations on High Slope Waste Dump at Veliki Krivelj open pit copper mine, RTB Bor, Serbia. The High Slope Waste Dump in Bor is the highest single slope waste dump in the world with the slope height of 405 m. The paper gives the basics and limitations of the designed dumping technology, the redesigned technology, gives an overview of the 13 year long operation and gathered experiences and addresses the main issues of dumping operations in high slope conditions as well as the present condition of the High Slope Waste Dump.

  4. 30 CFR 77.1608 - Dumping facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably...

  5. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  6. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  7. LHC Report: Towards stable beams and collisions

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Over the past two weeks, the LHC re-commissioning with beam has continued at a brisk pace. The first collisions of 2011 were produced on 2 March, with stable beams and collisions for physics planned for the coming days. Low intensity beams with just a few bunches of particles were used to test the energy ramp to 3.5 TeV and the squeeze. The results were successful and, as a by-product, the first collisions of 2011 were recorded 2 March. One of the main activities carried out by the operation teams has been the careful set-up of the collimation system, and the injection and beam dump protection devices. The collimation system provides essential beam cleaning, preventing stray particles from impacting other elements of the machine, particularly the superconducting magnets. In addition to the collimation system, also the injection and beam dump protection devices perform a vital machine protection role, as they detect any beam that might be mis-directed during rare, but not totally unavoidable, hardware hiccups...

  8. Progress report on the neutral beam radiation hardening study

    International Nuclear Information System (INIS)

    Lee, J.D.; Condit, R.H.; Hoenig, C.L.; Wilcox, T.P.; Erickson, J.

    1978-01-01

    A neutral beam injector as presently conceived directly views the plasma it is sustaining. In turn the injector is exposed to the primary fusion neutrons plus secondary neutrons and gammas streaming back up the neutral beam duct. The intent of this work is to examine representative beam lines to see how performance and lifetimes could be affected by this radiation environment and to determine how unacceptable effects could be alleviated. Potential radiation induced problems addressed in this report have been limited to: (1) overheating of cryopanels and insulators, (2) gamma flux induced electrical conductivity increase of insulators, and (3) neutron and gamma fluence induced damage to insulator materials

  9. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  10. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  11. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  12. Ocean Dumping Control Act

    International Nuclear Information System (INIS)

    1975-01-01

    This Act provides for the control of dumping of wastes and other substances in the ocean in accordance with the London Convention of 1972 on Prevention of Marine Pollution by the Dumping of Wastes and other Matter to which Canada is a Party. Radioactive wastes are included in the prohibited and restricted substances. (NEA)

  13. Requirements of the London Convention for dumping radioactive waste at sea

    International Nuclear Information System (INIS)

    Sutton, H.C.

    1982-10-01

    This report outlines the requirements of the London Convention for dumping radioactive waste at sea and considers their scientific basis more fully. It is intended primarily as an appraisal and aid to understanding of the two documents IAEA 210 and IAEA 211, published by the International Atomic Energy Agency, and relating to the oceanographic and radiobiological basis of their definitions of high level waste and recommendations relating to its dumping at sea, which were required for London Convention purposes. The adequacy and conservation in these recommendations are considered, and the report also compares the predictions of the model on which the recommendations are based with some limited but relevant observations on radiation doses resulting from natural causes (radium in the sea), and from fallout from nuclear bomb tests. It is concluded that if dumping is carried out within the limits and according to the recommendations required by the IAEA, then it is extremely unlikely that this could lead to significant human hazard, either now or in the future. Some of the reasons for this conclusion are summarised in the final chapter

  14. Dump truck-related deaths in construction, 1992-2007.

    Science.gov (United States)

    McCann, Michael; Cheng, Mei-Tai

    2012-05-01

    Dump trucks are universally used in construction and other industries to haul materials to the location and to remove waste materials. The source for dump truck-related fatality data was the Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI) Research File. From 1992 to 2007, 829 construction workers were killed in dump truck-related incidents nationwide. Of those, 336 were dump truck operators with 215 deaths occurring in street and highway incidents. Another 343 deaths involved workers on foot, three-quarters struck by dump trucks. Sixty-four of the construction workers killed were maintaining dump trucks, 22 when caught between the truck frame and a falling dump truck bed. Of the 86 other deaths, 55 involved streets and highways. Recommendations include: (i) improving the reporting of seat belt usage in fatality reports; (ii) requiring use of seat belts; (iii) requiring the use of backup alarms, spotters, or other methods to alert dump truck operators to workers in their blind spots; (iv) prohibiting direct dumping at river banks and embankments; (v) using cameras or radar to enforce stopping at railway crossings; and (xi) enforcing worker safety practices (e.g., lockout/tagout procedures on elevated dump truck beds). Copyright © 2011 Wiley Periodicals, Inc.

  15. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  16. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  17. Performance of a pencil ionization chamber in various radiation beams

    International Nuclear Information System (INIS)

    Maia, A.F.; Caldas, L.V.E.

    2003-01-01

    Pencil ionization chambers were recommended for use exclusively in the computed tomography (CT) dosimetry, and, from the start, they were developed only with this application in view. In this work, we studied the behavior of a pencil ionization chamber in various radiation beams with the objective of extending its application. Stability tests were performed, and calibration coefficients were obtained for several standard radiation qualities of the therapeutical and diagnostic levels. The results show that the pencil ionization chamber can be used in several radiation beams other than those used in CT

  18. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuyu [Peking Univ., Beijing (China)

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  19. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    International Nuclear Information System (INIS)

    Liu, Chuyu

    2012-01-01

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as 'organs of sense' or 'eyes of the accelerator.' Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the

  20. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  1. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  2. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  3. Optical remote diagnostics of atmospheric propagating beams of ionizing radiation

    Science.gov (United States)

    Karl JR., Robert R.

    1990-03-06

    Data is obtained for use in diagnosing the characteristics of a beam of ionizing radiation, such as charged particle beams, neutral particle beams, and gamma ray beams. In one embodiment the beam is emitted through the atmosphere and produces nitrogen fluorescence during passage through air. The nitrogen fluorescence is detected along the beam path to provide an intensity from which various beam characteristics can be calculated from known tabulations. Optical detecting equipment is preferably located orthogonal to the beam path at a distance effective to include the entire beam path in the equipment field of view.

  4. Optical breakdown of helium in Bessel laser radiation beams

    International Nuclear Information System (INIS)

    Andreev, N E; Pleshanov, I V; Margolin, L Ya; Pyatnitskii, Lev N

    1998-01-01

    Numerical simulation is used to investigate the dynamics of formation of a helium plasma in Bessel beams, shaped by an axicon and a phase converter from a laser radiation pulse with Gaussian temporal and radial intensity profiles. The beam intensities at the breakdown threshold are determined as a function of the pulse duration for various radial field distributions in a beam characterised by Bessel functions of order m (m = 0 - 5). It is shown that in the investigated range of parameters the threshold intensity is independent of m. The temporal and spatial evolution of the resultant plasma, and the dependence of the plasma characteristics on the pulse parameters are considered. Conditions are found for the formation of tubular plasma channels in beams of orders m≥1. The adopted model of the optical breakdown of helium is shown to be satisfactory because of a good agreement between the results of calculations of the moment of breakdown in a zeroth-order Bessel beam and experimental results. (interaction of laser radiation with matter. laser plasma)

  5. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    International Nuclear Information System (INIS)

    Penha, M. da; Potiens, A.; Caldas, L.V.E.

    2004-01-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm 3 for radiation protection measurements, and the other with a volume of 1 cm 3 for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  6. Calibration methodology for instruments utilized in X radiation beams, diagnostic level

    Energy Technology Data Exchange (ETDEWEB)

    Penha, M. da; Potiens, A.; Caldas, L.V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, Sao Paulo (Brazil)]. E-mail: mppalbu@ipen.br

    2004-07-01

    Methodologies for the calibration of diagnostic radiology instruments were established at the Calibration Laboratory of IPEN. The methods may be used in the calibration procedures of survey meters used in radiation protection measurements (scattered radiation), instruments used in direct beams (attenuated and non attenuated beams) and quality control instruments. The established qualities are recommended by the international standards IEC 1267 and ISO 4037-3. Two ionization chambers were used as reference systems, one with a volume of 30 cm{sup 3} for radiation protection measurements, and the other with a volume of 1 cm{sup 3} for direct beam measurements. Both are traceable to the German Primary Laboratory of Physikalisch-Technische Bundesanstalt (PTB). In the case of calibration of quality control instruments, a non-invasive method using the measurement of the spectrum endpoint was established with a portable gamma and X-ray Intertechnique spectrometer system. The methods were applied to survey meters (radiation protection measurements), ionization chambers (direct beam measurements) and k Vp meters (invasive and non-invasive instruments). (Author)

  7. The Theory of Coherent Radiation by Intense Electron Beams

    CERN Document Server

    Buts, Vyacheslav A; Kurilko, V.I

    2006-01-01

    Spurred by the development of high-current, high-energy relativistic electron beams this books delves into the foundations of a device and geometry independent theoretical treatment of a large collection of interacting and radiating electron bunches. Part I deals with the basics of the radiation emission of a single charged particle, paying particular attention to the effect of radiation reaction and dwelling on the corresponding well-known paradoxes. Part II investigates the collective behaviour of a high-density electron bunch where both discrete and continous beam modelling is explored. Part III treats the application to modern systems while still keeping the treatment as general as possible. This book will be mandatory reading for anyone working on the foundations of modern devices such as free electron lasers, plasma accelerators, synchroton sources and other modern sources of bright, coherent radiation with high spectral density.

  8. Dumping in a Global World

    NARCIS (Netherlands)

    J.L. Moraga-Gonzalez (José Luis); J.M.A. Viaene (Jean-Marie)

    2004-01-01

    textabstractAnti-dumping actions are now the trade policy of choice of developing and transition economies. To understand why these economies have increasingly applied anti-dumping laws, we build a simple theoretical model of vertical intra-industry trade and investigate the strategic incentives of

  9. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  10. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    International Nuclear Information System (INIS)

    Castellano, M.

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the 'diffracted' transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example

  11. Continuous all-optical deceleration of molecular beams

    Science.gov (United States)

    Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley

    2014-05-01

    A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.

  12. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  13. Seeing the invisible: direct visualization of therapeutic radiation beams using air scintillation.

    Science.gov (United States)

    Fahimian, Benjamin; Ceballos, Andrew; Türkcan, Silvan; Kapp, Daniel S; Pratx, Guillem

    2014-01-01

    To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300-430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r(2) = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r(2) = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  14. Seeing the invisible: Direct visualization of therapeutic radiation beams using air scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, Benjamin; Türkcan, Silvan; Kapp, Daniel S.; Pratx, Guillem, E-mail: pratx@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States); Ceballos, Andrew [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2014-01-15

    Purpose: To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Methods: Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300–430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Results: Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r{sup 2} = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r{sup 2} = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Conclusions: Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.

  15. On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC.

    CERN Multimedia

    Manzari, Vito

    2008-01-01

    On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC

  16. Beam Dumping Ghost Signals in Electric Sweep Scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R.F.

    2005-01-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  17. Beam dumping ghost signals in electric sweep scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; SNS Project, Oak Ridge; Tennessee U.; Leitner, M.; LBL, Berkeley; Moehs, D.P.; Keller, R.; LBL, Berkeley; Welton, R.F.; SNS Project, Oak Ridge

    2004-01-01

    Over the last 20 years many labs started to use Allison scanners to measure loW--energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  18. Sea-dumped CW munitions - the European component

    International Nuclear Information System (INIS)

    Hart, J.; Stock, T.

    2009-01-01

    The purpose of this contribution is to outline the European magnitude of sea-dumped CW munitions. Hereby the paper attempts to provide an overview on historical dumping activities, both for conventional and chemical munitions. The potential dangers which might result from these dumping activities are discussed in brief. Among others the differences in deep sea dumping and dumping in shallow waters are evaluated. Further, the presentation will outline and discuss the different technology steps: (a) identification, (b) recovery, (c) transportation and (d) destruction (on- or off-shore), necessary for possible cleaning of dumping sites. Thereafter an evaluation of the different technologies available/applied is performed, in particular on the destruction part. Hereby the already practised experience is displayed. Based upon existing treaty regimes an actual judgment of possible application of treaty provisions for demanding cleaning up operations is discussed. The question if treaty obligations can be used to force cleaning operations is debated. A possible match of the technology package available with the scope/magnitude of the munitions dumping problem is discussed. Hereby the gaps between the size of the problem and the most suitable technologies for recovery and destruction are illustrated. The resulting answers should be regarded as possible technical guidelines for future development activities as well existing limitations to solve the problems. The papers will result in some general guidelines for future prospect on the issues of dumped munitions, in particular chemical munitions under the European context.(author)

  19. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  20. Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation"

    CERN Document Server

    Gover, A

    2005-01-01

    A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a...

  1. Dumping at Sea Act 1974

    International Nuclear Information System (INIS)

    1974-01-01

    This Act enables the United Kingdom Government to ratify both the Oslo Convention of 1972 for the Prevention of Marine Pollution by Dumping from Ships and Aircraft and the London Convention of 1972 on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. (NEA) [fr

  2. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  3. An assessment of the effects of radiation on permanent magnet material in the ALS [Advanced Light Source] insertion devices

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Jenkins, T.M.; Namito, Y.; Nelson, W.R.; Swanson, W.P.

    1989-08-01

    Electrons that are lost from the beam during normal operation of a synchrotron radiation source and during a beam dump at the end of a run produce both ionizing radiation and neutrons. This radiation has the potential for damaging sensitive materials, in particular those that need to be very close to the beam. The wigglers and undulators for the Advanced Light Source (ALS) at LBL will use magnetic materials such as the very high performance neodymium-iron-boron, which will be as close as 1 cm away from the electron beam during operation. This material, which is preferred because of its high remanence, is known to be more sensitive to radiation than some other magnetic materials. Simple energy loss estimates and the EGS4 code were used to estimate the radiation levels in the ALS insertion devices in the regions of the magnetic materials. The radiation levels were estimated for both aluminum and stainless steel vacuum chambers to determine if one would provide significantly better shielding. We conclude that Nd-Fe-B can be used in the ALS insertion devices and that there is little difference in the radiation levels for aluminum and stainless vacuum vessels. 8 refs., 7 figs., 1 tab

  4. Theoretical and experimental study of an energy-reinforced braking radiation photon beam

    International Nuclear Information System (INIS)

    Bertin, Pierre-Yves

    1966-01-01

    This research thesis reports the theoretical study of a photon beam raised towards high energies, its experimental implementation, the definition of a gamma spectrometry method which aimed at checking various hypotheses used in the beam theoretical study. After a presentation of the theory of phenomena of electron braking radiation, of materialisation of photons into positon-negaton pair, and of issues related to multiple Coulomb diffusion, the author reports the study of the different solutions which allow a photon beam to be obtained. A braking radiation of mono-kinetic electron has been used. This braking radiation is reinforced by absorption of low energy protons in a column of lithium hydride. The author describes how the beam is built up, and the experimental approach. He describes how raw data are processed to get rid of the influence of the multiple Coulomb diffusion and of the braking radiation. Experimental results are compared with those obtained by convolution of photon spectra and differential cross section

  5. An analysis of whistler mode radiation from a 100 mA electron beam

    International Nuclear Information System (INIS)

    Goerke, R.T.; Kellogg, P.J.; Monson, S.J.

    1990-01-01

    Observations of whistler mode radiation generated by 2-, 4-, and 8-keV electron beams with a current of 100 mA, are analyzed. The electron accelerator was carried to ionospheric heights by a Nike Black Brant V rocket (National Research Council of Canada NVB-06). The instability causing the whistler mode radiation is investigated. Spectral measurements (0.1-13.0 MHz), from a sweeping receiver located on the ejected forward payload, are used to determine the nature of the instability. The sweeping receiver was connected alternatively to an electric or a magnetic dipole antenna. Most of the whistler mode radiation detected was consistent with Cerenkov radiation. The radiation fields observed were too large (cB ∼ 0.1 μV/m Hz 1/2 ) to be explained by incoherent processes. If electrostatic bunching in the beam at the plasma frequency is responsible for the whistler radiation, there would be a correlation between the plasma frequency radiation, and the whistler mode radiation for electron beams that are fired toward the detector. The observed correlation is minimal. Hence no evidence was found to support the hypothesis that electrostatic bunching at the plasma frequency was responsible for the enhancement of the whistler mode radiation produced by the NVB-06 electron beam

  6. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    Nonato, Fernanda Beatrice Conceicao

    2010-01-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ( 37 Cs and 60 Co), and some of them were tested in beta radiation ( 90 Sr+ 9' 0Y e 204 Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  7. An assessment of the radiological impact of sea-dumping at the North East Atlantic dump site

    International Nuclear Information System (INIS)

    Delow, C.E.; Mobbs, S.F.; Hill, M.D.

    1985-04-01

    This report describes the models and methodology developed for the assessment of the radiological impact of disposal of low and intermediate level waste on the seabed. The development of the waste package model and the combined model of radionuclide dispersion and interactions with sediments in the world's ocean is outlined. This integrated set of models was used for the radiological assessment of sea dumping at the North-East Atlantic site, which formed part of the recent NEA review of the continued suitability of this site. The predicted radiation doses to man are presented, together with the results of the analysis of the sensitivity of the annual individual doses to critical groups to variations in model parameters. (author)

  8. Verification of Radiation Isocenter on Linac Beam 6 MV using Computed Radiography

    Science.gov (United States)

    Irsal, Muhammad; Hidayanto, Eko; Sutanto, Heri

    2017-06-01

    Radiation isocenter is more important part of quality assurance for the linear accelerator (Linac) due to radiation isocenter is a main location in irradiation radiotherapy, isocenter can shift when the gantry and collimator rotation. In general, the radiation isocenter verification using a special film. This research was conducted radiation isocenter verification using computed radiography with digital image processing techniques. Image acquisition was done using the modalities of Linac 6 MV with star shot method is star-shaped beam due to rotation of the collimator, gantry and couch. Then do the delineation on each beam to determine the centroid and beam diameter. By the results of verification of radiation isocenter performed on collimator and the couch, it shows that the size diameter for rotational collimator is 0.632 mm and 0.458 mm for the couch. Based on AAPM report 40 about the size of the Linac radiation isocenter diameter used in this study is still in good condition and worth to be operated because the value of the radiation isocenter diameter is below 2 mm.

  9. Verification of Radiation Isocenter on Linac Beam 6 MV using Computed Radiography

    International Nuclear Information System (INIS)

    Irsal, Muhammad; Hidayanto, Eko; Sutanto, Heri

    2017-01-01

    Radiation isocenter is more important part of quality assurance for the linear accelerator (Linac) due to radiation isocenter is a main location in irradiation radiotherapy, isocenter can shift when the gantry and collimator rotation. In general, the radiation isocenter verification using a special film. This research was conducted radiation isocenter verification using computed radiography with digital image processing techniques. Image acquisition was done using the modalities of Linac 6 MV with star shot method is star-shaped beam due to rotation of the collimator, gantry and couch. Then do the delineation on each beam to determine the centroid and beam diameter. By the results of verification of radiation isocenter performed on collimator and the couch, it shows that the size diameter for rotational collimator is 0.632 mm and 0.458 mm for the couch. Based on AAPM report 40 about the size of the Linac radiation isocenter diameter used in this study is still in good condition and worth to be operated because the value of the radiation isocenter diameter is below 2 mm. (paper)

  10. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz, E-mail: moritz.guthoff@cern.ch [CERN, 1211 Genève 23 (Switzerland); Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Afanaciev, Konstantin [DESY, Platanenallee 6, 15738 Zeuthen (Germany); NC PHEP BSU, Minsk (Belarus); Dabrowski, Anne [CERN, 1211 Genève 23 (Switzerland); Boer, Wim de [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, Campus Süd, P.O. Box 6980, 76128 Karlsruhe (Germany); Lange, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Lohmann, Wolfgang [DESY, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universität, Postfach 101344, 03013 Cottbus (Germany); Stickland, David [Princeton University, Princeton, NJ 08544-0708 (United States)

    2013-12-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  11. Radiation damage in the diamond based beam condition monitors of the CMS experiment at the Large Hadron Collider (LHC) at CERN

    International Nuclear Information System (INIS)

    Guthoff, Moritz; Afanaciev, Konstantin; Dabrowski, Anne; Boer, Wim de; Lange, Wolfgang; Lohmann, Wolfgang; Stickland, David

    2013-01-01

    The Beam Condition Monitor (BCM) of the CMS detector at the LHC is a protection device similar to the LHC Beam Loss Monitor system. While the electronics used is the same, poly-crystalline Chemical Vapor Deposition (pCVD) diamonds are used instead of ionization chambers as the BCM sensor material. The main purpose of the system is the protection of the silicon Pixel and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the CMS detector. By comparing the detector current with the instantaneous luminosity, the BCM detector efficiency can be monitored. The number of radiation-induced defects in the diamond, reduces the charge collection distance, and hence lowers the signal. The number of these induced defects can be simulated using the FLUKA Monte Carlo simulation. The cross-section for creating defects increases with decreasing energies of the impinging particles. This explains, why diamond sensors mounted close to heavy calorimeters experience more radiation damage, because of the high number of low energy neutrons in these regions. The signal decrease was stronger than expected from the number of simulated defects. Here polarization from trapped charge carriers in the defects is a likely candidate for explaining the difference, as suggested by Transient Current Technique (TCT) measurements. A single-crystalline (sCVD) diamond sensor shows a faster relative signal decrease than a pCVD sensor mounted at the same location. This is expected, since the relative increase in the number of defects is larger in sCVD than in pCVD sensors. -- Highlights: •The BCM system and its diamond detectors at the CMS experiment of the LHC are presented. •Detectors show a decreased signal strength with increasing integrated luminosity. •CCD measurements using constant HV and alternating HV to prevent polarization are compared. •TCT measurements show a decreasing signal when polarization builds up. •Polarization effects are a likely

  12. Test beam evaluation of newly developed n-in-p planar pixel sensors for use in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K., E-mail: kimihiko@hep.phys.titech.ac.jp [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Yamaguchi, D.; Motohashi, K. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Nakamura, K.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Jinnouchi, O. [Institute of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Altenheiner, S. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Blue, A. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Bomben, M. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Butter, A. [LAL, University Paris-Sud (France); CNRS/IN2P3 (France); Université Paris-Saclay, Orsay (France); Cervelli, A. [Universität Bern, Laboratory for High Energy Physics, Sidlerstrasse 55, CH-3012 Bern (Switzerland); Crawley, S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom); Ducourthial, A. [CNRS/IN2P3 (France); Laboratoire de physique nucléaire et de hautes energies (LPNHE), Univ. Paris-UMPC, 4 Place Jussieu, 75005 Paris (France); Univ. Paris Diderot (France); Gisen, A. [Experimentelle Physik IV, Technische Universität Dortmund, 44221 Dortmund (Germany); Hagihara, M. [Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8751 (Japan); and others

    2016-09-21

    Radiation-tolerant n-in-p planar pixel sensors have been under development in cooperation with Hamamatsu Photonics K.K. (HPK). This is geared towards applications in high-radiation environments, such as for the future Inner Tracker (ITk) placed in the innermost part of the ATLAS detector in the high luminosity LHC (HL-LHC) experiment. Prototypes of those sensors have been produced, irradiated, and evaluated over the last few years. In the previous studies, it was reported that significant drops in the detection efficiency were observed after irradiation, especially under bias structures. The bias structures are made up of poly-Si or Al bias rails and poly-Si bias resistors. The structure is implemented on the sensors to allow quality checks to be performed before the bump-bonding process, and to ensure that charge generated in floating pixels due to non-contacting or missing bump-bonds is dumped in a controlled way in order to avoid noise. To minimize the efficiency drop, several new pixel structures have been designed with bias rails and bias resistors relocated. Several test beams have been carried out to evaluate the drops in the detection efficiency of the new sensor structures after irradiation. Newly developed sensor modules were irradiated with proton-beams at the Cyclotron and Radio-Isotope Center (CYRIC) in Tohoku University to see the effect of sensor-bulk damage and surface charge-up. An irradiation with γ-rays was also carried out at Takasaki Advanced Radiation Research Center, with the goal of decoupling the effect of surface charge-up from that of bulk damage. Those irradiated sensors have been evaluated with particle beams at DESY and CERN. Comparison between different sensor structures confirmed significant improvements in minimizing efficiency loss under the bias structures after irradiation. The results from γ-irradiation also enabled cross-checking the results of a semiconductor technology simulation program (TCAD). - Highlights: • The

  13. Cryopump behavior in the presence of beam or nuclear radiation

    International Nuclear Information System (INIS)

    Law, P.K.

    1977-12-01

    Cryocondensation pumping has been proposed to be the method of gas removal for neutral-beam refueled fusion reactors. A cryocondensation pumping unit has been constructed to test design concepts and compatibility with conditions under actual beam operation and nuclear radiation environment. Various operating parameters for this test pumping unit have been measured, including pumping speeds for various gases and beam desorption effects. An experiment has been planned at the Berkeley Research Reactor to measure the desorption effects of high energy neutrons and gamma radiation. A foil activation method has been devised to accurately assess the energy spectrum of this neutron source, which is expected to be comparable to that of the Tokamak Fusion Test Reactor

  14. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between conventional disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (author)

  15. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between 'conventional' disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (orig.) [de

  16. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  17. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  18. Radiation optic neuropathy after external beam radiation therapy for acromegaly: report of two cases

    International Nuclear Information System (INIS)

    Bergh, Alfons C.M. van den; Hoving, Marjanke A.; Links, Thera P.; Dullaart, Robin P.F.; Ranchor, Adelita V.; Weeme, Cees A. ter; Canrinus, Alof A.; Szabo, Ben G.; Pott, Jan-Willem R.

    2003-01-01

    For diagnosing radiation optic neuropathy (RON) ophthalmological and imaging data were evaluated from 63 acromegalic patients, irradiated between 1967 and 1998. Two patients developed RON: one patient in one optic nerve 10 years and another patient in both optic nerves 5 months after radiation therapy. RON is a rare complication after external beam radiation therapy for acromegaly, which can occur after a considerable latency period

  19. Stabilization of synchrotron radiation x-ray beam by MOSTAB

    CERN Document Server

    Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y

    2003-01-01

    Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)

  20. LCT protective dump-switch tests

    International Nuclear Information System (INIS)

    Parsons, W.M.

    1981-01-01

    Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions

  1. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  2. The control system for the LEP beam dump

    International Nuclear Information System (INIS)

    Carlier, E.; Aimar, A.; Bretin, J.L.; Marchand, A.; Mertens, V.; Verhagen, H.

    1994-01-01

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))

  3. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  4. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  5. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  6. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  7. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  8. Radioactive-waste ocean dumping will have negligible enviromental impact. Conclusion of draft assessment of NSB

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This draft report is the result of extensive studies based on the best available information in the field of oceanography, marine radiobiology and health physics. On various basic considerations, assessment was undertaken, and the following conclusion was reached. The quantity of radioactivity to be dumped at one time is assumed to be 500 Ci in the case of test dumping, and 10/sup 5/ Ci/year in the case of full-scale dumping. The conditions required for the dumping sea area are that the bottom water flow and upwelling amount are limited, and that the sea bottom is flat. The horizontal dispersion coefficient of 10/sup 7/ cm/sup 2//sec and the vertical dispersion coefficient of 2 x 10/sup 2/ cm/sup 2//sec are assumed. It is assumed that the radionuclides in the disposed package would leached out as soon as it reaches the sea bottom, and would not show any physicochemical behavior. Typycal radionuclides are classified into 5 groups in terms of their half lives, and their estimated concentrations at 1 km depth are tabulated. The maximum level of individual dose and the magnitude of population dose were assessed on the fishermen working in the dumping sea area, and the adults, children and infants who were expected to receive higher dose on account of the larger intake of fish products than average. The dose level given with the dose assessment model and various panamentors under the dumping conditions is much lower than natural radiation and the permissible level recommended by ICRP.

  9. Scattered radiation in fan beam imaging systems

    International Nuclear Information System (INIS)

    Johns, P.C.; Yaffe, M.

    1982-01-01

    Scatter-to-primary energy fluence ratios (S/P) have been studied for fan x-ray beams as used in CT scanners and slit projection radiography systems. The dependence of S/P on phantom diameter, distance from phantom to image receptor, and kilovoltage is presented. An empirical equation is given that predicts S/P over a wide range of fan beam imaging configurations. For CT body scans on a 4th-generation machine, S/P is approximately 5%. Scattered radiation can produce a significant cupping artefact in CT images which is similar to that due to beam hardening. When multiple slices are used in scanned slit radiography, they can be arranged such that the increase in S/P is negligible. Calculations of scatter-to-primary ratios for first order scattering showed that for fan beams the contribution of coherent scatter is comparable to or greater than that of incoherent first scatter

  10. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  11. The effect of electron beam radiations on testicular damage in mice, Mus musculus

    International Nuclear Information System (INIS)

    Vikram, S.; Nair, Vijay Mala Grover

    2013-01-01

    Adult male Swiss albino mice, Mus musculus (8-10 weeks old) weighing 28±2.5 gm were exposed to varying doses (2-12 Gy) of electron beam radiations and maintained in animal house at 26-28 C. The animals were sacrificed following 35 and 60 days following exposure to electron beam radiations. The LD-50 value, change in the weight and histological details of the testis, sperm count, sperm shape abnormalities and sperm motility were recorded. The data suggests that electron beam radiations is a potential inducer to cause reproductive system dysfunctions which probably may be responsible leading to infertility. (author)

  12. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  13. ITER neutral beam system US conceptual design

    International Nuclear Information System (INIS)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus

  14. 30 CFR 57.9301 - Dump site restraints.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...

  15. Intraoperative electron beam radiation therapy (IOEBRT) for carcinoma of the exocrine pancreas

    International Nuclear Information System (INIS)

    Dobelbower, R.R. Jr.; Konski, A.A.; Merrick, H.W. III; Bronn, D.G.; Schifeling, D.; Kamen, C.

    1991-01-01

    The abdominal cavities of 50 patients were explored in a specially constructed intraoperative radiotherapy operating amphitheater at the Medical College of Ohio. Twenty-six patients were treated with intraoperative and postoperative precision high dose external beam therapy, 12 with intraoperative irradiation but no external beam therapy, and 12 with palliative surgery alone. All but two patients completed the postoperative external beam radiation therapy as initially prescribed. The median survival time for patients treated with palliative surgery alone was 4 months, and that for patients treated with intraoperative radiotherapy without external beam therapy was 3.5 months. Patients undergoing intraoperative irradiation and external beam radiation therapy had a median survival time of 10.5 months. Four patients died within 30 days of surgery and two patients died of gastrointestinal hemorrhage 5 months posttreatment

  16. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  17. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  18. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  19. A detector for localizing diverging beams of ionizing radiations

    International Nuclear Information System (INIS)

    Allemand, Robert.

    1974-01-01

    Description is given of a detector for localizing diverging radiation beams, adapted to provide the angular distribution of nuclear events. That detector comprises a casing filled with a fluid adapted to produce electric charges under radiations and provided with a front-side and a rear-side, means for generating an electric field at right angles to portions of parallel surfaces of revolution having in common an axis of revolution contained in the place of symmetry, and a plane unit for localizing electric charges mounted at the rear of said means, the initial portion of the beam being on the axis of revolution. This can be applied to X-ray diffraction and to neutron diffraction [fr

  20. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  1. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  2. Review of the continued suitability of the dumping site for radioactive waste in the North-East Atlantic

    International Nuclear Information System (INIS)

    1980-04-01

    Under the terms of the Decision of the OECD Council establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste, NEA is requested to assess, in consultation with the Environment Committee, the suitability of dumping sites proposed by the national authorities of Participating countries and to keep under review those previously considered suitable. Since 1974 radioactive waste sea dumping operations have been carried out in a single site located in the North-East Atlantic region. To fulfil the objectives of the Council Decision, an international group of oceanographic and radiation protection experts was convened by NEA in November 1979 to undertake a review of the continued suitability of the dumping site, taking into account the relevant provisions of the London Dumping Convention and the IAEA Definition and Recommendations for the purposes of the Convention. The results of the review are contained in this Report. The Steering Committee for Nuclear Energy confirmed in April 1980 that, on the basis of the review, the existing site was suitable for continued dumping of radioactive waste for the next five years, under the conditions specified by the Group of Experts in their conclusions and recommendations. At the same time, the Steering Committee for Nuclear Energy agreed on the need for developing a co-ordinated site-specific scientific programme to increase current knowledge of the processes controlling the transfert of radionuclides in the marine environment, so that future assessments can be based on more accurate and comprehensive scientific data

  3. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  4. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1998-01-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment

  5. Beam size measurement at high radiation levels

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    At the end of the Stanford Linear Accelerator the high energy electron and positron beams are quite small. Beam sizes below 100 μm (σ) as well as the transverse distribution, especially tails, have to be determined. Fluorescent screens observed by TV cameras provide a quick two-dimensional picture, which can be analyzed by digitization. For running the SLAC Linear Collider (SLC) with low backgrounds at the interaction point, collimators are installed at the end of the linac. This causes a high radiation level so that the nearby cameras die within two weeks and so-called ''radiation hard'' cameras within two months. Therefore an optical system has been built, which guides a 5 mm wide picture with a resolution of about 30 μm over a distance of 12 m to an accessible region. The overall resolution is limited by the screen thickness, optical diffraction and the line resolution of the camera. Vibration, chromatic effects or air fluctuations play a much less important role. The pictures are colored to get fast information about the beam current, size and tails. Beside the emittance, more information about the tail size and betatron phase is obtained by using four screens. This will help to develop tail compensation schemes to decrease the emittance growth in the linac at high currents. 4 refs., 2 figs

  6. The battle of the dumps continues

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Although East Rand Gold and Uranium Company is about to start exploitation of the old slimes dams to produce gold, uranium and sulphuric acid, the battle to suppress dust and establish vegetation on the old dumps continues. The physical problems, planning, co-ordination and legal aspects of mine dump reclamation are outlined

  7. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  8. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  9. INFLUENCE OF INCUBATION TIME, GAMMA RAYS AND ELECTRON BEAM ON RADIATION RESISTANCE OF SOME SELECTED PATHOGENS

    International Nuclear Information System (INIS)

    EL-HIFNAWI, H.N.; EL-TABLAWY, S.Y.

    2009-01-01

    The effect of different growth phases on the radiation resistance, antibiotic susceptibility and pathogenicity of certain selected pathogens (Escherichia coli, Candida albicans and Staphylococcus aureus) was studied in mice. The obtained results showed that Escherichia coli was slightly more resistant to gamma radiation in 18 h than 24 h or 48 h but it was relatively more resistant to electron beam in 24 h and 48 h than 18 h. Candida albicans showed radiation resistance nearly the same in all incubation times in the case of gamma radiation while for electron beam, its radiation resistance was slightly more in 24 h and 48 h than in 18 h. On the other hand, Staphylococcus aureus recorded much more resistance to gamma radiation in the 48 h than in 24 h or 18 h whereas in the case of electron beam, it was slightly more resistant in 18 h than in 24 h and 48 h.The antibiotic susceptibility of Escherichia coli reported that the exposure to gamma radiation at 3 kGy and electron beam at 6 kGy increase the susceptibility to the nalidixic acid and nitrofurantoin. When Candida albicans was exposed to 3 kGy gamma radiation and 6 kGy electron beam, the same sensitivity to nystatin was observed in comparison with the unexposed one while the sensitivity of Staphylococcus aureus to some antibiotics (amoxicillin, nitrofurantoin and tetracycline) was decreased after exposure to gamma radiation at 0.75 and 2 kGy and electron beam at 6 kGy, but for other antibiotics (trimethoprim/ sulfamethoxazole), the sensitivity was increased at 6 kGy electron beam.The lethality percent recorded after the oral ingestion of the mice with the unexposed Escherichia coli and Candida albicans were 25% and 100%, respectively, and for 6 kGy exposure to electron beam was 0% . The cotaneous disease and abscesses caused by the intradermal injection of the mice with unexposed Staphylococcus aureus was 75% and for 6 kGy exposure to electron beam was 25%.

  10. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Wang, Guimei

    2011-01-01

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q ext with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy

  11. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  12. Design of the calorimeter and beam dump for the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Stone, R.R.; Haughian, J.M.

    1977-01-01

    A calorimeter has been designed for use with the TFTR prototype neutral beam injection system. It consists of three vees each having two 18.8-mm-thick (0.75 in.) copper plates at a 6-deg angle, relative to the beam centerline. The maximum power density on a plate with this arrangement will be 2.0 kW/cm 2 , resulting in a front surface temperature rise of about 420 0 C. A support and retraction system moves the calorimeter in and out of the beam centerline. Various factors used in the selection of the absorber plate material will be discussed and also some experimental test results will be presented

  13. A beam radiation monitor based on CVD diamonds for SuperB

    Science.gov (United States)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  14. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  15. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration

  16. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  17. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  18. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  19. Modelling radiation fields of ion beams in tissue-like materials

    International Nuclear Information System (INIS)

    Burigo, Lucas Norberto

    2014-01-01

    Fast nuclei are ionizing radiation which can cause deleterious effects to irradiated cells. The modelling of the interactions of such ions with matter and the related effects are very important to physics, radiobiology, medicine and space science and technology. A powerful method to study the interactions of ionizing radiation with biological systems was developed in the field of microdosimetry. Microdosimetry spectra characterize the energy deposition to objects of cellular size, i.e., a few micrometers. In the present thesis the interaction of ions with tissue-like media was investigated using the Monte Carlo model for Heavy-Ion Therapy (MCHIT) developed at the Frankfurt Institute for Advanced Studies. MCHIT is a Geant4-based application intended to benchmark the physical models of Geant4 and investigate the physical properties of therapeutic ion beams. We have implemented new features in MCHIT in order to calculate microdosimetric quantities characterizing the radiation fields of accelerated nucleons and nuclei. The results of our Monte Carlo simulations were compared with recent experimental microdosimetry data. In addition to microdosimetry calculations with MCHIT, we also investigated the biological properties of ion beams, e.g. their relative biological effectiveness (RBE), by means of the modified Microdosimetric-Kinetic model (MKM). The MKM uses microdosimetry spectra in describing cell response to radiation. MCHIT+MKM allowed us to study the physical and biological properties of ion beams. The main results of the thesis are as follows: MCHIT is able to describe the spatial distribution of the physical dose in tissue-like media and microdosimetry spectra for ions with energies relevant to space research and ion-beam cancer therapy; MCHIT+MKM predicts a reduction of the biological effectiveness of ions propagating in extended medium due to nuclear fragmentation reactions; We predicted favourable biological dose-depth profiles for monoenergetic helium and

  20. The Impact of Vacuum Gate Valves on the LHC Beam

    CERN Document Server

    Appleby, R B; Cerutti, F; Ferrari, A; Mauri, M; Vlachoudis, V

    2009-01-01

    The LHC vacuum sector valves are located in the straight sections of the LHC ring, and designed to sectorize the LHC vacuum. The valves are interlocked and should trigger a beam dump request if they close on a circulating beam. This report studies the impact on the machine if this request is not made and the valve scrapes the LHC beam halo. Cascade calculations are made using a model of IR7, with several different valve locations, to calculate the downstream energy deposition in superconducting magnet coils and the corresponding signal in beam loss monitors at the quench level. The calculations are done at 7, 5, and 3.5 TeV. It is found that when a downstream magnet reaches the quench level, the neighbouring BLMs see a signal well above the detection threshold. Furthermore, the BLM signal is consistent with the BLM applied threshold settings and a signal is seen in the time domain before the quench level is reached. Therefore the report concludes that the BLMs can see the closing valve and trigger a beam dump...

  1. Spoil dump design and rehabilitation management practices (Australia)

    International Nuclear Information System (INIS)

    Goh, E.K.H.; Aspinall, T.O.; Kuszmaul, J.S.

    1998-01-01

    The environmental impact of mining and evolving environmental legislation has been receiving increased attention worldwide in the last two decades. The potential impacts associated with unstable spoil dumps from mine operations is the focus of concern both by the mining industry, environmental legislative agencies and members of the public. Engineered slopes of mine spoils may be stable at the end of construction, but they can deteriorate over time. There is thus the need to increase the base of knowledge on the existing practices of spoil dump design and rehabilitation. Information concluded from the analysis of the industrial survey carried out on Australian spoil dump management practices at coal, gold and ore mines are presented in this paper. The questionnaire asked for details of soil type of spoils, and factors influencing the design of spoil dumps (climate, rate of erosion, height of dumps, slope gradient and length, overburden handling equipment, soil characteristics, legislation and wastes). 10 refs., 5 figs., 5 tabs

  2. Pressure rise analysis in superconducting coils during dumping

    International Nuclear Information System (INIS)

    Tada, E.; Shimamoto, S.

    1984-01-01

    This chapter describes the ALPHE computer code, whose purpose is to calculate transient helium behavior in a poolboiling coil and to determine suitable characteristics of safety devices to minimize the maximum pressure and the liquid helium lost during dumping due to quench, or when discharging without normalcy. The analysis is compared with the measurements obtained in the domestic test of the Japanese LCT coil. Topics considered include basic equations (helium behavior, heat generation), manual dump without quench, and dumping due to quench. It is demonstrated that the transient behavior, calculated by ALPHE assuming quasi-static equilibrium between helium and coil, is in good agreement with the experimental measurements observed in the domestic test of the Japanese LCT coil. The engineering technique required for the design criteria of superconducting coils and safety device during dumping is established. ALPHE can be used to design an emergency safety system for a helium refrigerator during dumping

  3. High-power beam-based coherently enhanced THz radiation source

    Directory of Open Access Journals (Sweden)

    Yuelin Li (李跃林

    2008-08-01

    Full Text Available We propose a compact Smith-Purcell radiation device that can potentially generate high average power THz radiation with high conversion efficiency. The source is based on a train of short electron bunches from an rf photoemission gun at an energy of a few MeV. Particle tracking simulation and analysis show that, with a beam current of 1 mA, it is feasible to generate hundreds of watts of narrow-band THz radiation at a repetition rate of 1 MHz.

  4. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  5. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  6. Responses of diode detectors to radiation beams from teletherapy machines

    International Nuclear Information System (INIS)

    Malinda, Lora; Nasukha

    2003-01-01

    Responses of diode detectors to radiation beams from teletherapy machines. It has been carried out responses to two sets of diode detector by using the beams of teletherapy Co-60 and medical linear accelerator. Each set of consist of 8 diode detectors was irradiated by using gamma beams from teletherapy Co-60 machines and 6 MV and 10 MV foron beams from medical linear accelerator and 6.9.12.16. and 20 MeV electron beams from medical linear accelerator. The detectors were positioned on the phantom circularly and radially and electronic equilibrium condition for all type and energy beams. It was found that every detectors had own individual response and it is not to be uniformity, since the fluctuation in between 16.6 % to 30.9 %. All detectors responses are linear to gamma and foron beams, and also for energy above 6 MeV for electron beams. Nonlinearity response occurs for 6 MeV electron beam, it is probably from the assumption of electronic equilibrium

  7. Scattered radiation from applicators in clinical electron beams.

    NARCIS (Netherlands)

    Battum, L.J. van; Zee, W. van der; Huizenga, H.

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight

  8. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  9. Design and Implementation of a Detector for High Flux Mixed Radiation Fields

    CERN Document Server

    Kramer, Daniel; Sulc, Miroslav

    2008-01-01

    The main purpose of the LHC Beam Loss Monitoring (BLM) system is the active protection of the LHC accelerators' elements against the quench of superconducting magnets and the damage of equipment caused by the loss of circulating protons. The lost protons initiate a shower of secondary particles, which deposit their energy in the equipment and partly in a radiation detector. If thresholds in the BLM system are exceeded, the circulating LHC beam is directed towards a dump to stop the energy deposition in the fragile equipment. The LHC BLM system will use ionization chambers as standard detectors, and in the areas with very high dose rates Secondary Emission Monitor (SEM) chambers will be employed to increase the dynamic range. The SEM is characterized by a high linearity and accuracy, low sensitivity, fast response and a good radiation tolerance. The emission of electrons from the surface layer of metals by the passage of charged particles is only measurable in a vacuum environment. This requirement leads toget...

  10. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  11. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  12. Image-guided small animal radiation research platform: calibration of treatment beam alignment

    International Nuclear Information System (INIS)

    Matinfar, Mohammad; Iordachita, Iulian; Kazanzides, Peter; Ford, Eric; Wong, John

    2009-01-01

    Small animal research allows detailed study of biological processes, disease progression and response to therapy with the potential to provide a natural bridge to the clinical environment. The small animal radiation research platform (SARRP) is a portable system for precision irradiation with beam sizes down to approximately 0.5 mm and optimally planned radiation with on-board cone-beam CT (CBCT) guidance. This paper focuses on the geometric calibration of the system for high-precision irradiation. A novel technique for the calibration of the treatment beam is presented, which employs an x-ray camera whose precise positioning need not be known. Using the camera system we acquired a digitally reconstructed 3D 'star shot' for gantry calibration and then developed a technique to align each beam to a common isocenter with the robotic animal positioning stages. The calibration incorporates localization by cone-beam CT guidance. Uncorrected offsets of the beams with respect to the calibration origin ranged from 0.4 mm to 5.2 mm. With corrections, these alignment errors can be reduced to the sub-millimeter range. The calibration technique was used to deliver a stereotactic-like arc treatment to a phantom constructed with EBT Gafchromic films. All beams were shown to intersect at a common isocenter with a measured beam (FWHM) of approximately 1.07 mm using the 0.5 mm collimated beam. The desired positioning accuracy of the SARRP is 0.25 mm and the results indicate an accuracy of 0.2 mm. To fully realize the radiation localization capabilities of the SARRP, precise geometric calibration is required, as with any such system. The x-ray camera-based technique presented here provides a straightforward and semi-automatic method for system calibration.

  13. Detection of coherent X-ray transition radiation and its application to beam diagnostics

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Li Qiang; Moran, M.J.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.; Rothbart, G.B.

    1989-01-01

    We investigate the use of coherent X-ray transition radiation to measure the energy of ultra-relativistic charged particles. This can be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The research also has possible applications for the detection and identification of these particles. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charged particle energies. We have constructed three coherent radiators and tested them at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft X-ray emission (1-3 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5-9.0 mrad. The angle of peak emission was found to increase with electron-beam energy, in contrast to the incoherent case for which the angle of emission varies inversely with electron-beam energy. (orig.)

  14. Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms

    Science.gov (United States)

    Long, Xueping; Jayich, Andrew; Campbell, Wesley

    2017-04-01

    Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.

  15. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  16. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-01-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration

  17. Radioactive waste dumping at sea: causes for concern

    International Nuclear Information System (INIS)

    Alton, D.; Atkinson, N.; Barrett, H.A.

    The dumping of various low-level radioactive wastes at sea has been carried out for many years and has been accepted as a satisfactory means of disposal by national and international regulatory authorities. There are, however, grounds for concern from an environmental standpoint which centre around two particular issues: the likely extent of mobilisation of an increasing radioactive inventory over time and the likely effects of such radioactivity if and when it should make contact with living organisms. The subject is discussed under the headings: mobilisation; effects on the marine environment; physical and biological considerations; future exploitation of the oceans (for food, minerals); and the effects of radiation. (author)

  18. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  19. Dumping of low-level radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1980-01-01

    Two international agreements relate to the dumping of packaged radioactive waste into the oceans - the Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter of 1972 (London Convention) and the Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste of 1977 under the Organization for Economic Co-operation and Development (OECD). The International Atomic Energy Agency was given the responsibility to define high-level radioactive wastes which are unsuitable for dumping in the oceans and to make recommendations for the dumping of other radioactive wastes. A revised Definition and Recommendations was submitted and accepted by the London Convention. This paper reviews the technical basis for the Definition and describes how it has been applied to the radiological assessment of the only operational dumping site in the North East Atlantic

  20. Characterization of a Cs-137 radiation beam for dosimeter calibrations in the CRCN-CO

    International Nuclear Information System (INIS)

    Baptista Neto, Annibal T.; Soares, Carlos M. de A.; Silva, Teogenes A. da; Correa, Rosangela da S.

    2009-01-01

    The Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO) has played an important role in the environmental radiation monitoring program in Goiania city. The reduce its dependence of others monitoring laboratories, the CRCN-CO acquired a model 28 JL Shepherd and Associates irradiation system with a 137 Cs source for calibrations and frequent quality control checks of radiation dosimeters. A characterization of the irradiation system was carried out with the reference standard dosimeters that are maintained by the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN). The laboratory surrounding areas were monitored to demonstrate the adequate radiation protection conditions and parameters as the radiation field size, beam uniformity and the level of the scatter radiation were investigated. Dosimetry of the 137 Cs radiation beam in terms of air kerma rate was carried out at many source-detector distances with 4 (four) different beam lead attenuators. Results demonstrated that in spite of the radiation shutter automation is strongly recommended, the irradiation system is adequate and it complies with the requirements to be used for dosimeter irradiations and calibrations for the purpose of radiation protection. (author)

  1. POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE

    Energy Technology Data Exchange (ETDEWEB)

    Benford, James N. [Microwave Sciences, 1041 Los Arabis Lane, Lafayette, CA 94549 (United States); Benford, Dominic J., E-mail: jimbenford@gmail.com [NASA’s Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2016-07-10

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  2. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  3. Visible-light beam size monitors using synchrotron radiation at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Rubin, D.L.; Conway, J.; Palmer, M.; Hartill, D. [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Campbell, R.; Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)

    2013-03-01

    A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has been designed and installed in Cornell Electron-Positron Storage Ring (CESR). The monitor employs a double-slit interferometer to measure both the horizontal and vertical beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 μm can be measured with a resolution of approximately 5 μm. To measure larger beam size (>500 μm), direct imaging can be employed by rotating the double slits away from SR beam path. By imaging the π-polarized component of SR, a small vertical beam size (∼70 μm) was measured during an undulator test run in CESR, which was consistent with the interferometer measurement. To measure the bunch length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This beam size monitor measures the transverse and longitudinal beam sizes simultaneously, which is successfully used for intrabeam scattering studies. Detailed error analysis is discussed.

  4. Acoustical radiation torque and force for spheres and Bessel beam extinction efficiency

    Science.gov (United States)

    Marston, Philip L.; Zhang, Likun

    2014-11-01

    The scattering of optical and acoustical beams is relevant to the levitation and manipulation of drops. Here we examine theoretical developments in the acoustical case. We previously showed how the optical theorem for extinction can be extended to invariant beams. The example of a sphere in a Bessel beam facilitates the direct comparison with a circular disc computed using Babinet's principle and the Kirchhoff approximation. In related work, by considering traveling or standing wave first-order vortex beams we previously showed that the radiation torque is the ratio of the absorbed power and the radian acoustic frequency. By modifying the scattering to account for the viscosity of the surrounding fluid in the analysis of the absorbed power, approximations for radiation torque and force are obtained at long wavelengths in special cases and these can be compared with results published elsewhere.

  5. Radiation safety study for conventional facility and siting pre project phase of International Linear Collider

    International Nuclear Information System (INIS)

    Sanami, Toshiya; Ban, Syuichi; Sasaki, Shin-ichi

    2015-01-01

    The International Linear Collider (ILC) is a proposed high-energy collider consisting of two linear accelerators, two dumping rings, electron and positron sources, and a single colliding hall with two detectors. The total length and CMS energy of the ILC will be 31 km and 500 GeV, respectively (and 50 km and 1 TeV after future upgrade). The design of the ILC has entered the pre-project phase, which includes site-dependent design. Radiation safety design for the ILC is on-going as a part of conventional facility and siting activities of the pre-project phase. The thickness of a central wall of normal concrete is designed to be 3.5 m under a pessimistic assumption of beam loss. The beam loss scenario is under discussion. Experience and knowledge relating to shielding design and radiation control operational work at other laboratories are required. (authors)

  6. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    Science.gov (United States)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  7. Summary Report of Working Group 5: Beam and Radiation Generation, Monitoring, and Control

    International Nuclear Information System (INIS)

    Church, Mike; Kim, Kiyong

    2010-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  8. Activation and radiation damage in the environment of hadron accelerators

    CERN Document Server

    Kiselev, Daniela

    2013-01-01

    A component which suffers radiation damage usually also becomes radioactive, since the source of activation and radiation damage is the interaction of the material with particles from an accelerator or with reaction products. However, the underlying mechanisms of the two phenomena are different. These mechanisms are described here. Activation and radiation damage can have far-reaching consequences. Components such as targets, collimators, and beam dumps are the first candidates for failure as a result of radiation damage. This means that they have to be replaced or repaired. This takes time, during which personnel accumulate dose. If the dose to personnel at work would exceed permitted limits, remote handling becomes necessary. The remaining material has to be disposed of as radioactive waste, for which an elaborate procedure acceptable to the authorities is required. One of the requirements of the authorities is a complete nuclide inventory. The methods used for calculation of such inventories are presented,...

  9. Electron beam radiation effects on recycled polyamide-6

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Silva, Leonardo G. de Andrade e

    2001-01-01

    Applications of electron beam processing in the treatment of polymers are commonly used. The interaction of high energy radiation with polymers may cause permanent modifications in the polymer's physicochemical structure. The induced modifications may result in degradation of the polymer or in improvement of its properties (crosslinking), which are simultaneous and competing processes, depending on the radiation dose utilized. Crosslinking occurs more readily in the polymer's amorphous content and this process makes the glass transition temperature (Tg) of the polymers to increase. Successive recycling cycles promote changes in polymers properties, such as breaking of structure, molecular weight reduction, melt index increase and mechanical resistance reduction. The polyamide-6 resin was recycled for three successive recycling cycles and thi polyamide-6 specimens were molded by the process of injection molding. These specimens were irradiated at the Nuclear Energetic Research Institute (IPEN) radiation facility, on a JOB 188 model accelerator, with a 1.5 MeV electron beam, doses of 200, 300, 400, 500 and 600 kGy, and dose rate of 22.61 kGy/s. The DMA tests were performed using DMA-983 equipment from TA Instruments and two heatings were adopted in order to eliminate the moisture absorption. The X-ray diffraction analysis wa carried out at the Philips PW 1830 model equipment

  10. Transverse velocity modulator and generator schemes based on non-collinear radiation and electron beams

    CERN Document Server

    Varfolomeev, A A

    2000-01-01

    New non-collinear schemes are suggested for transverse velocity modulation of electron beams and for the generation of coherent spontaneous radiation by these transversely modulated beams. It is shown that due to the non-collinearity some orders of magnitude enhancement can be achieved for the coherent spontaneous radiation (CSR) power at both the fundamental and harmonic frequencies.

  11. Energy dump of the ATLAS superconducting system simulations of electrical and thermal behaviour of magnet system at slow- and fast dump

    CERN Document Server

    van Beek, Martijn; Dudarev, A

    During the slow dump (discharge) of the Barrel Toroidal (superconducting) magnet of the ATLAS detector, the control system gave an alarm that the differences between the voltages over the conductors were too high. The alarm was not due to any danger, because of some sort of phenomenon observed in the first few seconds after start of the discharge. A possible explanation of the differences of the coil voltages is that the changing current through the conductors may cause induced currents in the coil casing around. The goal was to make a simulation of the electrical behaviour of the magnet system during a slow dump. In this way, an explanation can be found for the start phenomenon of the slow dump of the Barrel Toroid. Some extra analyses on the measurements were performed to describe the energy dissipation during a fast dump. This is done by calculating the resistance of the coils during the dump. With the maximum resistance, the maximum temperature can be estimated, which says something about the enthalpy of ...

  12. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  13. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  14. Flora and vegetation on dumps of uranium mining in the southern part of the former GDR

    International Nuclear Information System (INIS)

    Saenger, H.

    1995-01-01

    From 1946 to 1990 an intensive uranium mining had been carried out with underground mining and also with opencast mining by the Wismut enterprise in the southern part of the former GDR. The mining activity lead also in the surroundings of Ronneburg to a permanent growth of devastated areas, among others in the form of dumps and tailings. These areas from by reason of mining-specific contaminations, extreme biotops which demand high claims on the pioneer organisms during the phase of natural first settlement. From 1990 to 1992 vegetation mappings were carried out on 15 dumps of the Thuringia mining area according to Braun-Blanquet (1964). The utilization of the computer program Flora D enabled the ecological characterization of the dumps. On the 15 investigated dumps found were 498 higher plants, belonging to 65 families. One hundred species are species with a high dominance. The number of species per dump fluctuates between 11 and 282. Pioneer plants occur on the berms mostly in the second year after stoppage of the dumping, on the slopes after five to ten years. After nearly ten years the first step of settlement seems to be finished. Among the mechanisms of spreading dominate wind- and burdock spread. According to the form of life forms the dump species are dominantly hemicryptophytes, further therophypes, geophytes and phanerophytes. Biological radiation investigations were performed using the honeybee (Apis mellifera) as bioindicator. The radioactivity in bee products was determined by means of gamma-ray spectrometry. The results show that the radioactivity in honey is twice to three times as high as in that from unpolluted control areas. Nonetheless, the level of honey radioactivity observed in the studied area does not endanger human health. Also the contents of radionuclides from the fission of uranium (U-235, U-238, Ra-226, Pb-210, Po-210 and Ra-228) in plants were determined. The effective equivalent dose for adults through different paths of exposure was

  15. Combatting social dumping - also an obligation for municipalities

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Baadsgaard, Kelvin

    2018-01-01

    Analytisk indkredsning af social dumping og argumentation for kommuners opgaver i forbindelse med bekæmpelse heraf......Analytisk indkredsning af social dumping og argumentation for kommuners opgaver i forbindelse med bekæmpelse heraf...

  16. Geology beneath and beside the notorious Payatas open dump, Metro Manila, Philippines

    Science.gov (United States)

    Tomarong, C.; Arcilla, C.; de Sales, L.; Chua, S.; Garcia, E.; Pamintuan, G.

    2003-04-01

    With a minimum of 6000 tonnes/day municipal waste output, and with NO existing operational sanitary landfill and with incineration illegal, Metro Manila has a very serious solid waste disposal problem. Unsorted municipal waste are being piled in open dumps, the most notorious of which is the Payatas open dump. A recent, tragic garbage-slide in this open dump caused dozens of deaths, news of which were broadcast internationally. Political expediency laced with a lot of corruption, rather than sound science, was the main basis for selecting this site as an open dump. As an example, this dump is situated plastics. Several cross-sections cut across the dump show that the side slopes of the dump are on the average steeper than the pre-dump slopes. The “bedrock” of the Payatas dump are conglomerate members of the Pleistocene volcaniclastic Guadualupe Formation. Studies are still to be done on the extent of pollution on surface and groundwater in the Payatas environs.

  17. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams

    Science.gov (United States)

    Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.

    2018-01-01

    Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.

  18. Database Dump - fRNAdb | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us fRNAdb Database Dump Data detail Data name Database Dump DOI 10.18908/lsdba.nbdc00452-002 De... data (tab separeted text) Data file File name: Database_Dump File URL: ftp://ftp....biosciencedbc.jp/archive/frnadb/LATEST/Database_Dump File size: 673 MB Simple search URL - Data acquisition...s. Data analysis method - Number of data entries 4 files - About This Database Database Description Download... License Update History of This Database Site Policy | Contact Us Database Dump - fRNAdb | LSDB Archive ...

  19. AIP Diffraction measurements using the LHC Beam Loss Monitoring System

    CERN Document Server

    Kalliokoski, Matti

    2017-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in di ff raction studies are discussed.

  20. Biofertilizers for the revegetation of coal overburden dumps top materials

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, K. [Central Mining Research Institute, Dhanbad (India). Environmental Management Group

    2001-07-01

    Adding and improving nutrient status of overburden dump top material through biofertilizer for supporting vegetation and for sustainable spoil development, a pot experiment was conducted. In this, two bio-fertilizers namely bactin and phosphin in three doses were applied on overburden dump top material kept in pots growing two grass species. The growths were compared with control on dump and soil both. Results shows that overburden dump amended with bio-fertilizer at lowest dose have significant increase in growth over the control of dump material and soil in vetiver grass but failed to shows the same result in lemon grass. This may be due to different growth behaviour of the grasses. 14 refs., 2 tabs.

  1. External beam radiation for retinoblastoma: Results, patterns of failure, and a proposal for treatment guidelines

    International Nuclear Information System (INIS)

    Hernandez, J. Carlos; Brady, Luther W.; Shields, Jerry A.; Shields, Carol L.; Potter, Patrick de; Karlsson, Ulf L.; Markoe, Arnold M.; Amendola, Beatriz E.; Singh, Arun

    1996-01-01

    Purpose: To analyze treatment results and patterns of failure following external beam radiation for retinoblastoma and propose treatment guidelines according to specific clinical variables. Methods and Materials: We analyzed 27 patients (34 eyes) with retinoblastoma who received external beam radiation as initial treatment at Hahnemann University Hospital from October 1980 to December 1991 and have been followed for at least 1 year. Of the 34 eyes, 14 were Groups I-II (Reese-Ellsworth classification), 7 were Group III, and 13 were Groups IV-V. Doses ranged from 34.5-49.5 Gy (mean 44.3 Gy, median 45 Gy) in 1.5-2.0 Gy fractions generally delivered through anterior and lateral wedged pair fields. Results: At a mean follow up of 35.2 months (range 12-93 months), local tumor control was obtained in 44% (15 out of 34) of eyes with external beam radiation alone. Salvage therapy (plaque brachytherapy, cryotherapy, and/or photocoagulation) controlled an additional 10 eyes (29.5%), so that overall ocular survival has been 73.5%. Local tumor control with external beam radiotherapy alone was obtained in 78.5% (11 out of 14) of eyes in Groups I-II, but in only 20% (4 out of 20) of eyes in Groups III-V. A total of 67 existing tumors were identified prior to treatment in the 34 treated eyes and local control with external beam radiation alone was obtained in 87% (46 out of 53) of tumors measuring 15 mm or less and in 50% (7 out of 14) of tumors measuring more than 15 mm. When analyzing patterns of failure in the 19 eyes that relapsed, a total of 28 failure sites were identified and consisted of progression of vitreous seeds in seven instances (25% of failure sites) recurrences from previously existing tumors in 10 instances (36% of failure sites) and development of new tumors in previously uninvolved retina in 11 instances (39% of failure sites). Conclusions: 1) We find that external beam radiation to a dose of 45 Gy in fractions of 1.5 to 2.0 Gy provides adequate tumor control

  2. The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy

    International Nuclear Information System (INIS)

    Goo, Jang Hyeon; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Park, Jin Hong

    2014-01-01

    The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with TrueBeam TM STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy

  3. The evaluation of properties for radiation therapy techniques with flattening filter-free beam and usefulness of time and economy to a patient with the radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jang Hyeon; Won, Hui Su; Hong, Joo Wan; Chang, Nam Jun; Park, Jin Hong [Dept. of Radiation Oncology, Seoul national university Bundang hospital, Sungnam (Korea, Republic of)

    2014-12-15

    The aim of this study was to appraise properties for radiation therapy techniques and effectiveness of time and economy to a patient in the case of applying flattening filter-free (3F) and flattening filter (2F) beam to the radiation therapy. Alderson rando phantom was scanned for computed tomography image. Treatment plans for intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and stereotactic body radiation therapy (SBRT) with 3F and 2F beam were designed for prostate cancer. To evaluate the differences between the 3F and 2F beam, total monitor units (MUs), beam on time (BOT) and gantry rotation time (GRT) were used and measured with TrueBeam{sup TM} STx and Surveillance And Measurement (SAM) 940 detector was used for photoneutron emitted by using 3F and 2F. To assess temporal and economical aspect for a patient, total treatment periods and medical fees were estimated. In using 3F beam, total MUs in IMRT plan increased the highest up to 34.0% and in the test of BOT, GRT and photoneutron, the values in SBRT plan decreased the lowest 39.8, 38.6 and 48.1%, respectively. In the temporal and economical aspect, there were no differences between 3F and 2F beam in all of plans and the results showed that 10 days and 169,560 won was lowest in SBRT plan. According as the results, total MUs increased by using 3F beam than 2F beam but BOT, GRT and photoneutron decreased. From above the results, using 3F beam can decrease intra-fraction setup error and risk of radiation-induced secondary malignancy. But, using 3F beam did not make the benefits of temporal and economical aspect for a patient with the radiation therapy.

  4. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  5. Observation of optical Smith-Purcell radiation at an electron beam energy of 855 MeV

    International Nuclear Information System (INIS)

    Kube, G.; Backe, H.; Euteneuer, H.; Grendel, A.; Hagenbuck, F.; Hartmann, H.; Kaiser, K.H.; Lauth, W.; Schoepe, H.; Wagner, G.; Walcher, Th.; Kretzschmar, M.

    2002-01-01

    Smith-Purcell radiation, generated when a beam of charged particles passes close to the surface of a diffraction grating, has been studied in the visible spectral range at wavelengths of 360 and 546 nm with the low emittance 855 MeV electron beam of the Mainz Microtron MAMI. The beam focused to a spot size of 4 μm (full width at half maximum) passed over optical diffraction gratings of echelle profiles with blaze angles of 0.8 deg., 17.27 deg., and 41.12 deg. and grating periods of 0.833 and 9.09 μm. Taking advantage of the specific emission characteristics of Smith-Purcell radiation a clear separation from background components, such as diffracted synchrotron radiation from upstream beam optical elements and transition radiation, was possible. The intensity scales with a modified Bessel function of the first kind as a function of the distance between electron beam and grating surface. Experimental radiation factors have been determined and compared with calculations on the basis of Van den Berg's theory [P.M. Van den Berg, J. Opt. Soc. Am. 63, 689 (1973)]. Fair agreement has been found for gratings with large blaze angles while the measurement with the shallow grating (blaze angle 0.8 deg.) is at variance with this theory. Finally, the optimal operational parameters of a Smith-Purcell radiation source in view of already existing powerful undulator sources are discussed

  6. Coherent electromagnetic radiation of a modulated beam of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G [The State Committee of Standards of the USSR, Moscow, USSR

    1977-12-27

    The intensity of electromagnetic radiation produced by a modulated beam of charged particles is estimated. The coherence effect is due to the modulation, i.e. to periodicity in the particles distribution.

  7. Radiomodifying effect of caffeine on mammalian cellular system using gamma radiation and proton beam radiation

    International Nuclear Information System (INIS)

    Samanth, Sneha P.; Yadav, Usha; Shirsath, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Bhat, Nagesh N.; Anjaria, K.B.; Sapra, B.K.

    2016-01-01

    Caffeine is a commonly consumed neurostimulant in the world. Reports suggest the radiomodifying effects of caffeine against low Linear Energy Transfer (LET) radiation when administered pre and post irradiation by releasing checkpoint arrest. In the present report, the radioprotective and radiosensitizing ability of caffeine (10μM - 2mM) were studied on Chinese Hamster Ovary (CRO) cell line against low as well as high LET radiation when administered pre, post and continuously during radiation. Effect of caffeine treatment on the genotoxicity induced by gamma and proton beam radiation was assessed by micronucleus assay. Effect of caffeine treatment on clonogenic survival of irradiated cells was also assessed

  8. Management of dumping of packaged low-level wastes in the deep ocean with emphasis on the North East Atlantic dump site

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1981-08-01

    The following aspects are discussed: radiological principles as applied to disposal to the environment; international regulations; historical dumping practices; assessment of the Northeast Atlantic dump site; IAEA generic studies; and implications of issues on US needs and policies

  9. Sea dumping of hazardous wastes

    International Nuclear Information System (INIS)

    Thomas, J.

    1980-01-01

    From 1967 until 1976 ca. 45,000 t of weak radioactive wastes had been dumped into the sea during several actions under the supervision of the NEA. The requirements to be deduced from the experiences with regard to marine areas, packaging and transports of the wastes are described. Up to now the possibilities of the sea dumping of strong radioactive wastes has been just discussed. The natural removal of the decay heat by sea water would be advantageous but the problem of water-proof packagings for the period of 1000 years have not been solved yet. (orig.) [de

  10. Gelatin/piassava composites treated by Electron Beam Radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida Lucia del; Colombo, Maria Aparecida

    2010-01-01

    Piassava (Attalea funifera Mart) fiber has been investigated as reinforcement for polymer composites with potential for practical applications. The purpose of the present work was to assess the behavior of specimens of piassava fiber and gelatin irradiated with electron beam at different doses and percentage. The piassava/gelatin specimens were made with 5 and 10% (w/w) piassava fiber, gelatin 25% (w/w), glycerin as plasticizer and acrylamide as copolymer. The samples were irradiated up to 40 kGy using an electron beam accelerator, at room temperature in presence of air. Preliminary results showed mechanical properties enhancement with the increase in radiation dose. (author)

  11. Transverse resonance-radiation pressure on atomic beams and the influence of fluctuations

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Freeman, R.R.; Ashkin, A.; Pearson, D.B.

    1979-01-01

    We have experimentally demonstrated that a beam of neutral sodium atoms can be focused to a spot diameter of approx. 50 μ using the transverse dipole resonance-radiation pressure exerted by a 40 mW laser beam. Simple analysis shows that in some cases the spot sizes are limited by the random fluctuations of the spontaneous radiation pressure; with 1 W of laser power, spot sizes less than 10 μ should be attainable. The effects of heating by spontaneous scattering can have important detrimental effects in other applications of resonance - radiation pressure on atoms, such as the slowing or guiding of atoms. Consideration of heating effects is of paramount importance in the design of optical traps for neutral atoms. (KBE)

  12. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228...

  13. Efficient, radiation-hardened, 800-keV neutral beam injection system

    International Nuclear Information System (INIS)

    Anderson, O.A.; Cooper, W.S.; Goldberg, D.A.; Ruby, L.; Soroka, L.; Fink, J.H.

    1982-10-01

    Recent advances and new concepts in negative ion generation, transport, acceleration, and neutrailzation make it appear likely that an efficient, radiation-hardened neutral beam injection system could be developed in time for the proposed FED-A tokamak. These new developments include the operation of steady-state H - ion sources at over 5 A per meter of source length, the concept of using strong-focussing electrostatic structures for low-gradient dc acceleration of high-current sheet beams of negative ions and the transport of these beams around corners, and the development of powerful oxygen-iodine chemical lasers which will make possible the efficient conversion of the negative ions to neutrals using a photodetachment scheme in which the ion beam passes through the laser cavity

  14. Furfural-based polymers for the sealing of reactor vessels dumped in the Arctic Kara Sea

    International Nuclear Information System (INIS)

    Heiser, J.H.; Cowgill, M.G.; Sivintsev, Y.V.; Alexandrov, V.P.; Dyer, R.S.

    1996-01-01

    Between 1965 and 1988, 16 naval reactor vessels were dumped in the Arctic Kara Sea. Six of the vessels contained spent nuclear fuel that had been damaged during accidents. In addition, a container holding ∼ 60% of the damaged fuel from the No. 2 reactor of the atomic icebreaker Lenin was dumped in 1967. Before dumping, the vessels were filled with a solidification agent, Conservant F, in order to prevent direct contact between the seawater and the fuel and other activated components, thereby reducing the potential for release of radionuclides into the environment. The key ingredient in Conservant F is furfural (furfuraldehyde). Other constituents vary, depending on specific property requirements, but include epoxy resin, mineral fillers, and hardening agents. In the liquid state (prior to polymerization) Conservant F is a low viscosity, homogeneous resin blend that provides long work times (6--9 hours). In the cured state, Conservant F provides resistance to water and radiation, has high adhesion properties, and results in minimal gas evolution. This paper discusses the properties of Conservant F in both its cured and uncured states and the potential performance of the waste packages containing spent nuclear fuel in the Arctic Kara Sea

  15. Fixed-target particle fluxes and radiation levels at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The author calculates the charged particle fluxes and radiation doses from minimum ionizing particles (MIP), electromagnetic showers, and hadronic showers, in a fixed-target experiment at the SSC. This work follows the work of Groom, essentially boosting his results into the laboratory frame. The radiation in dense matter, such as a calorimeter, is produced by several sources: electromagnetic showers, hadronic showers, and minimum ionizing particles. The author does not consider other sources of radiation such as beam halo, a dependent effects, and low energy neutrons from secondary sources. Nor does he consider the effects of magnetic fields. Low energy neutrons have been shown to be an important source of radiation for collider experiments at the SSC. In fixed-target experiments, where the spectrometer is more open and where most detector elements are far away from secondary particle dumps, these sources are not as important. They are also very much detector and experimental hall dependent. Hence the results presented here are only a lower limit of the estimated radiation dose

  16. Slow beam raster system at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.; Beaufait, J.; Carlini, R.; Cuevas, C.; Vulcan, W.; Wines, R.

    1994-01-01

    A bedstead air-core raster magnet is being installed now, it will be used at CEBAF to scan the beam on the Hall C polarized target and the beam dump with fixed frequency 60 Hz in horizontal, 103.4 Hz in vertical. The x and y raster magnets are driven by Variac transformer and SUMIT-OMO inverter respectively. Both of them provide an approximate sine current waveform with peak current 20 A, corresponding to a maximum deflection angle 1 mr

  17. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  18. Conceptual design of dump resistor for superconducting CS of SST-1

    International Nuclear Information System (INIS)

    Roy, Swati; Pradhan, Subrata; Panchal, Arun

    2015-01-01

    During the upgradation of SST-1, the resistive central solenoid (CS) coil has been planned to be replaced with Nb 3 Sn based superconducting coil. The superconducting CS will store upto 3.5MJ of magnetic energy per operation cycle with operating current upto 14kA. In case of coil quench, the energy stored in the coils is to be extracted rapidly with a time constant of 1.5s. This will be achieved by inserting a 20m Ohm dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a vital part of the superconducting CS quench protection system, a conceptual design of the 20m Ohm dump resistor has been proposed. In this paper, the required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented. Natural air circulation is proposed as cooling method for this dump resistor. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the shape of meander to minimize the stray inductance and increase the surface area for cooling. The entire dump resistor will be an array of such grids connected in series and parallel to meet electrical as well as thermal parameters. The maximum temperature of the proposed dump resistor is upto 350 °C during dump 3.5MJ energy. The proposed design permits indigenous fabrication of the dump resistor using commercially available welding techniques. (author)

  19. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  20. Formation of Mesoherpetobionts Communities on a Reclamated Coal Open Pit Dump

    Science.gov (United States)

    Luzyanin, Sergey; Eremeeva, Natalya

    2017-11-01

    The structure of the mesoherpetobionts arthropod communities of the reclamated dump of the Krasnobrodsky coal pit (Kemerovo region, Russia) has been studied. It was established that the pioneer grouping of mesoherpetobionts arthropod represented by classes of Chilopoda, Arachnida and Insecta-Ectognatha has been formed on the dump for two years after the soil deposition. From the Arachnida, the species of the order Aranei are the most active in the stocking of the dumps. From the class Chilopoda, the species of Lithobiomorpha appear the first on the dump. Insects from the following three orders, Heteroptera, Hymenoptera and especially Coleoptera take the main part in the expansion of dumps and the formation of primary communities. Among the Coleoptera, the beetles of the family of Carabidae (44 species, dynamic density 22.9 specimens/10 trapped per day) dominate. From them, small or medium-sized species are mainly involved in stocking the dumps. There are significant differences in the complexes of ground dump carabid beetles in comparison with the control group, differing in species composition of dominant species, species richness and species diversity parameters

  1. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  2. PLT and Doublet III neutral beam injection systems

    International Nuclear Information System (INIS)

    Haselton, H.H.; Dagenhart, W.K.; Schechter, D.E.; Stewart, L.D.; Stirling, W.L.

    1976-01-01

    The design program is being supported by experimental work with all beam line components: gas cells, bending magnets, beam stops, magnetic shielding, and high speed-high throughput cryopumping systems. Stray toroidal fields and fields produced by external transmission or mirror magnets are under study to determine the optimum means of removing the unneutralized component from the beam. Concepts utilizing materials with high permeability are adequate to provide the source with the necessary magnetic shielding. Beam stops capable of dissipating a power density of 10 to 40 kW/cm 2 are required for ion dumps, diagnostics, and on line ion source conditioning

  3. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Rossi, Linda; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-01-01

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D 1cc , V 60GyEq , V 40GyEq , and D mean between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality

  4. Noncoplanar Beam Angle Class Solutions to Replace Time-Consuming Patient-Specific Beam Angle Optimization in Robotic Prostate Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Linda, E-mail: l.rossi@erasmusmc.nl; Breedveld, Sebastiaan; Aluwini, Shafak; Heijmen, Ben

    2015-07-15

    Purpose: To investigate development of a recipe for the creation of a beam angle class solution (CS) for noncoplanar prostate stereotactic body radiation therapy to replace time-consuming individualized beam angle selection (iBAS) without significant loss in plan quality, using the in-house “Erasmus-iCycle” optimizer for fully automated beam profile optimization and iBAS. Methods and Materials: For 30 patients, Erasmus-iCycle was first used to generate 15-, 20-, and 25-beam iBAS plans for a CyberKnife equipped with a multileaf collimator. With these plans, 6 recipes for creation of beam angle CSs were investigated. Plans of 10 patients were used to create CSs based on the recipes, and the other 20 to independently test them. For these tests, Erasmus-iCycle was also used to generate intensity modulated radiation therapy plans for the fixed CS beam setups. Results: Of the tested recipes for CS creation, only 1 resulted in 15-, 20-, and 25-beam noncoplanar CSs without plan deterioration compared with iBAS. For the patient group, mean differences in rectum D{sub 1cc}, V{sub 60GyEq}, V{sub 40GyEq}, and D{sub mean} between 25-beam CS plans and 25-beam plans generated with iBAS were 0.2 ± 0.4 Gy, 0.1% ± 0.2%, 0.2% ± 0.3%, and 0.1 ± 0.2 Gy, respectively. Differences between 15- and 20-beam CS and iBAS plans were also negligible. Plan quality for CS plans relative to iBAS plans was also preserved when narrower planning target volume margins were arranged and when planning target volume dose inhomogeneity was decreased. Using a CS instead of iBAS reduced the computation time by a factor of 14 to 25, mainly depending on beam number, without loss in plan quality. Conclusions: A recipe for creation of robust beam angle CSs for robotic prostate stereotactic body radiation therapy has been developed. Compared with iBAS, computation times decreased by a factor 14 to 25. The use of a CS may avoid long planning times without losses in plan quality.

  5. Study of performance of electronic dosemeters in continuous and pulsed X-radiation beams

    International Nuclear Information System (INIS)

    Guimaraes, Margarete Cristina

    2014-01-01

    Personal radiation monitoring is a basic procedure to verify the compliance to regulatory requirements for radiological protection. Electronic personal dosimeters (EPD) based on solid state detectors have largely been used for personnel monitoring; including for pulsed radiation beams where their responses are not well known and deficiencies have been reported. In this work, irradiation conditions for testing the response of EPDs in both continuous and pulsed X-ray beams were studied to be established in a constant potential Seifert-Pantak and in a medical Pulsar 800 Plus VMI X-ray machines. Characterization of X-ray beams was done in terms of tube voltage, half-value layer, mean energy and air kerma rate. A Xi R/F Unfors solid state dosimeter used as reference for air kerma measurements was verified against a RC-6 and 10X6-6 Radical ionization chambers as far its metrological coherence. Rad-60 RADOS, PDM- 11 Aloka and EPD MK2 Thermo electron EPDs were selected to be tested in terms of relative intrinsic error and energy response in similar to IEC RQR, IEC RQA and ISO N reference radiations. Results demonstrated the reliability of the solid state Xi R/F Unfors dosimeter to be as reference dosimeter although its response was affected by heavily filtered beams. Results also showed that relative intrinsic errors in the response of the EPDs in terms of personal dose equivalent, Hp(10), were higher than the requirement established for continuous beams. In pulsed beams, some EPDs showed inadequate response and high relative intrinsic errors. This work stressed the need of performing additional checks for EPDs, besides the limited 137 Cs beam calibration, before using them in pulsed X-ray beams. (author)

  6. Radiation exposure during travelling in Malaysia

    International Nuclear Information System (INIS)

    Omar, M.; Hassan, A.; Sulaiman, I.

    2006-01-01

    Absorbed dose rates in vehicles during travelling by different modes of transport in Malaysia were measured. Radiation levels measured on roads in Peninsular Malaysia were within a broad range, i.e. between 36 and 1560 nGy h -1 . The highest reading, recorded while travelling near monazite and zircon mineral dumps, was 13 times the mean environmental radiation level of Malaysia. It is evident that radioactive material dumps on the roadsides can influence the radiation level on the road. The absorbed dose rates measured while travelling on an ordinary train were between 60 and 350 nGy h -1 . The highest reading was measured when the train passed a tunnel built through a granite rock hill. The measurement during sea travelling by ferries gave the lowest radiation level owing to merely cosmic radiation at the sea level. (authors)

  7. Radioactive dumping in the Arctic Ocean

    International Nuclear Information System (INIS)

    Lamb, J.; Gizewski, P.

    1993-01-01

    Recent revelations concerning the possible environmental hazards posed by the sunken Soviet nuclear submarine Komsomolets and the disposal of radioactive materials in the Arctic and North Atlantic oceans have generated much controversy and debate. Too often, however, the key scientific and policy issues that the dumping raises are treated as two solitudes. In reality, decisions taken by national governments and international agencies in connection with remediation, regulation, and even research must be based on both science and policy. Indeed, a sound approach to the dumping issue must integrate scientific evidence and policy considerations relating to legal, political, social, and economic matters. Radioactive waste disposal is an exceedingly difficult problem. Information detailing the Soviet Navy's past dumping practices, and increasing awareness of the problems that Russia and other states may encounter in the future disposal of radioactive waste, indicate that the global inventory of radioactive wastes requiring storage and disposal is large and growing

  8. Beam shaping of laser diode radiation by waveguides with arbitrary cladding geometry written with fs-laser radiation.

    Science.gov (United States)

    Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar

    2011-12-05

    Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.

  9. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  10. Study of the Hollow Waveguides Physical Parameters Determined the Beam Shape Conservation of the Delivered Radiation

    International Nuclear Information System (INIS)

    Ben-David, M.; Inberg, A.; Katzir, A.; Croitoru, N.

    1999-01-01

    The modification of the laser source beam quality is one of the important factors effect the delivery of laser radiation by a waveguide. In this paper the results of input radiation coupling, radius of bending, length, cross section diameter, waveguide internal wall roughness and coupling lens focal length influence on the beam shape delivered from the flexible hollow waveguides are presented. The conditions for which the beam shape is near to that of the source were found. A theoretical model for the radiation propagation gives quantitative representation of relation between attenuation, beam profile, divergence and above indicated parameters was developed. In this model was supposed that the guiding is produced by multiple incidences on a metal (silver) layer and a dielectric (silver iodine) over layer, by refraction and reflection. The propagation of the rays was calculated using the physical laws of the geometrical optics. For the scattering calculations a random distribution of roughness centers on dielectric layer surface was considered. It was also supposed that the value of the cross section internal diameter (ID=d) was much larger than the transmitted wavelength. The experimental results have shown that losses due to absorption of the propagated radiation in the guiding layers, mainly (AgI), generate satellites of the laser source delivered fundamental Gaussian beam. Increasing of the hollow waveguide internal diameter decreases the attenuation and increases the deviation of beam shape from Gaussian. Off center coupling produce decreasing of the fundamental mode height and generation of the coupled Gaussian beam satellites. The waveguide internal wall roughness produce losses of the coupled radiation and beam profile deviations from that of the laser source. A good correspondence between the theoretical and experimental results obtained

  11. Ocean Dumping: International Treaties

    Science.gov (United States)

    The London Convention and London Protocol are global treaties to protect the marine environment from pollution caused by the ocean dumping of wastes. The Marine, Protection, Research and Sanctuaries Act implements the requirements of the LC.

  12. Topography and diffractometry station in synchrotron radiation beam of the VEPP-4 storage ring. Topography of garnets

    International Nuclear Information System (INIS)

    Kub, I.; Poltsarova, M.; Panchenko, V.E.

    1987-01-01

    Advantages of synchrotron radiation (SR) spectrum of the VEhPP-4 storage ring for X-ray topography and diffractometry are shown. The description of ''Topography and diffractometry'' station in SR dump station of the VEhPP storage ring is presented, peculiarities of X-ray topography method used are discussed. X-ray topographic images of gadolinium-gallium and manganese-germanium garnets taken on the VEhPP SR are given in comparison with conventional images taken using X-ray tubes and SR of the VEhPP-3 storage ring

  13. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  14. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  15. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  16. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Markov Sergey

    2017-01-01

    Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  17. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2004-01-01

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60 Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  18. Peabody Western Coal cuts costs with bottom-dump haulers

    Energy Technology Data Exchange (ETDEWEB)

    Perla, S.; Baecker, G.; Morgan, W. [Empire Machinery, Mesa, AZ (United States)

    1995-04-01

    A new hauling concept has been introduced at the Black Mesa and Kayenta coal mines of the Peabody Western Coal Co. in northern Arizona, USA. The article describes the switch from Caterpillar 992 wheel loaders with 136 t bottom-dump trucks to 272 t bottom-dump trucks. Cat 789 off-highway trucks were modified to pull bottom-dump trucks. Haulage costs per ton of coal and cost per ton-mile have fallen significantly since the introduction of the new large hauling method. 7 figs., 2 photos.

  19. Practice and assessment of sea dumping of radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.; Bewers, J.M.

    1985-08-01

    This paper discusses the practice and assessment of the ocean dumping of low-level radioactive wastes. It describes the international and multilateral regulatory framework, the sources, composition, packaging and rate of dumping and, in particular, the recent radiological assessment of the only operational disposal site in the northeast Atlantic. The paper concludes with a discussion of future ocean disposal practices for radioactive wastes, and the application of the approach to the dumping of non-radioactive contaminants in the ocean. 39 refs., 1 fig., 4 tabs

  20. Role of beam orientation optimization in intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Pugachev, Andrei; Li, Jonathan G.; Boyer, Arthur L.; Hancock, Steven L.; Le, Quynh-Thu; Donaldson, Sarah S.; Lei Xing

    2001-01-01

    Purpose: To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. Methods and Materials: A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. Results: For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. Conclusion: The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans

  1. Generating AN Optimum Treatment Plan for External Beam Radiation Therapy.

    Science.gov (United States)

    Kabus, Irwin

    1990-01-01

    The application of linear programming to the generation of an optimum external beam radiation treatment plan is investigated. MPSX, an IBM linear programming software package was used. All data originated from the CAT scan of an actual patient who was treated for a pancreatic malignant tumor before this study began. An examination of several alternatives for representing the cross section of the patient showed that it was sufficient to use a set of strategically placed points in the vital organs and tumor and a grid of points spaced about one half inch apart for the healthy tissue. Optimum treatment plans were generated from objective functions representing various treatment philosophies. The optimum plans were based on allowing for 216 external radiation beams which accounted for wedges of any size. A beam reduction scheme then reduced the number of beams in the optimum plan to a number of beams small enough for implementation. Regardless of the objective function, the linear programming treatment plan preserved about 95% of the patient's right kidney vs. 59% for the plan the hospital actually administered to the patient. The clinician, on the case, found most of the linear programming treatment plans to be superior to the hospital plan. An investigation was made, using parametric linear programming, concerning any possible benefits derived from generating treatment plans based on objective functions made up of convex combinations of two objective functions, however, this proved to have only limited value. This study also found, through dual variable analysis, that there was no benefit gained from relaxing some of the constraints on the healthy regions of the anatomy. This conclusion was supported by the clinician. Finally several schemes were found that, under certain conditions, can further reduce the number of beams in the final linear programming treatment plan.

  2. Determination of heavy metals in soils from dump site of tanneries ...

    African Journals Online (AJOL)

    Heavy metals were determined in soil samples at the dump site, Challawa town, Karfi Irrigation site and farmlands near the dump site by flame Atomic Absorption Spectrophotometer (AAS). The results showed that soil at the dump site contains significant amount of toxic elements. Hence remediation processes were ...

  3. 7 CFR 46.22 - Accounting for dumped produce.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Accounting for dumped produce. 46.22 Section 46.22... Market Receivers § 46.22 Accounting for dumped produce. A clear and complete record shall be maintained..., shall be obtained to prove the produce was actually without commercial value, unless there is a specific...

  4. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  5. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  6. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  7. Beam structure of Jupiter's decametric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K; Carr, T D

    1984-03-08

    The well-defined zones of central meridian longitude within which the probability of jovian radio emission at frequencies near 22 MHz is relatively high are known as sources A, B and C. Each consists of a component for which the emission probability is strongly correlated with Io's orbital position, and another that is Io-unrelated. The paper presents convincing evidence based on concurrent observations from two Voyager spacecraft and a terrestrial observatory that the component of source A radiation that is not correlated with Io's position is generally emitted in co-rotating searchlight beams of distinctive cross-sectional shape.

  8. Sea dumping of radioactive wastes. Part 3: Dumping practice and radioecology

    International Nuclear Information System (INIS)

    Krejsa, P.

    1983-04-01

    Sea dumping of low level radioactive waste is a disposal method practised by a number of states, controlled by OECD/NEA. It makes use of the capacity of the oceans to dilute the radionuclides to levels acceptable concerning resulting dose burdens. For the determination of release rates some oceanographic model have been developed, describing the physical behaviour of the released radionuclides. It is not to be assumed that a complete mathematical description of the involved processes can be made. Too many parameters are dependent and varying as there is the chemical behaviour of different valence states, complexing agents, distribution patterns etc. But it can be seen that the existing description methods allow the adequate modelling of the short and the long term behaviour of the radionuclides. The use of pessimistic assumptions for distribution and reconcentration is sufficient to consider uncertainties of the model. Therefore the arguments of Greenpeace, kindly submitted by this organisation for this study, show no open question, which has not been considered on the sea dumping procedures under surveillance of the OECD/NEA. (Author)

  9. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  10. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  11. D0 Superconducting Solenoid Quench Data and Slow Dump Data Acquisition

    International Nuclear Information System (INIS)

    Markley, D.

    1998-01-01

    This Dzero Engineering note describes the method for which the 2 Tesla Superconducting Solenoid Fast Dump and Slow Dump data are accumulated, tracked and stored. The 2 Tesla Solenoid has eleven data points that need to be tracked and then stored when a fast dump or a slow dump occur. The TI555(Texas Instruments) PLC(Programmable Logic Controller) which controls the DC power circuit that powers the Solenoid, also has access to all the voltage taps and other equipment in the circuit. The TI555 constantly logs these eleven points in a rotating memory buffer. When either a fast dump(dump switch opens) or a slow dump (power supply turns off) occurs, the TI555 organizes the respective data and will down load the data to a file on DO-CCRS2. This data in this file is moved over ethernet and is stored in a CSV (comma separated format) file which can easily be examined by Microsoft Excel or any other spreadsheet. The 2 Tesla solenoid control system also locks in first fault information. The TI555 decodes the first fault and passes it along to the program collecting the data and storing it on DO-CCRS2. This first fault information is then part of the file.

  12. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  13. Radiation hygienization of cattle and swine slurry with high energy electron beam

    International Nuclear Information System (INIS)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-01-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D 90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms. - Highlights: ► The hygienic efficiency of electron beam against slurry was researched. ► The hygienization efficiency depended on the slurry characteristics and microorganism species. ► In most of the cases 7 kGy dose was sufficient for slurry hygienization. ► Dose below 1 kGy allowed for 90% elimination of microorganism population. ► The radiation hygienization is a good alternative for typical slurry treatment methods

  14. Computer-assisted selection of coplanar beam orientations in intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pugachev, A.; Xing, L. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: lei@reyes.stanford.edu

    2001-09-01

    In intensity-modulated radiation therapy (IMRT), the incident beam orientations are often determined by a trial and error search. The conventional beam's-eye view (BEV) tool becomes less helpful in IMRT because it is frequently required that beams go through organs at risk (OARs) in order to achieve a compromise between the dosimetric objectives of the planning target volume (PTV) and the OARs. In this paper, we report a beam's-eye view dosimetrics (BEVD) technique to assist in the selection of beam orientations in IMRT. In our method, each beam portal is divided into a grid of beamlets. A score function is introduced to measure the 'goodness' of each beamlet at a given gantry angle. The score is determined by the maximum PTV dose deliverable by the beamlet without exceeding the tolerance doses of the OARs and normal tissue located in the path of the beamlet. The overall score of the gantry angle is given by a sum of the scores of all beamlets. For a given patient, the score function is evaluated for each possible beam orientation. The directions with the highest scores are then selected as the candidates for beam placement. This procedure is similar to the BEV approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function to take into account the intensity modulation. This technique allows one to select beam orientations without the excessive computing overhead of computer optimization of beam orientation. It also provides useful insight into the problem of selection of beam orientation and is especially valuable for complicated cases where the PTV is surrounded by several sensitive structures and where it is difficult to select a set of 'good' beam orientations. Several two-dimensional (2D) model cases were used to test the proposed technique. The plans obtained using the BEVD-selected beam orientations were compared with the plans obtained using equiangular spaced beams. For

  15. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N [Flerov Lab. of Nuclear Reactions, Dubna (Russian Federation). Joint Inst. for Nuclear Research

    1994-05-01

    The facility for liquid-phase radiation experiments installed on the beam line of the U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, is described. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions ranging from Li to Xe. Preliminary results on the radiolysis of the Fricke solution and malachite green in ethanol by {sup 11}B, {sup 24}Mg and {sup 40}Ca ions are presented. (author).

  16. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    Science.gov (United States)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  17. Smith-Purcell radiation from a 50 MeV beam

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, J.H.; Walsh, J. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Kirk, H.G.; Fernow, R.C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Physics; Robertson, S.H. [Univ. of Colorado, Boulder, CO (United States). Dept. of Astrophysics and Geophysics

    1996-10-01

    A 50 MeV electron beam and a 1 mm period, 5{degree} blaze, echelle grating have been used to produce radiation in the mid-infrared spectral region. The emission is highly collimated and forward-directed. The intensity level in the few ps pulse (2 nJ/sr) indicates a degree of coherent enhancement.

  18. Smith-Purcell radiation from a 50 MeV beam

    International Nuclear Information System (INIS)

    Brownell, J.H.; Walsh, J.; Kirk, H.G.; Fernow, R.C.; Robertson, S.H.

    1996-10-01

    A 50 MeV electron beam and a 1 mm period, 5 degree blaze, echelle grating have been used to produce radiation in the mid-infrared spectral region. The emission is highly collimated and forward-directed. The intensity level in the few ps pulse (2 nJ/sr) indicates a degree of coherent enhancement

  19. SU-F-P-28: A Method of Maximize the Noncoplanar Beam Orientations and Assure the Beam Delivery Clearance for Stereotactic Body Radiation Therapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J [Presence St. Joseph Medical Ctr., Joliet, IL (United States)

    2016-06-15

    Purpose: Develop a method to maximize the noncoplanar beam orientations and assure the beam delivery clearance for SBRT, therefore, optimize the dose conformality to the target, increase the dose sparing to the critical normal organs and reduce the hot spots in the body. Methods: A SBRT body frame (Elekta, Stockholm, Sweden) was used for patient immobilization and target localization. The SBRT body frame has CT fiducials on its side frames. After patient’s CT scan, the radiation treatment isocenter was defined and its coordinators referring to the body frame was calculated in the radiation treatment planning process. Meanwhile, initial beam orientations were designed based on the patient target and critical organ anatomy. The body frame was put on the linear accelerator couch and positioned to the calculated isocenter. Initially designed beam orientations were manually measured by tuning the body frame position on the couch, the gantry and couch angles. The finalized beam orientations were put into the treatment planning for dosimetric calculations. Results: Without patient presence, an optimal set of beam orientations were designed and validated. The radiation treatment plan was optimized and guaranteed for delivery clearance. Conclusion: The developed method is beneficial and effective in SBRT treatment planning for individual patient. It first allows maximizing the achievable noncoplanar beam orientation space, therefore, optimize the treatment plan for specific patient. It eliminates the risk that a plan needs to be modified due to the gantry and couch collision during patient setup.

  20. The IAEA's responsibilities in connection with the dumping at sea of radioactive wastes

    International Nuclear Information System (INIS)

    Ha Vinh Phuong

    1983-01-01

    In the context of IAEA's responsibilities regarding the sea dumping of radioactive wastes, this paper reviews international laws of relevance to sea dumping of wastes, and examines IAEA's role under the London Dumping Convention. The paper also describes the OECD/NEA Multilateral Consultation and Surveillance Mechanism on radioactive waste sea dumping operations. (NEA) [fr

  1. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  2. Dosimetry study for electron beam irradiation in radiation processing

    International Nuclear Information System (INIS)

    Sunaga, Hiromi; Haruyama, Yasuyuki; Takizawa, Haruki; Kojima, Takuji; Yotsumoto, Keiichi

    1995-01-01

    For certain critical applications such as medical device sterilization and food irradiation, accurate calibration of electron energy and absorbed dose is required to assure the quality of irradiated products. To meet this requirement, TRCRE, JAERI has carried out research and development on high dose radiation dosimetry for electron beams in the energy range used in radiation processing (0.15 - 3.0 MeV). JAERI has developed a simultaneous electron beam energy and dosimeter calibration system that consist of a total absorption calorimeter, an electron current density meter, and a stacked thin-film dosimeter set. For low energy electrons, where it is important to measure the depth-dose profile in materials with high depth resolution, we studied the feasibility of a method using Gafchromic film dosimeters. This film, which has an 8-μm thick sensitive layer, is combined with a stepped array of absorber films of the same thickness to produce a high-resolution depth-dose profile on the Gafchromic film. The depth-dose profile obtained in this manner has about five times greater resolution than conventional radiochromic film dosimetry. (author)

  3. Quantum radiation reaction in head-on laser-electron beam interaction

    International Nuclear Information System (INIS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A; Silva, Luis O

    2016-01-01

    In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modelled with a quantum electrodynamic (QED)-PIC code and the results are compared with those obtained using a standard PIC code with a classical radiation reaction module. In addition, an analytical model is presented that estimates the value of the final electron energy spread after the interaction with the laser has finished. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stochasticity that depends on laser intensity and the electron beam average energy. Beyond this limit, the energy spread decreases. These findings are verified for different laser pulse lengths ranging from short ∼30 fs pulses presently available to the long ∼150 fs pulses expected in the near-future laser facilities, and compared with a theoretical model. Our results also show that near future experiments will be able to probe this transition and to demonstrate the competition between enhanced QED induced energy spread and energy spectrum narrowing from classical radiation reaction. (paper)

  4. Experiment for dose measurement during beam killing at Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nayak, M.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2006-01-01

    Experimental measurement of radiation dose likely to be received by an occupational worker in the experimental hall of Indus-1 during accidental beam killing was carried out. Various accidental beam-killing scenarios were experimentally simulated for the measurement. The measurement was carried out using direct reading dosimeters. Result shows that in the event of accidental beam killing, dose likely to be received by an occupational worker outside the shield is negligible. (author)

  5. Brain tumors and synchrotron radiation: new methods for mini-beams radiation therapy and treatment follow-up by functional imaging

    International Nuclear Information System (INIS)

    Deman, P.

    2012-01-01

    An innovative method of synchrotron radiation therapy, called mini-beams, was proposed by A. Dilmanian et al. in 2006. Mini-beams consists in tumor irradiation with monochromatic sub-millimetric x-ray beams spatially fractionated produced by a synchrotron source. To obtain a homogeneous dose in the target volume, an interleaving is realized using two orthogonal incidences. Adjacent healthy tissue is only partially irradiated by mini-beams, the areas between the beams only receive scattered radiation and therefore the energy deposited is 10 to 15 times lower than on one mini-beam axis, leading to a sparing effect of healthy tissue even when a high dose is deposited in the target volume. The thesis project is the development of this experimental method of monochromatic mini-beams, which involves the control of the irradiation geometry, the control of dosimetry and its modeling by Monte Carlo simulations. To evaluate the method, preclinical experiments on models of brain tumors implanted in rats (F98) are performed. Follow-up by anatomical and functional imaging is carried out to evaluate the effectiveness of the treatment. Functional imaging of cerebral perfusion (volume and cerebral blood flow, mean transit time of heavy elements) appears to be associated in the literature as a relevant method for monitoring prognostic. The key parameters of the cerebral vasculature are mainly studied in magnetic resonance imaging (MRI), because of the harmlessness of this imaging modality. The relation between MRI signal and contrast agent concentration is very complex and no quantitative relationship is well known. Synchrotron Radiation Computed Tomography (SRCT) is an imaging modality with performances to measure absolute contrast agent concentration very close to the theoretical limits and can be used as gold-standard. The used pharmacokinetic models need as input parameters a contrast agent concentration versus time. A comparison of perfusion measurements between MRI and SRCT

  6. Dosimetric characterization of BeO samples in alpha, beta and X radiation beams using luminescent techniques

    International Nuclear Information System (INIS)

    Groppo, Daniela Piai

    2013-01-01

    In the medical field, the ionizing radiation is used both for therapeutic and diagnostic purposes, in a wide range of radiation doses. In order to ensure that the objective is achieved in practice, detailed studies of detectors and devices in different types of radiations beams are necessary. In this work a dosimetric characterization of BeO samples was performed using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL) by a comparison of their response for alpha, beta and X radiations and the establishment of an appropriated system for use in monitoring of these radiations beams. The main results are: the high sensitivity to beta radiation for both techniques, good reproducibility of TL and OSL response (coefficients of variation lower than 5%), maximum energy dependence of the X radiation of 28% for the TL technique, and only 7% for the OSL technique, within the studied energy range. The dosimetric characteristics obtained in this work show the possibility of applying BeO samples to dosimetry of alpha, beta and X radiations, considering the studied dose ranges, using the TL and OSL techniques. From the results obtained, the samples of BeO showed their potential use for beam dosimetry in diagnostic radiology and radiotherapy. (author)

  7. Clarification of leachate from reclaimed ground by electron beam irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Masao; Sawai, Teruko; Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    To decompose organic matters such as humic acid and fulvous acid in the leachate from reclaimed ground, an electron beam irradiation technique was examined because of availability of higher dose rate than a 60 Co γ-ray source. This paper describes results of the above-mentioned preliminary examination. Test water was collected from No.15 dumping site at the Tokyo Bay. Irradiation sample was prepared by filtration with a filter and decarbonation with sulfuric acid. Fulvous acid solution by eliminating humic acid was also served for the examination. Electron beam irradiation of the sample solution was made with a Van de Graaf accelerator by 1.5 MeV, 140 Gy/sec of irradiation condition and with a dynamitron by 2.0 MeV, 25 kGy/pass of the condition. It was clarified that oxygen bubbling velocity during the irradiation did not affect much for the decrease rate of total organic matters (TOC) within 0.5 to 3.0 1/min of an experimental condition. As for radiation doses and TOC decrease, TOC was decreased much for lower dose rate irradiation (Van de Graaf accelerator), lower initial TOC concentration, or addition of hydrogen peroxide. For the combined treatment of radiation and flocculation to aim at irradiation dose decrease, fulvous acid solution was served for the test. Lower dose irradiation with a 60 Co source showed better TOC elimination and it was concluded that combination with flocculation was effective for the dose reduction. It was also found experimentally that TOC decrease behavior by the both radiation source was different due to temperature effect and further study should be made for the development of the practical electron beam irradiation technique. (Takagi, S.)

  8. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  9. Radiation field characterization and shielding studies for the ELI Beamlines facility

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A., E-mail: a.ferrari@hzdr.de [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Amato, E. [Department of Radiological Sciences, Messina University (Italy); Margarone, D. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic); PALS Centre, Za Slovankou, 18200 Prague (Czech Republic); Cowan, T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden (Germany); Korn, G. [ELI Beamlines Project, Institute of Physics of the ASCR, Na Slovance 2, 18221 Prague (Czech Republic)

    2013-05-01

    The ELI (Extreme Light Infrastructure) Beamlines facility in the Czech Republic, which is planned to complete the installation in 2015, is one of the four pillars of the ELI European project. Several laser beamlines with ultrahigh intensities and ultrashort pulses are foreseen, offering versatile radiation sources in an unprecedented energy range: laser-driven particle beams are expected to range between 1 and 50 GeV for electrons and from 100 MeV up to 3 GeV for protons. The number of particles delivered per laser shot is estimated to be 10{sup 9}–10{sup 10} for the electron beams and 10{sup 10}–10{sup 12} for the proton beams. The high energy and current values of the produced particles, together with the potentiality to operate at 10 Hz laser repetition rate, require an accurate study of the primary and secondary radiation fields to optimize appropriate shielding solutions: this is a key issue to minimize prompt and residual doses in order to protect the personnel, reduce the radiation damage of electronic devices and avoid strong limitations in the operational time. A general shielding study for the 10 PW (0.016 Hz) and 2 PW (10 Hz) laser beamlines is presented here. Starting from analytical calculations, as well as from dedicated simulations, the main electron and proton fields produced in the laser-matter interaction have been described and used to characterize the “source terms” in full simulations with the Monte Carlo code FLUKA. The secondary radiation fields have been then analyzed to assess a proper shielding. The results of this study and the proposed solutions for the beam dumps of the high energy beamlines, together with a cross-check analysis performed with the Monte Carlo code GEANT4, are presented.

  10. Feasibility of In-Situ Aeration of Old Dumping Ground for Land Reclamation

    Directory of Open Access Journals (Sweden)

    Huan-Huan Tong

    2013-12-01

    Full Text Available Dumping grounds are characterized by the absence of engineering controls such as base liners and cover layer. Consequently, these dumping grounds present risks for surrounding resources such as soil, groundwater and air. The concern for groundwater contamination by leachate from tropical dumping grounds is heightened due to the greater amounts of rainfall and subsequent infiltration and percolation through the waste mass. The emergent demand for old dumping grounds reclamation drives the need to employ remediation technologies. Generally, in-situ aeration is a remediation method that promotes aerobic conditions in the later stage of dumping ground. It accelerates carbon transfer, reduces remaining organic load, and generally shortens the post closure period. However, high rainfall in tropical areas straitens this technique. For example, pollutants could be easily flushed out and more energy should be required to overcome hydrostatic pressure. Although heavy rainfall could supply sufficient water to the substrate and accelerate degradation of organic matter, it may inhibit aerobic activities due to limited air transfer. The waste characterization from Lorong Halus Dumping Ground (closed dumping ground in Singapore showed that the waste materials were stabilized after 22 years closure. According to the Waste Acceptance Criteria set by European Communities Council, the waste materials could be classified as inert wastes. One interesting finding was that leachate layer detected was about of 5 - 8 meter depth, which entirely soaked the waste materials. Hence, the reclamation design and operation should be carefully adjusted according to these characters. Lorong Halus Dumping Ground case study can provide a guideline for other tropical closed landfills or dumping grounds.

  11. Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city

    Directory of Open Access Journals (Sweden)

    Syeda Maria Ali

    2014-01-01

    Full Text Available Deteriorating soil quality and decrease in vegetation abundance are grave consequences of open waste dumping which have resulted in growing public concern. The focus of this study is to assess the contribution of open waste dumping in soil contamination and its effect on plant diversity in one of the renowned green cities of Pakistan. Surface soil samples (n = 12 + 12 were collected from both the open waste dumping areas allocated by Capital Development Authority (CDA and sub- sectors of H-belt of Islamabad city (representative of control site. The diversity of vegetation was studied at both sampling sites. Significant modifications were observed in the soil properties of the dumping sites. Soils at the disposal sites showed high pH, TDS and EC regime in comparison to control sites. Various heavy metal concentrations i.e., Lead (Pb, Copper (Cu, Nickel (Ni, Chromium (Cr and Zinc (Zn were also found to be higher at the dumping sites except for Cadmium (Cd which had a higher value in control site. A similar trend was observed in plant diversity. Control sites showed diversified variety of plants i.e., 44 plant species while this number reduced to only 32 plant species at the disposal sites. This is attributed to changes in soil characteristics at disposal sites and in its vicinity areas.

  12. A novel diamond-based beam position monitoring system for the High Radiation to Materials facility at CERN SPS

    CERN Document Server

    AUTHOR|(CDS)2092886; Höglund, Carina

    The High Radiation to Materials facility employs a high intensity pulsed beam imposing several challenges on the beam position monitors. Diamond has been shown to be a resilient material with its radiation hardness and mechanical strength, while it is also simple due to its wide bandgap removing the need for doping. A new type of diamond based beam position monitor has been constructed, which includes a hole in the center of the diamond where the majority of the beam is intended to pass through. This increases the longevity of the detectors as well as allowing them to be used for high intensity beams. The purpose of this thesis is to evaluate the performance of the detectors in the High Radiation to Materials facility for various beam parameters, involving differences in position, size, bunch intensity and bunch number. A prestudy consisting of calibration of the detectors using single incident particles is also presented. The detectors are shown to work as intended after a recalibration of the algorithm, alb...

  13. Dump evaluation for landscape restoration of an ancient cacareous quarry

    International Nuclear Information System (INIS)

    Paredes, R.; Ayala, R.; Trevisiol, S.

    2010-01-01

    This work is about the geological - mining study in the limestone quarry in the west of Valle Hermoso town - Cordoba - Argentina. The generation of dump material is considered a waste but is inherent to the process of rocks and minerals extraction. The dump stocks evaluation take into account the different types of rocks with physical and chemical characteristics. The dump has several carbonatic qualities and can be given useful to uncover material originally dismissed as to be used as crushed stone for concrete and others.The reuse of this waste can be allocated primarily to the construction industry, and explore other potential uses, would rehabilitate these lands, and thus eliminate an environmental liability .This work is about the geological - mining study in the limestone quarry in the west of Valle Hermoso town - Cordoba - Argentina. The generation of dump material is considered a waste but is inherent to the process of rocks and minerals extraction. The dump stocks evaluation take into account the different types of rocks with physical and chemical characteristics. The dump has several carbonatic qualities and can be given useful to uncover material originally dismissed as to be used as crushed stone for concrete and others.The reuse of this waste can be allocated primarily to the construction industry, and explore other potential uses, would rehabilitate these lands, and thus eliminate an environmental liability

  14. Pioneer vegetation on ash dumps in Oswiecim (southern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Bojarczuk, T.; Kuczynski, B.

    1972-01-01

    The authors found fifty-three plant species growing on the ash dumps in Oswiecim, while in 1963 twenty-two species only were encountered there. Most of the self-sown plants belong to calciphilous, ruderal and xerophilous species. The pH of the ashes amounts to 9.5. Some of them, e.g. Matricaria chamomilla are index plants for acid habitats; others were hitherto encountered in wet habitats, e.g. Rumex obtusifolias, Myricaria germanica, Epilobium roseum, and others. Their occurrence on ash dumps is possible thanks to the considerable amount of precipitation (465 mm) during the vegetative period. The mosses are the pioneers of these dumps, e.g. Funaria hygromertrica and Bryum argenteum, which usually appear on the site of fire. The authors are of the opinion that a better knowledge of the plants appearing spontaneously on dumps and waste heaps may provide many useful conclusions which will help to obtain positive results at the recultivation of spoil heaps and industrial wastes. 9 references, 3 tables.

  15. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  16. Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia

    Czech Academy of Sciences Publication Activity Database

    Kuráž, V.; Frouz, Jan; Kuráž, M.; Mako, A.; Šustr, Vladimír; Cejpek, J.; Romanov, O.V.; Abakumov, E.V.

    2012-01-01

    Roč. 45, č. 3 (2012), s. 266-272 ISSN 1064-2293 R&D Projects: GA MŠk 2B08023 Grant - others:Russian Foundation for Basic Research(RU) 08-04-01128 Institutional support: RVO:60077344 Keywords : physical properties of soil s * chronosequence of self-overgrown dumps * Sokolov quarry-dump complex Subject RIV: EH - Ecology, Behaviour Impact factor: 0.216, year: 2012

  17. Radioactive contamination at dumping sites for nuclear waste in the Kara Sea. Results from the Russian-Norwegian 1993 expedition to the Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    Strand, P; Rudjord, A L [Statens Straalevern, Oesteraas (Norway); Salbu, B [Norges Landbrukshoegskole, Vollebekk (Norway); and others

    1994-11-01

    During the 1993 Joint Russian-Norwegian Expedition to the Kara Sea, three dumping sites for nuclear waste were investigated: The Tsivolky Bay, the Stepovogo bay and an area in the open Kara Sea (The Novaya Zemlya Trough). Dumped waste was localized and inspected in the Tsivolky Bay and in the Stepovogo Bay using side scanning sonar and underwater camera. In the Stepovogo Bay, the dumped nuclear submarine no. 601, containing spent nuclear fuel was localized. Samples of waters, sediments and biota were collected at nine stations and later analyzed for several radionuclides (gammaemitters, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu and {sup 241}Am). The analyses of the samples al the following conclusions to be drawn: (1) Elevated levels of {sup 137}Cs and {sup 90}Sr and presence of {sup 60}Co were observed in the inner part of the Stepovogo Bay, and in one sample collected close to the hull of the dumped nuclear submarine in the Stepovogo Bay. {sup 60}Co was also observed in the Tsivolky Bay. This radioactive contamination most likely originates from the dumped radioactive material. It may be due to leaching from the waste. (2) The enhanced levels of contamination caused by dumped nuclear waste are still low and restricted to small areas. Thus, radiation doses from the existing contamination would be negligible. Radioactive contamination outside these areas is similar to the activity levels in the open Kara Sea. 46 refs.

  18. Radioactive contamination at dumping sites for nuclear waste in the Kara Sea. Results from the Russian-Norwegian 1993 expedition to the Kara Sea

    International Nuclear Information System (INIS)

    Strand, P.; Rudjord, A.L.; Salbu, B.

    1994-11-01

    During the 1993 Joint Russian-Norwegian Expedition to the Kara Sea, three dumping sites for nuclear waste were investigated: The Tsivolky Bay, the Stepovogo bay and an area in the open Kara Sea (The Novaya Zemlya Trough). Dumped waste was localized and inspected in the Tsivolky Bay and in the Stepovogo Bay using side scanning sonar and underwater camera. In the Stepovogo Bay, the dumped nuclear submarine no. 601, containing spent nuclear fuel was localized. Samples of waters, sediments and biota were collected at nine stations and later analyzed for several radionuclides (gammaemitters, 90 Sr, 238 Pu, 239,240 Pu and 241 Am). The analyses of the samples al the following conclusions to be drawn: 1) Elevated levels of 137 Cs and 90 Sr and presence of 60 Co were observed in the inner part of the Stepovogo Bay, and in one sample collected close to the hull of the dumped nuclear submarine in the Stepovogo Bay. 60 Co was also observed in the Tsivolky Bay. This radioactive contamination most likely originates from the dumped radioactive material. It may be due to leaching from the waste. 2) The enhanced levels of contamination caused by dumped nuclear waste are still low and restricted to small areas. Thus, radiation doses from the existing contamination would be negligible. Radioactive contamination outside these areas is similar to the activity levels in the open Kara Sea. 46 refs

  19. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  20. The practical use of an interactive visualization and planning tool for intervention planning in particle accelerator environments with ionizing radiation

    CERN Document Server

    Fabry, Thomas; Vanherpe, Liesbeth; Braesch, Christian; Tabourot, Laurent; Feral, Bruno

    2014-01-01

    A core issue during the planning of a maintenance intervention in a facility with ionizing radiation is the minimization of the integrated equivalent dose contracted by the maintenance workers during the intervention. In this work, we explore the use of a technical-scientific software program facilitating the intervention planning in irradiated environments using sound mathematical concepts. We show how the software can be used in planning future operations using a case studies: the decommissioning of a beam dump for a linear 160 MeV H− accelerator. Interactive visualization of the facilities and radiation levels, as well as tools for interactive trajectory planning are explored, as well as automatic calculation of the expected integrated individual dose contracted during an intervention.

  1. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  2. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  3. Mineralogy of Tailings Dump around Selebi Phikwe Nickel-Copper ...

    African Journals Online (AJOL)

    This study aimed at mineralogically characterizing the tailings dump emanating from the mining and smelting of nickel-copper (Ni-Cu) at Selebi Phikwe, Botswana, Southern Africa. Samples of tailings dump around the Selebi Phikwe Ni-Cu plant were studied using petrographic microscopy and X-ray Powder Diffraction ...

  4. Beam diagnostic tools for the negative hydrogen ion source test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Fantz, Ursel; Franzen, Peter; Froeschle, Markus; Heinemann, Bernd; Riedl, Rudolf; Ruf, Benjamin; Wuenderlich, Dirk

    2013-01-01

    Highlights: ► We present an overview of beam diagnostic tools foreseen for the new testbed ELISE. ► A sophisticated diagnostic calorimeter allows beam profile measurement. ► A tungsten wire mesh in the beam path provides a qualitative picture of the beam. ► Stripping losses and beam divergence are measured by H α Doppler shift spectroscopy. -- Abstract: The test facility ELISE, presently being commissioned at IPP, is a first step in the R and D roadmap for the RF driven ion source and extraction system of the ITER NBI system. The “half-size” ITER-like test facility includes a negative hydrogen ion source that can be operated for 1 h. ELISE is expected to extract an ion beam of 20 A at 60 kV for 10 s every 3 min, therefore delivering a total power of 1.2 MW. The extraction area has a geometry that closely reproduces the ITER design, with the same width and half the height, i.e. 1 m × 1 m. This paper presents an overview of beam diagnostic tools foreseen for ELISE. For the commissioning phase, a simple beam dump with basic diagnostic capabilities has been installed. In the second phase, the beam dump will be substituted by a more sophisticated diagnostic calorimeter to allow beam profile measurement. Additionally, a tungsten wire mesh will be introduced in the beam path to provide a qualitative picture of beam size and position. Stripping losses and beam divergence will be measured by means of H α Doppler shift spectroscopy. An absolute calibration is foreseen in order to measure beam intensity

  5. Event displays from Beam 2 in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  6. Event displays from Beam Halo in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  7. Event displays from Beam 01 in ATLAS, November 20th, 2009

    CERN Multimedia

    atlas collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded on, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detector

  8. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    International Nuclear Information System (INIS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-01-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a 'keV-photon detector', which will allow diagnostic quality visualization of the patient, and a 'MeV-photon detector', that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT

  9. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    International Nuclear Information System (INIS)

    Sole, C.V.; Calvo, F.A.; Lozano, M.A.; Gonzalez-Sansegundo, C.; Gonzalez-Bayon, L.; Alvarez, A.; Lizarraga, S.; Garcia-Sabrido, J.L.

    2014-01-01

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  10. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Sole, C.V. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Instituto de Radiomedicina, Service of Radiation Oncology, Santiago (Chile); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Calvo, F.A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lozano, M.A.; Gonzalez-Sansegundo, C. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Gonzalez-Bayon, L. [Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Alvarez, A. [Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lizarraga, S. [Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Garcia-Sabrido, J.L. [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain)

    2014-02-15

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  11. Powershift transmission for dump trucks; Neues Lastschaltgetriebe fuer Dump Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Rebholz, Wolfgang; Geis, Joerg; Riedhammer, Michael [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2012-04-15

    Articulated dumpers (also called dump trucks) are used in many locations where large quantities of earth, spoil, gravel or other materials have to be moved on construction sites or in quarries. ZF has developed a new transmission with eight forward and four reverse gears up to production standard specifically for use in these vehicles. The integrated primary retarder is continuously controllable and provides maximum braking torque of up to 1800 Nm. (orig.)

  12. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  13. Københavns Kommunes indsats mod social dumping - målopfyldelsesevaluering

    DEFF Research Database (Denmark)

    Baadsgaard, Kelvin; Jørgensen, Henning

    2016-01-01

    Evaluering af, om de politiske intentioner med indsats mod social dumping i Københavns Kommune er blevet indfriet......Evaluering af, om de politiske intentioner med indsats mod social dumping i Københavns Kommune er blevet indfriet...

  14. Performance of a prototype of an extrapolation minichamber in various radiation beams

    International Nuclear Information System (INIS)

    Oliveira, M.L.; Caldas, L.V.E.

    2007-01-01

    An extrapolation minichamber was developed for measuring doses from weakly penetrating types of radiation. The chamber was tested at the radiotherapeutic dose level in a beam from a 90 Sr+ 90 Y check source, in a beam from a plane 90 Sr+ 90 Y ophthalmic applicator, and in several reference beams from an X-ray tube. Saturation, ion collection efficiency, stabilization time, extrapolation curves, linearity of chamber response vs. air kerma rate, and dependences of the response on the energy and irradiation angle were characterized. The results are satisfactory; they show that the chamber can be used in the dosimetry of 90 Sr+ 90 Y beta particles and low-energy X-ray beams

  15. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  16. Radiation protection design of the APPA experimental hall at the FAIR facility; Strahlenschutzplanung fuer die APPA-Experimentierhalle bei FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.; Braeuning-Demian, A.; Conrad, I.; Evdokimov, A.; Lang, R.; Radon, T.; Zieser, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Belousov, A. [NASA, Pasadena, CA (United States). Jet Propulsion Lab.; Fehrenbacher, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); FAIR - Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt (Germany)

    2016-07-01

    The APPA-research program (Atomic, Plasma Physics and Applications) comprises experiments for fundamental research in atomic and plasma physics, biophysics and materials research. A dedicated building for the experimental areas including a technical supply annex is planned. In the hall are located four different experimental setups for the four APPA collaborations. Two beamlines for protons and heavy ions, both from the SIS18 and SIS100 synchrotrons are designed. The demands for beam energies, intensities and time structure differ significantly among the experiments. Consequently, different types of beams will be used, for example uranium beams with energies of 2 GeV/nucleon and an intensity of 3 x 10{sup 11} ions/pulse (pulse length of the order of hundred nanoseconds, repetition period 180 seconds). Another experiment requires a proton beam with energies of around 10 GeV and a primary intensity of 5 x 10{sup 10} protons/second. The highest interaction rate is expected by the plasma physics experiments with about 50 % of the primary intensity. The remaining beam will be stopped in a so called beam dump producing further radiation, especially neutron radiation which must be shielded. For the design of the shielding it is necessary to know the spatial distribution of the dose rate for uranium beams and for proton beams with different energies and intensities in the experimental hall. The aim for the shielding layout is to achieve a dose rate below 0,5 μSv/hour at the premises.

  17. Radiation disinfestation of used packagings: irradiation trials with electron beams

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Zaedee, I.

    1994-01-01

    Used bags, sacks and other packagings are often infested with insects and mites - pest of stored products. Such packagings provide a source of infestation of a new lot or unit of agricultural products. Cleaning of repeatedly used packages is the most important preventive method. After using, the bags and sacks should be carefully beaten with a mechanical or hand beater. When pests are found, the packages should be disinfested with hot air or hot water. Larger numbers of bags are usually fumigated in a special fumigation chamber. Disinfestation by radiation processing is potentially a feasible substitute for chemical fumigation. In the present paper trials of radiation disinfestation of used bags are described and discussed. Information about using electron beams for pest disinfestation of jute and polyvinyl chloride bags (plastic bags) is provided. The absorbed dose is the most important irradiation process parameter. The lethal effects equivalent to chemical insecticides are obtained by high doses of ionizing radiation. Control of insect and/or mite infestation of the repeatedly used packagings may be secured by ionizing radiation applied at 2-3 kGy. These doses result in complete mortality of stored product pests within a few days. The radiation must penetrate deeply into the target product at sufficient level. Gamma rays and X-rays penetrate into the treated products easily but electron radiation penetrating is much lower, depending on electron energy applied. The results of this study indicate that bags made of polyvinyl chloride may be disinfested with electron beams when are created as separate units or batches up to 50 bags. Penetrability of jute bags is lower than the plastic bags. Therefore the jute bags should be irradiated with electrons as batches containing no more than 30 bags. (author)

  18. Modernization of dump truck onboard system

    Science.gov (United States)

    Semenov, M. A.; Bolshunova, O. M.; Korzhev, A. A.; Kamyshyan, A. M.

    2017-10-01

    The review of the only automated dispatch system for the career dump trucks, which is presented in the domestic market, was made. A method for upgrading the loading control system and technological weighing process of the career dump was proposed. The cargo weight during loading is determined by the gas pressure in the suspension cylinders at the time of the oscillation ending and at the start of the vibration smoothing process; the smoothing speed correction is performed. The error of the cargo weighting is 2.5-3%, and of the technological weighing process during driving - 1%, which corresponds to the error level of the steady-state weighting means.

  19. Radiation protection clothing in X-ray diagnostics. Comparison of attenuation equivalents in narrow beam and inverse broad-beam geometry

    International Nuclear Information System (INIS)

    Pichler, Thomas; Schoepf, T.; Ennemoser, O.

    2011-01-01

    Purpose: Standard DIN EN 61 331-1 for attenuation measurements in the narrow and broad beam as well as DIN 6857-1 for the determination of shielding properties in the inverse broad-beam geometry are available for testing the attenuation of protection clothing. The attenuation measurements in the narrow beam don't consider scattered radiation and fluorescence due to the arrangement. This leads to the fact that the protective effect of lead-free materials will be misestimated when compared to lead. Therefore, the differences in attenuation equivalents, determined by both test methods for topical radiation protection aprons, were examined. Materials and Methods: The attenuations in inverse broad-beam geometry according to DIN 6857-1 and in the narrow beam according to DIN EN 61 331-1 were measured using commercially available aprons. They were made of lead, lead-reduced and lead-free materials. For determination of the attenuation equivalents, certificated lead-foils with high purity and a precise thickness of 0.1 to 1.25 mm were used. Results: The measurements in the narrow beam according to DIN EN 61 331-1 showed that nearly all aprons reach the required lead equivalent at mid-range tube voltages of 100 kV. At higher and lower tube voltages, the requirements of DIN EN 61 331-3 were largely not met. In contrast, the testing of the same aprons in inverse broad-beam geometry according to DIN 6857-1 showed that only a few aprons meet the requirements for being classified in the nominal protection class. Conclusion: The measurements suggest that testing method DIN 6857-1 has yet to prevail and that manufacturers are just beginning to develop the appropriate protective materials. (orig.)

  20. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Callens, M; Verboven, E; Van Den Abeele, K [Department of Physics, Wave Propagation and Signal Processing, KU Leuven KULAK, Kortrijk (Belgium); D’Agostino, E [DoseVue NV, Hasselt (Belgium); Pfeiffer, H [Department of Materials Engineering, KU Leuven, Leuven (Belgium); D’hooge, J [Department of Cardiovascular Sciences, Bio-Medical Science Group, KU Leuven, Leuven (Belgium)

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at the location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are

  1. Protein crystallography with a micrometre-sized synchrotron-radiation beam

    International Nuclear Information System (INIS)

    Moukhametzianov, Rouslan; Burghammer, Manfred; Edwards, Patricia C.; Petitdemange, Sebastien; Popov, Dimitri; Fransen, Maikel; McMullan, Gregory; Schertler, Gebhard F. X.; Riekel, Christian

    2008-01-01

    For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 Å resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 µm 3 crystal volume, corresponding to about 2 × 10 8 unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered

  2. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    International Nuclear Information System (INIS)

    Oothoudt, M.; Pillai, C.; Zumbro, M.

    1997-01-01

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances

  3. High-radiation zone design of the FMIT high-density beam transport

    International Nuclear Information System (INIS)

    Creek, K.O.; Liska, D.J.; King, J.D.; Cole, T.R.; Cimabue, A.G.; Robeson, L.P.; Harvey, A.

    1981-03-01

    The Fusion Materials Irradiation Test (FMIT) deuteron linac, operating at 35 MeV and 100 mA continuous duty, is expected to spill 3 μA/m and to lose 10 μA at specific bending-magnet positions. The major impact of this spill will be felt in the High-Energy Beam Transport (HEBT), where many beam-line components must be maintained. A modular design concept, that uses segmented termination panels remotely located from the modules, is being employed. Radiation-hardened quadrupoles can be opened, clam-shell fashion, to release the water-cooled beam tube r replacement if there is beam damage or lithium contamination from the target. Termination panels contain electrical, water, and instrumentation fittings to service the module, and are positioned to allow room for neutron-absorbing shielding between the beamline and the panel. The modular construction allows laboratory prealignment and check-out of all components on a structural carriage and is adaptable to supporting gamma shields. Proper choice of beam tube materials is essential for controlling activation caused by beam spill

  4. Development of offroad unmanned dump truck navigation system. Dump truck mujin soko system no kaihatsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Horii, Z [Nittetsu Mining Co. Ltd., Tokyo (Japan)

    1992-08-25

    A large offroad unmanned dump truck navigation system has been developed, and is in practical operation mounted on dump trucks at Torigatayama Limestone Quarry of Nittetsu Mining Company. The system functions in a manual dump truck navigation mode, wireless navigation mode, and unmanned control mode. The unmanned control mode further includes a mode to navigate the truck on a predetermined course with its data having been input in a computer and a mode that when the truck was moved on a course under a wireless control, the computer learns the course and drives the truck autonomously thereafter. The safety measures are divided into the hardware safety function to detect abnormalities in brakes and other vehicle parts, and the software safety functions of data communications, sensor action check, and prevention of collision of trucks with each other. The system has resulted in a productivity of average one-way travel distance of 345 m, and average unmanned navigation cycle time of 9 minutes and 26 seconds for a transportation efficiency of 541 t/hour/truck, having reached at least the manned operation level. 4 figs., 1 tab.

  5. Radiation vulcanization of natural rubber latex using 250 keV electron beam machine

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, H.; Yoshii, F.; Makuuchi, K.; Lugao, A. E-mail: ablugao@net.ipen.br

    2003-08-01

    The sensitized radiation vulcanization of natural rubber latex has been carried out with 250 keV electrons. Latex was irradiated over a range of the beam current from 5 to 20 mA in the presence of sensitizers like the n-butyl acrylate (n-BA). The vulcanization dose decreases with increasing beam current condition. The rate of vulcanization (R{sub vul}) depends on the beam current (I) as given by the equation R{sub vul}=kI{sup 0.6}.

  6. Monitoring of Thermal and Gas Activities in Mining Dump Hedvika, Czech Republic

    Science.gov (United States)

    Surovka, D.; Pertile, E.; Dombek, V.; Vastyl, M.; Leher, V.

    2017-10-01

    The negative consequences of mining of the black coal is occurrence of extractive waste storage locations - mining dumps. The mining activities carried out within the area of Ostrava are responsible for at least six mine dumps of loose materials arising as wastes from mining of mineral resources, many of which show presence of thermal processes. The thermal activity in dumps is responsible for many hazardous substances that pollute the environment and harm human health in the surroundings. This paper deals with the results of the first phase of project CZ.11.4.120/0.0/0.0/15_006/0000074 TERDUMP, on exploration of thermally active mining dumps are published in the article. As a first studied thermally active dump was a Hedvika dump. To localize of hot spots with hot gas emission was used a thermovision scanning by drone. The place with high temperature (49.8 °C) identified natural gas emission through natural cracks. Analysing the occurring pollutants in Hedvika Dump using the GC-MS or HPLC, respectively and the inert gases (CO2, CO and SO2) were determined by ion chromatography. The pollutants were determined in five sampling points during two measurements executed from July to August 2017.

  7. Effect of Photon Beam Energy, Gold Nanoparticle Size and Concentration on the Dose Enhancement in Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2013-02-01

    Full Text Available Introduction: Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC simulation. Methods: We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanoparticles were simulated. The macroscopic dose enhancement factor was calculated for gold nanoparticles with sizes of 30, 50, and 100 nm. Also, we simulated different photon beams including mono-energetic beams (50-120 keV, a Cobalt-60 beam, 6 & 18 MV photon beams of a conventional linear accelerator. Results: We found a dose enhancement factor (DEF of from 1.4 to 3.7 for monoenergetic kilovoltage beams, while the DEFs for megavoltage beams were negligible and less than 3% for all GNP sizes and concentrations. The optimum energy for higher DEF was found to be the 90 keV monoenergetic beam. The effect of GNP size was not considerable, but the GNP concentration had a substantial impact on achieved DEF in GNP-based radiation therapy. Conclusion: The results were in close agreement with some previous studies considering the effect of photon energy and GNP concentration on observed DEF. Application of GNP-based radiation therapy using kilovoltage beams is recommended.

  8. Response of TLD-100"T"M microtubes to two RQR3 quality radiation beams

    International Nuclear Information System (INIS)

    Nunes, M.G.; Villani, D.; Almeida, S.B.; Vivolo, V.; Yoriyaz, H.; Louis, G.M.J.

    2016-01-01

    The present work compares the response of TLD-100"T"M microcubes to two RQR 3 diagnostic radiology reference quality radiation beams, defined by IEC-61267 norm, aiming to evaluate the detectability of TLD-100"T"M energy dependence reported in literature within the same reference quality radiation range. TLD-100"T"M microcubes reproducibility is assessed through the response of a second set of TLD-100"T"M microcubes, evaluated in a second thermoluminescence reader, to the RQR 3 diagnostic radiology reference quality radiation beam implemented at the Laboratorio de Calibracao de Instrumentos of IPEN, Sao Paulo, SP, Brazil. The dependence of TLD-100"T"M microcubes TL response was not detectable in these conditions and the reproducibility of the measurements is 90,2%. (author)

  9. Coronary cineangiography and ionizing radiation exposure to patients: analysis of primary and secondary beam

    International Nuclear Information System (INIS)

    Ramirez, Alfredo; Leyton, Fernando; Silva, Ana Maria; Farias, Eric

    2001-01-01

    The purpose of this work was to determine the level of exposure dose to patients during coronariographies in different areas of body. This study has presented the medical surveillance of 18 cases and the radiation monitoring of these patients by TLD in thyroid and pelvis (secondary beam) and, in the right and left scapular region (primary beam) for each one of these procedures. The ionizing radiation received was 215 ± 200 mGy in left scapular region (range 1-710) and 255±213 mGy in the right scapular region (range 22-635) p=NS. In the pelvic region the ionizing radiation was 0,22±0,06 mGy and in the thyroid region was 3,62±2,44 mGy

  10. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  11. First measurements of subpicosecond electron beam structure by autocorrelation of coherent diffraction radiation

    CERN Document Server

    Lumpkin, Alex H; Rule, D W

    2001-01-01

    We report the initial measurements of subpicosecond electron beam structure using a nonintercepting technique based on the autocorrelation of coherent diffraction radiation (CDR). A far infrared (FIR) Michelson interferometer with a Golay detector was used to obtain the autocorrelation. The radiation was generated by a thermionic rf gun beam at 40 MeV as it passed through a 5-mm-tall slit/aperture in a metal screen whose surface was at 45 deg. to the beam direction. For the observed bunch lengths of about 450 fs (FWHM) with a shorter time spike on the leading edge, peak currents of about 100 A are indicated. Also a model was developed and used to calculate the CDR from the back of two metal strips separated by a 5-mm vertical gap. The demonstrated nonintercepting aspect of this method could allow on-line bunch length characterizations to be done during free-electron laser experiments.

  12. Guidelines for sea dumping packages of radioactive waste. Revised version.

    International Nuclear Information System (INIS)

    Anon.

    1979-04-01

    The purpose of these Guidelines is to establish general requirements and provide practical information for the design and manufacture of packages for sea dumping of radioactive waste, in accordance with the terms of the OECD Council Decision establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. These Guidelines are in compliance with the IAEA Revised Definition and Recommendations of 1978, for applying the London Dumping Convention to radioactive waste, and are intended for application under the responsibility of the appropriate national authorities of countries participating in the NEA Mechanism

  13. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  14. BEAM applications to polymer materials

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1994-01-01

    Recently papers about beam applications to polymers have been increasing rapidly both in the fundamental and applied fields. Fairly large number of papers have been published in the fundamental aspects of radiation effects of beam applications to polymers such as pulse radiolysis and high density electronic excitation effects. A number of papers have been published in the more applied aspects of beam applications to polymers such as radiation processing and curing. The present paper describes recent beam applications to polymers. 1. Radiation Effects on Polymers; Radiation effects on polymers have been studied for more than 40 years. Most of work on radiation effects on polymers has been carried out by using high energy photon (gamma-ray) and electron beams, since polymers are sensitive to any kinds of ionizing radiation. Even non-ionizing radiation such as ultraviolet and visible light excites electronic excited states of polymers and then photo-chemical reactions of polymers are induced from the electronic excited states. Studies on radiation effects of other ionizing radiation on polymers have not been so popular for a long time. Recently application of new radiation such as ion beams to polymers have been worthy of remark in fields of advanced science and technology, since new radiation beams induce different radiation effects from those induced by high energy gamma-rays and electrons. 2. Beam Applications of Polymers; Recent progress in beam applications to polymers such as radiation processing and curing, x-ray and electron beam microlithography, and applications of new beams such as ion beams to polymers has been reviewed. (author)

  15. The quality and quantity of runoff and groundwater in two overburden dumps undergoing pyritic oxidation

    International Nuclear Information System (INIS)

    Daniel, J.A.; Harries, J.R.; Ritchie, A.I.M.

    1983-01-01

    The quality and quantity of runoff and seepage water from two waste rock dumps at the abandoned uranium mine at Rum Jungle, N.T., have been monitored over various time intervals since 1975. Both dumps contain pyrite which is oxidising and solubilising trace metals within the dumps. Results are presented for the quality and quantity of runoff from both dumps measured in the 1980-81 wet season. The rainfall/runoff characteristics of the two dumps measured during this wet season are similar and in good agreement with measurements made in previous wet seasons. Pollution loads in runoff were only a few per cent of pollution loads in water percolating through to the base of the dumps. The rainfall/runoff characteristics and the dominance of pollution loads in water percolating through the dumps are likely to apply to other similar waste rock dumps

  16. Anthropogenic Pollutants in Extracts from Maritsa Iztok Dumps

    Science.gov (United States)

    Stefanova, Maya; Milakovska, Zlatka; Marinov, Stefan

    2017-12-01

    Coals are suspected for many human health problems and are an object of the new discipline - “medical geology”. Potential human health risk of organic compounds with coal/lignite provenance includes endocrine disruption, nephrotoxicity, cancer, etc. Recent investigations proved that different organic components, i.e. hydrocarbons, phenols etc. move through/release out of the dump area as a result of alteration processes of the organic matter (OM) caused by the wash-out and/or drainage processes. The timeliness of the present study is based on the scarcity of information on organic geochemistry of dump materials from open pit coal mines and weathered lignites in particular. The limited number of studies on dumps clarifies that even for the “short” time span (some tens of years) in geological point of view, processes of transformation of the extractable OM are detectable. The secondary phases, a result of the OM transformations, move through and out of the dump area and could be potential contaminants for the surface/underground waters and soils in the area. Another environmental problem comes from the air-born VOCs and products of the modern chemical industry. By GC-MS in the slightly polar fractions of the chloroform extracts of dump samples a broad set of components was determined, i.e. phthalates (dominant), i-propyl palmitate, i-propyl myristate, n-hexyl benzoates, etc. These organic contaminants could be regarded more likely as anthropogenic (originating from plasticizers, industrial pollutants, etc.). Presently, it seems that the identified compounds do not represent an acute toxic risk from an environmental viewpoint. However, some compounds could raise concerns and further attention is needed to be focused on them.

  17. Quality control methodology and implementation of X-radiation standards beams, mammography level, following the standard IEC 61267

    International Nuclear Information System (INIS)

    Correa, Eduardo de Lima

    2010-01-01

    In this work it was developed and applied a quality control program of the X radiation system (160 kV, constant potential, target of tungsten) of the Calibration Laboratory of IPEN(LCI) in the energy range relative to mammography beams (from 25 kV to 35 kV). The X radiation standards beams, level mammography, using molybdenum and aluminum as additional filtration, were established after the application of this quality control program following national and international recommendations. The reference ionization chamber has traceability to PTB and was regularly submitted to quality control tests for evaluation and analysis of its performance. The radiation qualities emerging from the X-radiation assembly (RQR-M), based on a phantom made up of an aluminum added filter (RQA-M), narrow beam condition (RQN-M) and broad beam condition (RQB-M), following the recommendations of the international standard IEC 61267 (2005) and the IAEA code of practice, TRS 457 (2007) were established. For the implantation of RQN-M and RQB-M radiation qualities, two mammography phantoms were developed. The half-value layers found are those presented by the German primary laboratory PTB, and varied from 0.35 to 1.21 mm Al. The air kerma rates were obtained for all the 15 implanted qualities. (author)

  18. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  19. Omega spectrometer ready for SPS beams

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Two different beams arrive into the Omega magnet: - a tagged photon beam for a charm search - experiment WA4 by the Bonn-CERN-Daresbury-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield Collaboration; - a separated hadron beam, at first for a beam-dump experiment - WA12 by the Birmingham-CERN-Ecole Polytechnique-MPI, Munich-Neuchâtel Collaboration. Beams of either negative or positive pions or kaons, protons or antiprotons, all at an energy around 40 GeV were made to impinge on a copper target where a shower of hadrons was produced and, on occasion, two muons which before detection passed through an iron absorber (not visible here). WA12 was completed in February 1977. At the centre, on top of the superconducting magnet, the hut containing the TV cameras, These observe the particle events occurring in the spark chambers in the magnet below.

  20. Protection coverage parameters indentification for uranium tailing dumps

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Akhmedov, M.Z.

    2012-01-01

    This article is devoted to protection coverage parameters indentification for uranium tailing dumps. Authors noticed that many tailing dumps In Tajikistan do not correspond to modern requirements of territories remediation published by IAEA and current norms of the Republic of Tajikistan. The most dangerous is radionuclide migration i.e., distribution of radioactive substances beyond the uranium tailing dumps territories. One of the basic distribution ways is atmospheric migration. At the same time potentially dangerous factors are: dust rising from open surfaces is the source for contamination distribution to neighboring territories; direct external exposure of public located in close distance to the sites; radioactive gas radon exhalation originating a threat if radionuclides penetration to the human body through breathing passages. Different methods of tailing's negative impact minimization, including coverage with neutral soil layer, coverage with fine-ground worked-out bentonite clay were proposed.

  1. Assessment of the Influence of Dredge Spoil Dumping on the Seafloor Geological Integrity

    Directory of Open Access Journals (Sweden)

    Joonas J. Virtasalo

    2018-04-01

    Full Text Available The European Marine Strategy Framework Directive requires the development of suitable indicators for regular reporting on the environmental state and achievement of a good environmental status of EU's marine waters by 2020. The development of indicators for determining seafloor integrity and its possible disturbance by human activities have so far largely ignored the geological properties of seafloor. This paper presents a study of Vuosaari and Uusikaupunki-D offshore dumping sites in Finland, the northern Baltic Sea. Full coverage multibeam bathymetry and relative backscatter data, and a number of sediment cores were collected over the sites. The areas covered by dumped dredge spoil stand out in the multibeam images because of their irregular surface and elevated backscatter. The short gravity cores were studied for lithology, and in 1-cm slices for 137Cs activity, organic content, and grain size distribution. The dumped material is represented in the cores by the gravelly mud lithofacies with massive texture and angular coarse particles. The dumped material is coarser, less sorted and has higher kurtosis compared to natural sediment due to the admixing of blasted rock during the dredging activities, and limited sorting during fall through the water column upon dumping. Dispersed dredge spoil, which was suspended in the water column during the dumping activities or reworked from the dumped material mounds and redistributed along the seafloor soon thereafter, was deposited over a wide area as a thin layer that is not necessarily readily identifiable by visual inspection in the cores. Cesium activity helped distinguish the dumped material from the 137Cs-enriched natural sediments deposited after the 1986 Chernobyl disaster. Considering that the dumped material at many of the coring sites in the Vuosaari dumping area is covered by natural sediment, it probably is largely stable. In contrast, dumped material at the shallower Uusikaupunki-D site has

  2. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  3. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  4. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  5. Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS

    CERN Document Server

    Yang Bing Xin

    2005-01-01

    The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread...

  6. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    Science.gov (United States)

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  7. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  8. Sea-dumped chemical weapons: environmental risk, occupational hazard.

    Science.gov (United States)

    Greenberg, M I; Sexton, K J; Vearrier, D

    2016-01-01

    Chemical weapons dumped into the ocean for disposal in the twentieth century pose a continuing environmental and human health risk. In this review we discuss locations, quantity, and types of sea-dumped chemical weapons, related environmental concerns, and human encounters with sea-dumped chemical weapons. We utilized the Ovid (http://ovidsp.tx.ovid.com) and PubMed (http://www.pubmed.org) search engines to perform MEDLINE searches for the terms 'sea-dumped chemical weapons', 'chemical warfare agents', and 'chemical munitions'. The searches returned 5863 articles. Irrelevant and non-English articles were excluded. A review of the references for these articles yielded additional relevant sources, with a total of 64 peer-reviewed articles cited in this paper. History and geography of chemical weapons dumping at sea: Hundreds of thousands of tons of chemical munitions were disposed off at sea following World War II. European, Russian, Japanese, and United States coasts are the areas most affected worldwide. Several areas in the Baltic and North Seas suffered concentrated large levels of dumping, and these appear to be the world's most studied chemical warfare agent marine dumping areas. Chemical warfare agents: Sulfur mustard, Lewisite, and the nerve agents appear to be the chemical warfare agents most frequently disposed off at sea. Multiple other type of agents including organoarsenicals, blood agents, choking agents, and lacrimators were dumped at sea, although in lesser volumes. Environmental concerns: Numerous geohydrologic variables contribute to the rate of release of chemical agents from their original casings, leading to difficult and inexact modeling of risk of release into seawater. Sulfur mustard and the organoarsenicals are the most environmentally persistent dumped chemical agents. Sulfur mustard in particular has a propensity to form a solid or semi-solid lump with a polymer coating of breakdown products, and can persist in this state on the ocean floor

  9. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  10. Treatment of Head and Neck Paragangliomas With External Beam Radiation Therapy

    International Nuclear Information System (INIS)

    Dupin, Charles; Lang, Philippe; Dessard-Diana, Bernadette; Simon, Jean-Marc; Cuenca, Xavier; Mazeron, Jean-Jacques; Feuvret, Loïc

    2014-01-01

    Purpose: To retrospectively assess the outcomes of radiation therapy in patients with head and neck paragangliomas. Methods and Materials: From 1990 to 2009, 66 patients with 81 head and neck paragangliomas were treated by conventional external beam radiation therapy in 25 fractions at a median dose of 45 Gy (range, 41.4-68 Gy). One case was malignant. The median gross target volume and planning target volume were 30 cm 3 (range, 0.9-243 cm 3 ) and 116 cm 3 (range, 24-731 cm 3 ), respectively. Median age was 57.4 years (range, 15-84 years). Eleven patients had multicentric lesions, and 8 had family histories of paraganglioma. Paragangliomas were located in the temporal bone, the carotid body, and the glomus vagal in 51, 18, and 10 patients, respectively. Forty-six patients had exclusive radiation therapy, and 20 had salvage radiation therapy. The median follow-up was 4.1 years (range, 0.1-21.2 years). Results: One patient had a recurrence of temporal bone paraganglioma 8 years after treatment. The actuarial local control rates were 100% at 5 years and 98.7% at 10 years. Patients with multifocal tumors and family histories were significantly younger (42 years vs 58 years [P=.002] and 37 years vs 58 years [P=.0003], respectively). The association between family predisposition and multifocality was significant (P<.001). Two patients had cause-specific death within the 6 months after irradiation. During radiation therapy, 9 patients required hospitalization for weight loss, nausea, mucositis, or ophthalmic zoster. Two late vascular complications occurred (middle cerebral artery and carotid stenosis), and 2 late radiation-related meningiomas appeared 15 and 18 years after treatment. Conclusion: Conventional external beam radiation therapy is an effective and safe treatment option that achieves excellent local control; it should be considered as a first-line treatment of choice for head and neck paragangliomas

  11. Regularities of restoration of plant cover on the dumps of the Kuznetsk Basin

    Directory of Open Access Journals (Sweden)

    A. N. Kupriyanov

    2016-04-01

    Full Text Available The article considers the issues of the restoration vegetation on the dumps of the coal enterprises of the Kuznetsk Basin. Studies have shown that the dumps have a wide range of environmental conditions and are potentially suitable for establishment of plants. To negative environmental factors at the mine dumps include the lack of productive moisture, failed penetration, contrasting temperature regime on the different elements of the relief, and low potential fertility of the embryonic soils. Positive – high humidity in the depressions, the high content of fine-grained deposits in the lower part of the elephant dumps, excessive accumulation of snow in the winter on separate dumping sites. On disturbed lands identified eight technogenic ecotopes, characterized by various microrelief, moisture level, amount of fine fractions of technogenic eluvium determining favorable, moderately favorable and unfavorable conditions for vegetation of disturbed land. Selected three stages of syngenesis: pioneer stage, simple plant communities and complex plant communities. The stage of zonal phytocenosis on the dumps was not detected. The basis of diagnostic signs consists of the projective cover, the nature of the host plants, the number of species part of the zonal species. The selected criteria are universal and can be applicable to most dumps. Speed of syngenetic succession does not depend on calendar age of the dumps, and environmental conditions, which are formed on separate sites.

  12. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    Science.gov (United States)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining

  13. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    International Nuclear Information System (INIS)

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Moreno-Jimenez, S.; Suarez-Campos, J. J.; Celis, M. A.

    2008-01-01

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region

  14. Egg dumping by predatory insects

    Czech Academy of Sciences Publication Activity Database

    Corbani, A. C.; Ferrer, A.; Dixon, Anthony F. G.; Hemptinne, J. L.

    2011-01-01

    Roč. 36, č. 3 (2011), s. 290-293 ISSN 0307-6962 Institutional research plan: CEZ:AV0Z60870520 Keywords : Egg dumping * ladybird beetles * oocyte resorption * trophic egg Subject RIV: EH - Ecology, Behaviour Impact factor: 1.330, year: 2011

  15. Emittance measuring unit for 100% duty factor linac injector beams

    Energy Technology Data Exchange (ETDEWEB)

    Shubaly, M R; Pachner, J Jr; Ormrod, J H; Ungrin, J; Schriber, S O [ed.

    1976-11-01

    A description is given of a system to measure the emittance of a 750 keV 100 mA dc proton beam suitable for injection into a 100% duty factor linear accelerator. A relatively slowly pulsed 45/sup 0/ magnet switches the beam to a beam dump inside the emittance measuring unit for approx. 10 s. A fast pulsed 5/sup 0/ magnet then deflects the beam to a multiple aperture ''pepper-pot'' plate for 300 ..mu..s. Beamlets passing through the plate travel 520 mm and produce a pattern on a scintillator screen. A photograph of the pattern is analyzed to determine beam emittance. Preliminary results on low current beams show a gross increase in the emittance in the horizontal plane.

  16. Thoughts of fast beam aborts for the international linear collider

    International Nuclear Information System (INIS)

    Mattison, T.

    2006-01-01

    The ILC beam is potentially very destructive, and a fast beam abort system is useful as part of the machine-protection strategy. Scaling laws for kicker pulse power and length optimization are presented. Kicker reference designs for the ILC with full linac aperture, and limited aperture, are presented. Power levels are of order 10 8 W for 100 nsec filling times, and length scales are of order 100 m. Design issues for beam transport to a dump are considered. Separation of the beams at the defining obstruction and energy bandwidth force either a long drift after the septum bend or long quads with large apertures for dispersion control. (author)

  17. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-06-15

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work of T. Tanaka, H. Kitamura, and T. Shintake (2004), which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS, where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  18. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Science.gov (United States)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2018-03-01

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work Tanaka et al. (2004) , which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS (Nuhn et al., 2015; Lutman etal., 2016), where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  19. Long-term residual radioactivity in an intermediate-energy proton linac

    CERN Document Server

    Blaha, J; Silari, M; Vollaire, J

    2014-01-01

    A new 160 MeV H−H− linear accelerator (LINAC4) is being installed at CERN to replace the present 50 MeV LINAC2 as proton injector of the PS Booster (PSB). During operation, the accelerator components will be activated by the beam itself and by the secondary radiation field. Detailed Monte Carlo simulations, for various beam energies and several decay times, were performed to predict the residual radioactivity in the main accelerator components and to estimate the residual dose rate inside the tunnel. The results of this study will facilitate future dismantling, handling and storage of the activated parts and consequently minimize the radiation dose to involved workers. The component activation was also compared with the exemption limits given in the current Swiss legislation and to the CERN design values, in order to make predictions for the future storage and disposal of radioactive waste. The airborne radioactivity induced by particles escaping the beam dump and the activation of the beam dump cooling w...

  20. When and how should we teach the basic concepts of radiation beam dosage

    International Nuclear Information System (INIS)

    Brewin, T.B.

    1977-01-01

    The difficulty that many trainees, including those medically qualified, have in achieving a sound working grasp of certain basic principles of radiation beam dosage is often underestimated. Since any failure of understanding may seriously impair the efficiency of the team treating the patient, the discussion of these problems (and especially the monitoring of the results of such discussion by means of oral and written tests) deserves a high priority. Contrary to traditional practice, there would seem to be no good reason why teaching of radiation beam dosage, and the effect on dose-rate of changes in the treatment distance or in the amount of scattered radiation, should not begin in the very first week of training and be immediately integrated with discussion of the dose-rate information available at every radiotherapy unit when the patient is treated. A preliminary course of physics lectures does not usually make the understanding of these principles any easier and can be done either concurrently or later. For many radiotherapy trainees and for many doctors in other fields, comparison with drug dosage and with the brightness and scatter of ordinary light beams, avoiding technical terms so far as possible, may achieve a better initial understanding of basic principles than is achieved by mathematical equations and theoretical physics. (author)