WorldWideScience

Sample records for beam dump kicker

  1. Beam-dump kicker magnets

    International Nuclear Information System (INIS)

    Bulos, F.; Odian, A.; Tomlin, B.

    1983-01-01

    The beam-dump kicker magnets are located in the final focus region and, in conjunction with septum magnets, extract the beams after they have passed the interaction point (IP) and direct them to their respective dumps. Two schemes for these kickers have been under consideration; ferrite transmission line magnets utilizing technology common with damping rings and positron target kickers, and current loop magnets which are possible only for the dump kickers, where the rise time of the magnetic pulse can be comparatively longer; approximately 400 nanoseconds as compared with 50 nanoseconds for the others. A prototype ferrite kicker has been built and is undergoing tests. Since the current loop requires lower voltage and power plus some additional savings in cost, we decided to build and test a prototype. This note describes in detail an optimized design for the current loop magnets and their associated pulse circuitry

  2. Dilution kicker for the SPS beam dump

    CERN Multimedia

    1974-01-01

    In order to reduce thermal stress on the SPS dump material, the fast-ejected beam was swept horizontally across the dump. This was done with the "dilution kicker" MKDH, still in use at the time of writing. The person on the left is Manfred Mayer. See also 7404072X.

  3. Calibration Measurements of the LHC Beam Dumping System Extraction Kicker Magnets

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Gräwer, G; Olivieri, F; Pereira, L; Vossenberg, Eugène B

    2006-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. They have been produced, tested and calibrated by measuring the integrated magnetic field and the magnet current at different beam energies. The calibration data have been analysed, and the critical parameters are compared with the specifications. Implications for the configuration, control and operation of the beam dumping system are discussed.

  4. Challenges and Plans for Injection and Beam Dump

    Science.gov (United States)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  5. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  6. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  7. Spiral kicker for the beam abort system

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost

  8. Upgrade of the LHC Beam Dumping Protection Elements

    CERN Document Server

    Weterings, W; Balhan, B; Borburgh, J; Goddard, B; Maglioni, C; Versaci, R

    2012-01-01

    The Beam Dumping System for the Large Hadron Collider comprises for each ring a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred meters further downstream, an absorber block. A mobile diluter (TCDQ) protects the superconducting quadrupole immediately downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters, in case of a beam dump that is not synchronized with the particle free gap or a spontaneous firing of the extraction kickers. Simulations have shown that an asynchronous dump of a 7 TeV nominal beam into the TCDQ absorber blocks could damage it. This paper describes the proposed changes to this device in order to maintain the protection for the downstream elements while reducing the risk of damaging the TCDQ in case of such a beam loss.

  9. Initial results from beam commissioning of the LHC beam dump system

    CERN Document Server

    Goddard, B; Carlier, E; Ducimetière, L; Gallet, E; Gyr, M; Jensen, L; Jones, R; Kain, V; Kramer, T; Lamont, M; Meddahi, M; Mertens, V; Risselada, Thys; Uythoven, J; Wenninger, J; Weterings, W

    2010-01-01

    Initial commissioning of the LHC beam dump system with beam took place in August and September 2008. The preparation, setting-up and the tests performed are described together with results of the extractions of beam into the dump lines. Analysis of the first detailed aperture measurements of the extraction channels and kicker performance derived from dilution sweep shapes are presented. The performance of the other equipment subsystems is summarised, in particular that of the dedicated dump system beam instrumentation.

  10. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  11. Study for a failsafe trigger generation system for the Large Hadron Collider beam dump kicker magnets

    CERN Document Server

    Rampl, M

    1999-01-01

    The 27 km-particle accelerator Large Hadron Collider (LHC), which will be completed at the European Laboratory for Particle Physics (CERN) in 2005, will work with extremely high beam energies (~334 MJ per beam). Since the equipment and in particular the superconducting magnets must be protected from damage caused by these high energy beams the beam dump must be able to absorb this energy very reliable at every stage of operation. The kicker magnets that extract the particles from the accelerator are synchronised with the beam by the trigger generation system. This thesis is a first study for this electronic module and its functions. A special synchronisation circuit and a very reliable electronic switch were developed. Most functions were implemented in a Gate-Array to improve the reliability and to facilitate modifications during the test stage. This study also comprises the complete concept for the prototype of the trigger generation system. During all project stages reliability was always the main determin...

  12. Conceptual Design of the LHC Beam Dumping Protection Elements TCDS and TCDQ

    CERN Document Server

    Goddard, B; Sans-Merce, M; Weterings, W

    2004-01-01

    The Beam Dumping System for the Large Hadron Collider, presently under construction at CERN, consists, per ring, of a set of horizontally deflecting extraction kicker magnets, vertically deflecting steel septa, dilution kickers and finally, a couple of hundred metres further downstream, an absorber block. A fixed diluter (TCDS) will protect the septa in the event of a beam dump that is not synchronised with the particle free gap or a spontaneous firing of the extraction kickers which will cause the beam to sweep over the septum. Another, mobile, diluter block (TCDQ) will protect the superconducting quadrupole immediate downstream of the extraction as well as the arc at injection energy and the triplet aperture at top energy from bunches with small impact parameters. This paper describes the conceptual design of the protection elements.

  13. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  14. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    International Nuclear Information System (INIS)

    Tsoupas, N.; McMahan, Brandon

    2014-01-01

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite's temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  15. The PEP-II abort kicker system

    International Nuclear Information System (INIS)

    Lamare, J de; Donaldson, A.; Kulikov, A. Lipari, J.

    1997-07-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of electron beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 uS (the beam transit time around the time). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% in 370 nS. This report discusses the design of the system controls, interlocks, power supplies, and modulator

  16. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  17. Changes to the LHC Beam Dumping System for LHC Run 2

    CERN Document Server

    Uythoven, Jan; Borburgh, Jan; Carlier, Etienne; Gabourin, Stéphane; Goddard, Brennan; Magnin, Nicolas; Senaj, Viliam; Voumard, Nicolas; Weterings, Wim

    2014-01-01

    The LHC beam dumping system performed according to expectations during Run 1 of the LHC (2009 – 2013). A brief overview of the experience is given, including a summary of the observed performance by comparison to expectations. An important number of changes are applied to the beam dumping system during the present Long Shutdown in order to further improve its safety and performance. They include the addition of a direct link between the Beam Interlock System and the re-triggering system of the dump kickers, the modification of the uninterrupted electrical power distribution architecture, the upgrade of the HV generators, the consolidation of the trigger synchronisation system, the modifications to the triggering system of the power switches and the changes to the dump absorbers TCDQ.

  18. Simulation study of electron cloud build up in the SPS MKD kickers

    CERN Document Server

    Rumolo, G

    2009-01-01

    During the 2008 run, an unusual behavior characterizing pressure and temperature increase in some of the dump kickers of the SPS was noticed. In particular, it was observed that 1) the MKDV2 kicker would exhibit maximum heating with 75 ns spaced LHC beams and 2) the pressure rise was specially critical in MKDV1 in presence of 50 ns spaced LHC beams [1]. While the anomalous heating of MKDV2 with 75 ns beams could be tentatively explained by the denser beam current spectrum that would more likely hit one of the kicker impedance peaks, the fast pressure rise in MKDV1 with 50 ns spaced beams was ascribed to a surface effect, namely beam induced multipacting leading to electron cloud formation. This report summarizes a simulation study that was done in order to check whether the electron cloud behavior in the dump kickers could explain the experimental observations.

  19. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    CERN Document Server

    Delamare, J E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the des...

  20. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  1. Safety Analysis of the Movable Absorber TCDQ in the LHC Beam Dumping System

    CERN Document Server

    Filippini, R

    2009-01-01

    The LHC Beam Dumping System nominally dumps the beam synchronously with the passage of the particle free beam abort gap at the beam dump extraction kickers. In the case of an asynchronous beam dump the TCDQ absorber protects the machine aperture. It is a single sided collimator, positioned close to the beam and it has to follow the beam position and beam size during the energy ramp. This report assesses the different failure scenarios of TCDQ positioning and their likelihood. The failure probability for the two TCDQ systems together is estimated to be 3.6 E-05 (mean value) for one year of LHC operation. This corresponds to a SIL4 safety level, which is considered sufficient. The three dominant failure modes are highlighted. The calculated failure probability refers to scenarios that are generated and developed inside the TCDQ system. Potential failure sources not included are the interaction with external systems: the transmission of the start signal to the PLC from a dedicated timing card and the manual opti...

  2. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  3. Beam coupling impedance of fast stripline beam kickers

    International Nuclear Information System (INIS)

    Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R

    1999-01-01

    A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure

  4. Analysis of RHIC beam dump pre-fires

    International Nuclear Information System (INIS)

    Zhang, W.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Sandberg, J.; Tan, Y.

    2011-01-01

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machine safety and operational stability.

  5. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. lt is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. lt is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missing MKD elements. Therefore a sophisticated simulation environment was developed based on the use of the MAD-X tracking code. A system of tracking jobs was set up to study failure cases and losses for various dump events. Those jobs can be distributed to available CPU power and be calculated in parallel. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated including an asynchronous dump action, prefire cases, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setup and operation of these protection elements are discussed. Particle distributions can be created according to the used orbit. Simulations with different orbit parameters (including magnet field errors, beam position read out errors

  6. Measurement scheme of kicker impedances via beam-induced voltages of coaxial cables

    Energy Technology Data Exchange (ETDEWEB)

    Shobuda, Yoshihiro, E-mail: yoshihiro.shobuda@j-parc.jp [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Irie, Yoshiro [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Toyama, Takeshi; Kamiya, Junichiro [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Watanabe, Masao [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda, Tokyo 100-8959 (Japan)

    2013-06-11

    A new theory, which satisfies the causality condition, is developed to describe impedances of kicker magnets with coaxial cables. The theoretical results well describe measurement results, which are obtained by standard wire methods. On the other hand, when beams pass through the kicker, voltages are induced at the terminals of coaxial cables. In other words, by analyzing the voltages, the kicker impedance for the beams can be obtained. The observed impedances are consistent with the theoretical results. The theory describes the impedance for non-relativistic beams, as well. The theoretical, simulation and measurement results indicate that the horizontal kicker impedance is drastically reduced by the non-relativistic effect. -- Highlights: ► We develop an innovative method to measure kicker impedance including power cable. ► By analyzing voltages at the ends of coaxial cables, the impedance is derived. ► The horizontal impedance is reduced as the beam becomes non-relativistic.

  7. Experience with Kicker Beam Coupling Reduction Techniques

    CERN Document Server

    Gaxiola, Enrique; Caspers, Friedhelm; Ducimetière, Laurent; Kroyer, Tom

    2005-01-01

    SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods, once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with resistively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behaviour. For another technique using interleaved metallic stripes we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.

  8. Performance Studies for Protection Against Asynchronous Dumps in the LHC

    CERN Document Server

    Kramer, T; Bracco, C; Goddard, B; Meddahi, M

    2010-01-01

    The LHC beam dump system has to safely dispose all beams in a wide energy range of 450 GeV to 7 TeV. A 3 ms abort gap in the beam structure for the switch-on of the extraction kicker field ideally allows a loss-free extraction under normal operating conditions. However, a low number of asynchronous beam aborts is to be expected from reliability calculations and from the first year's operational experience with the beam dump kickers. For such cases, MAD-X simulations including all optics and alignment errors have been performed to determine loss patterns around the LHC as a function of the position of the main protection elements in interaction region six. Special attention was paid to the beam load on the tungsten collimators which protect the triplets in the LHC experimental insertions, and the tracking results compared with semi-analytical numerical estimates. The simulations are also compared to the results of beam commissioning of these protection devices.

  9. Conceptual Design of the RHIC Dump Core

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1995-09-26

    Conceptually, the internal dump consists of a "core" whose purpose is to absorb the energy of the beam, and surrounding shielding whose purpose is to attenuate radiation. Design of the core for an internal dump has two problems which must be overcome. The first problem is preserving the integrity of the dump core. The bunches must be dispersed laterally an amount sufficient to keep the energy density from cracking the dump core material. Since the dump kickers in RHIC are only ~25m upstream of the entrance face of the dump, this is i a difficult problem. The second problem, not addressed in this note, is that dumping the beam should not quench downstream magnets. Preliminary calculations related to both of these problems have been presented in earlier notes.

  10. Design of fast kickers for the ISABELLE beam abort system

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module

  11. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  12. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  13. In situ baking method for degassing of a kicker magnet in accelerator beam line

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu; Yasuda, Yuichi

    2016-01-01

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small

  14. In situ baking method for degassing of a kicker magnet in accelerator beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu [Japan Atomic Energy Agency, J-PARC Center, Ooaza Shirakata 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan); Yasuda, Yuichi [SAKAGUCHI E.H VOC CORP., Sakura Dai-san Kogyodanchi 1-8-6, Osaku, Sakura, Chiba 285-0802 (Japan)

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  15. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  16. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  17. Kicker thyratron experience from SLC

    International Nuclear Information System (INIS)

    Donaldson, A.R.; Cassel, R.L.; Mattison, T.S.; Reginato, L.L.

    1991-05-01

    The SLAC Linear Collider has five fast kickers for the damping ring injectors, extractors, and the electron extractor for the positron target that use multi-gap Deuterium-filled thyratrons. The thyratrons operate with 30 to 70 kV anode voltages and 1 to 5 kA currents, to deliver pulses to kicker magnets with ∼ 30 ns rise times, up to ∼ 150 ns pulse widths, at 120 Hz. Operating and lifetime experience with several types of thyratrons and support electronics are discussed. Floating driver and power supply electronics were replaced by a ferrite choke isolator to allow grounding of the cathode support electronics with a commensurate increase in operating reliability. The construction of a 100 ns Blumlein enabled detailed measurements of the switching times for all SLC thyratrons under similar conditions. In the final focus area, the kickers dump the SLC beams after the e + e - collisions. These thyratrons function with 15 kV anode voltages and up to 2 kA currents to produce 1/2 sine pulses with ∼ 300 ns rise times, ∼ 550 ns FWHM, at 120 Hz. Operating experience with these thyratrons will also be presented. 7 refs., 1 fig., 3 tabs

  18. Design of kicker magnet and power supply unit for synchrotron beam injection

    International Nuclear Information System (INIS)

    Wang, Ju.

    1991-03-01

    To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report

  19. The Beam Screen for the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Ducimetière, L; Garrel, N; Kroyer, T

    2006-01-01

    The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour.

  20. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  1. submitter Measurements on a 20-layer 12.5 kV prototype inductive adder for the CLIC DR kickers

    CERN Document Server

    Holma, J

    2018-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The predamping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely stable field pulses during injection and extraction of bunches. The DR extraction kicker system consists of a stripline kicker and two pulse modulators. The present specification for the modulators calls for pulses with 160 ns or 900 ns flat-top duration of nominally ±12.5 kV and 305 A, with ripple of not more than ±0.02% (±2.5 V). In addition, there is a proposal to use the same modulators and striplines for dumping the beam, with ±17.5 kV stripline pulse voltage. An inductive adder is a very promising approach to meeting the CLIC DR extraction kicker specifications because analogue modulation methods can be applied to adjust the shape of the flat-top of the output w...

  2. SSC kicker impedances

    International Nuclear Information System (INIS)

    Colton, E.P.; Wang, T.F.

    1985-01-01

    The longitudinal and transverse complex impedances Z/sub l//n and Z/sub t/, respectively, have been calculated for both the SSC injection and abort kickers. The calculations assumed that no attempt was made to shield the beam from the kickers. We took the injection and abort kickers to be as specified. The injection kickers were ferrite with a single-turn design, and the abort kickers were of a ''window-frame design'' with tape wound cores

  3. An Improved Beam Screen for the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Ducimetière, L; Garrel, N; Kroyer, T

    2007-01-01

    The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies (RCPSs) and four 5 WW transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFNs). A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requireme...

  4. High intensity beam dump for the Tevatron beam abort system

    International Nuclear Information System (INIS)

    Kidd, J.; Mokhov, N.; Murphy, T.; Palmer, M.; Toohig, T.; Turkot, F.; VanGinneken, A.

    1981-01-01

    The beam abort system proposed for the Fermilab Tevatron Accelerator will extract the proton beam from the ring in a single turn (approximately 20/mu/s) and direct it to an external beam dump. It is the function of the beam dump to absorb the unwanted beam and limit the escaping radiation to levels that are acceptable to the surrounding populace and apparatus. A beam dump that is expected to meet these requirements has been designed and constructed. Detailed design of the dump, including considerations leading to the choice of materials, are given. 6 refs

  5. A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction

    CERN Document Server

    Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S

    2004-01-01

    The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.

  6. Electrostatic injection kicker for the KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    Toshikazu Adachi

    2013-05-01

    Full Text Available An electrostatic injection kicker (ES-Kicker has been developed and installed in the KEK digital accelerator, which is a synchrotron aimed at accelerating all ion species. The ES-Kicker kicks an injected ion beam horizontally into the ring orbit and consists of two main electrodes for electric field generation and three intermediate electrodes to correct field homogeneity. In our single-turn injection scheme, the circulating beam and the injected beam both pass through the electrode aperture of the kicker, so the kicker field must be turned off before arrival of the first circulating beam. The ES-Kicker is therefore operated in a pulse mode. This means that the excitation circuit for the ES-Kicker must be carefully designed, since the falling edge of the electric field is strongly affected by parasitic capacitance of this circuit, and any remaining field may disturb the circulating beam. This paper describes performance of the ES-Kicker on the basis of simulations and measurement results.

  7. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  8. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  9. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.; /Fermilab

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  10. Electromagnetic cold-test characterization of the quad-driven stripline kicker

    International Nuclear Information System (INIS)

    Dunlap, J E; Nelson, S D.

    1998-01-01

    The first kicker concept design for beam deflection was constructed to allow stripline plates to be driven; thus directing, or kicking, the electron beam into two subsequent beam lines. This quad-driven stripline kicker is an eight port electromagnetic network and consists of two actively driven plates and two terminated plates. Electromagnetic measurements performed on the bi-kicker and quad-kicker were designed to determine: (1) the quality of the fabrication of the kicker, including component alignments; (2) quantification of the input feed transition regions from the input coax to the driven kicker plates; (3) identification of properties of the kicker itself without involving the effects of the electron beam; (4) coupling between a line current source and the plates of the kicker; and (5) the effects on the driven current to simulate an electron beam through the body of the kicker. Included in this are the angular variations inside the kicker to examine modal distributions. The goal of the simulated beam was to allow curved path and changing radius studies to be performed electromagnetically. The cold test results produced were then incorporated into beam models

  11. Design of the MI40 beam-abort dump

    International Nuclear Information System (INIS)

    Bhat, C.M.; Martin, P.S.; Russell, A.D.

    1995-05-01

    A beam-abort dump for the Fermilab Main Injector to handle 3E13 protons per pulse at 150 Gev has been designed. A 120 GeV beam line goes through the beam-dump off-set by 27cm from its center. The design and the environmental safety aspects of the beam-dump are described here

  12. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  13. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  14. LHC beam dump system Consequences of abnormal operation

    CERN Document Server

    Kramer, T; Uythoven, J

    2010-01-01

    The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed.

  15. The charged beam dumps for the international linear collider

    CERN Document Server

    Appleby, R; Broome, T; Densham, C; Vincke, H

    2006-01-01

    The baseline configuration of the International Linear Collider requires 2 beam dumps per interaction region, each rated to 18MW of beam power, together with additional beam dumps for tuning purposes and machine protection. The baseline design uses high pressure moving water dumps, first developed for the SLC and used in the TESLA design, although a gas based dump is also being considered. In this paper we discuss the progress made by the international community on both physics and engineering studies for the beam dumps.

  16. High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Bregliozzi, G; Calatroni, S; Costa Pinto, P; Day, H; Ducimetière, L; Kramer, T; Namora, V; Mertens, V; Taborelli, M

    2014-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.

  17. Reduction of Surface Flashover of the Beam Screen of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Calatroni, S; Caspers, F; Ducimetière, L; Gomes Namora, V; Mertens, V; Noulibos, R; Taborelli, M; Teissandier, B; Uythoven, J; Weterings, W

    2013-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wake fields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. LHC operation with increasingly higher bunch intensity and short bunch lengths, requires improved ferrite screening. This will be implemented by additional conductors; however these must not compromise the good high-voltage behaviour of the kicker magnets. Extensive studies have been carried out to better satisfy the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time, ultra-high vacuum and good high voltage behaviour. A new design is proposed which significantly reduces the electric field associated with the screen conductors. Results of high voltage tests are also presented.

  18. Beam dump experiments at the AGS

    International Nuclear Information System (INIS)

    Soukas, A.; Bregman, M.; Galik, R.

    1978-01-01

    Searches for the prompt production of weak or semi-strongly interacting particles in a neutrino beam dump and their subsequent interaction or decay were performed at the AGS. The experiment is detailed using the totally active liquid scintillator detector, and mention the results of the spark chamber detector. An exposure of a copper beam dump to two orders of magnitude more protons than in previous searches at 28 GeV has yielded 104 neutrino-like events in the detector. The events from the beam dump are compared directly with those from π and K decay neutrinos produced concurrently in the normal long neutrino decay path following a 15 cm brass target. The characteristics of the events are similar. However, when compared to the rate of events predicted by scaling the 15 cm target yields, the beam dump data show an excess of 45 +- 16 events. The excess events from the beam dump appear to deposit energies greater than or equal to 1 GeV. Their source remains puzzling. Future experiments at the AGS could verify the existence of the effect, decrease the uncertainty in the predicted number of events from 30 to 10% by directly measuring the pion absorption length with a variable density target, search for threshold effects, and measure the sign of the charge of the existing muons. 22 references

  19. Dual Power Supplies for PEP-II Injection Kickers

    CERN Document Server

    Olszewski, Joseph; Iverson, Richard; Kulikov, Artem; Pappas, Chris

    2005-01-01

    Originally the PEP-II injection kickers where powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independant power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of five since there are no long cables that have to be charged. The kickers are now independantly adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

  20. Dual Power Supplies for PEP-II Injection Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, J; Decker, F.-J.; Iverson, R.H.; Kulikov, A.; Pappas, C.; /SLAC

    2005-05-25

    Originally the PEP-II injection kickers were powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independent power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of four since there are no long cables that have to be charged. The kickers are now independently adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

  1. Dual Power Supplies for PEP-II Injection Kickers

    International Nuclear Information System (INIS)

    Olszewski, J; Decker, F.-J.; Iverson, R.H.; Kulikov, A.; Pappas, C.; SLAC

    2005-01-01

    Originally the PEP-II injection kickers were powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independent power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of four since there are no long cables that have to be charged. The kickers are now independently adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed

  2. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  3. SPEAR 3 INJECTION KICKER

    International Nuclear Information System (INIS)

    2002-01-01

    The design of the SPEAR 3 injection kicker system is presented. This system will include three kicker magnets and their associated pulsers. The magnet design is based on the DELTA kicker magnets, which present a low RF impedance to the beam, and are relatively straight-forward to construct. The pulsers use cascaded IGBT stages that are based on the modulator pulsers developed by a SLAC/LLNL collaboration for the NLC. Design considerations and the results of prototype tests will be discussed

  4. Literature file on 'fast kickers and septa', componenets for deflection and separation of particle beams

    International Nuclear Information System (INIS)

    Linden, A. van der.

    1988-11-01

    The File consists of classified and numbered articles from the literature on the following subjects: 1 - Kickers: fast switching (electro-)magnetic or electrostatic components for small deflection; 2 - Septum Magnets: both small and great deflecting components, with the purpose to create or bridge over space between the deflected beam and the other, unperturbed beam; 3 - Electrostatic Septa: low loss, beam splitting components which give small deflection for the extracted part of the beam and no perturbation for the rest of the beam. The articles have been classified per institute or laboratory, eventually with further classification per project. The classified articles are then numbered chronologically. Extension of the File is still possible. The contents of the articles are summarized by means of catchwords. Specifications of the described kickers, septum magnets and electrostatic septa are represented in a tabular form

  5. Upgrade of the Super Proton Synchrotron Vertical Beam Dump System

    CERN Document Server

    Senaj, V; Vossenberg, E

    2010-01-01

    The vertical beam dump system of the CERN Super Proton Synchrotron (SPS) uses two matched magnets with an impedance of 2 W and a combined kick strength of 1.152 Tm at 60 kV supply voltage. For historical reasons the two magnets are powered from three 3 W pulse forming networks (PFN) through three thyratronignitron switches. Recently flashovers were observed at the entry of one of the magnets, which lead, because of the electrical coupling between the kickers, to a simultaneous breakdown of the pulse in both magnets. To improve the reliability an upgrade of the system was started. In a first step the radii of surfaces at the entry of the weak magnet were increased, and the PFN voltage was reduced by 4%; the kick strength could be preserved by reducing the magnet termination resistance by 10 %. The PFNs were protected against negative voltage reflections and their last cell was optimised. In a second step the two magnets will be electrically separated and powered individually by new 2 W PFNs with semiconductor ...

  6. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  7. A New Kicker for the TLS Longitudinal Feedback System

    CERN Document Server

    Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te

    2005-01-01

    A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.

  8. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  9. Thoughts of fast beam aborts for the international linear collider

    International Nuclear Information System (INIS)

    Mattison, T.

    2006-01-01

    The ILC beam is potentially very destructive, and a fast beam abort system is useful as part of the machine-protection strategy. Scaling laws for kicker pulse power and length optimization are presented. Kicker reference designs for the ILC with full linac aperture, and limited aperture, are presented. Power levels are of order 10 8 W for 100 nsec filling times, and length scales are of order 100 m. Design issues for beam transport to a dump are considered. Separation of the beams at the defining obstruction and energy bandwidth force either a long drift after the septum bend or long quads with large apertures for dispersion control. (author)

  10. The IFMIF-EVEDA accelerator beam dump design

    International Nuclear Information System (INIS)

    Iglesias, D.; Arranz, F.; Arroyo, J.M.; Barrera, G.; Branas, B.; Casal, N.; Garcia, M.; Lopez, D.; Martinez, J.I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 x 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  11. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  12. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  13. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  14. Dynamic devices - pickups and kickers

    International Nuclear Information System (INIS)

    Lambertson, G.

    1986-08-01

    A given configuration of electrodes may be used either as a pickup or as a kicker; that duality is addressed. Some general relations between longitudinal and transverse effects and between the respones as pickup and as kicker are derived. Dynamic effects are seen to be entirely determined by the longitudinal electric fields in the direction of the beam current when the electrode is excited as a kicker. Response functions that serve as figures of merit are defined. The responses of specific examples of pickups and kickers are analyzed. An approach to the calculation of the transverse variation of coupling over the electrode aperture is preented

  15. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  16. The kicker magnet system for TRISTAN Accumulation Ring injection

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Satoh, K.; Nakayama, H.

    1994-12-01

    The injection of electron beams to TRISTAN Accumulation Ring (AR) was started in November 1983 and the positron injection started in November 1985. For the injection of electron and positron beams to AR, the unique kicker system was developed. In the kicker power supply the charging to the main capacitor was done with the resonant charge system together with the auxiliary charging unit. The impedance matching circuit was added to the kicker magnet for getting the required current form with least reflecting oscillation. In this paper we report the performance of this kicker system. (author)

  17. Chevron beam dump for ITER edge Thomson scattering system

    International Nuclear Information System (INIS)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-01-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated

  18. Chevron beam dump for ITER edge Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Vayakis, G. [ITER Organization, 13115 St Paul Lez Durance Cedex (France)

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  19. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  20. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  1. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC. However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  2. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  3. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  4. ALPtraum. ALP production in proton beam dump experiments

    International Nuclear Information System (INIS)

    Doebrich, Babette; Jaeckel, Joerg

    2015-12-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  5. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  6. New concept for a high-power beam dump

    International Nuclear Information System (INIS)

    Moir, R.W.; Taylor, C.E.

    1980-01-01

    A new concept for a dump for the ion and neutral beams used in the controlled nuclear fusion program uses thin sheets of a refractory metal such as tungsten formed into troughs having semi-circular cross sections. High-velocity water flowing circumferentially removes heat by subcooled nucleate boiling. Possible advantages are modular construction, lower water-pumping power, and a lower pressure drop than in conventional beam dumps. An example design calculation is shown for a dump capable of absorbing an incident flux of 10 kW/cm 2

  7. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  8. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  9. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  10. Design of the LHC beam dump

    International Nuclear Information System (INIS)

    Ferrari, A.; Stevenson, G.R.; Weisse, E.

    1992-01-01

    The severe constraints on the beam dumping system for the proposed Large Hadron Collider (LHC) arising from the beam energy (7.7 TeV) and intensity (5x10 14 protons) call for unusual procedures to dilute the beam. Monte-Carlo cascade simulations which calculated the effectiveness of thin scatterers placed upstream of the main absorber have been corrected and updated. Results are also presented concerning the optimization of the thicknesses of such scatterers. These show that a combined sweeping plus double-scatterer system gives a reasonable safety margin. A system combining the sweeping procedure with a dump where the absorber blocks are interleaved with air gaps could produce comparable dilution of the deposited energy. (author) 6 refs.; 3 figs

  11. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  12. Operational experience with the Fermilab 150 GeV injection kicker

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1985-01-01

    The Fermilab E17 injection kicker has been in operation for more than 12000 filament hours and has logged almost 350,000 pulses since commissioning without major failure. The kicker system uses EEV 1193B and 1193C double-ended thyratrons in the MAIN, CLIP and DUMP configuration. In typical operation, the pulser produces 4800 A, 20 μs pulses at a charging voltage of 60kV and is capable of operating at a 80kV charging voltage. Any failure of the injection process can cause the Tevatron cryogenic magnets to quench. This includes any misfires of the injection kicker. Considerable effort was made to maximize reliability and provide interlocks to limit the problems that could happen from injection kicker misfires. The operating experience and reliability of the EEV thyratron will be discussed. Also, the use of the fiber optics, unique charging power supplies, and unusual digital interlocks and the role they play in improved reliability will be discussed

  13. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm 2 anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies

  14. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  15. AA injection kicker in its tank

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    For single-turn injection of the antiprotons, a septum at the end of the injection line made the beam parallel to the injection orbit, and a quarter of a betatron-wavelength downstream a fast kicker corrected the angle. Kicker type: lumped delay line. PFN voltage 56 kV. Bending angle 7.5 mrad; kick-strength 0.9 Tm; fall-time 95%-5% in 150 ns. The injection orbit is to the left, the stack orbit to the far right. A fast shutter near the central orbit had to be closed before the kicker fired, so as to protect the stack core from being shaken by the kicker's fringe field. The shutter is shown in closed position.

  16. The PEP II injection kicker system

    International Nuclear Information System (INIS)

    Pappas, G.C.; Donaldson, A.R.; Williams, D.

    1997-07-01

    PEP II or the B Factory consists of two asymmetric storage rings. The injection energy for electrons is 9 GeV, while that for positrons is 3.1 GeV. The bend angle into the high energy ring (HER) is 0.35 m-rad, and the angle into the low energy ring (LER) is 0.575 m-rad. The magnetic length for the HER kicker is 0.85 m, and 0.55 m for the LER kicker. The field produced by the magnet is therefore 123.5 G for the HER, and 132 G for the LER. Each ring has a kicker magnet upstream of the injection line which is used to distort the orbit of the stored beam. An identical magnet downstream of the injection line is used to restore the orbit of the stored beam and inject the incoming beam. The two magnets are driven in parallel by the modulator. The apeture of the magnets is 3.86x3.46 cm (HxV). Therefore the current required to drive the HER is 863 A, while for the LER it is 756 A. The inductance of the magnet is approximately 1.4 uH/m. The current pulse is a critically damped sinusoid with a rise time of less than 300 ns. A kicker system has been designed which can be used for injection of both beams by varying the charge of voltage. The modulator uses a conjugate circuit to match the impedance of the magnet, and coupling to the beam chamber

  17. External post-operational checks for the LHC beam dumping system

    International Nuclear Information System (INIS)

    Magnin, N.; Baggiolini, V.; Carlier, E.; Goddard, B.; Gorbonosov, R.; Khasbulatov, D.; Uythoven, J.; Zerlauth, M.

    2012-01-01

    The LHC Beam Dumping System (LBDS) is a critical part of the LHC machine protection system. After every LHC beam dump action the various signals and transient data recordings of the beam dumping control systems and beam instrumentation measurements are automatically analysed by the external Post-Operational Checks (XPOC) system to verify the correct execution of the dump action and the integrity of the related equipment. This software system complements the LHC machine protection hardware, and has to ascertain that the beam dumping system is 'as good as new' before the start of the next operational cycle. This is the only way by which the stringent reliability requirements can be met. The XPOC system has been developed within the framework of the LHC 'Post-Mortem' system, allowing highly dependable data acquisition, data archiving, live analysis of acquired data and replay of previously recorded events. It is composed of various analysis modules, each one dedicated to the analysis of measurements coming from specific equipment. This paper describes the global architecture of the XPOC system and gives examples of the analyses performed by some of the most important analysis modules. It explains the integration of the XPOC into the LHC control infrastructure along with its integration into the decision chain to allow proceeding with beam operation. Finally, it discusses the operational experience with the XPOC system acquired during the first years of LHC operation, and illustrates examples of internal system faults or abnormal beam dump executions which it has detected. (authors)

  18. Irradiation Effects on RIA Fragmentation Cu Beam Dump

    CERN Document Server

    Reyes, Susana; Boles, Jason; Stein, Werner; Wirth, Brian

    2005-01-01

    Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks...

  19. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  20. Design studies of the LHC beam dump

    CERN Document Server

    Zazula, J M

    1997-01-01

    This paper is a compilation of the results of the recent 5 years studies of the beam dump system for the LHC proton collider at CERN, with a special emphasis on feasibility of the central absorber. Simulations of energy deposition by particle cascades, optimisation of the beam sweeping system and core layout, and thermal analysis have been completed; the structural deformation, stress and vibration analyses are well advanced, and a new concept of the shielding design has recently been approved. The material characteristics, geometry, performance parameters and safety precautions for different components of the beam dump are actually close to completion, which augurs well for the start of construction work according to schedule.

  1. A high average power beam dump for an electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianghong, E-mail: xl66@cornell.edu [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States); Bazarov, Ivan; Dunham, Bruce M.; Kostroun, Vaclav O.; Li, Yulin; Smolenski, Karl W. [Cornell Laboratory of Accelerator-based Sciences and Education, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    The electron beam dump for Cornell University's Energy Recovery Linac (ERL) prototype injector was designed and manufactured to absorb 600 kW of electron beam power at beam energies between 5 and 15 MeV. It is constructed from an aluminum alloy using a cylindrical/conical geometry, with water cooling channels between an inner vacuum chamber and an outer jacket. The electron beam is defocused and its centroid is rastered around the axis of the dump to dilute the power density. A flexible joint connects the inner body and the outer jacket to minimize thermal stress. A quadrant detector at the entrance to the dump monitors the electron beam position and rastering. Electron scattering calculations, thermal and thermomechanical stress analysis, and radiation calculations are presented.

  2. Transmission line analysis of beam deflection in a BPM stripline kicker

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Chen, Yu Ju; Poole, B.

    1997-05-01

    In the usual treatment of impedances of beamline structures the electromagnetic response is computed under the assumption that the source charge trajectory is parallel to the propagation axis and is unaffected by the wake of the structure. For high energy beams of relatively low current this is generally a valid assumption. Under certain conditions the assumption of a parallel source charge trajectory is no longer valid and the effects of the changing trajectory must be included in the analysis. Here the usual transmission line analysis that has been applied to BPM type transverse kickers is extended to include the self-consistent motion of the beam in the structure

  3. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  4. Considerations on a new fast extraction kicker concept for SPS

    CERN Document Server

    Barnes, M

    2010-01-01

    An alternative extraction kicker concept is investigated for the SPS, based on open C-type kickers and a fast-bumper system. The beam is moved into the kicker gap some tens of ms before extraction. The concept is illustrated in detail with the LSS4 extraction from the SPS – very similar parameters and considerations apply to LSS6. A similar concept could also be conceived for injection but is more difficult due to the larger beam size. The technical issues are presented and the potential impact on the machine impedance outlined.

  5. Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-Triggering Lines

    CERN Document Server

    Gabourin, S; Denz, R; Magnin, N; Uythoven, J; Wollmann, D; Zerlauth, M; Vatansever, V; Bartholdt, M; Bertsche, B; Zeiler, P

    2014-01-01

    To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a rel...

  6. CONSTRUCTION AND POWER TEST OF THE EXTRACTION KICKER MAGNET FOR SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    PAI, C.; HAHN, H.; HSEUH, H.; LEE, Y.; MENG, W.; MI, J.; SANDBERG, J.; TODD, R.

    2005-01-01

    Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction Lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to OWL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TIN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply

  7. Results from the LHC Beam Dump Reliability Run

    CERN Document Server

    Uythoven, J; Carlier, E; Castronuovo, F; Ducimetière, L; Gallet, E; Goddard, B; Magnin, N; Verhagen, H

    2008-01-01

    The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the whole system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations.

  8. HL-LHC kicker magnet (MKI)

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    HL-LHC kicker magnet (MKI): last vacuum test, preparation for transport to LHC transfer line in underground tunnel.The LHC injection kicker systems (MKIs) generate fast field pulses to inject the clockwise rotating beam at Point 2 and the anti-clockwise rotating beam at Point 8: there are eight MKI magnets installed in total. Each MKI magnet contains a high purity alumina tube: if an MKI magnet is replaced this tube requires conditioning with LHC beam: until it is properly conditioned, there can be high vacuum pressure due to the beam. This high pressure can also cause electrical breakdowns in the MKI magnets. A special coating (Cr2O3) has been applied to the inside of the alumina tube of an upgraded MKI magnet – this is expected to greatly reduce the pressure rise with beam. In addition, HL-LHC beam would result in excessive heating of the MKI magnets: the upgraded design includes modifications that will reduce heating, and move the power deposition to parts that will be easier to cool. Experience during 2...

  9. An Over-damped Cavity Longitudinal Kicker for the PEP-II LER

    CERN Document Server

    McIntosh, P

    2003-01-01

    Both rings of PEP-II use drift tube kickers in the longitudinal bunch-by-bunch feedback system. Efforts are now underway to increase the stored beam currents and luminosity of PEP-II, and beam-induced heating of these structures, particularly in the Low Energy Ring (LER) is of concern. An alternative kicker design based on the over-damped cavity kicker, first developed by INFN-Frascati is being built for PEP-II. This low loaded Q (or wide bandwidth) structure is fed by a network of ridged waveguides coupled to a simple pill-box cavity. Beam induced RF power is also coupled out of the cavity to external loads, so that the higher order modes (HOMs) excited in the structure are well-damped. This paper details the kicker design for PEP-II and discusses some of the design trade-offs between shunt impedance and bandwidth, as well as the influence of the feedthroughs on the kicker parameters. Estimates of the expected power deposition in the cavity are also provided.

  10. Electromagnetic simulations of simple models of ferrite loaded kickers

    CERN Document Server

    Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G

    2010-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

  11. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam`s surroundings. These interactions can produce fields which act back on the beam itself, or, if the ``surroundings`` are of suitably designed form (e.g., sensing electrodes with electrical connection to the ``outside world``), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  12. Properties and interactions of neutrino (1977-1980) beam dump experiments

    International Nuclear Information System (INIS)

    Tsukerman, I.S.

    1981-01-01

    Data on search of instantaneous muon and electron neutrinos in experiments of beam dump type are presented in the review. Neutrino is formed in decays of particles rusulted from pN interactions. First experiments of the dump beam type have been realized at the CERN/SPS accelerator in 1975 and Serpukhov accelerator by the ITEF-IFVE group in 1977 with proton energies of 26 and 70 GeV, respectively. The results of beam dump experiments of the second generation in 1979 in CERN are considered in detail. These experiments have been intended for measuring the effect of instantaneous neutrino. The conclusion is drawn on the presence of instantaneous muon neutrinos in the above experiments [ru

  13. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    CERN Document Server

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  14. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.; Genova, L.F.; Grant, J.A.; Mihalka, A.M.; Sukiennicki, B.A.; Tomlin, W.T.; Veldhuizen, F.T.; Walz, D.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulser that deflects two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given

  15. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  16. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Gil, C. S.; Kim, J. H.; Kim, D. H.

    2007-01-01

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  17. Dynamic devices: A primer on pickups and kickers

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the ''surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the ''outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion

  18. Calculation of Metallization Resistivity and Thickness for MedAustron Kickers

    CERN Document Server

    Barnes, M J; Stadlbauer, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the facility. The kicker magnets are outside machine vacuum: each kicker magnet has a ceramic beam chamber whose inner surface is metalized. The resistivity and thickness of the metallization are chosen such that the induced eddy currents, resulting from the pulsed kicker magnetic field, do not unduly affect the rise/fall times or homogeneity of the magnetic field. A comparison of an analytical calculation and measurement is reported for the effect of metallization of a ceramic chamber in an existing kicker system at CERN. Conclusions concerning the metallization of the ceramic chambers for the MedAustron kicker magnets are presented.

  19. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  20. Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac

    CERN Document Server

    Sinclair, Charles K; Smith, Colin H

    2005-01-01

    The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun test...

  1. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  2. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  3. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  4. Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans

    Science.gov (United States)

    Barnes, M. J.; Adraktas, A.; Bregliozzi, G.; Goddard, B.; Ducimetière, L.; Salvant, B.; Sestak, J.; Vega Cid, L.; Weterings, W.; Vallgren, C. Yin

    2017-07-01

    During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.

  5. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulsar that will deflect two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given. Work is continuing on the various subsystem components to decrease the pulse rise and fall time, flattop ripple and jitter and to reduce some of the sources of noise and hv breakdown

  6. Experimental use of neutrinos from ISABELLE beam dumps

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Thorndike, A.M.; Mann, A.K.

    1978-01-01

    The technical feasibility and possible applicability of using ISABELLE beam dumps as powerful sources for directed high-energy neutrino bursts are investigated. In the present machine design two dump systems are applied to absorb the extracted fast beams. The expected normal beam extraction rate is 1 to 2 per day, when about (6.3 to 7.5) x 10 14 protons are hitting the external targets during a pulse length of approx. 50 μs. These protons are considered so far to be useless. The neutrinos produced could be used for the following activities: the study of coherent neutrino regeneration, calibration and permanent testing of cosmic-ray and astrophysical neutrino detectors, research on the practical applicability of neutrinos in telecommunication, and certain astro- and geophysical applications. Tailoring the system to meet these activities is illustrated. 6 figures

  7. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  8. Detailed mechanical design of the LIPAc beam dump radiological shielding

    Energy Technology Data Exchange (ETDEWEB)

    Nomen, Oriol, E-mail: onomen@irec.cat [IREC, Barcelona, Catalonia (Spain); CDEI-UPC, Barcelona, Catalonia (Spain); Martínez, José I.; Arranz, Fernando; Iglesias, Daniel; Barrera, Germán; Brañas, Beatriz [CIEMAT, Madrid (Spain); Ogando, Francisco [UNED, Madrid (Spain); Molla, Joaquín [CIEMAT, Madrid (Spain); Sanmartí, Manel [IREC, Barcelona, Catalonia (Spain)

    2013-10-15

    Highlights: ► Mechanical design of the IFMIF LIPAc beam dump shielding has been performed. ► Lead shutter design performed to shield radiation from beam dump when LIPAc is off. ► External loads, working and dismantling conditions, included as design constraints. -- Abstract: The LIPAc is a 9 MeV, D{sup +} linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings, water tanks and gray cast iron rings. A lead shutter has also been designed to shield the gamma radiation that comes through the beam tube when the linear accelerator is not in operation, in order to allow access inside the building for maintenance tasks. The present work summarizes the detailed mechanical design of the beam dump shielding and the lead shutter taking into account the design constraints, such as working conditions and other external loads, as well as including provisions for dismantling.

  9. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  10. LHC Report: The beam is back at the LHC

    CERN Multimedia

    Reyes Alemany

    2015-01-01

    A series of sector beam tests paved the way for the start-up of the LHC in 2008 and 2009. These tests and the follow-up of the issues that arose were part of the process that led to a smooth start-up with beam.   Given this experience, sector tests were scheduled to take place several weeks before the 2015 start-up. On the weekend of 6-9 March, beam from the SPS was injected into both LHC injection regions, followed by a first pass through the downstream LHC sectors. For the clockwise LHC beam (called “beam 1”) this meant passing through ALICE and into Sector 2-3, while the anticlockwise beam (called “beam 2”) was threaded through LHCb and all the way from Point 8 to Point 6, where it was extracted by the beam dump kickers onto the beam dump block. The dry runs in the previous weeks were mainly targeted at preparation for the sector tests. The systems tested included: injection, timing, synchronisation and beam instrumentation. The beam interlock ...

  11. Ion beam dump for JT-60 NBI

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Horiike, Hiroshi; Matsuda, Shinzaburo; Morita, Hiroaki; Shibanuma, Kiyoshi

    1981-10-01

    The design of the active cooling type ion beam dump for JT-60 NBI which receives the total beam power of 5.6 MW for 10 sec continuously is described. It is composed of array of many finned tubes which is made of oxygen free copper with 0.2% silver content. The safety margin against thermal and mechanical troubles is estimated by the heat transfer and the thermal stress calculation. (author)

  12. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  13. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Avilov, Mikhail [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Amroussia, Aida [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Bergez, Wladimir [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Boehlert, Carl [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Burgess, Thomas; Carroll, Adam [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Toulouse University, CNRS, Allée Camille Soula, 31400 Toulouse (France); Durantel, Florent [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Ferrante, Paride; Fourmeau, Tiffany [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, Van [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Grygiel, Clara [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Kramer, Jacob [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Mittig, Wolfgang [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Monnet, Isabelle [Centre des recherches sur les Ions, les Materiaux et la Photonique (CIMAP) CEA-CNRS-ENSICAEN-UCN, BP 5133, 14070 CAEN CEDEX 5 (France); Patel, Harsh [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); and others

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from {sup 16}O to {sup 238}U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti–6Al–4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  14. Steel septum magnets for the LHC beam injection and extraction

    CERN Document Server

    Bidon, S; Guinand, M; Gyr, Marcel; Sassowsky, M; Weisse, E; Weterings, W; Abramov, A; Ivanenko, A I; Kolatcheva, E; Lapyguina, O; Ludmirsky, E; Mishina, N; Podlesny, P; Riabov, A; Tyurin, N

    2002-01-01

    The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and buil...

  15. H5 fast-kicker-magnet pulser

    International Nuclear Information System (INIS)

    Frey, W.; Ghoshroy, S.; Cottingham, J.G.

    1982-01-01

    The fast extraction kicker magnet for the AGS is powered by a novel pulse generator. A pulse forming network (PFN) is discharged into nearly 100% mismatched load. The pulser delivers a current pulse of 3000 amperes peak pulse with a 2% flat-top ripple into a 1.4 μ H single turn ferrite core magnet. The pulse is 2.8 μsec wide with a 180 nsec rise time, at a 0.5 to 1.5 pps repetition rate. The pulse rise time is required to provide clean extraction of the 28 GeV proton beam by bringing the kicker magnet field up to 1.25 kG within the 220 nsec space between proton bunches in the machine. The pulser is mounted adjacent to the kicker magnet in the AGS ring. The thyratron's characteristics are not affected by the ionizing radiation environment during operation of the AGS

  16. An IGBT Driven Slotted Beam Pipe Kicker for SPEAR III Injection

    International Nuclear Information System (INIS)

    2002-01-01

    The SPEAR III injection kicker system is composed of three kicker magnets, K1, K2, and K3. These magnets, along with the power modulators to drive them constitute an injection system which will be used to deflect an incoming electron beam with an energy of 3.3 GeV by an angle of 2.5 mrad for K1 and K3, and 1 mrad for K2. The pulse shape of the magnetic field in the three magnets must be matched in order to preserve a closed orbit. The pulse duration is required to be less than 780 ns, with rise and fall times of less than 375 ns, and a pulse repetition frequency of 10 Hz. The aperture of all three magnets is 60 x 34 mm in an 8 inch vacuum vessel. The magnetic length is 1.2 m for K1 and K3, and 0.6 m for K2 [1]. The magnet design employs a slotted beam pipe which is shorted at one end. A solid state IGBT based, induction type of modulator drives the magnets. Modulators for K1 and K3 consist of eight 4.5 kV, 600 A IGBTs, and eight Finemet magnet cores with four 22.5 Ohm output cables to drive 2381 A into the magnets. The modulator for K2 uses four IGBTs and cores, and 8 output cables to produce a 2619 A pulse. Cables of length greater than one half the pulse width must be used in order to avoid reflections from the shorted magnet. The design charge voltage for the modulators is 20 kV for K1 and K3. This paper describes the magnet and modulator design, as and presents test data from a prototype system

  17. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    International Nuclear Information System (INIS)

    Zhang, W.; Sandberg, J.; Parson, W.M.; Walstrom, P.; Murray, M.M.; Cook, E.; Hartouni, E.

    2001-01-01

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed

  18. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  19. SLC kicker magnet limitations

    International Nuclear Information System (INIS)

    Cassel, R.; Donaldson, A.; Mattison, T.; Bowden, G.; Weaver, J.; Bulos, F.; Fiander, D.

    1991-01-01

    The SLC Damping Ring kicker magnets requires a fast magnetic field rise time of 58 nsec, a peak field of 800 gauss, a pulse amplitude stability of 0.01%, and a reasonable operational lifetime. The original kicker magnets designed by SLAC and at Fermi were not able to fulfill the SLC kicker requirements. Extensive studies were conducted to determine the limitation in the magnets, response of the ferrite in kicker magnet, and the modifications needed to improve the kicker magnet performance. The paper details the SLAC and Fermi kicker magnets limitation of performance

  20. Fast Kicker for High Current Beam Manipulation in Large Aperture

    CERN Document Server

    Gambaryan, V

    2017-01-01

    The pulsed deflecting magnet (kicker) project was worked out in Budker Institute of Nuclear Physics. The kicker design parameters are: impulsive force, 1 mT*m; pulse edge, 5 ns; impulse duration, 200 ns. The unconventional approach is that the plates must be replaced by a set of cylinders. The obtained magnet construction enables the field homogeneity to be controlled by changing current magnitudes in cylinders. Furthermore, we demonstrated the method of field optimization. In addition, measurement technique for the harmonic components was considered and the possibility of control harmonic components value was demonstrated.

  1. The LHC injection kicker magnet

    CERN Document Server

    Ducimetière, Laurent; Barnes, M J; Wait, G D

    2003-01-01

    Proton beams will be injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and up to 7.86 s flat top duration. One of the stringent design requirements of these systems is a flat top ripple of less than ± 0.5%. Both injection systems are composed of 4 travelling wave kicker magnets of 2.7 m length each, powered by pulse forming networks (PFN's). To achieve the required kick strength of 1.2 Tm, a low characteristic impedance has been chosen and ceramic plate capacitors are used to obtain 5 Omega. Conductive stripes in the aperture of the magnets limit the beam impedance and screen the ferrite. The electrical circuit has been designed with the help of PSpice computer modelling. A full size magnet prototype has been built and tested up to 60 kV with the magnet under ultra high vacuum (UHV). The pulse shape has been precision measured at a voltage of 15 kV. After reviewing the performance requirements the paper presents the magnet...

  2. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    International Nuclear Information System (INIS)

    Maslov, M.; Sychev, V.; Schmitz, M.

    2006-08-01

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10 13 electrons in combination with a large amount of dissipated power density (∼1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at σ beam ≥2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  3. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, M.; Sychev, V. [Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Schmitz, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.10{sup 13} electrons in combination with a large amount of dissipated power density ({approx}1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at {sigma}{sub beam}{>=}2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  4. Development of the kicker magnet system for the IHEP accelerator

    International Nuclear Information System (INIS)

    Andreev, V.N.; Kurnaev, O.V.; Sychev, V.A.; Trofimov, Yu.D.

    1982-01-01

    The KM-14 kicker magnet intended for joint operation with the KM-16 kicker magnet in the U-70 accelerator fast beam extraction system is described. The main characteristics and specific features of the magnet, pulse generators and power supplies are considered. The total aperture type KM-14 magnet (aperture height is equal to 100 mm, its width amounts 150 mm) consists of four modules which are supplied in pair-parallel by two pulse generators. The length of each module is 0.56 m, the field in a gap amounts 0.045 Tl. Joint use of the KM-14 and KM-16 magnets provides beam shooting into bending septum magnet when operating with the booster and beam extraction in the direction of the storage-accelerator complex

  5. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  6. Energy deposition profile for modification proposal of ISOLDE’s HRS Beam Dump, from FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    The current ISOLDE HRS beam dump has been found to be unsuitable on previous simulations, due to thermomechanical stresses. In this paper a proposal for modifying HRS dump is studied using FLUKA. The energy deposited in this modified beam dump and the amount of neutrons streaming to the tunnel area are scored and compared with the simulation of current dump. Two versions of the modification have been assessed, determining which of them is more desirable in terms of influence of radiation on ISOLDE’s tunnel. Finally, a rough estimate of temperature raise in the modified dump is shown. Further conclusions on the adequacy of these modifications need to include the thermomechanical calculations’ results, based on those presented here.

  7. A laminated-iron fast-pulsed magnet

    CERN Document Server

    Faugeras, Paul E; Mayer, M; Schröder, G H

    1977-01-01

    In the SPS Beam Dumping System , two pairs of fast pulsed magnets deflect the circulating beam vertically and horizontally from its normal closed orbit, and onto a large absorber block. Two MKDV kickers produce a quasi-rectangular field pulse of 23 µs duration (this being the SPS revolution period) causing a vertical deflection of 44 mm at the absorber block, while two MKDH sweepers give a horizontal deflection ramping during 23 µs to a peak of 25 mm. On the 'flat top' of the MKDV pulse, oscillations of ± 10 % of the primary deflection are introduced. The proton beam is thus dumped into the absorber block during one revolution. Dumping may occur at any energy, but the dumping of a 400 GeV/c pencil beam of $10^{13}$ proton would produce thermal shock waves which would ultimately deform any solid absorber. The sweeper's 25 mm horizontal deflection and the kicker's 10 % oscillations were introduced to sweep the dumped beam over an area of about 200 $mm^{2}$ giving a reduction of one to two orders of magnitude...

  8. Beam Dump TIDV #1 - Vacuum Failure of 17 Oct. 97

    CERN Document Server

    Ross, M; CERN. Geneva. SPS and LEP Division

    1997-01-01

    A vacuum leak on the internal beam dump TIDV precipitated its replacement in the LSS1 on Monday the 20th of October 1997, the SPS consequently being shut down for three days. The dump had fulfilled its design function since it was installed in the SPS at the beginning of 1988. Prior to the intervention, the Vacuum Group LHC/VAC carried out a number of leak tests, which led to the decision being taken to replace the dump. After the successful intervention, normal machine operation was resumed. Out-gassing of the ten-year-old replacement was initially high, but vacuum pressure is slowly descending to the SPS standard level.

  9. Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals

    CERN Document Server

    Sobiech, Z; Bouleghlimat, S; Ducimetière, L; Garlaschè, M; Kramer, T; Namora, V; Noulibos, R; Sillanoli, Y; Weterings, W

    2014-01-01

    LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated...

  10. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  11. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  12. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    International Nuclear Information System (INIS)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-01-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  13. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian [Extreme Light Infrastructure - Nuclear Physics / Horia Hulubei National Institute for R& D in Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2016-03-25

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  14. Resonant production of dark photons in positron beam dump experiments

    Science.gov (United States)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  15. Kicker Magnet and Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, Fatin [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-04

    The SLC Project utilizes several fast kicker magnets. Their requirements vary somewhat, however, the cooling rings kickers have the most stringent requirements. In this note we describe the design of the positron ring kickers, and the reasons that led to it.

  16. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    Science.gov (United States)

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  17. Fluka studies of the Asynchronous Beam Dump Effects on LHC Point 6

    CERN Document Server

    Versaci, R; Goddard, B; Mereghetti, A; Schmidt, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. Using FLUKA Monte Carlo simulations, we have investigated the effects of an asynchronous beam dump at the LHC Point 6 where beams, with a stored energy of 360 MJ, can instantaneously release up to a few J cm^-3 in the cryogenic magnets which have a quench limit of the order of the mJ cm^-3. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump. We will then analyze the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  18. Performance with lead ions of the LHC beam dump system

    CERN Document Server

    Bruce, R; Jensen, L; Lefèvre, T; Weterings, W

    2007-01-01

    The LHC beam dump system must function safely with 208Pb82+ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.

  19. Design and development of multi-megawatt beam dumps

    International Nuclear Information System (INIS)

    Haughian, J.M.; Cooper, W.S.; Paterson, J.A.

    1976-11-01

    The next generation of U.S. fusion experiments which includes TFTR, MFTF, and Doublet III, will utilize neutral-beam injection for plasma heating. TFTR, for example, desires 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration. In order to meet these requirements, a 15-A, 120-keV, 0.5-sec pulse per minute module is presently under test at the neutral-beam test facility at the Lawrence Berkeley Laboratory. A 65-A, 120-keV, 0.5-sec module is under construction and is scheduled for assembly in April of this year. Some of the features of a calorimeter/beam dump that is presently being used in the testing and evaluation of these neutral beam sources are discussed

  20. Fluka Studies of the Asynchronous Beam Dump Effects on LHC Point 6 for a 7 TeV beam

    CERN Document Server

    VERSACI, R; GODDARD, B; MEREGHETTI, A; SCHMIDT, R; VLACHOUDIS, V

    2012-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. Using FLUKA Monte Carlo simulations, we have investigated the effects of an asynchronous beam dump at the LHC Point 6 where beams, with a stored energy of 360 MJ, can instantaneously release up to a few J cm^{-3} in the cryogenic magnets which have a quench limit of the order of the mJ cm^{-3}. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump of a 7 TeV beam. We will then analyze the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  1. Slot-type kicker for the AA stochastic cooling

    CERN Multimedia

    Photographic Service

    1979-01-01

    A "slotted transmission line" structure was used for both pickups and the kicker of one of the stochastic cooling systems of the Antiproton Accumulator (AA). They served for the cooling of the high-density stack, in momentum and in both transverse planes. In the beginning in a single band, 1-2 GHz, later in 3 bands, 1-2, 2-4 and 4-8 GHz. The kicker of the first generation, shown here, was located where the dispersion was zero and the beam size small, and thus had a quadratic cross-section. The pickups were rectangular and wider in the horizontal plane. See also 7906193

  2. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  3. FLUKA Studies of the Asynchronous Beam Dump Effects on LHC Point 6

    CERN Document Server

    Versaci, R; Goddard, B; Schmidt, R; Vlachoudis, V; Mereghetti, A

    2011-01-01

    The LHC is a record-breaking machine for beam energy and intensity. An intense effort has therefore been deployed in simulating critical operational scenarios of energy deposition. FLUKA is the most widely used code for this kind of simulations at CERN because of the high reliability of its results and the ease to custom detailed simulations all along hundreds of meters of beam line. We have investigated the effects of an asynchronous beam dump on the LHC Point 6 where, beams with a stored energy of 360 MJ, can instantaneously release up to a few J cm−3 in the cryogenic magnets which have a quench limit of the order of the mJ cm−3. In the present paper we will describe the simulation approach, and discuss the evaluated maximum energy release onto the superconducting magnets during an asynchronous beam dump. We will then analyse the shielding provided by collimators installed in the area and discuss safety limits for the operation of the LHC.

  4. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  5. Results from beam dump experiments at CERN

    International Nuclear Information System (INIS)

    Conforto, G.

    1981-01-01

    Two series of proton beam dump experiments are discussed. One of the main goals of the experiment was to test the hypothesis that neutrinos produced in such a setting arose entirely from charm production followed by either electronic or muonic decay. While much of the data is difficult to interpret, it does appear that this hypothesis is not an adequate explanation of the results, in particular the ratio of electron neutrinos to muon neutrinos

  6. Preliminary testing of the LEB to MEB transfer kicker modulator prototype

    International Nuclear Information System (INIS)

    Pappas, G.C.; Askew, D.R.

    1993-01-01

    The extraction kicker for the Low Energy Booster (LEB) is used to deflect a 12 GeV/c proton beam from the synchrotron into a transfer line. A kicker system of similar design is used to inject the beam from the transfer line into the Medium Energy Booster (MEB). The modulator requirements for these kicker systems are to deliver a pulse train of seven 1.6 kA, 2.5 μs pulses at a pulse repetition frequency of 10 pps, every seven seconds for one hour. The impedance of the modulator is 12.5 Ω, resulting in a charge voltage of 40 kV. The 10-90% rise time of the pulses is 20 ns, and the 1-99% fall time is 2 μs. The allowable pulse ripple is ±1% of the peak current during the pulse, and ±0.3% from pulse to pulse. The shot-to-shot timing jitter requirement is less than 2 ns. This paper describes the design and performance of the prototype modulator which was fabricated to meet these specifications

  7. Preliminary testing of the LEB to MEB transfer kicker modulator prototype

    International Nuclear Information System (INIS)

    Pappas, G.C.; Askew, D.R.

    1993-05-01

    The extraction kicker for the Low Energy Booster (LEB) is used to deflect a 12 GeV/c proton beam from the synchrotron into a transfer line. A kicker system of similar design is used to inject the beam from the transfer line into the Medium Energy Booster (MEB). The modulator requirements for these kicker systems are to deliver a pulse train of seven 1.6kA, 2.5 μs pulses at a pulse repetition frequency of 20 pps, every seven seconds for one hour. The impedance of the modulator is 12.5 ω, resulting in a charge voltage of 40 kV. The 10--90% rise time of the pulses is 20 ns, and the 1--99% fall time is 2 μs. The allowable pulse ripple is ±1% of the peak current during the pulse, and ±0.3% from pulse to pulse. The shot -to-shot timing jitter requirement is less than ns. This paper describes the design and performance of the prototype modulator which was fabricated to meet these specifications

  8. Analysis of the electrical noise from the APS kicker magnet power supplies

    International Nuclear Information System (INIS)

    Carwardine, J.A.; Wang, J.

    1995-01-01

    The APS kicker magnet power supplies deliver damped sinusoidal currents in excess of 2400A peak with a half-period of 300ns to the kicker magnets. Conducted and radiated electromagnetic interference (EMI) is created by this system in the low megahertz range. This interference affects a number of beam diagnostics in the APS injector. The sources and coupling mechanisms for the EMI generated by this system are described and solutions discussed

  9. LHC Abort Gap Filling by Proton Beam

    CERN Document Server

    Fartoukh, Stéphane David; Shaposhnikova, Elena

    2004-01-01

    Safe operation of the LHC beam dump relies on the possibility of firing the abort kicker at any moment during beam operation. One of the necessary conditions for this is that the number of particles in the abort gap should be below some critical level defined by quench limits. Various scenarios can lead to particles filling the abort gap. Time scales associated with these scenarios are estimated for injection energy and also coast where synchrotron radiation losses are not negligible for uncaptured particle motion. Two cases are considered, with RF on and RF off. The equilibrium distribution of lost particles in the abort gap defines the requirements for maximum tolerable relative loss rate and as a consequence the minimum acceptable longitudinal lifetime of the proton beam in collision.

  10. Bounds on light gluinos from the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Parker, M. A.; Sarkar, S.; Aderholz, M.; Bostock, P.; Clayton, E. F.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Schmid, P.; Schmitz, N.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Walck, Ch.; Wachsmuth, H.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require ifm g˜$̆4 GeV for ifm q˜ - minw.

  11. First Operation of the Abort Gap Monitors for LHC

    CERN Document Server

    Bart Pedersen, S; Bravin, E; Boccardi, A; Goldblatt, A; Jeff, A; Roncarolo, F; Fisher, A

    2010-01-01

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

  12. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  13. Bounds on light gluinos from the BEBC beam dump experiments

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Aderholz, M.; Schmitz, N.; Bostock, P.; Krstic, J.; Faccini-Turluer, M.L.; Vignaud, D.; Graessler, H.; Guy, J.; Venus, W.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Idschok, U.; Kreutzmann, H.; Nellen, B.; Wuensch, B.

    1985-01-01

    Observational upper limits on anomalous neutral-current events in a proton beam dump experiment are used to constrain the possible hadroproduction and decay of light gluinos. These results require msub(g tilde) >= 4 GeV for Msub(q tilde) approx.= msub(w). (orig.)

  14. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  15. Iodine Beam Dump Design and Fabrication

    Science.gov (United States)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  16. Kicker magnet design

    International Nuclear Information System (INIS)

    Li, Z.; Thiessen, H.A.

    1989-01-01

    In this paper, the kicker magnet is studied by use of the program POISSON. For using the dc-code POISSON in the ac problem of the kicker magnet, an approximation of the ac effects is made, this simplifying the ac problem into a dc problem. The study of the magnet is taken in two steps: assuming the γ of the ferrite material is fixed in the calculation to get a preliminary design of the magnet; using the real B /minus/ H curve of the CMD5005 ferrite material in the calculation to get the final design of the magnet. The stored energy, the excitation curve and the excitation efficiency of the kicker magnet are also discussed. 10 figs., 7 tabs

  17. In situ degassing of the kicker magnet in J-PARC RCS

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

    2015-01-01

    The usual way to reduce outgassing from a device in vacuum is to heat up a whole vacuum chamber containing the device. However, the situation, where this method can be applied, is limited due to the heat expansion of the chamber. Especially in accelerators, where the vacuum chambers are connected with nearby beam pipes, this normal bake-out method may not be applied. If a heat source and heat shields are appropriately installed inside the chamber, heat flux is directed to the device. Therefore the device can be baked out without raising the temperature of the vacuum chamber. One candidate for such bake-out method to be applied is kicker magnets in J-PARC RCS, which are installed in large vacuum chambers. We performed the heating tests with some types of heaters in order to examine the effectiveness of this method and to decide the material and configuration of the heater. As a result, the graphite heater was selected for in-situ bake-out of the kickers in the RCS beam line. Using the method, the each material of kicker magnet was heated up above 100degC with keeping the temperature rise of the vacuum chamber below 30degC. (author)

  18. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  19. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  20. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  1. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab: an update on PR12-16-001

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Istituto Nazionale di Fisica Nucleare (INFN), Genova (Italy); et. al.

    2017-12-07

    This document is an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016 reporting progress in addressing questions raised regarding the beam-on backgrounds. The concerns are addressed by adopting a new simulation tool, FLUKA, and planning measurements of muon fluxes from the dump with its existing shielding around the dump. First, we have implemented the detailed BDX experimental geometry into a FLUKA simulation, in consultation with experts from the JLab Radiation Control Group. The FLUKA simulation has been compared directly to our GEANT4 simulations and shown to agree in regions of validity. The FLUKA interaction package, with a tuned set of biasing weights, is naturally able to generate reliable particle distributions with very small probabilities and therefore predict rates at the detector location beyond the planned shielding around the beam dump. Second, we have developed a plan to conduct measurements of the muon ux from the Hall-A dump in its current configuration to validate our simulations.

  2. Collimator fast failure losses for various HL-LHC configurations

    CERN Document Server

    Lari, L; Redaelli, S

    2014-01-01

    The upgrade of the Large Hadron Collider (LHC), in terms of beam intensity and energy, implies an increasing risk of severe damage in particular in case of beam losses during fast failures. For this reason, efforts were put in developing simulation tools to allow studies of asynchronous dump accidents, including realistic additional failure scenarios. The scope of these studies is to understand realistic beam loads in different collimators, in order to improve the actual LHC collimation system design, to provide feedbacks on optics design and to elaborate different mitigation actions. Simulations were set up with a modified SixTrack collimation routine able to simulate erroneous firing of a single dump kicker or the simultaneous malfunction of all the 15 kickers. In such a context, results are evaluated from the whole LHC collimation system point of view.

  3. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    International Nuclear Information System (INIS)

    Battaglieri, M.

    2016-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a ∼ 1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10 22 electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle χ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  4. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Univ. of Genova (Italy). National Institute for Nuclear Physics. et al

    2016-07-05

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  5. Optimization of speed-up network component values for the 30 Ω resistively terminated prototype kicker magnet

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1993-01-01

    Kicker magnets are required for all ring-to-ring transfers in the 5 rings of the proposed KAON factory synchrotron. The kick must rise from 1% to 99% of full strength during the time interval of gaps created in the beam (80 ns to 160 ns) so that the beam can be extracted with minimum losses. In order to achieve the specified rise-time and open-quote flatness close-quote for the kick it is necessary to utilize speed-up networks, comprising a capacitor and a resistor, in the electrical circuit. Speed-up networks may be connected electrically on both the input and output of the kicker magnet. In addition it is advantageous to connect a open-quote speed-up close-quote network on the input of the resistive terminator(s). A sequence which may minimize the number of mathematical simulations required to optimize the values of the 8 possible speed-up components is presented. PE2D has been utilized to determine inductance and capacitance values for the resistive terminator; this data has been used in PSpice transient analyses. Results of the PE2D predictions are also presented. The research has culminated in a predicted kick rise time (1% to 99%) of less than 50 ns for a TRIUMF 10 cell prototype kicker magnet. The proposed improvements are currently being implemented on our prototype kicker system

  6. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  7. Design and simulation of fast pulsed kicker/bumper units for the positron accumulator ring at APS

    International Nuclear Information System (INIS)

    Wang, Ju; Volk, G.J.

    1991-01-01

    In the design of fast pulsed kicker/burner units for a positron accumulator ring (PAR) at APS, different pulse forming networks (PFN) are considered and different structures for the magnet are studied and simulated. Three fast pulsed kicker/bumper magnets are required in PAR for the beam injection and/or extraction at 450 MeV. These magnets have the same design because they have identical specifications and are expected to produce identical magnetic fields. Each kicker/bumper magnet is required to generate a magnetic field of 0.06 T with rise-time of 80 ns, a flat-top of 80 ns and a fall-time of 80 ns. This paper describes some design considerations and computer simulation results of different designs

  8. New exclusion limits for dark gauge forces from beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); CPPM, Aix-Marseille Univ. (France). CNRS/IN2P3

    2011-04-15

    We re-analyze proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. We determine new mass and coupling exclusion bounds for dark gauge bosons. (orig.)

  9. Development of a longitudinal feedback cavity for the beam feedback system

    International Nuclear Information System (INIS)

    Huang Gang; Chen Huaibi; Huang Wenhui; Tong Dechun; Lin Yuzheng; Zhao Zhentang

    2003-01-01

    Longitudinal beam feedback system is widely used to damp coupling bunch instability. Kicker is one of the key components of the longitudinal feedback system. A prototype cavity of longitudinal feedback kicker is developed according to the parameter of BEPC II. The usage of nose cone in the kicker design increased the shunt impedance. In order to avoid the extra tapper in the storage ring, the racetrack shape beam pipe is applied in the kicker. The impedance and the bandwidth of the kicker is measured by the coaxial line impedance measurement platform and the result achieved the design goals

  10. Test of very fast kicker for TESLA damping ring

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1997-04-01

    We describe a very fast kicker with unique combination of high repetition rate and short pulse width. Constructionally, the device is a symmetrical counter traveling wave stripline kicker fed by semiconductor high-voltage pulse generator. Experimentally tested kicker has a full pulse width of about 7 ns, 1.4 MHz repetition rate and maximum kick strength of the order of 3 G·m. Recent achievements in high-voltage semiconductor field-effect transistors (FET) technology and goal-specific optimization of the kicker parameters allow many-fold increase of the strength, and the kicker can be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications. 4 refs., 3 figs

  11. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  12. Pulsed modulator power supply for the g-2 muon storage ring injection kicker

    NARCIS (Netherlands)

    Mi, J.; Lee, Y. Y.; Morse, W. M.; Pai, C. I.; Pappas, G. C.; Sanders, R.; Semertzidis, Y. K.; Warburton, D.; Zapasek, R.; Jungmann, K.; Roberts, L.

    1999-01-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage

  13. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    International Nuclear Information System (INIS)

    Parro Albeniz, M.

    2015-01-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  14. The LEB to MEB transfer kicker system prototype

    International Nuclear Information System (INIS)

    Pappas, C.; Wilson, M.; Anderson, D.

    1994-01-01

    The design requirements for the Low Energy Booster (LEB) extraction kicker system at the Superconducting Super Collider Laboratory (SSCL) were to deflect a 12 GeV/c beam through an angle of 1.5 mrad. The circumference of the LEB was 540 M. This resulted in a 0.06 T-m integrated field, of 1.8 μs width with a 1% to 99% rise time of less than 80 ns and allowable pulse ripple of less than ±1%. The repetition frequency was 10 Hz and the allowable timing jitter was 2 ns. The field was required to be uniform over a 2x4 cm area to ±2.5%. The requirements for the Medium Energy Booster (MEB) injection kicker were similar except that a 99% to 1% pulse fall time of less than 2 μs was needed. Prototypes of the pulsed power system and magnet to meet these requirements were built and tested at the SSCL. This paper describes the results of that testing

  15. Design of a beam dump for the IFMIF-EVEDA accelerator

    International Nuclear Information System (INIS)

    Branas, B.; Iglesias, D.; Arranz, F.; Barrera, G.; Casal, N.; Garcia, M.; Gomez, J.; Lopez, D.; Martinez, J.I.; Martin-Fuertes, F.; Ogando, F.; Oliver, C.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2009-01-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.13 MW. The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. In this paper, the mechanical analysis and radioprotection calculations that have led to the choice of the main beam dump parameters will be described. The present design is based on a conical beam stop (2.5 m length, 30 cm diameter, and 3.5 mm thickness) made of copper plus a cylindrical 0.5 m long beam scraper. The cooling system is based on an axial high velocity flow of water. This design is compliant with the mechanical design rules during full power stationary operation of the accelerator. The radioprotection calculations performed demonstrate that, with an adequate local shielding, doses during beam on/off phases are below the limits.

  16. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  17. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  18. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  19. Preliminary design of the new Proton Synchrotron Internal Dump core

    CERN Document Server

    AUTHOR|(CDS)2091975; Nuiry, François-Xavier

    The luminosity of the LHC particle accelerator at CERN is planned to be upgraded in the first half of 2020s, requiring also the upgrade of its injector accelerators, including the Proton Synchrotron (PS). The PS Internal Dumps are beam dumps located in the PS accelerator ring. They are safety devices designed to stop the circulating proton beam in order to protect the accelerator from damage due to an uncontrolled beam loss. The PS Internal Dumps need to be upgraded to be able to withstand the future higher intensity and energy proton beams. The dump core is a block of material interacting with the beam. It is located in ultra-high vacuum and moved into the beam path in 150 milliseconds by an electromagnet and spring-based actuation mechanism. The circulating proton beam is shaved by the core surface during thousands of beam revolutions. The preliminary new dump core design weighs 13 kilograms and consists of an isostatically pressed fine-grain graphite and a precipitation hardened copper alloy CuCrZr. The ...

  20. Design and test of the RHIC CMD10 abort kicker

    International Nuclear Information System (INIS)

    Hahn, H.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Mi, J.; Meng, W.; Montag, C.; Pai, C.; Sandberg, J.; Tsoupas, N.; Tuozzolo, J. E.; Zhang, W.

    2015-01-01

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  1. Activation of the IFMIF prototype accelerator and beam dump by deuterons and protons

    Czech Academy of Sciences Publication Activity Database

    Simakov, S. P.; Bém, Pavel; Burjan, Václav; Fischer, U.; Forrest, R.A.; Götz, Miloslav; Honusek, Milan; Klein, H.; Kroha, Václav; Novák, Jan; Sauer, A.; Šimečková, Eva; Tiede, R.

    2008-01-01

    Roč. 83, 10-12 (2008), s. 1543-1547 ISSN 0920-3796 R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z10480505 Keywords : IFMIF * Protons and deuterons accelerator * Beam dump Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.828, year: 2008

  2. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  3. Impedance of a slotted-pipe kicker

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics

    1996-08-01

    This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)

  4. Magnetic Waveform Measurements of the PS Injection Kicker KFA45 and Future Emittance Growth Estimates

    CERN Document Server

    Forte, Vincenzo; Ferrero Colomo, Alvaro; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises the beam-based measurement of the magnetic waveform of the PS injection kicker KFA45 [2], from data collected during several Machine Development (MD) sessions in 2016 and 2017. In the first part of the document, the measurement methodology is introduced and the results presented and compared with the specification required for a clean transfer of the bunches coming from the PSB after the upgrade. These measurements represent, to date, the only way to reconstruct the magnetic waveform. In the second part, kicker magnetic waveform PSpice®[3] simulations are compared and tuned to the measurements. Finally the simulated (validated through measurements) waveforms are used to estimate the future expected emittance growth for the different PS injection schemes, both for (LIU target) LHC and fixed target beams.

  5. Measurement report on the LHC injection kicker ripple denition and maximum pulse length (MD 1268)

    CERN Document Server

    Bartmann, Wolfgang; Kotzian, Gerd; Stoel, Linda; Velotti, Francesco Maria; Vlachodimitropoulos, Vasileios; Wiesner, Christoph; CERN. Geneva. ATS Department

    2016-01-01

    The present LHC lling scheme uses a batch spacing which corresponds to the design report specication of the injection kicker rise time. A reduction of the batch spacing can be directly used to increase luminosity without detrimental eect on beam stability. Therefore, measurements were performed to understand if a tighter batch spacing would lead to increased injection oscillations of a the rst and last bunches of a bunch train and eventually also a growth of the transverse emittance. The results of theses measurement were used to dene the minimum possible batch spacing for an acceptable emittance growth. Another measurement was performed to test if a batch consisting of 320 bunches can be injected instead of the nominal 288 bunch trains. This bunch train is dierently produced in the LHC injectors and features an optimum between beam stability and luminosity gain. The pulse length of the injection kicker was measured to ensure the full batch can be injected at once.

  6. Uncoupled thermoelasticity solutions applied on beam dumps

    Directory of Open Access Journals (Sweden)

    A. Ouzia

    2016-06-01

    Full Text Available In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the

  7. LS1 Report: alive and kicking!

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following eleven months of meticulous maintenance and consolidation works, the LHC's extraction kicker magnets (MKDs) and its pulse generators are back in the accelerator for a new phase of tests. Used to dump the beam, these kicker magnets are essential for the safety of the machine.   Pulse generators for the extraction kicker magnets at Point 6. The high voltage cables leading to the magnets can be seen in red. The LHC's kicker magnets are something rather special. Unlike most of the accelerator's extraction magnets, they only operate for a short period of time and focus on providing a quick "kick" to deflect the beam. If fact, they are permanently under voltage to be ready to go, and have only 3 microseconds in order to establish their kicking pulse! This means they have to be very powerful - with the help of their own high-powered pulse generators - and extremely well in synch - with the help of control and electronic specialists. "Du...

  8. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    International Nuclear Information System (INIS)

    Cook, E G; Hickman, B C; Lee, B S; Hawkins, S A; Gower, E J; Allen, F V; Walstrom, P L

    2002-01-01

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50(Omega) load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy is switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described

  9. Literature search on Kickers and Septa for the Amsterdam Pulse Stretcher

    International Nuclear Information System (INIS)

    Kuijt, J.; Linden, A. v.d.

    1988-01-01

    Literature search has yielded a qualitative and quantitative view on kickers. Quantitatively specifications on designs in literature have been collected. The UPDATE-kickers have been given the following specs: deflection angle 2 mrad, pulsewidth 2 μs, falltime 70 ns, available length about 2 m. Undertaken is a comparison of characteristic parameters: kick strength (energy x angle), pulse characteristics (pulsewidth/falltime) and required peak power. Realisation of the pulse characteristics will impose the greatest requirements on the UPDATE-kicker design. The comparison has shown correspondence with two ferrite kicker designs (CERN-CPS and ELSA), the Los Alamos TEM-kicker and the electrostatic kicker from Saskatoon. On account of the relative simplicity of construction and pulse forming network the Saskatoon kicker has been chosen as the starting point for a design study. Design calculations will proceed from a length of 1.6 m and a gap of 4 cm between two parallel plates at a potential difference of 50 kV. Literature search on septa resulted in an overview on septum magnets and electrostatic wire septa. 72 refs.; 14 figs.; 2 tabs

  10. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  11. The Performance of the New TCDQ System in the LHC Beam Dumping Region

    CERN Document Server

    Presland, Andrew; Weterings, Wim

    2005-01-01

    The superconducting quadrupole magnet Q4 and other downstream LHC machine elements risk destruction in the event of a beam dump that is not synchronised with the abort gap. In order to protect these elements, a single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and iron shield TCDQM, will be installed in front of Q4. This protection system should also intercept spurious particles in the beam abort gap to prevent quenches from occurring during regular beam aborts, and must also intercept the particles from the secondary halo during low beam lifetime without provoking quenches. The conceptual design of the TCDQ system is briefly presented, with the load conditions and performance criteria. The FLUKA simulations are described results discussed in the context of the expected performance levels for LHC operation.

  12. LHC Asynchronous Beam Dump: Study of new TCDQ model and effects on downstream magnets

    CERN Document Server

    Versaci, R; Vlachoudis, V

    2012-01-01

    An asynchronous beam dump is one of the most critical accidents the LHC could face. In the effort to have a better protection of the machine, and to increase the robustness of the protection device itself, new models for the TCDQ (Target Collimator Dump Quadrupole) have been proposed and are under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition on one of the proposed models and on the downstream quadrupoles, MQY.4R6 and MQY.5R6, in order to evaluate the protection provided by the proposed model. The results of our study are compared to a similar one for a different proposed model and are input for the evaluation of the heat load on the proposed collimator.

  13. The Low-Level Control System for the CERN PS Multi-Turn Extraction Kickers

    CERN Document Server

    Schipper, J; Boucly, C; Carlier, E; Fowler, T; Gaudillet, H; Noulibos, R; Sermeus, L

    2010-01-01

    To reduce the beam losses when preparing high intensity proton beam for the CERN Neutrino to Gran Sasso (CNGS) facility, a new Multi-Turn extraction (MTE) scheme has been implemented in the PS, to replace the present Continuous Transfer (CT) to the SPS. Industrial off-the-shelf components have been used for the low-level part of the MTE kicker control system. National Instruments PXI systems are used to control the high voltage pulse generators and a SIEMENS programmable logic controller (PLC) handles the centralised oil cooling and gas insulation sub-systems

  14. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  15. Very fast kicker for accelerator applications

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G·m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications

  16. Accelerator Technology: Injection and Extraction Related Hardware: Kickers and Septa

    CERN Document Server

    Barnes, M J; Mertens, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.7 Injection and Extraction Related Hardware: Kickers and Septa' of the Chapter '8 Accelerator Technology' with the content: 8.7 Injection and Extraction Related Hardware: Kickers and Septa 8.7.1 Fast Pulsed Systems (Kickers) 8.7.2 Electrostatic and Magnetic Septa

  17. New limits on hidden photons from past electron beam dumps

    International Nuclear Information System (INIS)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-01

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  18. New limits on hidden photons from past electron beam dumps

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah; Niebuhr, Carsten; Ringwald, Andreas

    2012-09-15

    Hidden sectors with light extra U(1) gauge bosons, so called hidden photons, have recently attracted some attention because they are a common feature of physics beyond the Standard Model like string theory and SUSY and additionally are phenomenologically of great interest regarding recent astrophysical observations. The hidden photon is already constrained by various laboratory experiments and presently searched for in running as well as upcoming experiments. We summarize the current status of limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay that have so far not been considered. All our limits take into account the experimental acceptances obtained from Monte Carlo simulations.

  19. Hidden photons in beam dump experiments and in connection with dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-12-15

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  20. Hidden photons in beam dump experiments and in connection with dark matter

    International Nuclear Information System (INIS)

    Andreas, Sarah

    2012-12-01

    Hidden sectors with light extra U(1) gauge bosons, so-called hidden photons, recently received much interest as natural feature of beyond standard model scenarios like string theory and SUSY and because of their possible connection to dark matter. This paper presents limits on hidden photons from past electron beam dump experiments including two new limits from experiments at KEK and Orsay. Additionally, various hidden sector models containing both a hidden photon and a dark matter candidate are discussed with respect to their viability and potential signatures in direct detection.

  1. Evaluation of the Energy Deposition in the event of an Asynchronous Beam Dump for a 7 TeV beam on the new TCDQ model proposed for the LHC

    CERN Document Server

    Versaci, R; CERN. Geneva. ATS Department

    2012-01-01

    An asynchronous beam dump is one of the most critical accident the LHC could face. In the effort to have a better protection of the machine, a new model for the TCDQ (Target Collimator Dump Quadrupole) has been proposed and is under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition. The results of our simulations are also input for the evaluation of the heat load on the collimator.

  2. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  3. Design of an 18 MW vortex flow water beam dump for 500 GeV electrons/positrons of an international linear collider

    International Nuclear Information System (INIS)

    Satyamurthy, Polepalle; Rai, Pravin; Tiwari, Vikas; Kulkarni, Kiran; Amann, John; Arnold, Raymond G.; Walz, Dieter; Seryi, Andrei; Davenne, Tristan; Caretta, Ottone; Densham, Chris; Appleby, Robert B.

    2012-01-01

    Beam dumps are essential components of any accelerator system. They are usually located at the end of the beam delivery systems and are designed to safely absorb and dissipate the particle energy. In the second stage of the proposed International Linear Collider (ILC), the electron and positron beams are accelerated to 500 GeV each (1 TeV total). Each bunch will have 2×10 10 electrons/positrons, and 2820 bunches form one beam bunch train with time duration of 0.95 ms and 4 Hz frequency. The average beam power will be 18 MW with a peak power of 4.5 GW. The FLUKA code was used to determine the power deposited by the beam at all critical locations. This data forms the input into the thermal hydraulic analysis CFD code for detailed flow and thermal evaluation. Both 2D and 3D flow analyses were carried out at all the critical regions to arrive at optimum geometry and flow parameters of the beam dump. The generation and propagation of pressure waves due to rapid deposition of heat has also been analyzed.

  4. Single-bunch kicker pulser

    International Nuclear Information System (INIS)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 μHy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode

  5. Single-bunch kicker pulser

    Energy Technology Data Exchange (ETDEWEB)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  6. MD#2183: Calibration of the IR6 B2 diamond BLMs

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip

    2018-01-01

    In case of an asynchronous beam dump with a fully filled LHC machine, causing ~40 bunches to impact on the movable dump protection absorber (TCDQ), it is expected that all standard ionisation chamber Beam Loss Monitors (IC BLM) around the LHC dumping region in IR6 will be saturated. Diamond Beam Loss Monitors (dBLM) were therefore installed next to the TCDQ downstream of the extraction kickers. These detectors allow resolving losses at a nanosecond timescale and with a dynamic range of several orders of magnitude; thus, allowing to derive the number of nominal bunches impacting the TCDQ. After a first series of calibrations using asynchronous beam dump tests, an experiment was conducted during MD#1182 to demonstrate the possibility of resolving a nominal bunch hitting the TCDQ. During this first MD only the Beam 1 dBLM was calibrated appropriately, a second calibration MD was therefore performed in 2017 for the B2 system. Results from this MD and conclusions regarding dBLM saturation with a top energy nominal...

  7. Beam-beam effects under the influence of external noise

    International Nuclear Information System (INIS)

    Ohmi, K

    2014-01-01

    Fast external noise, which gives fluctuation into the beam orbit, is discussed in connection with beam-beam effects. Phase noise from crab cavities and detection devices (position monitor) and kicker noise from the bunch by bunch feedback system are the sources. Beam-beam collisions with fast orbit fluctuations with turn by turn or multi-turn correlations, cause emittance growth and luminosity degradation. We discuss the tolerance of the noise amplitude for LHC and HL-LHC

  8. Some calculations for the RHIC kicker

    International Nuclear Information System (INIS)

    Claus, J.

    1996-12-01

    This paper starts with a brief discussion of the design of the RHIC injection kicker magnets which calls for longitudinal and capacitive sections of the same order as the aperture, not much larger nor much smaller. This makes accurate analytical prediction of their behavior very difficult. In order to gain at least some qualitative insight of that behavior, the author preformed calculations which are based on the actual dimensions of the kickers but which neglect the end effects of the individual sections. The effects of the sectionalization are therefore exaggerated relative to reality in the results

  9. Design of barrier bucket kicker control system

    Science.gov (United States)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  10. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning, in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. View down the centre of a pickup or kicker. See also 7906189, 7906190, 7906583.

  11. Injection quality measurements with diamond based particle detectors

    CERN Document Server

    Stein, Oliver; CERN. Geneva. ATS Department

    2016-01-01

    During the re-commissioning phase of the LHC after the long shutdown 1 very high beam losses were observed at the TDI during beam injection. The losses reached up to 90% of the dump threshold. To decrease the through beam losses induced stress on the accelerator components these loss levels need to be reduced. Measurements with diamond based particle detectors (dBLMs), which have nano-second time resolution, revealed that the majority of these losses come from recaptured SPS beam surrounding the nominal bunch train. In this MD the injection loss patterns and loss intensities were investigated in greater detail. Performed calibration shots on the TDI (internal beam absorber for injection) gave a conversion factor from impacting particles intensities to signal in the dBLMs (0.1Vs/109 protons). Using the SPS tune kicker for cleaning the recaptured beam in the SPS and changing the LHC injection kicker settings resulted in a reduction of the injection losses. For 144 bunch injections the loss levels were decreased...

  12. Control of the MKQA tuning and aperture kickers of the LHC

    CERN Document Server

    Barlow, R A; Pianfetti, J P; Senaj, V; Cattin, M; CERN. Geneva. TE Department

    2009-01-01

    The large hadron collider (LHC) at CERN has been equipped with four fast pulsed kicker magnets in RA43 situated at point 4 which are part of the measurement system for the tune and the dynamic aperture of the LHC beam (Beam 1 and Beam 2). For the tune measurement 'Q', the magnets will excite oscillations in part of the beam. This is achieved by means of a generator producing a 5 µs base half-sine pulse of 1.2 kA [1] amplitude, superimposed with a 3rd harmonic to produce a 2 µs flat top. A kick repetition rate of 2 Hz will be possible. To measure the dynamic aperture 'A' of the LHC at different beam energies, the same magnets will also be driven by a more powerful generator which produces a 43 µs base half-sine current pulse of 3.8 kA. For the 'A' mode a thyristor is used as switching element inside the generator. A final third mode named 'AC dipole' will rely on the beam being excited coherently at a frequency close but outside its Eigen-frequencies by an oscillating dipole field. The beam is expected to o...

  13. MD#1182: Calibration of diamond particle detectors in IP6

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Wiesner, Christoph

    2017-01-01

    In case of an asynchronous beam dump with a fully filled LHC machine it is expected that all standard ionisation chamber Beam Loss Monitors (IC BLM) around the LHC dumping region in IP6 will be saturated. Diamond Beam Loss Monitors (dBLM) were therefore installed next to the movable dump protection absorber (TCDQ) downstream of the extraction kickers. These detectors allow resolving losses at a nanosecond timescale and with an dynamic range of several orders of magnitude; thus, allowing to know the number of nominal bunches impacting the TCDQ. After a first series of calibrations using asynchronous beam dump tests, an experiment was conducted during MD#1182 to demonstrate the possibility of resolving a nominal bunch hitting the TCDQ. The impact parameter of the bunches on the TCDQ was first scanned using probe bunches with lower intensity then tests were done with nominal bunches (1.1e11 p/bunch) at injection energy. High energy calibration of the losses was also attempted unsuccessfully. Due to different beh...

  14. SPS injection kicker magnet

    CERN Document Server

    1975-01-01

    One of the first-generation SPS injection kicker magnets. Lifting the tank-lid reveals the inner structure. For a more detailed description see 7502072X. See also 7502074X and Annual Report 1975, p.162. To the left: Roland Tröhler; to the right: Giacomo Busetta.

  15. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  16. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  17. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  18. Accelerator physics studies on the effects from an asynchronous beam dump onto the LHC experimental region collimators

    CERN Document Server

    Lari, L; Boccone, V; Bruce, R; Cerutti, F; Rossi, A; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A

    2012-01-01

    Asynchronous beam aborts at the LHC are estimated to occur on average once per year. Accelerator physics studies of asynchronous dumps have been performed at different beam energies and beta-stars. The loss patterns are analyzed in order to identify the losses in particular on the Phase 1 Tertiary Collimators (TCT), since their tungsten-based active jaw insert has a lower damage threshold than the carbon-based other LHC collimators. Settings of the tilt angle of the TCTs are discussed with the aim of reducing the thermal loads on the TCT themselves.

  19. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)

    2016-10-01

    square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half

  20. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  1. Search for tau-neutrino interactions in the BEBC beam dump experiment

    Science.gov (United States)

    Talebzadeh, M.; Guy, J.; Venus, W.; Aderholz, M.; Barnham, K. W. J.; Bostock, P.; Clayton, E. F.; Cooper-Sarkar, A. M.; Faccini-Turluer, M. L.; Grässler, H.; Hultquist, K.; Hulth, P. O.; Kreutzmann, H.; Krstic, J.; Miller, D. B.; Mobayyen, M. M.; Myatt, G.; Nellen, B.; Parker, M. A.; Schmitz, N.; Sewell, S.; Simopoulou, E.; Vayaki, A.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; BEBC WA66 Collaboration

    A novel and efficient kinematic method is used to estimate the number of ντ charged current interactions with Eν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ντ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P( νe→ ντ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that νe and ντ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high pT photon and a high pT hadron.

  2. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-06-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beams of approx.1.8 μs. The current waveform is required to rise to 90% of I/sub max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I/sub max/ for the 21 μs needed to ensure all the beam has left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of approx.20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention is given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades are given for the two operational systems. 2 refs., 4 figs., 1 tab

  3. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. The characteristics of this current waveform are defined by the requirements of the machine operation. The standard fixed target running mode calls for 12 booster batches of beam which leaves a rotating gap in the beam of about1.8 μs. The current waveform is required to rise to 90% of I /SUB max/ in this time to avoid beam loss from partially deflected beam. Aperture limitations in both the accelerator and the abort channel demand that the current in the magnets stays above this 90% I for the 21 μs needed to ensure all the beam has /SUP max/ left the machine. The 25 mm displacement needed to cleanly enter the abort channel at 1 TeV corresponds to a maximum current in each of the 4 modules of about20 kA. Similar constraints are needed for the Main Ring and Tevatron antiproton abort systems. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  4. AA, stochastic precooling kicker

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling", while a shutter shielded the deeply cooled antiproton stack from the violent action of the precooling kicker. In this picture, the injection orbit is to the left, the stack orbit to the far right, the separating shutter is in open position. After several seconds of precooling (in momentum and in the vertical plane), the shutter was opened briefly, so that by means of RF the precooled antiprotons could be transferred to the stack tail, where they were subjected to further cooling in momentum and both transverse planes, until they ended up, deeply cooled, in the stack core. The fast shutter, which had to open and close in a fraction of a second was an essential item of the cooling scheme and a mechanical masterpiece. Here the shutter is in the open position. The precooling pickups were of the same design, with the difference that the kickers had cooling circuits and the pickups not. 8401150 shows a precooling pickup with the shutte...

  5. \\title{MARS15 Simulation Studies in the CMS Detector of Some LHC Beam Accident Scenarios}

    CERN Document Server

    Bhat, Pushpalatha C; Striganov, S.I; Singh, Amandeep

    2009-01-01

    \\begin{abstract} The CMS tracker, made of silicon strips and pixels and silicon-based electronics, is vulnerable to effects of radiation exposure during the LHC operation. Of much concern is the potential for damage from a high instantaneous dose to the pixel detectors and electronics located only a few centimeters from the beam in the event of a fast accidental beam loss. One of the worst case scenarios for such a beam loss is an unintended firing of an abort kicker module, referred to as the kicker pre-fire. MARS15 simulation studies of radiation loads in CMS for the kicker pre-fire scenario are described in this paper. It is found that, in a kicker pre-fire accident, in a time span of about 100 ns, the innermost pixel layer may see a radiation dose of about 0.02 Gy \\-- equivalent to a fluence of $\\sim 6\\times 10^{7}$ MIPs/$cm^2$. No discernible damage to the pixel detectors or the electronics were seen at these levels of fluence in recent beam tests. We note that the dose is about 1000 times smaller t...

  6. The Impedance of Multi-layer Vacuum Chambers

    CERN Document Server

    Vos, L

    2003-01-01

    Many components of the LHC vacuum chamber have multi-layered walls : the copper coated cold beam screen, the titanium coated ceramic chamber of the dump kickers, the ceramic chamber of the injection kickers coated with copper stripes, only to name a few. Theories and computer programs are available for some time already to evaluate the impedance of these elements. Nevertheless, the algorithm developed in this paper is more convenient in its application and has been used extensively in the design phase of multi-layer LHC vacuum chamber elements. It is based on classical transmission line theory. Closed expressions are derived for simple layer configurations, while beam pipes involving many layers demand a chain calculation. The algorithm has been tested with a number of published examples and was verified with experimental data as well.

  7. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  8. Search for tau-neutrino interactions in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Talebzadeh, M.; Barnham, K.W.J.; Clayton, E.F.; Miller, D.B.; Mobayyen, M.M.; Guy, J.; Venus, W.; Cooper-Sarkar, A.M.; Sewell, S.; Bostock, P.; Krstic, J.; Myatt, G.; Simopoulou, E.; Vayaki, A.

    1987-01-01

    A novel and efficient kinematic method is used to estimate the number of ν τ charged current interactions with E ν > 20 GeV in the BEBC beam dump experiment. The result, -14±12 ν τ events, is consistent with zero. The ratio of D s to D meson production in 400 GeV proton interactions in copper is estimated to be below 0.65 at 90% c.l. The oscillation probability P(ν c → ν τ ) averaged over the electron-(anti)neutrino spectrum is found to be below 18%. The hypothesis that ν c and ν τ are identical is excluded by about 6 standard deviations. A remarkable event is described: it contains a muon, a high p T photon and a high p T hadron. (orig.)

  9. Search for heavy neutrino decays in the BEBC beam dump experiment

    Science.gov (United States)

    Cooper-Sarkar, A. M.; Haywood, S. J.; Parker, M. A.; Sarkar, S.; Barnham, K. W. J.; Bostock, P.; Faccini-Turluer, M. L.; Grässler, H.; Guy, J.; Hulth, P. O.; Hultqvist, K.; Idschok, U.; Klein, H.; Kreutzmann, H.; Krstic, J.; Mobayyen, M. M.; Morrison, D. R. O.; Nellen, B.; Talebzadeh, M.; Venus, W.; Vignaud, D.; Wachsmuth, H.; Wittek, W.; Wünsch, B.; WA66 Collaboration

    1985-10-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits | Uøi| 2, | Ue i| 2 < 10 -6-10 -7 are obtained for neutrino mass eigenstates vi of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on | Uøi| 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate v3 in particular, we obtain the limits | Uø3 | 2 < 10 -7-10 -8, | Ue3 | 2 < 10 -9-10 -10 for the mass range 150-190 MeV, assuming the v3 to be produced directly in charmed F meson decays.

  10. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    Transversal coherent beam oscillations can occur in synchrotrons directly after injection due to errors in position and angle, which stem from inaccurate injection kicker reactions. Furthermore, the demand for higher beam intensities is always increasing in particle accelerators. The wake fields generated by the traveling particles will be increased by increasing the beam intensity. This leads to a stronger interaction between the beam and the different accelerator components, which increases the potential of coherent instabilities. Thus, undesired beam oscillations will occur when the natural damping is not enough to attenuate the oscillations generated by the coherent beam-accelerator interactions. The instabilities and oscillations can be either in transversal or longitudinal direction. In this work we are concerned with transversal beam oscillations only. In normal operation, transversal beam oscillations are undesired since they lead to beam quality deterioration and emittance blow up caused by the decoherence of the oscillating beam. This decoherence is caused by the tune spread of the beam particles. The emittance blow up reduces the luminosity of the beam, and thus the collision quality. Therefore, beam oscillations must be suppressed in order to maintain high beam quality during acceleration. A powerful way to mitigate coherent instabilities is to employ a feedback system. A Transversal Feedback System (TFS) senses instabilities of the beam by means of Pickups (PUs), and acts back on the beam through actuators, called kickers. In this thesis, a novel concept to use multiple PUs for estimating the beam displacement at the position with 90 phase advance before the kicker is proposed. The estimated values should be the driving feedback signal. The signals from the different PUs are delayed such that they correspond to the same bunch. Subsequently, a weighted sum of the delayed signals is suggested as an estimator of the feedback correction signal. The

  11. SHiP: a new multipurpose beam-dump experiment at the SPS.

    CERN Document Server

    AUTHOR|(SzGeCERN)387671

    2016-01-01

    SHiP is an experiment to look for very weakly interacting particles at a new to be constructed beam-dum p facility at the CERN SPS. The SHiP Technical Proposal has been submitted to the CERN SPS Committee in April 2015. The 400 GeV/c proton beam extracted from the SPS will be dumped on a heavy target with the aim of integ rating $2\\times 10^{20}$ proton on target in five years. A detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c$^2$. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutral Leptons (HNL). The sensitivity to HNL will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained...

  12. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  13. Studies on beam extraction from the 1 GeV proton accumulator ring

    International Nuclear Information System (INIS)

    Goyal, Pradeep Kumar; Sharma, Amalendu; Kumar, Vinit; Ghodke, A.D.

    2015-01-01

    For the proposed Indian Spallation Neutron Source (ISNS), a 1 GeV proton Accumulator Ring (AR) is presently being designed at RRCAT. Two optics configurations of AR, namely FODO and Hybrid lattices are under consideration. Each lattice configuration has four superperiods. In this paper, preliminary studies on beam extraction from AR are presented for both the optics configurations. The extraction system will be accommodated in one of the long dispersion free straight sections. Bunch length of the proton beam in AR is 700 ns, and the revolution time of the bunch in AR is 1 ms. This leaves a gap of ∼300 ns for bunch extraction. The proton bunch will be extracted to Ring to Target Beam Transport (RTBT) line, with the help of fast kicker and septum magnets. In this paper, we present the details of the beam extraction scheme with suitable number of kicker magnets, and find out their optimal location and strength. Estimation of field error tolerances for kicker magnets is also presented. (author)

  14. Effect of saturating ferrite on the field in a prototype kicker magnet

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1994-06-01

    The field rise for kicker magnets is often specified between 1% and 99% of full strength. Three-gap thyratrons are frequently used as switches for kicker magnet systems. These thyratrons turn on in three stages: the collapse of voltage across one gap causes a displacement current to flow in the parasitic capacitance of off-state gap(s). The displacement current flows in the external circuit and can thus increase the effective rise-time of the field in the kicker magnet. One promising method of decreasing the effect of the displacement current involves the use of saturating ferrites. Another method for achieving the specified rise-time and 'flatness' for the kick strength is to utilize speed-up networks in the electrical circuit. Measurements have been carried out on a prototype kicker magnet with a speed-up network and various geometries of saturating ferrite. Measurements and PSpice calculations are presented. (author)

  15. Interaction region

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Interaction Region Group addressed the basic questions of how to collide the SLC beams, how to maximize and monitor the luminosity, and how to minimize the detector backgrounds at the interaction region. In practice, five subgroups evolved to study these questions. The final focus group provided three alternative designs to acheive the 1 to 2 micron beam spot size required by the SLC, as well as studying other problems including: eta, eta' matching from the collider arcs, the implementation of soft bends near the interaction region, beam emittance growth, and magnet tolerances in the final focus. The beam position monitor group proposed two devices, a strip line monitor, and a beamstrahlung monitor, to bring the beams into collision. The luminosity monitor group reviewed the possible QED processes that would be insensitive to weak interaction (Z 0 ) effects. The beam dumping group proposed locations for kicker and septum magnets in the final focus that would achieve a high dumping efficiency and would meet the desired beam tolerances at the Moller scattering target in the beam dump line. Working with the Polarization Group, the Moller experiment was designed into the beam dump beam line. A beam dump was proposed that would maintain radiation backgrounds (penetrating muons) at acceptible levels. The detector backgrounds group proposed soft-bend and masking configurations to shield the detector from synchrotron radiation from the hard/soft bends and from the final focus quadrupoles and evaluated the effectiveness of these designs for the three final focus optics designs. Backgrounds were also estimated from: large angle synchrotron radiation, local and distant beam-gas interactions, 2-photon interactions, and from neutrons and backscattered photons from the beamstrahlung dump

  16. Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.

    2018-02-01

    The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.

  17. Results of a beam dump experiment at the CERN SPS neutrino facility

    Directory of Open Access Journals (Sweden)

    T. Hansl

    1978-03-01

    Full Text Available We report results from a beam dump experiment that has been performed at the CERN SPS neutrino facility using the CDHS neutrino counter detector. Limits on dimuon and trimuon production by new penetrating neutral particles are given. A new source of prompt electron and muon neutrinos has been observed giving (1.2±0.4× 10−7 νe or νμ per incident proton with neutrino angle smaller than 1.85 mrad and Eν > 20 GeV. If these prompt neutrinos are attributed to charmed meson pair production, the inclusive DD production cross section could be of the order of 30 ωb. If axions are existing their production rate relative to π0 mesons is found to be less than 0.5 × 10−8.

  18. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  19. Construction and 60 kV tests of the prototype pulser for the LHC injection kicker system

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Schröder, G; Vossenberg, Eugène B

    1999-01-01

    The European Laboratory for Particle Physics (CERN) is constructing the Large Hadron Collider (LHC). Two counter-rotating proton beams will be injected into the LHC at an energy of 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and 6.6 mu s flat top duration with a ripple of less than +or-0.5Both injection systems are composed of 4 travelling wave kicker magnets of 2.17 m length each, powered by pulse forming networks (PFNs). To achieve the high-required kick strength of 1.2 Tm, for a compact and cost efficient design, a characteristic impedance of 5 Ohms has been chosen. The design strategy for the magnets and generators has been defined after detailed analysis of existing systems. The electrical circuit has been optimised using the circuit analysis software PSpice. Most known parasitics have been modelled. A prototype PFN has been constructed at CERN and successfully tested at 60 kV. A calibration procedure has been developed and utilised for obtainin...

  20. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  1. Search for Light Dark Matter Produced in a Proton Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Remington Tyler [Indiana Univ., Bloomington, IN (United States)

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  2. Search for heavy neutrino decays in the BEBC beam dump experiment

    International Nuclear Information System (INIS)

    Cooper-Sarkar, A.M.; Haywood, S.J.; Parker, M.A.; Sarkar, S.; Klein, H.; Morrison, D.R.O.; Wachsmuth, H.; Barnham, K.W.J.; Mobayyen, M.M.; Talebzadeh, M.; Bostock, P.; Krstic, J.; Graessler, H.

    1985-01-01

    New limits on lepton mixing parameters are derived from a search for decays of heavy neutrinos in a proton beam dump experiment. The limits vertical strokeUsub(μi)vertical stroke 2 , vertical strokeUsub(ei)vertical stroke 2 -6 -10 -7 are obtained for neutrino mass eigenstates νsub(i) of mass between 0.5 and 1.75 GeV, which can be produced through mixing in charmed D meson decays. This is the first such limit on vertical strokeUsub(νi)vertical stroke 2 for neutrino masses greater than 0.5 GeV. For the mass eigenstate ν 3 in particular, we obtain the limits vertical strokeUsub(μ3)vertical stroke 2 -7 -10 -8 . vertical strokeUsub(e3)vertical stroke 2 -9 -10 -10 for the mass range 150-190 MeV, assuming the ν 3 to be produced directly in charmed F meson decays. (orig.)

  3. Beam interaction of a pulsed, nonlinear in-vacuum injection magnet

    International Nuclear Information System (INIS)

    Rast, Helge

    2013-01-01

    Theme of this thesis is the study of the interaction of the injection magnet designed for BESSY II with the electron beam. The main topic of this thesis lies in the numerical and measurement-technical study of the loss factor, the wake potential, and the wake impedance of the nonlinear kicker magnet with the aim of an optimization of the magnet design, so that a stable operation of the kicker in the BESSY II storage ring is made possible. A further main topic of this thesis is a study on the matching of the injection scheme with a single kicker to the conditions of the DELTA storage ring, which is operated by the TU Dortmund.

  4. Conceptual Design of the Linac4 Main Dump

    CERN Document Server

    Leitao, I V; Maglioni, C

    2012-01-01

    Linac4 is the new CERN linear accelerator intended to replace the ageing Linac2 as the injector to the Proton Synchrotron Booster (PSB) for increasing the luminosity of the Large Hadron Collider (LHC). By delivering a 160MeV H- beam, Linac4 will provide the necessary conditions to double the brightness and intensity of the beam extracted from the PSB. This paper describes the conceptual design of the Linac4 Main Dump, where two different concepts relying respectively on water and air cooling were compared and evaluated. Based on the application of analytical models for the energy deposited by the beam, heat conduction and cooling concepts, a parametric study was performed. This approach allowed the identification of the “optimal” configuration for these two conceptual geometries and their relative comparison. Besides giving the theoretical guidelines for the design of the new dump, this work also contributes to the development of analytical tools to allow a better understanding of the influence of the se...

  5. Proposal for the award of a contract for the supply of ceramic vacuum chambers for the LHC beam dumping system

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of ceramic vacuum chambers for the LHC beam dumping system. Following a market survey carried out among 22 firms in seven Member States and one firm in the United States, a call for tenders (IT-2765/SL/LHC) was sent on 13 September 2001 to one firm. By the closing date, CERN had received a tender. The Finance Committee is invited to agree to the negotiation of a contract with KYOCERA FINECERAMICS (DE) for the supply of 36 ceramic vacuum chambers for the LHC beam dumping system for a total amount of 681 530 euros (1 013 094 Swiss francs), not subject to revision, with options for six additional vacuum chambers, for an additional amount of 146 768 euros (218 171 Swiss francs), not subject to revision, bringing the total amount to 828 298 euros (1 231 265 Swiss francs), not subject to revision. The rate of exchange which has been used is that applying on the closing date of the call for tenders. The firm has indicated the following distribution by cou...

  6. Magnetic measurements of the steel septum magnet used for extraction: MSDC01

    CERN Document Server

    Cornuet, D; Leclère, P

    2002-01-01

    The proton beams extracted from the LHC are dumped on external absorbers by horizontally deflecting kicker magnets and vertically deflecting steel septum magnets. For this system there are three variants of steel septum magnets MSD A, MSD B and MSD C, which will be produced by the Institute of High Energy Physics (IHEP, Protvino/Russia). This document gives the results of the magnetic measurements at CERN on the first magnet of the series: MSDC01.

  7. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  8. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  9. ABORT GAP CLEANING IN RHIC

    International Nuclear Information System (INIS)

    DREES, A.; AHRENS, L.; III FLILLER, R.; GASSNER, D.; MCINTYRE, G.T.; MICHNOFF, R.; TRBOJEVIC, D.

    2002-01-01

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance

  10. Analysis of ferrite heating of the LHC injection kickers and proposals for future reduction of temperature

    CERN Document Server

    Barnes, M J; Garrel, N; Goddard, B; Mertens, V; Weterings, W

    2012-01-01

    The two LHC injection kicker magnet (MKI) systems must produce a kick of 1.3 T.m with a flat top duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the high intensity LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however screen conductor discharges occurred during pulsing of the magnet; hence an alternative design with fewer screen conductors was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC was operated with high intensity beam, coasting for many hours at a time, resulting in heating of the ferrite yoke of the MKIs. This paper presents an analysis of thermal measurement dat...

  11. Leg mass characteristics of accurate and inaccurate kickers--an Australian football perspective.

    Science.gov (United States)

    Hart, Nicolas H; Nimphius, Sophia; Cochrane, Jodie L; Newton, Robert U

    2013-01-01

    Athletic profiling provides valuable information to sport scientists, assisting in the optimal design of strength and conditioning programmes. Understanding the influence these physical characteristics may have on the generation of kicking accuracy is advantageous. The aim of this study was to profile and compare the lower limb mass characteristics of accurate and inaccurate Australian footballers. Thirty-one players were recruited from the Western Australian Football League to perform ten drop punt kicks over 20 metres to a player target. Players were separated into accurate (n = 15) and inaccurate (n = 16) groups, with leg mass characteristics assessed using whole body dual energy x-ray absorptiometry (DXA) scans. Accurate kickers demonstrated significantly greater relative lean mass (P ≤ 0.004) and significantly lower relative fat mass (P ≤ 0.024) across all segments of the kicking and support limbs, while also exhibiting significantly higher intra-limb lean-to-fat mass ratios for all segments across both limbs (P ≤ 0.009). Inaccurate kickers also produced significantly larger asymmetries between limbs than accurate kickers (P ≤ 0.028), showing considerably lower lean mass in their support leg. These results illustrate a difference in leg mass characteristics between accurate and inaccurate kickers, highlighting the potential influence these may have on technical proficiency of the drop punt.

  12. Kicker for the SLC electron damping ring

    International Nuclear Information System (INIS)

    Bartelson, L.; Crawford, C.; Dinkel, J.; Kerns, Q.; Howell, J.; Snowdon, S.; Walton, J.

    1987-01-01

    The SLC electron damping ring requires two kickers each providing a 5 mr kick at 1.2 GEV to pairs of electron bunches spaced 61.63 nsec apart. The exact shape of the kick is unimportant, but the specification applies to the field the bunches see

  13. Design and R and D for manufacturing the MITICA Neutraliser and Electron Dump

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sartori, Emanuele; Gonzalez, Winder [Università degli Studi di Padova, Padova (Italy); Tiso, Andrea; Trevisan, Lauro; Zaccaria, Pierluigi [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy)

    2013-10-15

    Highlights: ► Analyses and verifications supporting the design of the MITICA Neutraliser and Electron Dump. ► Instrumentation and control systems have been analysed for protection, calorimetry, interlock. ► Assembly procedure, acceptance tests, and RH compatibility have been verified. ► R and D activities for design validation are ongoing to demonstrate the technical feasibility. -- Abstract: One MeV negative particle beam accelerated in the beam source of the ITER Neutral Beam Injectors (NBIs) will be neutralised in the Neutraliser gas cell. Four narrow beam channels are foreseen in the Neutraliser where the neutralisation process will occur with controlled gas pressure being the four channels delimited by five copper wall panels. Stray particles will be dumped on the copper Electron Dump and CuCrZr leading edges to be installed at the Neutraliser frontal section: the Electron Dump will intercept stray electrons in order to reduce the cryo pump thermal load; enhanced heat transfer in subcooled boiling conditions will occur in the panel leading edges with twisted tapes as turbulence promoters. The copper panels will be thermally controlled by means of embedded cooling circuits; thermo-hydraulic and thermo-mechanical analyses and verifications have been carried out considering several load combinations and satisfying the design rules as for ITER structural design criteria for in vessel components. Gas flow analyses have been carried out with molecular flow in the in-vessel vacuum environment to evaluate the gas pressure profile along the beam line also considering the presence of the Electron Dump. Furthermore, transient analyses of the gas flow inside channels have been performed to simulate the effect of last valve closure; analysis results demonstrate that gas flow variations can be detected by thermal measurements. The Neutraliser assembly, installation, and positioning inside the vacuum vessel have been verified considering alignment requirements and

  14. Observation of an excess of νe, νe events in a beam dump experiment at 400 GeV

    Directory of Open Access Journals (Sweden)

    P. Alibran

    1978-03-01

    Full Text Available A beam dump experiment has been performed at CERN in Gargamelle using the neutrino facility to look for penetrating particles produced either directly in the beam interaction or by prompt decay of new particles. A total of 32 interactions with a visible energy greater than 10 GeV has been found, classified, aftercorrections, into 18 charged current νμ or νμ, 5.1 neutral current and 8.9 νe or νe charged current events. An excess of νe events remains after all subtractions from any established sources. Results are presented in terms of the product of the cross section and the leptonic decay branching ratio of the possible source.

  15. Dump and Current Measurement of Unstripped H`ions at the Injection from the CERN LINAC4 Into the PS Booster

    CERN Document Server

    Chamizo, R; Goddard, B; Mereghetti, A; Versaci, R; Weterings, W

    2010-01-01

    Linac4 is the new H- linear accelerator under construction at CERN aiming to double the brightness of the beam injected to the CERN PS Booster (PSB) for delivering proton beams to experiments or further CERN accelerators, down to the LHC. The injection system in the PSB is based on the H- charge exchange where the 160 MeV H- beam is converted into an H+ beam by stripping the electrons with a carbon foil. A beam dump located inside a pulsed magnet for the injection bump will intercept the unstripped ions (H0 and H-) and measure the collected charge to detect the relative efficiency and degradation of the stripping foil. The challenge of the dump design is to meet the requirements of a beam dump providing a current measurement and at the same time minimizing the perturbation of the magnetic field of the surrounding pulsed magnet. This paper describes all phases of the dump design and the main issues related to its integration in the line.

  16. Development of an abort gap monitor for high-energy proton rings

    International Nuclear Information System (INIS)

    Beche, Jean-Francois; Byrd, John; De Santis, Stefano; Denes, Peter; Placidi, Massimo; Turner, William; Zolotorev, Max

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  17. Development of an Abort Gap Monitor for High-Energy Proton Rings

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitor based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider

  18. Proposal for the award of a contract without competitive tendering for the supply of coaxial high-voltage cable for the LHC beam dumping system

    CERN Document Server

    2002-01-01

    This document concerns the award of a contract without competitive tendering for the supply of two types of coaxial high-voltage cable for the LHC beam dumping system. Following a market survey carried out among 14 firms in four Member States, a call for tenders (IT-2969/SL/LHC) was sent on 10 July 2001 to one firm. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with DRAKA MULTIMEDIA CABLE (DE), the only bidder, for the supply of 14 km of coaxial high-voltage cable for the LHC beam dumping system for a total amount of 530 488 euros (779 900 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: DE - 100%.

  19. One of the 10 cells of AA Injection Kicker K4

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The 3.5 GeV/c Antiproton Accumulator (AA) had 2 delay-line type injection kickers, K3 (12 cells) and K4 (10 cells). Here we see one of the K4 cells, with ferrite between stainless-steel plates. Pulse voltage: 61 kV; rise/fall-time 86 ns; flat-top 460 ns; top flatness +-2%. During injection, the open side of the C-shaped kickers was closed off with a fast shutter, so that their stray field would not perturb the stack of already accumulated antiprotons.

  20. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  1. A FET based kicker for a charge booster for the TRIUMF ISAC project

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    2001-07-01

    A charge booster unit is required as part of an upgrade to the ISAC facility at TRIUMF. ISAC is an isotope separator coupled to an accelerator. ISAC is presently capable of accelerating only isotopes with atomic mass up to 30. The charge booster will allow ISAC to accelerate all the masses in the periodic table. A fast kicker system has been built to study the characteristics of an existing charge booster, designed by ISN in Grenoble, to assess the suitability of using this charge booster at TRIUMF. This fast kicker will subsequently be used in the TRIUMF ISAC facility for time of flight separation of the chosen charge and to recycle the higher and lower charges back to the charge booster. This will increase the efficiency from 10% to 60%. The kicker system includes a pair of deflector plates. One plate is charged up to -3.5 kV by a PET based modulator, while the other plate is held at ground potential. The modulator consists of two stacks of FETs operating in push pull with variable output voltage, pulse width, and repetition rate from virtually DC to 52 kHz. The measured high voltage output pulse rise and fall times are 63 ns and the minimum pulse width is 350 ns. The maximum pulse width is dependent upon the repetition rate. The large dynamic range for the repetition rate and pulse width required a novel circuit design and control technique, which also resulted in an energy efficient kicker system. This paper describes the design of the kicker system and shows the results of measurements. (author)

  2. Dumping convention

    International Nuclear Information System (INIS)

    Roche, P.

    1992-01-01

    Sea dumping of radioactive waste has, since 1983, been precluded under a moratorium established by the London Dumping Convention. Pressure from the nuclear industry to allow ocean dumping of nuclear waste is reported in this article. (author)

  3. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  4. The beam-kicker system of the synchrotron Saturne. Magnetic field and particle orbit computations. Experimental results (1963); Le percuteur de faisceau de Saturne. Calcul du champ magnetique et des trajectoires. Verifications experimentales (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Gouttefangeas, M; Katz, A; Rastoix, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    In this report is briefly described the beam-kicker system of the synchrotron Saturne. An analysis of its operation based on the sampling method is given, as well as two methods for computing toe magnetic field produced by a set of endless conductors in the neighbourhood of a conducting shield where eddy currents are circulating. The first method leads to the resolution of a bi-dimensional Laplace equation with first kind boundary conditions (Dirichlet problem); the second one translates to electromagnetism the electrical images method currently used in electrostatics and yields the magnetic field as the sum of a triple series expansion in the general case of a set of conductors located in a parallelepipedal box. Finally are given the results obtained in computing on IBM 7090 the perturbation of the particle motion due to the beam-kicker. These results are compared with the experimental data. (authors) [French] Ce rapport decrit brievement le dispositif percuteur de faisceau mis en place sur le synchrotron Saturne. On y trouvera une analyse de se fonctionnement a partir de la theorie des echantillonnages. On indique egalment deux methodes de calcul du champ magnetique produit par un system de conducteurs indefinis en presence d'un blindage conducteur parcouru par des courants de Foucault: la premiere se ramene a la resolution d'une equation de Laplace a deux dimensions avec des conditions aux limites de premiere espece (probleme de Dirichlet), la seconde transpose en electromagnetisme la methode des images electriques classique en electrostatique et permet d'exprimer le champ magnetique sous la forme de la somme d'une serie triple dans le cas general d'un systeme de conducteurs contenus dans un blindage parallelepipedique. Pour terminer, on mentionne les resultats du calcul numerique de la perturbation de la trajectoire des particules sous l'effet du percuteur et on compare ces resultats aux resultats experimentaux. (auteurs)

  5. Radiation and shielding around beam absorbers

    International Nuclear Information System (INIS)

    Hurkmans, A.; Maas, R.

    1978-12-01

    During operational conditions it is anticipated that a fair amount of the total available beam power is dumped in either the slit system on one of the beam dumps. Thses beam absorbers therefore become strong radioactive sources. The radiation level due to the absorption of a 100 kW electron beam is estimated and the problem of residual activity is treated. Proposed shielding materials are discussed. (C.F.)

  6. Beam systems without failures - What can be done?

    International Nuclear Information System (INIS)

    Solfaroli Camillocci, M.; Uythoven, J.

    2012-01-01

    The beam dumps at 3.5 TeV triggered by interlocks not related to the magnet powering are discussed. This concerns the systems like the RF, the transverse feedbacks, beam instrumentation, beam dumping system, collimators and control systems. An analysis of the reasons of these dumps is presented together with a possible strategy to mitigate the effect of these failures. It is very important to notice that no system has been identified to have any structural problem

  7. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  8. Design of an Inductive Adder for the FCC injection kicker pulse generator

    Science.gov (United States)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  9. One magnet module of the full-aperture kicker

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Nine such modules, in a single vacuum tank, form the complete kicker. Ferrite rings (not visible), in conjunction with the capacitance between the plates, create the electrical equivalent of a transmission line. A fast 40 kV pulse is applied, and field rise times of 70-80 nanoseconds can be obtained.

  10. The new control system of the SPS injection kicker

    CERN Document Server

    Antoine, A; Marchand, A; Verhagen, H

    2002-01-01

    The SPS accelerator will be used as injector for the LHC and has to be adapted to the LHC requirements. The tight specification on beam blow-up and bunch spacing in the SPS has required an upgrade program of the SPS injection kicker in order to obtain a reduction of the magnetic field ripple to less than ± 0.5% and of the magnet current rise time to less than 145 ns. In this context, the slow control part has been entirely rebuilt on the basis of off-the-shelf industrial components. A hierarchical architecture based on a SIEMENS S7-400 master programmable logic controller interconnected through PROFIBUS-DP to S7-300 deported and decentralised I/Os has been implemented. Integration of in-house specific G-64 hardware systems inside this industrial environment has been done through a PROFIBUS-DP to G-64 intelligent interface based on an OEM fieldbus mezzanine board on one side and an FPGA implementing the required functionality on the other. Simultaneously, the fast timing system has been completely reshuffled ...

  11. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  12. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  13. Observation of an excess of nu$_{e}$, n$\\overline{u}_{e}$ events in a beam dump experiment at 400 GeV

    CERN Document Server

    Alibran, P; Arnold, R; Bartley, J H; Bellotti, E; Bertrand, D; Blaes, R; Blondel, A; Blum, D; Bolognese, T; Bonetti, S; Bonneaud, G R; Bourotte, J; Bullock, F W; Burmeister, H; Carnesecchi, G; Cavalli, D; Conforto, G; Degrange, B; Dewit, M; Erriquez, O; Escoubés, B; Fiorini, Ettore; Frodesen, A G; Gillespie, J; Haguenauer, Maurice; Heusse, P; Jacquet, F; Jones, T W; Lutz, A M; Matteuzzi, C; Morfín, J G; Muciaccia, M T; Musset, P; Natali, S; Nguyen-Khac, U; Nuzzo, S; Pascaud, C; Pattison, B; Paty, M; Petitjean, P; Price, M; Pullia, Antonio; Riester, J L; Rognebakke, A; Rollier, M; Romano, F; Sacton, J; Skjeggestad, O; Sleeman, J C; Van Doninck, W K; Vialle, J P; Weerts, H; Welch, L; Willutzky, M; Zanotti, L

    1978-01-01

    A beam dump experiment has been performed at CERN in Gargammelle using the neutrino facility to look for penetrating particles produced either directly in the beam interaction or by prompt decay of new particles. A total of 32 interactions with a visible energy greater than 10 GeV has been found, classified, after corrections, into 18 charged current nu /sub mu / or nu /sub mu /, 5.1 neutral current and 8.9 nu /sub e/ or nu /sub e/ charged current events. An excess of nu /sub e/ events remains after all subtractions from any established sources. Results are presented in terms of the product of the cross section and the leptonic decay branching ratio of the possible source. (11 refs).

  14. The stability of the damper system for the coherent transverse oscillations of the beam in a synchrotron

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The investigation of the direct alternating kicker current perturbation influence of the particle motion in synchrotron with the beam coherent transverse oscillation damper in feedback are obtained. It has been shown that for a some pick-up and kicker placements are impossible due to this reason. The resonance conditions and their dependences on feedback gain-transfer characteristic have been found. The numerical results are given for the damper systems in UNK-1 and LHC. 6 refs.; 5 figs

  15. Beam-induced pressure variations in a TFTR neutral-beam injector

    International Nuclear Information System (INIS)

    Willis, J.E.; Berkner, K.H.

    1981-10-01

    In neutral-beam injection systems either all or part of the gas flow into the neutralizer comes from the plasma source. When the beam is switched on, ions from the plasma source, which used to contribute to the gas flow, are converted to an energetic beam and are pumped away: hence reducing the gas input to the neutralizer. The large volume of the neutralizer and its high conductance damp out rapid changes; for example, when the gas to the source is first turned on, there is a 230 msec exponential rise time associated with pressure in the neutralizer. The neutralizer in turn acts as a source of gas to the first chamber and the first chamber to the second and so on. Beam dumps become additional sources of gas in the second chamber and target tank as gas molecules are collisionally desorbed from the surface of the dump. A simple analytical model (the equivalent of an electrical RC circuit) of the volumes and conductances of the system has been used to describe the pressure variations. The use of time dependent sources terms in the model gives an estimate of the desorption rate from the dumps and its time variation during a beam pulse

  16. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  17. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  18. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. See also 7906190, 7906193.

  19. High voltage measurements on a prototype PFN for the LHC injection kickers

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Schröder, G; Vossenberg, Eugène B

    1999-01-01

    Two LHC injection kicker magnet systems must produce a kick of 1.3 T.m each with a flattop duration of 4.25 mu s or 6.5 mu s, a rise time of 900 ns, and a fall time of 3 mu s. The ripple in the field must be less than +or-0.5The electrical circuit of the complete system has been simulated with PSpice. The model includes a 66 kV resonant charging power supply (RCPS), a 5 Omega pulse forming network (PFN), a terminated 5 Omega kicker magnet, and all known parasitic quantities. Component selection for the PEN was made on the basis of models in which a theoretical field ripple of less than +or-0.1as attained. A prototype 66 kV RCPS was built at TRIUMF and shipped to CERN. A prototype 5 Omega system including a PFN, thyratron switches, and terminating resistors, was built at CERN. The system (without a kicker magnet) was assembled as designed without trimming of any PFN component values. The PFN was charged to 60 kV via the RCPS operating at 0.1 Hz. The thyratron timing was adjusted to provide a 30 kV, 5.5 mu s du...

  20. PSR extraction kicker system improvements

    International Nuclear Information System (INIS)

    Hardek, T.W.

    1991-01-01

    A program to improve the reliability of hardware required to operate the Los Alamos Proton Storage Ring has been under way for the past three years. The extraction kicker system for the PSR was identified as one candidate for improvement. Pulse modulators produce 50kV pulses 360 nsec in length at up to 24-Hz pulse repetition rate and drive two 4-meter-long stripline electrodes. Sources of difficulty with this system included short width switch tube lifetime, drive cable electrical breakdown, high-voltage connector failure, and occasional electrode breakdown. This paper discusses modifications completed on this system to correct these difficulties. 2 refs., 3 figs

  1. Protection against Accidental Beam Losses at the LHC

    CERN Document Server

    Wenninger, Jörg

    2005-01-01

    Protection of the LHC against uncontrolled beam losses is of prime importance due to the very high stored beam energy. For nominal beam intensities, each of the two 7 TeV/c proton beams has a stored energy of 360 MJ threatening to damage accelerator equipment. At injection a number of passive beam absorbers must be correctly positioned and specific procedures have been proposed to ensure safe injection of high intensity. The LHC beam dump block being the only LHC element that can safety absorb the full LHC beam, it is essential that the beams are extracted unto the dump block in case of emergency. The failure time constants extend from 100 microseconds to few seconds depending on the equipment. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. To ensure safe operation the machine protection system uses a variety of systems to detect such failures. The strategy for protection of the LHC will be illustrated, with emphasis ...

  2. 2 TeV HEB beam abort at the SSCL

    International Nuclear Information System (INIS)

    Schailey, R.; Bull, J.; Clayton, T.; Kocur, P.; Mokhov, N.

    1993-05-01

    The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and the counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes upon the full aperture requirement. In this report, we describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 1 TeV beam absorber

  3. 2 TeV HEB beam abort at the SSCL

    International Nuclear Information System (INIS)

    Schailey, R.; Bull, J.; Clayton, T.; Kocur, P.; Mokhov, N.V.

    1993-01-01

    The High Energy Booster (HEB) of the Superconducting Super Collider Laboratory (SSCL) will require a full aperture beam abort over a dynamic energy range of 200 GeV to 2 TeV. Since the HEB is a bi-polar machine, both clockwise (CW) and counter-clockwise (CCW) beam aborts are required. Also, the stored beam energy of 6.55 MJ in the superconducting HEB imposes the full aperture requirement. In this report, the authors describe the abort channels in the HEB utility straight sections, aperture restrictions, mechanical interferences and solutions, kicker misfires, and a 2 TeV beam absorber

  4. Ocean Dumping Control Regulations

    International Nuclear Information System (INIS)

    1978-01-01

    These Regulations were made further to the Ocean Dumping Control Act which provides for restrictions in dumping operations. The Regulations contain model applications for permits to dump or load a series of materials. (NEA)

  5. Design of a Compact Dump Resistor System for LCD Magnet

    CERN Document Server

    Gaddi, A

    2010-01-01

    In this technical note we suggest a possible solution for the choice of the detector magnet dump resistor. The push-pull scenario for Linear Collider Detectors imposes new solutions for magnet powering and protection lines, else than what developed for LHC detectors. The magnet dump resistor is the protecting equipment that has the function of extracting a significant amount of magnetic stored energy, from the coil winding to a dump. The LCD magnet has to move with the experiment from the garage to the beam position, so it has to be compact and reliable at the same time. We make here a proposal for a passive water-cooled dumper, we calculate the minimum amount of water required, the resistor hot-spot temperature, the overall mechanical design. The electrical part is not covered by this note, as it can be assumed that the solutions adopted by LHC detector magnets, in terms of quench instrumentation, energy extraction and maximum voltage, are not significantly affected by the push-pull scenario.

  6. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    Science.gov (United States)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  7. Development of an in situ bake-out method of outgassing reduction of kicker ferrite cores

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Nishikawa, Masaaki; Hikichi, Yusuke; Yanagibashi, Toru; Suganuma, Kazuaki

    2012-01-01

    The usual way for reduce outgassing of a large structure in vacuum is to bake the whole vacuum chamber containing the structure. However, this method needs a huge heater capacity and there are limits caused by the heat expansion of the chamber. The solution is to raise the temperature of the structure inside without heating the vacuum chamber. This is achieved by installing a heat source inside the chamber and by inserting the heat shield between the structure and the chamber walls to direct the heat to the structure. In the particle accelerator field, it is often required to reduce outgassing of structures inside vacuum chambers. One example is a kicker magnet, which is installed in a vacuum chamber and consists mainly of ferrite and aluminum alloy. As known from former experience the main outgassing component from ferrite is water. We applied the above mentioned method to the outgassing reduction of such a kicker. We are able to direct most of the heat flow toward the kicker magnet by inserting the heat shielding plates and thus outgassing was successfully reduced. (author)

  8. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. Here we see the slotted electrodes partly pulled out of the outer casing. See also 7906189, 7906581X, 7896193.

  9. Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV

    CERN Document Server

    Velotti, F M; Bartmann, W; Carlier, E; Cornelis, K; Efthymiopoulos, I; Goddard, B; Jensen, L K; Kain, V; Kowalska, M; Mertens, V; Steerenberg, R

    2013-01-01

    The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.

  10. Development of an abort gap monitor for the large hadron collider

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires monitoring the parasitic charge in the 3.3ms long gap in the machine fill structure. This gap, referred to as the abort gap, corresponds to the raise time of the abort kickers magnets. Any circulating particle present in the abort gap at the time of the kickers firing is lost inside the ring, rather than in the beam dump, and can potentially damage a number of the LHC components. CERN specifications indicate a linear density of 6 x 106 protons over a 100 ns interval as the maximum charge safely allowed to accumulate in the abort gap at 7 TeV. We present a study of an abort gap monitor, based on a photomultiplier tube with a gated microchannel plate, which would allow for detecting such low charge densities by monitoring the synchrotron radiation emitted in the dedicated diagnostics port. We show results of beam test experiments at the Advanced Light Source (ALS) using a Hamamatsu 5961U MCP-PMT, which indicate that such an instrument has the required sensitivity to meet LHC specifications

  11. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculationsș results

    Directory of Open Access Journals (Sweden)

    Esposito A.

    2017-01-01

    Full Text Available ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays’ source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps’ placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  12. Social dumping

    DEFF Research Database (Denmark)

    Pedersen, Klaus

    2010-01-01

    bidrag til, at OK-2010 "landes" fredeligt, fordi aftalen giver fagforeningerne en væsentlig indrømmelse i indsatsen mod social dumping. Aftalen har rigtignok til formål at imødekomme et af fagbevægelsens centrale overenskomstkrav om nye redskaber i indsatsen mod "social dumping". Men hvad er det aftalen...

  13. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  14. The fast extraction kicker power supply for the main ring of J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Kunio, E-mail: kunio.koseki@kek.jp

    2013-11-21

    An effect induced by parasitic inductance in a pulsed power supply for a fast extraction kicker was studied. The parasitic inductance in high voltage capacitors for a low impedance pulse forming network disturbs a sharp rise of an excitation current. A high voltage capacitor with a coaxial structure to minimize the parasitic inductance is proposed. The effectiveness was confirmed experimentally. An impedance mismatch by a leakage inductance of a pulse transformer in a transmission line was studied. The effect is serious at the flat-top period of the excitation current. By introducing a compensation circuit, which is composed by a capacitor and a resistor, impedance matching was established. The pulsed power supply for the fast extraction kicker was operated at a charging voltage of 30 kV. A required rise time of less than 1.1 μs was achieved. The flatness was also confirmed to be in an acceptable value of less than 1%. -- Highlights: ●An effect by parasitic inductance of the energy storage capacitor of the PFN was studied. ●A faster rise time was achieved by introducing a coaxial structure for the PFN capacitor. ●An impedance mismatch by a leakage inductance of a pulse transformer was studied. ●Serious deterioration of the pulsed waveform was cured by a compensation circuit. ●The pulsed power supply for the fast extraction kicker was developed and operated successfully.

  15. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  16. Collider and Detector Protection at Beam Accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  17. Collider and detector protection at beam accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  18. PcInterlock: Implementation and Operational Experience with the Optics Interlock

    CERN Document Server

    Schaumann, Michaela; Fuchsberger, Kajetan; Wenninger, Jorg

    2018-01-01

    In 2016 the luminosity reach of the LHC was increased by reducing the β-function in the main collision points below the design value to β∗ = 40 cm. This was possible due to a review of the margins in the collimation hierarchy followed by the implementation of additional measures to ensure the phase advance in defined ranges around the circumference. The risk of damaging the triplet or the tertiary collimators (TCTs) close to the interaction points in the event of an asynchronous beam dump is minimized by including margins in the collimation hierarchy, which define the β∗-reach. By guaranteeing the phase advance within an acceptable tolerance between the beam dump kicker and the TCTs, those margins can be reduced and operation at lower β∗ becomes possible. A new interlock system on the quadrupole magnet currents was put in place to safeguard the stability of the phase advance. This note describes the technical implementation of this power-converter interlock (PcInterlock) and the strategies used to...

  19. Simulation of the LHC injection kicker impedance test bench

    CERN Document Server

    Tsutsui, H

    2003-01-01

    The coupling impedance measurements of the LHC injection kicker test bench are simulated by HFSS code. The simulation gives qualitatively good agreement with the measurement. In order to damp the resonances, some ferrite rings are tested in the simulation. Longitudinal resonances are damped by a ferrite ring of large tan$\\delta_{\\mu}$. The effect of the ferrite ring is small for damping the transverse impedance resonance around 30 MHz.

  20. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  1. Design of the ILC Prototype FONT4 Digital Intra-Train Beam-Based Feedback System

    International Nuclear Information System (INIS)

    Burrows, P.; Queen Mary, U. of London; Christian, G.B.; Hartin, A.F.; Dabiri Khah, H.; White, G.R.; Oxford U.; Clarke, C.C.; Perry, C.; Oxford Instruments; Kalinin, A.; Daresbury; McCormick, D.J.; Molloy, S.; Ross, M.C.; SLAC

    2007-01-01

    We present the design of the FONT4 digital intra-train beam position feedback system prototype and preliminary results of initial beam tests at the Accelerator Test Facility (ATF) at KEK. The feedback system incorporates a fast analogue beam position monitor (BPM) front-end signal processor, a digital feedback board, and a kicker driver amplifier. The short bunchtrain, comprising 3 electron bunches separated by c. 150ns, in the ATF extraction line was used to test components of the prototype feedback system

  2. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  3. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  4. Upgrade of the TCDQ: A dumping protection system for the LHC

    CERN Document Server

    Antonakakis, T

    2012-01-01

    In the context of the LHC, an asynchronous beam dump could be destructive. In order to ensure the safety of the machine and its surroundings a model of the TCDQ dump has been designed. The length of the TCDQ dump is increased by 50% and its material distribution along its length is changed from graphite to a carbon composite that clearly withstands higher stresses then its counterpart. There are two different density composites used along the dump‘s length in a similar distribution than that of the TCDS, varying from high density to low then back to high. The power deposition within the duration of a pulse is given by FLUKA simulations and is used to predict temperature and stress distributions in space and time. The results are compared with previous studies in which graphite material was used. The difference in the thermal expansion coefficient of the two materials explains the reduced stresses in the newer design. Due to the high cost of carbon composites an alternative solution is thought without jeopar...

  5. SYNTHESIZER CONTROLLED BEAM TRANSFER FROM THE AGS TO RHIC

    International Nuclear Information System (INIS)

    DELONG, J.; BRENNAN, J.M.; FISCHER, W.; HAYES, T.; SMITH, K.; VALENTINO, S.

    2001-01-01

    To ensure minimal losses and to preserve longitudinal emittance, beam is transferred from the AGS to the RHIC bunch to bucket. This requires precision frequency and phase control for synchronization and kicker timing. The required precision is realized with a set of Direct Digital Synthesizers. Each synthesizer can be frequency and phase modulated to align the AGS bunch to the target bucket in the RHIC phase

  6. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  7. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  8. EU Lobbying and Anti-Dumping Policy

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Ulff-Møller; Svendsen, Gert Tinggaard

    2012-01-01

    of petitioning firms and Council voting in the case of anti-dumping policy. If the political position of countries in anti-dumping cases is influenced by domestic lobbying efforts, we expect that the empirical pattern of country distribution of petitioning firms in EU anti-dumping cases corresponds closely...... to the empirical pattern of EU country distribution in Council voting. Our results show a low petitioning intensity for anti-dumping investigations and a high voting intensity against anti-dumping measures in Northern Europe. Thus, it seems likely that domestic lobbying efforts have influenced the political...

  9. LHC Report: reaching high intensity

    CERN Multimedia

    Jan Uythoven

    2015-01-01

    After both beams having been ramped to their full energy of 6.5 TeV, the last two weeks saw the beam commissioning process advancing on many fronts. An important milestone was achieved when operators succeeded in circulating a nominal-intensity bunch. During the operation, some sudden beam losses resulted in beam dumps at top energy, a problem that needed to be understood and resolved.   In 2015 the LHC will be circulating around 2800 bunches in each beam and each bunch will contain just over 1 x 1011 protons. Until a few days ago commissioning was taking place with single bunches of 5 x 109 protons. The first nominal bunch with an intensity of 1 x 1011 protons was injected on Tuesday, 21 April. In order to circulate such a high-intensity bunch safely, the whole protection system must be working correctly: collimators, which protect the aperture, are set at preliminary values known as coarse settings; all kicker magnets for injecting and extracting the beams are commissioned with beam an...

  10. Accidental Beam Losses and Protection in the LHC

    Science.gov (United States)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  11. Accidental Beam Losses and Protection in the LHC

    International Nuclear Information System (INIS)

    Schmidt, R.; Wenninger, J.

    2005-01-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection

  12. New wave form surveillance and diagnostics for the LEP injection kickers

    CERN Document Server

    Carlier, E; Verhagen, H

    1995-01-01

    The introduction of the Bunch Train Scheme in LEP requires a more precise and automatic supervision of the stability of the LEP injection kickers in timing and amplitude. Comprehensive and user-friendly diagnostic tools are required for in-depth investigation of equipment behaviour. A new system is currently being prepared using to a large extent commercial data acquisition hardware and hardware independent software products.

  13. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  14. Recuperation of ISR Dipole Magnet Yokes for Use as Shielding for the LHC Beam Dumps TDE

    CERN Document Server

    Ross, M

    1999-01-01

    The quantity of iron shielding required for two LHC dumps was estimated at about 1500 tons. Possible sources of slightly irradiated iron shielding were considered, in particular, the ISR dipole yokes, which were stocked in the I2. Of rectangular form and weighing 22 tons each, they were well suited to the LHC dump geometry. Furthermore, they were to all intents and purposes non-radioactive. The preferred solution was to cut off four lifting pads and three support plates using arc/air equipment, seal temporarily each end with shutters, fit two lifting "anchor" pins, and fill with concrete.

  15. Pulse shape adjustment for the SLC damping ring kickers

    International Nuclear Information System (INIS)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs

  16. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  17. High slope waste dumps – a proven possibility

    Directory of Open Access Journals (Sweden)

    Igor Svrkota

    2013-11-01

    Full Text Available This paper is an overview of dumping operations on High Slope Waste Dump at Veliki Krivelj open pit copper mine, RTB Bor, Serbia. The High Slope Waste Dump in Bor is the highest single slope waste dump in the world with the slope height of 405 m. The paper gives the basics and limitations of the designed dumping technology, the redesigned technology, gives an overview of the 13 year long operation and gathered experiences and addresses the main issues of dumping operations in high slope conditions as well as the present condition of the High Slope Waste Dump.

  18. 30 CFR 77.1608 - Dumping facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably...

  19. Experimental approach to high power long duration neutral beams

    International Nuclear Information System (INIS)

    Horiike, Hiroshi

    1981-12-01

    Experimental studies of ion sources and beam dumps for the development of a high power long duration neutral beam injector for JT-60 are presented. Long pulse operation of high power beams requires a high degree of reliability. To develop a reliable ion source with large extraction area, a new duoPIGatron ion source with a coaxially shaped intermediate electrode is proposed and tested. Magnetic configuration is examined numerically to obtain high current arc discharge and source plasma with small density variation. Experimental results show that primary electrons were fed widely from the cathode plasma region to the source plasma region and that dense uniform source plasma could be obtained easily. Source plasma characteristics are studied and comparison of these with other sources are also described. To develop extraction electrode of high power ion source, experimental studies were made on the cooling of the electrode. Long Pulse beams were extracted safely under the condition of high heat loading on the electrode. Finally, burnout study for the development of high power beam dumps is presented. Burnout data were obtained from subcooled forced-convective boiling of water in a copper finned tube irradiated by high power ion beams. The results yield simple burnout correlations which can be used for the prediction of burnout heat flux of the beam dump. (author)

  20. LHC Report: Towards stable beams and collisions

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Over the past two weeks, the LHC re-commissioning with beam has continued at a brisk pace. The first collisions of 2011 were produced on 2 March, with stable beams and collisions for physics planned for the coming days. Low intensity beams with just a few bunches of particles were used to test the energy ramp to 3.5 TeV and the squeeze. The results were successful and, as a by-product, the first collisions of 2011 were recorded 2 March. One of the main activities carried out by the operation teams has been the careful set-up of the collimation system, and the injection and beam dump protection devices. The collimation system provides essential beam cleaning, preventing stray particles from impacting other elements of the machine, particularly the superconducting magnets. In addition to the collimation system, also the injection and beam dump protection devices perform a vital machine protection role, as they detect any beam that might be mis-directed during rare, but not totally unavoidable, hardware hiccups...

  1. Ocean Dumping Control Act

    International Nuclear Information System (INIS)

    1975-01-01

    This Act provides for the control of dumping of wastes and other substances in the ocean in accordance with the London Convention of 1972 on Prevention of Marine Pollution by the Dumping of Wastes and other Matter to which Canada is a Party. Radioactive wastes are included in the prohibited and restricted substances. (NEA)

  2. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  3. The H line: a brand new beam line for fundamental physics at the J-PARC muon facility

    International Nuclear Information System (INIS)

    Kawamura, N; Shimomura, K; Miyake, Y; Toyoda, A; Saito, N; Mihara, S; Aoki, M

    2013-01-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operated since first beam in 2008. Starting with a 200 kW proton beam, the beam intensity has reached 3×10 6 / muons/s, the most intense pulsed muon beam in the world. A 2 cm thick graphite target permits the extraction of four secondary muon beams. A brand new beam line, the H line, is planned to be constructed. The new beam line is designed to have a large acceptance, will provide the ability to tune the momentum, and use a kicker magnet and/or Wien filter. This beam line will provide an intense beam for experiments that require high statistics and must occupy the experimental areas for a relatively long period.

  4. Dynamic structural analysis of the TPSG4 & TPSG6 beam diluters

    CERN Document Server

    Massidda, L; Kadi, Y; Balhan, B

    2005-01-01

    In this report we present the technical specification for the numerical model and the study of the dynamic structural behaviour of the beam diluter elements (TPSG4 & 6) protecting the extraction septum magnets (MSE & MST) in the event of an asynchronous firing of the extraction kickers (MKE). The deposited energy densities, estimated by the high-energy particle transport code FLUKA, were converted to internal heat generation rates according to the time dependence of the extracted beam. The transient response to this thermal load was obtained by solving the power deposition and structural deformation problem by the spectral-element code ELSE.

  5. Dump truck-related deaths in construction, 1992-2007.

    Science.gov (United States)

    McCann, Michael; Cheng, Mei-Tai

    2012-05-01

    Dump trucks are universally used in construction and other industries to haul materials to the location and to remove waste materials. The source for dump truck-related fatality data was the Bureau of Labor Statistics Census of Fatal Occupational Injuries (CFOI) Research File. From 1992 to 2007, 829 construction workers were killed in dump truck-related incidents nationwide. Of those, 336 were dump truck operators with 215 deaths occurring in street and highway incidents. Another 343 deaths involved workers on foot, three-quarters struck by dump trucks. Sixty-four of the construction workers killed were maintaining dump trucks, 22 when caught between the truck frame and a falling dump truck bed. Of the 86 other deaths, 55 involved streets and highways. Recommendations include: (i) improving the reporting of seat belt usage in fatality reports; (ii) requiring use of seat belts; (iii) requiring the use of backup alarms, spotters, or other methods to alert dump truck operators to workers in their blind spots; (iv) prohibiting direct dumping at river banks and embankments; (v) using cameras or radar to enforce stopping at railway crossings; and (xi) enforcing worker safety practices (e.g., lockout/tagout procedures on elevated dump truck beds). Copyright © 2011 Wiley Periodicals, Inc.

  6. Safe LHC beam commissioning

    International Nuclear Information System (INIS)

    Uythoven, J.; Schmidt, R.

    2007-01-01

    Due to the large amount of energy stored in magnets and beams, safety operation of the LHC is essential. The commissioning of the LHC machine protection system will be an integral part of the general LHC commissioning program. A brief overview of the LHC Machine Protection System will be given, identifying the main components: the Beam Interlock System, the Beam Dumping System, the Collimation System, the Beam Loss Monitoring System and the Quench Protection System. An outline is given of the commissioning strategy of these systems during the different commissioning phases of the LHC: without beam, injection and the different phases with stored beam depending on beam intensity and energy. (author)

  7. Allegheny County Illegal Dump Sites

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Illegal Dump Site dataset includes information on illegal dump sites, their type of trash, and the estimate tons of trash at each site. The information was...

  8. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  9. Digital transverse beam dampers from the Brookhaven AGS

    International Nuclear Information System (INIS)

    Smith, G.A.; Castillo, V.; Roser, T.; Van Asselt, W.; Witkover, R.; Wong, V.

    1995-01-01

    A wide band, digital damper system has been developed and is in use at the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of vertical and horizontal capacitive pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line beam kickers. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of heavy ions. This paper discusses the system design and operation, particularly with regard to stabilization of the high intensity proton beam. The analog and digital signal processing techniques used to achieve optimum results are discussed. Operational data showing the effect of the damping are presented

  10. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  11. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  12. Dumping in a Global World

    NARCIS (Netherlands)

    J.L. Moraga-Gonzalez (José Luis); J.M.A. Viaene (Jean-Marie)

    2004-01-01

    textabstractAnti-dumping actions are now the trade policy of choice of developing and transition economies. To understand why these economies have increasingly applied anti-dumping laws, we build a simple theoretical model of vertical intra-industry trade and investigate the strategic incentives of

  13. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  14. Continuous all-optical deceleration of molecular beams

    Science.gov (United States)

    Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley

    2014-05-01

    A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.

  15. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  16. On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC.

    CERN Multimedia

    Manzari, Vito

    2008-01-01

    On the evening of June 15, 2008, ALICE physicists saw the first tracks at LHC during the first injection test in transfer line TI 2. The Silicon Pixel detector recorded muon tracks produced in the beam dump near Point 2 of the LHC

  17. Beam Dumping Ghost Signals in Electric Sweep Scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R.F.

    2005-01-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  18. Beam dumping ghost signals in electric sweep scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; SNS Project, Oak Ridge; Tennessee U.; Leitner, M.; LBL, Berkeley; Moehs, D.P.; Keller, R.; LBL, Berkeley; Welton, R.F.; SNS Project, Oak Ridge

    2004-01-01

    Over the last 20 years many labs started to use Allison scanners to measure loW--energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  19. Sea-dumped CW munitions - the European component

    International Nuclear Information System (INIS)

    Hart, J.; Stock, T.

    2009-01-01

    The purpose of this contribution is to outline the European magnitude of sea-dumped CW munitions. Hereby the paper attempts to provide an overview on historical dumping activities, both for conventional and chemical munitions. The potential dangers which might result from these dumping activities are discussed in brief. Among others the differences in deep sea dumping and dumping in shallow waters are evaluated. Further, the presentation will outline and discuss the different technology steps: (a) identification, (b) recovery, (c) transportation and (d) destruction (on- or off-shore), necessary for possible cleaning of dumping sites. Thereafter an evaluation of the different technologies available/applied is performed, in particular on the destruction part. Hereby the already practised experience is displayed. Based upon existing treaty regimes an actual judgment of possible application of treaty provisions for demanding cleaning up operations is discussed. The question if treaty obligations can be used to force cleaning operations is debated. A possible match of the technology package available with the scope/magnitude of the munitions dumping problem is discussed. Hereby the gaps between the size of the problem and the most suitable technologies for recovery and destruction are illustrated. The resulting answers should be regarded as possible technical guidelines for future development activities as well existing limitations to solve the problems. The papers will result in some general guidelines for future prospect on the issues of dumped munitions, in particular chemical munitions under the European context.(author)

  20. Simulation of instabilities in the presence of beam feedback

    International Nuclear Information System (INIS)

    Myers, S.; Vancraeynest, J.

    1985-01-01

    The effect of longitudinal and transverse instabilities in electron storage rings is simulated by tracking many superparticles for many turns through a model of a machine lattice. This lattice model is defined by a series of machine elements such as RF stations (including longitudinal and transverse wake fields), beam pick-ups, feedback kicker magnets, etc. The machine elements may be interconnected in any specified way so as to produce for example feedback on the longitudinal or transverse beam motion. Each superparticle is treated in six-dimensional phase space and the effects of quantum excitation and radiation damping are included. Insofar as possible the program has been structured to allow study of all known single-beam effects (such as synchro-betatron resonances, transverse mode coupling etc.) in the presence or the absence of some form of beam feedback. The primary goal of the program was to study the effect of a reactive beam feedback system on the threshold for transverse mode coupling. (orig.)

  1. Dumping at Sea Act 1974

    International Nuclear Information System (INIS)

    1974-01-01

    This Act enables the United Kingdom Government to ratify both the Oslo Convention of 1972 for the Prevention of Marine Pollution by Dumping from Ships and Aircraft and the London Convention of 1972 on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. (NEA) [fr

  2. RHIC prefire protection masks

    International Nuclear Information System (INIS)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-01

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  3. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  4. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  5. LCT protective dump-switch tests

    International Nuclear Information System (INIS)

    Parsons, W.M.

    1981-01-01

    Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions

  6. The control system for the LEP beam dump

    International Nuclear Information System (INIS)

    Carlier, E.; Aimar, A.; Bretin, J.L.; Marchand, A.; Mertens, V.; Verhagen, H.

    1994-01-01

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))

  7. CERN Vacuum-System Activities during the Long Shutdown 1: The LHC Beam Vacuum

    CERN Document Server

    Baglin, V; Chiggiato, P; Jimenez, JM; Lanza, G

    2014-01-01

    After the Long Shutdown 1 (LS1) and the consolidation of the magnet bus bars, the CERN Large Hadron Collider (LHC) will operate with nominal beam parameters. Larger beam energy, beam intensities and luminosity are expected. Despite the very good performance of the beam vacuum system during the 2010-12 physics run (Run 1), some particular areas require attention for repair, consolidation and upgrade. Among the main activities, a large campaign aiming at the repair of the RF bridges of some vacuum modules is conducted. Moreover, consolidation of the cryogenic beam vacuum systems with burst disk for safety reasons is implemented. In addition, NEG cartridges, NEG coated inserts and new instruments for the vacuum system upgrade are installed. Besides these activities, repair, consolidation and upgrades of other beam equipment such as collimators, kickers and beam instrumentations are carried out. In this paper, the motivation and the description for such activities, together with the expected beam vacuum performa...

  8. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  9. Protecting LHC components against radiation resulting from an unsynchronized beam abort

    International Nuclear Information System (INIS)

    Mokhov, Nikolai V.

    2001-01-01

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septumMSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage

  10. Protecting LHC Components Against Radiation Resulting From an Unsynchronized Beam Abort

    CERN Document Server

    Drozhdin, A I; Mokhov, N V; Rakhno, I L; Weisse, E

    2001-01-01

    The effect of possible accidental beam loss in the LHC on the IP5 and IP6 insertion elements is studied via realistic Monte Carlo simulations. The scenario studied is beam loss due to unsynchronized abort at an accidental prefire of one of the abort kicker modules. Simulations show that this beam loss would result in severe heating of the IP5 and IP6 superconducting (SC) quadrupoles. Contrary to the previous considerations with a stationary set of collimators in IP5, collimators in IP6 close to the cause are proposed: a movable collimator upstream of the Q4 quadrupole and a stationary one upstream of the extraction septum MSD. The calculated temperature rise in the optimal set of collimators is quite acceptable. All SC magnets are protected by these collimators against damage.

  11. V123 Beam Synchronous Encoder Module

    International Nuclear Information System (INIS)

    Kerner, T.; Conkling, C. R.; Oerter, B.

    1999-01-01

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiberoptic and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring

  12. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  13. Feedback to suppress beam instabilities in future proton rings

    International Nuclear Information System (INIS)

    Lambertson, G.R.

    1985-05-01

    Criteria for the design of feedback systems to suppress coherent beam instabilities are presented. These address starting amplitudes, diffusion from noise during damping or long storage, and choice of kicker. As a model for future accelerators, specifications of the proposed 20 TeV SSC are used to calculate parameters of systems to control expected instabilities. A scenario and hardware to stabilize the transverse mode-coupling instability is examined. The scale of the systems is large but not out of scale with the large ring. 9 refs., 4 tabs

  14. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    International Nuclear Information System (INIS)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S.

    1996-09-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DAΦNE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL

  15. 30 CFR 57.9301 - Dump site restraints.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...

  16. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  17. Direct Measurement of Neutral/Ion Beam Power using Thermocouple Analysis

    International Nuclear Information System (INIS)

    Day, I.; Gee, S.

    2006-01-01

    Modern Neutral Beam Injection systems such as those used on JET and MAST routinely use thermocouples embedded close to the surface of beam stopping elements, such as calorimeters and ion dumps, coupled to high speed data acquisition systems to determine beam profile and position from temperature rise data. With the availability of low cost data acquisition and storage systems it is now possible to record data from all thermocouples in a fully instrumented calorimeter or ion dump on 20 ms timescales or better. This sample rate is sufficiently fast to enable the thermocouple data to be used to calculate the incident power density from 1d heat transfer theory. This power density data coupled with appropriate Gaussian fits enables the determination of the 2d beam profile and thus allows an instantaneous and direct measurement of beam power. The theory and methodology required to analyse the fast thermocouple data from the MAST calorimeter and residual ion dump thermocouples is presented and direct measurements of beam power density are demonstrated. The power of desktop computers allows such analysis to be carried out virtually instantaneously. The methods used to automate this analysis are discussed in detail. A code, utilising the theory and methodology, has been developed to allow immediate measurements of beam power on a pulse by pulse basis. The uncertainty in determining the beam power density is shown to be less than 10 %. This power density data is then fitted to a 2d Gaussian beam profile and integrated to establish the total beam power. Results of this automated analysis for the neutral beam and residual ion power of the MAST duopigatron and PINI NBI systems are presented. This technology could be applied to a beam power safety interlock system. The application to a beam shine through protection system for the inner wall of the JET Tokamak is discussed as an example. (author)

  18. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  19. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  20. Nanosecond high-voltage generators for supplying the kickers of charged particle accelerators

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Matveev, Yu.G.; Shvedov, D.A.

    2000-01-01

    The high-voltage nanosecond generators (VNG) of rectangular pulses, developed for supplying the injection and extraction kickers of the accelerator-storage complexes are considered in this work. The pulse hydrogen thyratrons and gas-filled discharges are used as commutators in those generators. If necessary, the VNG pulses fronts may be shortened up to 2-3 ns in the coaxial lines, filled with ferrite rings. The mechanism of the pulse fronts shortening was considered earlier. The basis parameters of the VNG various types are presented [ru

  1. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1998-01-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment

  2. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Capista, D. [Fermilab; Adams, P. [Fermilab; Morris, D. [Fermilab; Yang, M. J. [Fermilab; Hazewood, K. [Fermilab

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  3. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    International Nuclear Information System (INIS)

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers

  4. NuMI proton kicker extraction magnet termination resistor system

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.R.; Jensen, C.C.; /Fermilab

    2005-05-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert{reg_sign} FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert{reg_sign} must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert{reg_sign} processing system are described. Early performance results will be presented.

  5. Eugène Vossenberg - 1943-2009

    CERN Multimedia

    2009-01-01

    Gene Vossenberg, a valued colleague, passed away on Saturday, 10 October. Gene was recruited by CERN in 1972 as an in-house inspector of dipoles for the SPS. Three years later he joined the SPS kicker magnet team within the beam transfer group, which is where he spent the bulk of his career. Gene was an innovative engineer who loved his work. He made a substantial contribution to the success of the resonant extraction scheme used in the SPS, and subsequently the SPS-LEP lepton transfer system. More recently, he is credited with the innovations at the heart of the pulse generators used in the LHC’s beam dumping system, a key component of the collider’s safety systems. Gene retired in February 2008. It was a pleasure for us all to work with Gene and be associated with him. We will remember him for the great skill he showed in his work and for his kindness, his congeniality and his enthusiasm. His colleagues and friends

  6. Beam dynamics in a TeV linear collider

    International Nuclear Information System (INIS)

    Yokoya, Kaoru

    1984-01-01

    The author's group at KEK has investigated the feasibility of an electron-positron linear collider of 1x1 TeV region using the Lasertron. In this report, three major problems are discussed. That is, beam-beam interaction; beam instability in the linac; and the damping ring. As the most important parameter, the luminosity of the linear collider is analyzed, taking into account the pinch effect and the beamstrahlung. The problems in the development of final focusing system are also considered. As for the wake field in the linac, the transverse wake field is more important than the longitudinal one. The misalignment of cavity is discussed as a cause of inducing the transverse wake field. Finally, the design requirement for the damping ring is considered, and the values of some important design parameters are given: These include energy, radius, bending radius, number of bunch, transverse damping time, natural emittance, vertical-horizontal coupling, the time constant of extraction kicker, and the structure of the FODO cell. (Aoki, K.)

  7. The battle of the dumps continues

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Although East Rand Gold and Uranium Company is about to start exploitation of the old slimes dams to produce gold, uranium and sulphuric acid, the battle to suppress dust and establish vegetation on the old dumps continues. The physical problems, planning, co-ordination and legal aspects of mine dump reclamation are outlined

  8. Biomechanical predictors of ball velocity during punt kicking in elite rugby league kickers

    OpenAIRE

    Sinclair, Jonathan Kenneth; Taylor, Paul John; Atkins, Stephen; Hobbs, Sarah Jane

    2016-01-01

    Punt kicking is integral to the attacking and defensive elements of rugby league and the ability to kick the ball with high\\ud velocity is desirable. This study aimed to identify important technical aspects of kicking linked to the generation of ball\\ud velocity. Maximal punt kicks were obtained from six elite rugby league kickers using a 10-camera motion capture system.\\ud Three-dimensional kinematics of the lower extremities was obtained. Regression analysis with ball velocity as criterion\\...

  9. Design of the calorimeter and beam dump for the TFTR prototype neutral beam injector

    International Nuclear Information System (INIS)

    Stone, R.R.; Haughian, J.M.

    1977-01-01

    A calorimeter has been designed for use with the TFTR prototype neutral beam injection system. It consists of three vees each having two 18.8-mm-thick (0.75 in.) copper plates at a 6-deg angle, relative to the beam centerline. The maximum power density on a plate with this arrangement will be 2.0 kW/cm 2 , resulting in a front surface temperature rise of about 420 0 C. A support and retraction system moves the calorimeter in and out of the beam centerline. Various factors used in the selection of the absorber plate material will be discussed and also some experimental test results will be presented

  10. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  11. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  12. The Impact of Vacuum Gate Valves on the LHC Beam

    CERN Document Server

    Appleby, R B; Cerutti, F; Ferrari, A; Mauri, M; Vlachoudis, V

    2009-01-01

    The LHC vacuum sector valves are located in the straight sections of the LHC ring, and designed to sectorize the LHC vacuum. The valves are interlocked and should trigger a beam dump request if they close on a circulating beam. This report studies the impact on the machine if this request is not made and the valve scrapes the LHC beam halo. Cascade calculations are made using a model of IR7, with several different valve locations, to calculate the downstream energy deposition in superconducting magnet coils and the corresponding signal in beam loss monitors at the quench level. The calculations are done at 7, 5, and 3.5 TeV. It is found that when a downstream magnet reaches the quench level, the neighbouring BLMs see a signal well above the detection threshold. Furthermore, the BLM signal is consistent with the BLM applied threshold settings and a signal is seen in the time domain before the quench level is reached. Therefore the report concludes that the BLMs can see the closing valve and trigger a beam dump...

  13. Spoil dump design and rehabilitation management practices (Australia)

    International Nuclear Information System (INIS)

    Goh, E.K.H.; Aspinall, T.O.; Kuszmaul, J.S.

    1998-01-01

    The environmental impact of mining and evolving environmental legislation has been receiving increased attention worldwide in the last two decades. The potential impacts associated with unstable spoil dumps from mine operations is the focus of concern both by the mining industry, environmental legislative agencies and members of the public. Engineered slopes of mine spoils may be stable at the end of construction, but they can deteriorate over time. There is thus the need to increase the base of knowledge on the existing practices of spoil dump design and rehabilitation. Information concluded from the analysis of the industrial survey carried out on Australian spoil dump management practices at coal, gold and ore mines are presented in this paper. The questionnaire asked for details of soil type of spoils, and factors influencing the design of spoil dumps (climate, rate of erosion, height of dumps, slope gradient and length, overburden handling equipment, soil characteristics, legislation and wastes). 10 refs., 5 figs., 5 tabs

  14. Pressure rise analysis in superconducting coils during dumping

    International Nuclear Information System (INIS)

    Tada, E.; Shimamoto, S.

    1984-01-01

    This chapter describes the ALPHE computer code, whose purpose is to calculate transient helium behavior in a poolboiling coil and to determine suitable characteristics of safety devices to minimize the maximum pressure and the liquid helium lost during dumping due to quench, or when discharging without normalcy. The analysis is compared with the measurements obtained in the domestic test of the Japanese LCT coil. Topics considered include basic equations (helium behavior, heat generation), manual dump without quench, and dumping due to quench. It is demonstrated that the transient behavior, calculated by ALPHE assuming quasi-static equilibrium between helium and coil, is in good agreement with the experimental measurements observed in the domestic test of the Japanese LCT coil. The engineering technique required for the design criteria of superconducting coils and safety device during dumping is established. ALPHE can be used to design an emergency safety system for a helium refrigerator during dumping

  15. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  16. A preliminary design of the Los Alamos fast Kicker Magnet Pulser and Power Supply

    International Nuclear Information System (INIS)

    Winje, R.A.

    1988-01-01

    The technical design of the Kicker Magnet Pulser and Power Supply is based on the switching of a precharged pulse forming network (pfn) into a matched load. Provisions are made through the selection of the main switch tube to accommodate loads that are not matched to the pfn impedance. The paper includes a description of the major components of the power supply and a summary of the performance parameters. 4 figs., 3 tabs

  17. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  18. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  19. Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms

    Science.gov (United States)

    Long, Xueping; Jayich, Andrew; Campbell, Wesley

    2017-04-01

    Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.

  20. Dumping of low-level radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1980-01-01

    Two international agreements relate to the dumping of packaged radioactive waste into the oceans - the Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter of 1972 (London Convention) and the Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste of 1977 under the Organization for Economic Co-operation and Development (OECD). The International Atomic Energy Agency was given the responsibility to define high-level radioactive wastes which are unsuitable for dumping in the oceans and to make recommendations for the dumping of other radioactive wastes. A revised Definition and Recommendations was submitted and accepted by the London Convention. This paper reviews the technical basis for the Definition and describes how it has been applied to the radiological assessment of the only operational dumping site in the North East Atlantic

  1. A wide band slot-coupled beam sensing electrode for the advanced light source

    International Nuclear Information System (INIS)

    Hinkson, J.; Rex, K.

    1991-05-01

    Stripline electrodes (traveling wave electrodes, directional couplers) are commonly used in particle accelerators as beam pickups and kickers. The longitudinally symmetric stripline has a constant beam coupling impedance as a function of length and has a characteristic magnitude sin(x) amplitude response in the frequency domain. An experimentally tapered stripline provides nearly constant coupling impedance vs. frequency and yields superior frequency-domain performance. In practice it is difficult to construct either of these devices for broad-band performance because of the transition from coaxial to stripline geometry. We report on the construction of an exponentially-tapered, slot-coupled ''stripline'' which was relatively easy to construct and has the desired frequency response. 2 refs., 6 figs

  2. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  3. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode RF gun low energy beam line

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Winick, H.

    1995-01-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratories Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. The design of the experimental line, using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. Detailed beam dynamics simulations were performed for the 1.6 cell RF gun injector using a solenoidal emittance compensation technique. An experimental program for testing the 1.6 cell RF gun is presented. This program includes beam loading caused by dark current, higher order mode field measurements, integrated and slice emittance measurements using a pepper-pot and RF kicker cavity

  4. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. [Brown U.; Bhat, C. M. [Fermilab; Hendricks, B. S. [Fermilab

    2017-07-01

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution data from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.

  5. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  6. IKOR - An isochronous pulse compressor ring for proton beams

    International Nuclear Information System (INIS)

    Schaffer, G.

    1981-06-01

    This report contains the results of a study carried out for an isochronous compressor ring IKOR which compresses the 500 μs linac macropulses into pulses of 0.68 μs length. Its basic component is a ring magnet with alternating gradient and separated functions. Due to the isochronous operation, an rf system can be avoided which otherwise would be necessary in order to maintain a void in the circulating beam for the purpose of ejection. Injection is performed by charge exchange. The H - beam of the accelerator is first converted into a H 0 beam by stripping off one electron by a high gradient magnet placed in the transfer channel. Subsequently, the beam is converted into a proton beam by removing the remaining electron through a stripping foil in the ring. IKOR will be filled in 658 turns. Immediately after filling, the beam is ejected in a single turn via a kicker and a septum magnet and is transported to the spallation target. Because of the high intensity of 2.7 x 10 14 protons per pulse and, secondly, due to the high repetition rate of 100 Hz, beam dynamics and radiation protection aspects dominate the design and are, for this reason, treated in detail. (orig.)

  7. Energy dump of the ATLAS superconducting system simulations of electrical and thermal behaviour of magnet system at slow- and fast dump

    CERN Document Server

    van Beek, Martijn; Dudarev, A

    During the slow dump (discharge) of the Barrel Toroidal (superconducting) magnet of the ATLAS detector, the control system gave an alarm that the differences between the voltages over the conductors were too high. The alarm was not due to any danger, because of some sort of phenomenon observed in the first few seconds after start of the discharge. A possible explanation of the differences of the coil voltages is that the changing current through the conductors may cause induced currents in the coil casing around. The goal was to make a simulation of the electrical behaviour of the magnet system during a slow dump. In this way, an explanation can be found for the start phenomenon of the slow dump of the Barrel Toroid. Some extra analyses on the measurements were performed to describe the energy dissipation during a fast dump. This is done by calculating the resistance of the coils during the dump. With the maximum resistance, the maximum temperature can be estimated, which says something about the enthalpy of ...

  8. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  9. Combatting social dumping - also an obligation for municipalities

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Baadsgaard, Kelvin

    2018-01-01

    Analytisk indkredsning af social dumping og argumentation for kommuners opgaver i forbindelse med bekæmpelse heraf......Analytisk indkredsning af social dumping og argumentation for kommuners opgaver i forbindelse med bekæmpelse heraf...

  10. Geology beneath and beside the notorious Payatas open dump, Metro Manila, Philippines

    Science.gov (United States)

    Tomarong, C.; Arcilla, C.; de Sales, L.; Chua, S.; Garcia, E.; Pamintuan, G.

    2003-04-01

    With a minimum of 6000 tonnes/day municipal waste output, and with NO existing operational sanitary landfill and with incineration illegal, Metro Manila has a very serious solid waste disposal problem. Unsorted municipal waste are being piled in open dumps, the most notorious of which is the Payatas open dump. A recent, tragic garbage-slide in this open dump caused dozens of deaths, news of which were broadcast internationally. Political expediency laced with a lot of corruption, rather than sound science, was the main basis for selecting this site as an open dump. As an example, this dump is situated plastics. Several cross-sections cut across the dump show that the side slopes of the dump are on the average steeper than the pre-dump slopes. The “bedrock” of the Payatas dump are conglomerate members of the Pleistocene volcaniclastic Guadualupe Formation. Studies are still to be done on the extent of pollution on surface and groundwater in the Payatas environs.

  11. Database Dump - fRNAdb | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us fRNAdb Database Dump Data detail Data name Database Dump DOI 10.18908/lsdba.nbdc00452-002 De... data (tab separeted text) Data file File name: Database_Dump File URL: ftp://ftp....biosciencedbc.jp/archive/frnadb/LATEST/Database_Dump File size: 673 MB Simple search URL - Data acquisition...s. Data analysis method - Number of data entries 4 files - About This Database Database Description Download... License Update History of This Database Site Policy | Contact Us Database Dump - fRNAdb | LSDB Archive ...

  12. AIP Diffraction measurements using the LHC Beam Loss Monitoring System

    CERN Document Server

    Kalliokoski, Matti

    2017-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in di ff raction studies are discussed.

  13. Biofertilizers for the revegetation of coal overburden dumps top materials

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, K. [Central Mining Research Institute, Dhanbad (India). Environmental Management Group

    2001-07-01

    Adding and improving nutrient status of overburden dump top material through biofertilizer for supporting vegetation and for sustainable spoil development, a pot experiment was conducted. In this, two bio-fertilizers namely bactin and phosphin in three doses were applied on overburden dump top material kept in pots growing two grass species. The growths were compared with control on dump and soil both. Results shows that overburden dump amended with bio-fertilizer at lowest dose have significant increase in growth over the control of dump material and soil in vetiver grass but failed to shows the same result in lemon grass. This may be due to different growth behaviour of the grasses. 14 refs., 2 tabs.

  14. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  15. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    International Nuclear Information System (INIS)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-01-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method

  16. RF-driven ion source with a back-streaming electron dump

    Science.gov (United States)

    Kwan, Joe; Ji, Qing

    2014-05-20

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heating of the window, which due to said heating, might otherwise cause window damage.

  17. Latest Performance Results from the FONT5 Intra-train Beam Position and Angle Feedback System at ATF2

    CERN Document Server

    Christian, G B; Bett, D R; Blaskovic Kraljevic, N; Burrows, P N; Davis, M R; Gerbershagen, A; Perry, C; Constance, B; Resta-Lopez, J

    2012-01-01

    A prototype Interaction Point beam-based feedback system for future electron-positron colliders, such as the International Linear Collider, has been designed and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The FONT5 intra-train feedback system aims to stabilize the beam orbit by correcting both the position and angle jitter in the vertical plane on bunch-tobunch time scales, providing micron-level stability at the entrance to the ATF2 final-focus system. The system comprises three stripline beam position monitors (BPMs) and two stripline kickers, custom low-latency analogue front-end BPM processors, a custom FPGA-based digital processing board with fast ADCs, and custom kickerdrive amplifiers. The latest results from beam tests at ATF2 will be presented, including the system latency and correction performance.

  18. Management of dumping of packaged low-level wastes in the deep ocean with emphasis on the North East Atlantic dump site

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1981-08-01

    The following aspects are discussed: radiological principles as applied to disposal to the environment; international regulations; historical dumping practices; assessment of the Northeast Atlantic dump site; IAEA generic studies; and implications of issues on US needs and policies

  19. Sea dumping of hazardous wastes

    International Nuclear Information System (INIS)

    Thomas, J.

    1980-01-01

    From 1967 until 1976 ca. 45,000 t of weak radioactive wastes had been dumped into the sea during several actions under the supervision of the NEA. The requirements to be deduced from the experiences with regard to marine areas, packaging and transports of the wastes are described. Up to now the possibilities of the sea dumping of strong radioactive wastes has been just discussed. The natural removal of the decay heat by sea water would be advantageous but the problem of water-proof packagings for the period of 1000 years have not been solved yet. (orig.) [de

  20. 7 CFR 58.228 - Dump hoppers, screens, mixers and conveyors.

    Science.gov (United States)

    2010-01-01

    ... Service 1 Equipment and Utensils § 58.228 Dump hoppers, screens, mixers and conveyors. The product contact surfaces of dump hoppers, screens, mixers and conveyors which are used in the process of transferring dry... 7 Agriculture 3 2010-01-01 2010-01-01 false Dump hoppers, screens, mixers and conveyors. 58.228...

  1. Target and orbit feedback simulations of a muSR beam line at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  2. Beam stability in synchrotrons with digital filters in the feedback loop of a transverse damper

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2009-01-01

    The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. Solving the characteristic equation allows one to calculate the achievable damping rates as a function of instability growth rate, feedback gain and parameters of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping rates of the feedback systems with digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal feedback system

  3. Slow beam raster system at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.; Beaufait, J.; Carlini, R.; Cuevas, C.; Vulcan, W.; Wines, R.

    1994-01-01

    A bedstead air-core raster magnet is being installed now, it will be used at CEBAF to scan the beam on the Hall C polarized target and the beam dump with fixed frequency 60 Hz in horizontal, 103.4 Hz in vertical. The x and y raster magnets are driven by Variac transformer and SUMIT-OMO inverter respectively. Both of them provide an approximate sine current waveform with peak current 20 A, corresponding to a maximum deflection angle 1 mr

  4. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  5. Conceptual design of dump resistor for superconducting CS of SST-1

    International Nuclear Information System (INIS)

    Roy, Swati; Pradhan, Subrata; Panchal, Arun

    2015-01-01

    During the upgradation of SST-1, the resistive central solenoid (CS) coil has been planned to be replaced with Nb 3 Sn based superconducting coil. The superconducting CS will store upto 3.5MJ of magnetic energy per operation cycle with operating current upto 14kA. In case of coil quench, the energy stored in the coils is to be extracted rapidly with a time constant of 1.5s. This will be achieved by inserting a 20m Ohm dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a vital part of the superconducting CS quench protection system, a conceptual design of the 20m Ohm dump resistor has been proposed. In this paper, the required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented. Natural air circulation is proposed as cooling method for this dump resistor. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the shape of meander to minimize the stray inductance and increase the surface area for cooling. The entire dump resistor will be an array of such grids connected in series and parallel to meet electrical as well as thermal parameters. The maximum temperature of the proposed dump resistor is upto 350 °C during dump 3.5MJ energy. The proposed design permits indigenous fabrication of the dump resistor using commercially available welding techniques. (author)

  6. Formation of Mesoherpetobionts Communities on a Reclamated Coal Open Pit Dump

    Science.gov (United States)

    Luzyanin, Sergey; Eremeeva, Natalya

    2017-11-01

    The structure of the mesoherpetobionts arthropod communities of the reclamated dump of the Krasnobrodsky coal pit (Kemerovo region, Russia) has been studied. It was established that the pioneer grouping of mesoherpetobionts arthropod represented by classes of Chilopoda, Arachnida and Insecta-Ectognatha has been formed on the dump for two years after the soil deposition. From the Arachnida, the species of the order Aranei are the most active in the stocking of the dumps. From the class Chilopoda, the species of Lithobiomorpha appear the first on the dump. Insects from the following three orders, Heteroptera, Hymenoptera and especially Coleoptera take the main part in the expansion of dumps and the formation of primary communities. Among the Coleoptera, the beetles of the family of Carabidae (44 species, dynamic density 22.9 specimens/10 trapped per day) dominate. From them, small or medium-sized species are mainly involved in stocking the dumps. There are significant differences in the complexes of ground dump carabid beetles in comparison with the control group, differing in species composition of dominant species, species richness and species diversity parameters

  7. Advanced neutral-beam technology

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1980-09-01

    Extensive development will be required to achieve the 50- to 75-MW, 175- to 200-keV, 5- to 10-sec pulses of deuterium atoms envisioned for ETF and INTOR. Multi-megawatt injector systems are large (and expansive); they consist of large vacuum tanks with many square meters of cryogenic pumping panels, beam dumps capable of dissipating several megawatts of un-neutralized beam, bending magnets, electrical power systems capable of fast turnoff with low (capacity) stored energy, and, of course, the injector modules (ion sources and accelerators). The technology requirements associated with these components are described

  8. Effect of kicker circuit inductance on the transmission-line discharging

    International Nuclear Information System (INIS)

    Feng Deren; Wang Xiangqi; Shang Lei; Pei Yuanji; Fan Kuanjun

    2004-01-01

    Circuit inductance exists at discharging circuit of transmission-line, it includes the inductance at the main switch of thyratron when conducts, the linking inductance between the linking cables, the matching resistance inductance and the load inductance. When a long pulse is generated by transmission-line, the circuit inductance can be omitted. However, when the pulse is short (such as shorter than 200 ns), especially when ferromagnetic core kicker acts as the load, the effect is obvious. The short pulse current is needed in order to generate long time interval synchronous radiation light pulses by using online assembly of pulse convex orbit and DC convex orbit. This paper analyses the effect and presents several experimental results. It also supposes two practical cases to decrease the rise time of the pulse

  9. Fast and reliable kicker magnets for the SLC damping rings

    International Nuclear Information System (INIS)

    Mattison, T.S.; Cassel, R.L.; Donaldson, A.R.; Gross, G.

    1995-01-01

    The design, construction, and operation of a kicker magnet with superior electromagnetic performance and greatly improved radiation tolerance is described. A short flux return of high mu ferrite improves the field strength and linearity with current, and novel metallic field-confining structures minimize the inductance. An 8-cell structure with capacitance integrated into each cell makes the magnet a nearly perfect transmission line. The capacitor dielectric is 1 cm thick alumina-loaded epoxy, processed to eliminate air voids, and cast in a multiple step procedure developed to circumvent epoxy shrinkage. The magnet operates with pulses of up to 40 kV and 3.2 kA at 120 Hz, with magnet transit times of less than 35 nsec and field rise and fall times of less than 60 nsec

  10. PLT and Doublet III neutral beam injection systems

    International Nuclear Information System (INIS)

    Haselton, H.H.; Dagenhart, W.K.; Schechter, D.E.; Stewart, L.D.; Stirling, W.L.

    1976-01-01

    The design program is being supported by experimental work with all beam line components: gas cells, bending magnets, beam stops, magnetic shielding, and high speed-high throughput cryopumping systems. Stray toroidal fields and fields produced by external transmission or mirror magnets are under study to determine the optimum means of removing the unneutralized component from the beam. Concepts utilizing materials with high permeability are adequate to provide the source with the necessary magnetic shielding. Beam stops capable of dissipating a power density of 10 to 40 kW/cm 2 are required for ion dumps, diagnostics, and on line ion source conditioning

  11. Machine development studies for PSB extraction at 160 MeV and PSB to PS beam transfer

    CERN Document Server

    Forte, V; Bartmann, W; Borburgh, J; Ferrero Colomo, A; Damerau, H; Di Giovanni, G P; Coralejo Feliciano, L M; Fraser, M A; Gamba, D; Mikulec, B; Guerrero Ollacarizqueta, A; Serluca, M; Sermeus, L; Sterbini, G

    2017-01-01

    This paper collects the machine development (MD) activities for the beam transfer studies in 2016 concerning the PSB extraction and the PSB-to-PS transfer. Many topics are covered: from the 160 MeV extraction from the PSB, useful for the future commissioning activities after the connection with Linac4, to new methodologies for measuring the magnetic waveforms of kickers and dispersion reduction schemes at PS injection, which are of great interest for the LHC Injectors Upgrade (LIU) [1] project.

  12. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  13. A waveguide overloaded cavity as longitudinal kicker for the DA{Phi}NE bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A; Boni, R; Ghigo, A; Marcellini, F; Serio, M; Zobov, M [Instituto Nazionale de Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-08-01

    The multibunch operation of DA{Phi}NE calls for a very efficient feedback system to damp the coupled-bunch longitudinal instabilities. A collaboration program among SLAC, LBL and LNF laboratories on this subject led to the development of a time domain, digital system based on digital signal processors that has been already successfully tested at ALS. The feedback chain ends with the longitudinal kicker, an electromagnetic structure capable of transferring the proper energy correction to each bunch. A cavity kicker for the DA{Phi}NE bunch-by-bunch longitudinal feedback system based on a pill-box loaded by six waveguides has been designed and a full-scale aluminium prototype has been fabricated at LNF. Both simulations and measurements have shown a peak shunt impedance of about 750 ohm and a bandwidth of about 220 MHz. The large shunt impedance allows to economize on the costly feedback power. Moreover, the damping waveguides drastically reduce the device HOM longitudinal and transverse impedances. One cavity pre ring will be sufficient to operate the machine up to 30 bunches while a second device per ring together with a feedback power improvement will be necessary to reach the ultimate current. (G.T.)

  14. Radioactive dumping in the Arctic Ocean

    International Nuclear Information System (INIS)

    Lamb, J.; Gizewski, P.

    1993-01-01

    Recent revelations concerning the possible environmental hazards posed by the sunken Soviet nuclear submarine Komsomolets and the disposal of radioactive materials in the Arctic and North Atlantic oceans have generated much controversy and debate. Too often, however, the key scientific and policy issues that the dumping raises are treated as two solitudes. In reality, decisions taken by national governments and international agencies in connection with remediation, regulation, and even research must be based on both science and policy. Indeed, a sound approach to the dumping issue must integrate scientific evidence and policy considerations relating to legal, political, social, and economic matters. Radioactive waste disposal is an exceedingly difficult problem. Information detailing the Soviet Navy's past dumping practices, and increasing awareness of the problems that Russia and other states may encounter in the future disposal of radioactive waste, indicate that the global inventory of radioactive wastes requiring storage and disposal is large and growing

  15. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  16. Ocean Dumping: International Treaties

    Science.gov (United States)

    The London Convention and London Protocol are global treaties to protect the marine environment from pollution caused by the ocean dumping of wastes. The Marine, Protection, Research and Sanctuaries Act implements the requirements of the LC.

  17. The resistive instability damper system for the first stage of the UNK accelerator with IIR-filter in feedback

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The resistive instability damper system for the coasting beam in the accelerator is discussed. The system for each of two directions of beam transverse coherent oscillations includes two pairs of pick-up electrodes and damping kickers connected by delayed negative feedback. It has been shown that damping regime can be achieved for one and the same pick-up and kicker location independently on imQ. 8 refs.; 4 figs

  18. LHC Report: here comes the summer!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    Over the last three months the LHC has been gradually stepping up the total number of bunches in the beams and, early on Tuesday 28 June, the first fill with 1380 bunches per beam went into physics.   At present, the spacing between the bunches in the LHC is 50 ns, with some bigger gaps here and there to allow the injection and extraction kickers to do their job. The maximum number of bunches that we can inject in the machine with a 50 ns spacing is 1380, which is indeed the target for 2011. A nominal LHC bunch contains around 1.15x1011 protons. The 1380 nominal bunches now in use gives a total of 1.6x1014 protons per beam and a combined energy of around 89 MJ at 3.5 TeV. Happily the machine protection system is working very well. After a rocky period, the start of last week saw some excellent machine availability and two back-to-back fills delivered 62 and 46 inverse picobarns. Both were dumped by the operations team, which is unusual because fills normally get taken out by one of a variety of pro...

  19. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Markov Sergey

    2017-01-01

    Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  20. Peabody Western Coal cuts costs with bottom-dump haulers

    Energy Technology Data Exchange (ETDEWEB)

    Perla, S.; Baecker, G.; Morgan, W. [Empire Machinery, Mesa, AZ (United States)

    1995-04-01

    A new hauling concept has been introduced at the Black Mesa and Kayenta coal mines of the Peabody Western Coal Co. in northern Arizona, USA. The article describes the switch from Caterpillar 992 wheel loaders with 136 t bottom-dump trucks to 272 t bottom-dump trucks. Cat 789 off-highway trucks were modified to pull bottom-dump trucks. Haulage costs per ton of coal and cost per ton-mile have fallen significantly since the introduction of the new large hauling method. 7 figs., 2 photos.

  1. Practice and assessment of sea dumping of radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.; Bewers, J.M.

    1985-08-01

    This paper discusses the practice and assessment of the ocean dumping of low-level radioactive wastes. It describes the international and multilateral regulatory framework, the sources, composition, packaging and rate of dumping and, in particular, the recent radiological assessment of the only operational disposal site in the northeast Atlantic. The paper concludes with a discussion of future ocean disposal practices for radioactive wastes, and the application of the approach to the dumping of non-radioactive contaminants in the ocean. 39 refs., 1 fig., 4 tabs

  2. Transverse beam emittance optimization for the injection into BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Felix [Helmholtz Zentrum Berlin, Institut Beschleunigerphysik (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik (Germany)

    2016-07-01

    For top up injection into the storage ring BESSY II an average injection efficiency of at least 90% is required. In low alpha mode the injection efficiency does not meet the requirements. Future BESSY II features will include shorter bunches in the storage ring (VSR) and user transparent injection with a non linear kicker. These will raise the demands on the quality of the injected beam even further. This work investigates the development of transverse emittance over the acceleration cycle in the synchrotron and the possibility of transverse emittance exchange by a sequence of skew quadrupoles in the transfer line. Results of emittance measurements and emittance exchange simulations will be given.

  3. Determination of heavy metals in soils from dump site of tanneries ...

    African Journals Online (AJOL)

    Heavy metals were determined in soil samples at the dump site, Challawa town, Karfi Irrigation site and farmlands near the dump site by flame Atomic Absorption Spectrophotometer (AAS). The results showed that soil at the dump site contains significant amount of toxic elements. Hence remediation processes were ...

  4. 7 CFR 46.22 - Accounting for dumped produce.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Accounting for dumped produce. 46.22 Section 46.22... Market Receivers § 46.22 Accounting for dumped produce. A clear and complete record shall be maintained..., shall be obtained to prove the produce was actually without commercial value, unless there is a specific...

  5. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  6. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Science.gov (United States)

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  7. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  8. Sea dumping of radioactive wastes. Part 3: Dumping practice and radioecology

    International Nuclear Information System (INIS)

    Krejsa, P.

    1983-04-01

    Sea dumping of low level radioactive waste is a disposal method practised by a number of states, controlled by OECD/NEA. It makes use of the capacity of the oceans to dilute the radionuclides to levels acceptable concerning resulting dose burdens. For the determination of release rates some oceanographic model have been developed, describing the physical behaviour of the released radionuclides. It is not to be assumed that a complete mathematical description of the involved processes can be made. Too many parameters are dependent and varying as there is the chemical behaviour of different valence states, complexing agents, distribution patterns etc. But it can be seen that the existing description methods allow the adequate modelling of the short and the long term behaviour of the radionuclides. The use of pessimistic assumptions for distribution and reconcentration is sufficient to consider uncertainties of the model. Therefore the arguments of Greenpeace, kindly submitted by this organisation for this study, show no open question, which has not been considered on the sea dumping procedures under surveillance of the OECD/NEA. (Author)

  9. D0 Superconducting Solenoid Quench Data and Slow Dump Data Acquisition

    International Nuclear Information System (INIS)

    Markley, D.

    1998-01-01

    This Dzero Engineering note describes the method for which the 2 Tesla Superconducting Solenoid Fast Dump and Slow Dump data are accumulated, tracked and stored. The 2 Tesla Solenoid has eleven data points that need to be tracked and then stored when a fast dump or a slow dump occur. The TI555(Texas Instruments) PLC(Programmable Logic Controller) which controls the DC power circuit that powers the Solenoid, also has access to all the voltage taps and other equipment in the circuit. The TI555 constantly logs these eleven points in a rotating memory buffer. When either a fast dump(dump switch opens) or a slow dump (power supply turns off) occurs, the TI555 organizes the respective data and will down load the data to a file on DO-CCRS2. This data in this file is moved over ethernet and is stored in a CSV (comma separated format) file which can easily be examined by Microsoft Excel or any other spreadsheet. The 2 Tesla solenoid control system also locks in first fault information. The TI555 decodes the first fault and passes it along to the program collecting the data and storing it on DO-CCRS2. This first fault information is then part of the file.

  10. Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC

    CERN Document Server

    Wang, Min-Huey; Chen, Jenny; Chen June Rong; Hsu, Kuo-Tung; Kuo, Chin-Cheng; Luo, Gwo-Huei

    2005-01-01

    In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.

  11. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  12. The IAEA's responsibilities in connection with the dumping at sea of radioactive wastes

    International Nuclear Information System (INIS)

    Ha Vinh Phuong

    1983-01-01

    In the context of IAEA's responsibilities regarding the sea dumping of radioactive wastes, this paper reviews international laws of relevance to sea dumping of wastes, and examines IAEA's role under the London Dumping Convention. The paper also describes the OECD/NEA Multilateral Consultation and Surveillance Mechanism on radioactive waste sea dumping operations. (NEA) [fr

  13. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  14. Radioactive-waste ocean dumping will have negligible enviromental impact

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This draft report is the result of extensive studies based on the best available information in the field of oceanography, marine radiobiology and health physics. On various basic considerations, assessment was undertaken, and the following conclusion was reached. The quantity of radioactivity to be dumped at one time is assumed to be 500 Ci in the case of test dumping, and 10 5 Ci/year in the case of full-scale dumping. The conditions required for the dumping sea area are that the bottom water flow and upwelling amount are limited, and that the sea bottom is flat. The horizontal dispersion coefficient of 10 7 cm 2 /sec and the vertical dispersion coefficient of 2 x 10 2 cm 2 /sec are assumed. It is assumed that the radionuclides in the disposed package would leached out as soon as it reaches the sea bottom, and would not show any physicochemical behavior. Typycal radionuclides are classified into 5 groups in terms of their half lives, and their estimated concentrations at 1 km depth are tabulated. The maximum level of individual dose and the magnitude of population dose were assessed on the fishermen working in the dumping sea area, and the adults, children and infants who were expected to receive higher dose on account of the larger intake of fish products than average. The dose level given with the dose assessment model and various panamentors under the dumping conditions is much lower than natural radiation and the permissible level recommended by ICRP. (Kobatake, H.)

  15. Feasibility of In-Situ Aeration of Old Dumping Ground for Land Reclamation

    Directory of Open Access Journals (Sweden)

    Huan-Huan Tong

    2013-12-01

    Full Text Available Dumping grounds are characterized by the absence of engineering controls such as base liners and cover layer. Consequently, these dumping grounds present risks for surrounding resources such as soil, groundwater and air. The concern for groundwater contamination by leachate from tropical dumping grounds is heightened due to the greater amounts of rainfall and subsequent infiltration and percolation through the waste mass. The emergent demand for old dumping grounds reclamation drives the need to employ remediation technologies. Generally, in-situ aeration is a remediation method that promotes aerobic conditions in the later stage of dumping ground. It accelerates carbon transfer, reduces remaining organic load, and generally shortens the post closure period. However, high rainfall in tropical areas straitens this technique. For example, pollutants could be easily flushed out and more energy should be required to overcome hydrostatic pressure. Although heavy rainfall could supply sufficient water to the substrate and accelerate degradation of organic matter, it may inhibit aerobic activities due to limited air transfer. The waste characterization from Lorong Halus Dumping Ground (closed dumping ground in Singapore showed that the waste materials were stabilized after 22 years closure. According to the Waste Acceptance Criteria set by European Communities Council, the waste materials could be classified as inert wastes. One interesting finding was that leachate layer detected was about of 5 - 8 meter depth, which entirely soaked the waste materials. Hence, the reclamation design and operation should be carefully adjusted according to these characters. Lorong Halus Dumping Ground case study can provide a guideline for other tropical closed landfills or dumping grounds.

  16. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Roth, Andre

    2012-12-01

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  17. Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city

    Directory of Open Access Journals (Sweden)

    Syeda Maria Ali

    2014-01-01

    Full Text Available Deteriorating soil quality and decrease in vegetation abundance are grave consequences of open waste dumping which have resulted in growing public concern. The focus of this study is to assess the contribution of open waste dumping in soil contamination and its effect on plant diversity in one of the renowned green cities of Pakistan. Surface soil samples (n = 12 + 12 were collected from both the open waste dumping areas allocated by Capital Development Authority (CDA and sub- sectors of H-belt of Islamabad city (representative of control site. The diversity of vegetation was studied at both sampling sites. Significant modifications were observed in the soil properties of the dumping sites. Soils at the disposal sites showed high pH, TDS and EC regime in comparison to control sites. Various heavy metal concentrations i.e., Lead (Pb, Copper (Cu, Nickel (Ni, Chromium (Cr and Zinc (Zn were also found to be higher at the dumping sites except for Cadmium (Cd which had a higher value in control site. A similar trend was observed in plant diversity. Control sites showed diversified variety of plants i.e., 44 plant species while this number reduced to only 32 plant species at the disposal sites. This is attributed to changes in soil characteristics at disposal sites and in its vicinity areas.

  18. Dump evaluation for landscape restoration of an ancient cacareous quarry

    International Nuclear Information System (INIS)

    Paredes, R.; Ayala, R.; Trevisiol, S.

    2010-01-01

    This work is about the geological - mining study in the limestone quarry in the west of Valle Hermoso town - Cordoba - Argentina. The generation of dump material is considered a waste but is inherent to the process of rocks and minerals extraction. The dump stocks evaluation take into account the different types of rocks with physical and chemical characteristics. The dump has several carbonatic qualities and can be given useful to uncover material originally dismissed as to be used as crushed stone for concrete and others.The reuse of this waste can be allocated primarily to the construction industry, and explore other potential uses, would rehabilitate these lands, and thus eliminate an environmental liability .This work is about the geological - mining study in the limestone quarry in the west of Valle Hermoso town - Cordoba - Argentina. The generation of dump material is considered a waste but is inherent to the process of rocks and minerals extraction. The dump stocks evaluation take into account the different types of rocks with physical and chemical characteristics. The dump has several carbonatic qualities and can be given useful to uncover material originally dismissed as to be used as crushed stone for concrete and others.The reuse of this waste can be allocated primarily to the construction industry, and explore other potential uses, would rehabilitate these lands, and thus eliminate an environmental liability

  19. Experience with dose limitation during preparations for sea dumping operations

    International Nuclear Information System (INIS)

    Fieuw, G.; Voorde, N. van de; Baekelandt, L.

    1982-01-01

    Since 1967 low-level radioactive wastes from operational nuclear facilities in Belgium have been dumped into the sea. The dumping is carried out in accordance with the recommendations issued by the IAEA under the London Convention. All these dumping operations have taken place under the surveillance of the Nuclear Energy Agency of the OECD. To limit the doses received by workers and the public during the various phases leading up to sea dumping, appropriate measures are required in connection with waste treatment and packaging, limitation of radiation levels, storage and handling, organization and selection of the means of transport and organization and means of monitoring. Although treatment and handling at the nuclear sites are entrusted to occupationally exposed workers, temporary labour is used for the transport and handling operations. Effective treatment and packaging reduce the risk of internal exposure to a negligible value. Meticulous planning and permanent personnel monitoring reduce the doses received by the workers to acceptable values not exceeding the statutory dose limits. The doses received by personnel involved in the preparations for sea dumping operations from 1967 to 1980 are given and a relationship is established between these doses and the activities handled. Experience shows that sea dumping operations do not entail unacceptable risks either for the workers concerned or for the population and allows us to optimize the methods used for loading, handling and transport. (author)

  20. Pioneer vegetation on ash dumps in Oswiecim (southern Poland)

    Energy Technology Data Exchange (ETDEWEB)

    Bojarczuk, T.; Kuczynski, B.

    1972-01-01

    The authors found fifty-three plant species growing on the ash dumps in Oswiecim, while in 1963 twenty-two species only were encountered there. Most of the self-sown plants belong to calciphilous, ruderal and xerophilous species. The pH of the ashes amounts to 9.5. Some of them, e.g. Matricaria chamomilla are index plants for acid habitats; others were hitherto encountered in wet habitats, e.g. Rumex obtusifolias, Myricaria germanica, Epilobium roseum, and others. Their occurrence on ash dumps is possible thanks to the considerable amount of precipitation (465 mm) during the vegetative period. The mosses are the pioneers of these dumps, e.g. Funaria hygromertrica and Bryum argenteum, which usually appear on the site of fire. The authors are of the opinion that a better knowledge of the plants appearing spontaneously on dumps and waste heaps may provide many useful conclusions which will help to obtain positive results at the recultivation of spoil heaps and industrial wastes. 9 references, 3 tables.

  1. Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia

    Czech Academy of Sciences Publication Activity Database

    Kuráž, V.; Frouz, Jan; Kuráž, M.; Mako, A.; Šustr, Vladimír; Cejpek, J.; Romanov, O.V.; Abakumov, E.V.

    2012-01-01

    Roč. 45, č. 3 (2012), s. 266-272 ISSN 1064-2293 R&D Projects: GA MŠk 2B08023 Grant - others:Russian Foundation for Basic Research(RU) 08-04-01128 Institutional support: RVO:60077344 Keywords : physical properties of soil s * chronosequence of self-overgrown dumps * Sokolov quarry-dump complex Subject RIV: EH - Ecology, Behaviour Impact factor: 0.216, year: 2012

  2. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  3. Source, transport and dumping of radioactive waste

    International Nuclear Information System (INIS)

    1980-03-01

    The results of an examination into the problems of radioactive waste are presented, in particular the sources, transport and dumping and the policy considerations in favour of specific methods. The theoretical background of radioactive waste is described, including the physical and chemical, ecological, medical and legal aspects. The practical aspects of radioactive waste in the Netherlands are considered, including the sources, the packaging and transport and dumping in the Atlantic Ocean. The politics and policies involved in this process are outlined. (C.F.)

  4. Mineralogy of Tailings Dump around Selebi Phikwe Nickel-Copper ...

    African Journals Online (AJOL)

    This study aimed at mineralogically characterizing the tailings dump emanating from the mining and smelting of nickel-copper (Ni-Cu) at Selebi Phikwe, Botswana, Southern Africa. Samples of tailings dump around the Selebi Phikwe Ni-Cu plant were studied using petrographic microscopy and X-ray Powder Diffraction ...

  5. Beam diagnostic tools for the negative hydrogen ion source test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, Riccardo; Fantz, Ursel; Franzen, Peter; Froeschle, Markus; Heinemann, Bernd; Riedl, Rudolf; Ruf, Benjamin; Wuenderlich, Dirk

    2013-01-01

    Highlights: ► We present an overview of beam diagnostic tools foreseen for the new testbed ELISE. ► A sophisticated diagnostic calorimeter allows beam profile measurement. ► A tungsten wire mesh in the beam path provides a qualitative picture of the beam. ► Stripping losses and beam divergence are measured by H α Doppler shift spectroscopy. -- Abstract: The test facility ELISE, presently being commissioned at IPP, is a first step in the R and D roadmap for the RF driven ion source and extraction system of the ITER NBI system. The “half-size” ITER-like test facility includes a negative hydrogen ion source that can be operated for 1 h. ELISE is expected to extract an ion beam of 20 A at 60 kV for 10 s every 3 min, therefore delivering a total power of 1.2 MW. The extraction area has a geometry that closely reproduces the ITER design, with the same width and half the height, i.e. 1 m × 1 m. This paper presents an overview of beam diagnostic tools foreseen for ELISE. For the commissioning phase, a simple beam dump with basic diagnostic capabilities has been installed. In the second phase, the beam dump will be substituted by a more sophisticated diagnostic calorimeter to allow beam profile measurement. Additionally, a tungsten wire mesh will be introduced in the beam path to provide a qualitative picture of beam size and position. Stripping losses and beam divergence will be measured by means of H α Doppler shift spectroscopy. An absolute calibration is foreseen in order to measure beam intensity

  6. Event displays from Beam 2 in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  7. Event displays from Beam Halo in ATLAS, November 20th, 2009

    CERN Multimedia

    ATLAS collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded today, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detect

  8. Event displays from Beam 01 in ATLAS, November 20th, 2009

    CERN Multimedia

    atlas collaboration

    2009-01-01

    ATLAS event displays and related information from the LHC restart in 2009. We recorded on, Friday November 20th, the first so-called "Beam Splash" events. For these events the beam in one arm of the LHC was dumped onto closed collimators located 140 meters upstream and downstream of ATLAS. The collision leads to a large number of detectable secondary particles longitudinally traversing the detector

  9. PEP radiation shielding tests in SLAC A Beam

    International Nuclear Information System (INIS)

    Ash, W.; DeStaebler, H.; Harris, J.; Jenkins, T.; Murray, J.

    1977-09-01

    Radiation shielding tests designed to simulate possible conditions in and around the PEP experimental halls were conducted. The SLAC A Beam was targeted in the block tunnel at a point about midway between End Station A and Beam Dump East. At that site it was relatively easy to rearrange the concrete block structure to simulate the various shielding configurations under consideration for PEP. Extensive surveys of neutron and ionizing radiation were made. Complete results of the shielding tests are given

  10. Powershift transmission for dump trucks; Neues Lastschaltgetriebe fuer Dump Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Rebholz, Wolfgang; Geis, Joerg; Riedhammer, Michael [ZF Friedrichshafen AG, Friedrichshafen (Germany)

    2012-04-15

    Articulated dumpers (also called dump trucks) are used in many locations where large quantities of earth, spoil, gravel or other materials have to be moved on construction sites or in quarries. ZF has developed a new transmission with eight forward and four reverse gears up to production standard specifically for use in these vehicles. The integrated primary retarder is continuously controllable and provides maximum braking torque of up to 1800 Nm. (orig.)

  11. The radiation hazard from the tantalum dumps in Penang

    International Nuclear Information System (INIS)

    1989-01-01

    The radiation level at the dumps are well above background. The readings taken on the dumps themselves range from 1000 mrem/year to 5860 mrem/year. The radiation levels in the houses close to the dump at Hill Railway Road were much lower, in the range of 160 mrem/year to 335 mrem/year. However, the level recorded at a house on Medan Tembaga is higher, being around 650 mrem/year. It is worth noting that the maximum permissible dose as recommended by the International Commission on Radiological Protection for the general public is 500 mrem/year and the average background radiation level is around 80-90 mrem/year. (author)

  12. Københavns Kommunes indsats mod social dumping - målopfyldelsesevaluering

    DEFF Research Database (Denmark)

    Baadsgaard, Kelvin; Jørgensen, Henning

    2016-01-01

    Evaluering af, om de politiske intentioner med indsats mod social dumping i Københavns Kommune er blevet indfriet......Evaluering af, om de politiske intentioner med indsats mod social dumping i Københavns Kommune er blevet indfriet...

  13. Radiation protection with regard to sea dumping of radioactive waste

    International Nuclear Information System (INIS)

    Sanderse, R.W.; Worst, J.

    1980-01-01

    The Netherlands Energy Research Foundation (ECN) has been dumping into the Atlantic Ocean radioactive waste cast into concrete since 1965. In the report the Health Physics problems with regard to the transport and dumping of the radioactive waste are discussed. In particular to the following points has been paid attention: tasks and working methods of the radiation protection service, dose evaluation for the people involved by two different kinds of dumping methods, doses received by the personal involved, some contamination problems caused by leaking drums. (orig.) [de

  14. Modernization of dump truck onboard system

    Science.gov (United States)

    Semenov, M. A.; Bolshunova, O. M.; Korzhev, A. A.; Kamyshyan, A. M.

    2017-10-01

    The review of the only automated dispatch system for the career dump trucks, which is presented in the domestic market, was made. A method for upgrading the loading control system and technological weighing process of the career dump was proposed. The cargo weight during loading is determined by the gas pressure in the suspension cylinders at the time of the oscillation ending and at the start of the vibration smoothing process; the smoothing speed correction is performed. The error of the cargo weighting is 2.5-3%, and of the technological weighing process during driving - 1%, which corresponds to the error level of the steady-state weighting means.

  15. Development of offroad unmanned dump truck navigation system. Dump truck mujin soko system no kaihatsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Horii, Z [Nittetsu Mining Co. Ltd., Tokyo (Japan)

    1992-08-25

    A large offroad unmanned dump truck navigation system has been developed, and is in practical operation mounted on dump trucks at Torigatayama Limestone Quarry of Nittetsu Mining Company. The system functions in a manual dump truck navigation mode, wireless navigation mode, and unmanned control mode. The unmanned control mode further includes a mode to navigate the truck on a predetermined course with its data having been input in a computer and a mode that when the truck was moved on a course under a wireless control, the computer learns the course and drives the truck autonomously thereafter. The safety measures are divided into the hardware safety function to detect abnormalities in brakes and other vehicle parts, and the software safety functions of data communications, sensor action check, and prevention of collision of trucks with each other. The system has resulted in a productivity of average one-way travel distance of 345 m, and average unmanned navigation cycle time of 9 minutes and 26 seconds for a transportation efficiency of 541 t/hour/truck, having reached at least the manned operation level. 4 figs., 1 tab.

  16. Monitoring of Thermal and Gas Activities in Mining Dump Hedvika, Czech Republic

    Science.gov (United States)

    Surovka, D.; Pertile, E.; Dombek, V.; Vastyl, M.; Leher, V.

    2017-10-01

    The negative consequences of mining of the black coal is occurrence of extractive waste storage locations - mining dumps. The mining activities carried out within the area of Ostrava are responsible for at least six mine dumps of loose materials arising as wastes from mining of mineral resources, many of which show presence of thermal processes. The thermal activity in dumps is responsible for many hazardous substances that pollute the environment and harm human health in the surroundings. This paper deals with the results of the first phase of project CZ.11.4.120/0.0/0.0/15_006/0000074 TERDUMP, on exploration of thermally active mining dumps are published in the article. As a first studied thermally active dump was a Hedvika dump. To localize of hot spots with hot gas emission was used a thermovision scanning by drone. The place with high temperature (49.8 °C) identified natural gas emission through natural cracks. Analysing the occurring pollutants in Hedvika Dump using the GC-MS or HPLC, respectively and the inert gases (CO2, CO and SO2) were determined by ion chromatography. The pollutants were determined in five sampling points during two measurements executed from July to August 2017.

  17. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  18. Guidelines for sea dumping packages of radioactive waste. Revised version.

    International Nuclear Information System (INIS)

    Anon.

    1979-04-01

    The purpose of these Guidelines is to establish general requirements and provide practical information for the design and manufacture of packages for sea dumping of radioactive waste, in accordance with the terms of the OECD Council Decision establishing a Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste. These Guidelines are in compliance with the IAEA Revised Definition and Recommendations of 1978, for applying the London Dumping Convention to radioactive waste, and are intended for application under the responsibility of the appropriate national authorities of countries participating in the NEA Mechanism

  19. The quality and quantity of runoff and groundwater in two overburden dumps undergoing pyritic oxidation

    International Nuclear Information System (INIS)

    Daniel, J.A.; Harries, J.R.; Ritchie, A.I.M.

    1983-01-01

    The quality and quantity of runoff and seepage water from two waste rock dumps at the abandoned uranium mine at Rum Jungle, N.T., have been monitored over various time intervals since 1975. Both dumps contain pyrite which is oxidising and solubilising trace metals within the dumps. Results are presented for the quality and quantity of runoff from both dumps measured in the 1980-81 wet season. The rainfall/runoff characteristics of the two dumps measured during this wet season are similar and in good agreement with measurements made in previous wet seasons. Pollution loads in runoff were only a few per cent of pollution loads in water percolating through to the base of the dumps. The rainfall/runoff characteristics and the dominance of pollution loads in water percolating through the dumps are likely to apply to other similar waste rock dumps

  20. Anthropogenic Pollutants in Extracts from Maritsa Iztok Dumps

    Science.gov (United States)

    Stefanova, Maya; Milakovska, Zlatka; Marinov, Stefan

    2017-12-01

    Coals are suspected for many human health problems and are an object of the new discipline - “medical geology”. Potential human health risk of organic compounds with coal/lignite provenance includes endocrine disruption, nephrotoxicity, cancer, etc. Recent investigations proved that different organic components, i.e. hydrocarbons, phenols etc. move through/release out of the dump area as a result of alteration processes of the organic matter (OM) caused by the wash-out and/or drainage processes. The timeliness of the present study is based on the scarcity of information on organic geochemistry of dump materials from open pit coal mines and weathered lignites in particular. The limited number of studies on dumps clarifies that even for the “short” time span (some tens of years) in geological point of view, processes of transformation of the extractable OM are detectable. The secondary phases, a result of the OM transformations, move through and out of the dump area and could be potential contaminants for the surface/underground waters and soils in the area. Another environmental problem comes from the air-born VOCs and products of the modern chemical industry. By GC-MS in the slightly polar fractions of the chloroform extracts of dump samples a broad set of components was determined, i.e. phthalates (dominant), i-propyl palmitate, i-propyl myristate, n-hexyl benzoates, etc. These organic contaminants could be regarded more likely as anthropogenic (originating from plasticizers, industrial pollutants, etc.). Presently, it seems that the identified compounds do not represent an acute toxic risk from an environmental viewpoint. However, some compounds could raise concerns and further attention is needed to be focused on them.

  1. Omega spectrometer ready for SPS beams

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Two different beams arrive into the Omega magnet: - a tagged photon beam for a charm search - experiment WA4 by the Bonn-CERN-Daresbury-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield Collaboration; - a separated hadron beam, at first for a beam-dump experiment - WA12 by the Birmingham-CERN-Ecole Polytechnique-MPI, Munich-Neuchâtel Collaboration. Beams of either negative or positive pions or kaons, protons or antiprotons, all at an energy around 40 GeV were made to impinge on a copper target where a shower of hadrons was produced and, on occasion, two muons which before detection passed through an iron absorber (not visible here). WA12 was completed in February 1977. At the centre, on top of the superconducting magnet, the hut containing the TV cameras, These observe the particle events occurring in the spark chambers in the magnet below.

  2. Protection coverage parameters indentification for uranium tailing dumps

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Akhmedov, M.Z.

    2012-01-01

    This article is devoted to protection coverage parameters indentification for uranium tailing dumps. Authors noticed that many tailing dumps In Tajikistan do not correspond to modern requirements of territories remediation published by IAEA and current norms of the Republic of Tajikistan. The most dangerous is radionuclide migration i.e., distribution of radioactive substances beyond the uranium tailing dumps territories. One of the basic distribution ways is atmospheric migration. At the same time potentially dangerous factors are: dust rising from open surfaces is the source for contamination distribution to neighboring territories; direct external exposure of public located in close distance to the sites; radioactive gas radon exhalation originating a threat if radionuclides penetration to the human body through breathing passages. Different methods of tailing's negative impact minimization, including coverage with neutral soil layer, coverage with fine-ground worked-out bentonite clay were proposed.

  3. Assessment of the Influence of Dredge Spoil Dumping on the Seafloor Geological Integrity

    Directory of Open Access Journals (Sweden)

    Joonas J. Virtasalo

    2018-04-01

    Full Text Available The European Marine Strategy Framework Directive requires the development of suitable indicators for regular reporting on the environmental state and achievement of a good environmental status of EU's marine waters by 2020. The development of indicators for determining seafloor integrity and its possible disturbance by human activities have so far largely ignored the geological properties of seafloor. This paper presents a study of Vuosaari and Uusikaupunki-D offshore dumping sites in Finland, the northern Baltic Sea. Full coverage multibeam bathymetry and relative backscatter data, and a number of sediment cores were collected over the sites. The areas covered by dumped dredge spoil stand out in the multibeam images because of their irregular surface and elevated backscatter. The short gravity cores were studied for lithology, and in 1-cm slices for 137Cs activity, organic content, and grain size distribution. The dumped material is represented in the cores by the gravelly mud lithofacies with massive texture and angular coarse particles. The dumped material is coarser, less sorted and has higher kurtosis compared to natural sediment due to the admixing of blasted rock during the dredging activities, and limited sorting during fall through the water column upon dumping. Dispersed dredge spoil, which was suspended in the water column during the dumping activities or reworked from the dumped material mounds and redistributed along the seafloor soon thereafter, was deposited over a wide area as a thin layer that is not necessarily readily identifiable by visual inspection in the cores. Cesium activity helped distinguish the dumped material from the 137Cs-enriched natural sediments deposited after the 1986 Chernobyl disaster. Considering that the dumped material at many of the coring sites in the Vuosaari dumping area is covered by natural sediment, it probably is largely stable. In contrast, dumped material at the shallower Uusikaupunki-D site has

  4. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  5. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  6. Sea-dumped chemical weapons: environmental risk, occupational hazard.

    Science.gov (United States)

    Greenberg, M I; Sexton, K J; Vearrier, D

    2016-01-01

    Chemical weapons dumped into the ocean for disposal in the twentieth century pose a continuing environmental and human health risk. In this review we discuss locations, quantity, and types of sea-dumped chemical weapons, related environmental concerns, and human encounters with sea-dumped chemical weapons. We utilized the Ovid (http://ovidsp.tx.ovid.com) and PubMed (http://www.pubmed.org) search engines to perform MEDLINE searches for the terms 'sea-dumped chemical weapons', 'chemical warfare agents', and 'chemical munitions'. The searches returned 5863 articles. Irrelevant and non-English articles were excluded. A review of the references for these articles yielded additional relevant sources, with a total of 64 peer-reviewed articles cited in this paper. History and geography of chemical weapons dumping at sea: Hundreds of thousands of tons of chemical munitions were disposed off at sea following World War II. European, Russian, Japanese, and United States coasts are the areas most affected worldwide. Several areas in the Baltic and North Seas suffered concentrated large levels of dumping, and these appear to be the world's most studied chemical warfare agent marine dumping areas. Chemical warfare agents: Sulfur mustard, Lewisite, and the nerve agents appear to be the chemical warfare agents most frequently disposed off at sea. Multiple other type of agents including organoarsenicals, blood agents, choking agents, and lacrimators were dumped at sea, although in lesser volumes. Environmental concerns: Numerous geohydrologic variables contribute to the rate of release of chemical agents from their original casings, leading to difficult and inexact modeling of risk of release into seawater. Sulfur mustard and the organoarsenicals are the most environmentally persistent dumped chemical agents. Sulfur mustard in particular has a propensity to form a solid or semi-solid lump with a polymer coating of breakdown products, and can persist in this state on the ocean floor

  7. Regularities of restoration of plant cover on the dumps of the Kuznetsk Basin

    Directory of Open Access Journals (Sweden)

    A. N. Kupriyanov

    2016-04-01

    Full Text Available The article considers the issues of the restoration vegetation on the dumps of the coal enterprises of the Kuznetsk Basin. Studies have shown that the dumps have a wide range of environmental conditions and are potentially suitable for establishment of plants. To negative environmental factors at the mine dumps include the lack of productive moisture, failed penetration, contrasting temperature regime on the different elements of the relief, and low potential fertility of the embryonic soils. Positive – high humidity in the depressions, the high content of fine-grained deposits in the lower part of the elephant dumps, excessive accumulation of snow in the winter on separate dumping sites. On disturbed lands identified eight technogenic ecotopes, characterized by various microrelief, moisture level, amount of fine fractions of technogenic eluvium determining favorable, moderately favorable and unfavorable conditions for vegetation of disturbed land. Selected three stages of syngenesis: pioneer stage, simple plant communities and complex plant communities. The stage of zonal phytocenosis on the dumps was not detected. The basis of diagnostic signs consists of the projective cover, the nature of the host plants, the number of species part of the zonal species. The selected criteria are universal and can be applicable to most dumps. Speed of syngenetic succession does not depend on calendar age of the dumps, and environmental conditions, which are formed on separate sites.

  8. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    Science.gov (United States)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining

  9. Egg dumping by predatory insects

    Czech Academy of Sciences Publication Activity Database

    Corbani, A. C.; Ferrer, A.; Dixon, Anthony F. G.; Hemptinne, J. L.

    2011-01-01

    Roč. 36, č. 3 (2011), s. 290-293 ISSN 0307-6962 Institutional research plan: CEZ:AV0Z60870520 Keywords : Egg dumping * ladybird beetles * oocyte resorption * trophic egg Subject RIV: EH - Ecology, Behaviour Impact factor: 1.330, year: 2011

  10. Emittance measuring unit for 100% duty factor linac injector beams

    Energy Technology Data Exchange (ETDEWEB)

    Shubaly, M R; Pachner, J Jr; Ormrod, J H; Ungrin, J; Schriber, S O [ed.

    1976-11-01

    A description is given of a system to measure the emittance of a 750 keV 100 mA dc proton beam suitable for injection into a 100% duty factor linear accelerator. A relatively slowly pulsed 45/sup 0/ magnet switches the beam to a beam dump inside the emittance measuring unit for approx. 10 s. A fast pulsed 5/sup 0/ magnet then deflects the beam to a multiple aperture ''pepper-pot'' plate for 300 ..mu..s. Beamlets passing through the plate travel 520 mm and produce a pattern on a scintillator screen. A photograph of the pattern is analyzed to determine beam emittance. Preliminary results on low current beams show a gross increase in the emittance in the horizontal plane.

  11. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  12. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  13. Beam chopper development at LAMPF

    International Nuclear Information System (INIS)

    Hutson, R.L.; Cooke, D.W.; Heffner, R.H.; Schillaci, M.E.; Dodds, S.A.; Gist, G.A.

    1986-01-01

    In order to reduce pileup limitations on μSR data rates, a fast chopper for surface muon beams was built and tested at LAMPF. The system allowed one muon at a time to be stopped in a μSR sample in the following way: A surface beam from the LAMPF Stopped Muon Channel was focused through a crossed-field beam separator and onto a chopper slit. With the separator E and B fields adjusted properly, the beam could pass through the slit. The beam to the μSR sample was turned on or off (chopped) rapidly by switching the high voltage applied to the separator plates on or off within approximately 500 ns; with the E field off, the B field deflected the beam, dumping it near the slit. We demonstrated that, with improved electronics, we will be able to stop a single muon in a μSR sample as frequently as once every 20 μs and that data rates for the system can be a factor of five higher than is attainable with unchopped beams. The observed positron contamination of the beam was less than five percent, and the ratio of the muon rate with beam on to the rate with beam off was 1540

  14. Beam chopper development at LAMPF

    International Nuclear Information System (INIS)

    Hutson, R.L.; Cooke, D.W.; Heffner, R.H.; Schillaci, M.E.; Dodds, S.A.; Gist, G.A.

    1986-01-01

    In order to reduce pileup limitations on μSR data rates, a fast chopper for surface muon beams was built and tested at LAMPF. The system allowed one muon at a time to be stopped in a μSR sample in the following way: A surface beam from the LAMPF Stopped Muon Channel was focused through a crossed-field beam separator and onto a chopper slit. With the separator E and B fields adjusted properly, the beam could pass through the slit. The beam to the μSR sample was turned on or off (chopped) rapidly by switching the high voltage applied to the separator plates on or off within approximately 500 ns; with the E field off, the B field deflected the beam, dumping it near the slit. We demonstrated that, with improved electronics, we will be able to stop a single muon in a μSR sample as frequently as once every 20 μs and that data rates for the system can be a factor of five higher than is attainable with unchopped beams. The observed positron contamination of the beam was less than five percent, and the ratio of the muon rate with beam on to the rate with beam off was 1540. (orig.)

  15. Pithouses or ritual dumps? On Late Bronze and Early Iron Age’s material context type in the South of the Iberian Peninsula. The dump of Cortijo Riquelme (Almería

    Directory of Open Access Journals (Sweden)

    José Luis LÓPEZ CASTRO

    2017-12-01

    Full Text Available Cortijo Riquelme is a Late Bronze and Early Iron Age’s archaeological dump in the South East of the Iberian Peninsula which belongs to the so called pithouses. This traditional interpretation has been rejected by recent critical studies. Following this positions, the paper analyzes the mentioned dump, which mainly contained Late Bronze and very ancient Phoenician imported pottery, showing the introduction of Phoenician wine and the service for its consumption. A comparison is done with other similar dumps distributed in the South of the Iberian peninsula from Late Bronze Age, though the majority are dated during the early centuries if the 1st millennium bc, coinciding with the Phoenician colonization. Another Mediterranean dumps from Crete, Cyprus, Sicily and North Africa related with feasts help to propose an interpretation for the dump of Cortijo Riquelme and others of the same type, in which the ritual deposit of the containers used in feasts should contribute to the formation of dumps, in a context of increasing competition of local elites in processes of social differentiation.

  16. Down in the dumps - cheerfully

    International Nuclear Information System (INIS)

    Ruhmer, W.T.

    1984-01-01

    Scavenging gold and uranium from the sands dumps and slimes dams is a highly profitable operation. In a few pages the author summarises some of the permutations and combinations of the various processes employed by South African concerns to achieve economic results

  17. Modeling of beam-induced damage of the LHC tertiary collimators

    Directory of Open Access Journals (Sweden)

    E. Quaranta

    2017-09-01

    Full Text Available Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC, which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β^{*} and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  18. Modeling of beam-induced damage of the LHC tertiary collimators

    Science.gov (United States)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  19. Københavns Kommunes indsats mod social dumping - målopfyldelsesevaluering

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Baadsgaard, Kelvin

    2017-01-01

    Evaluering af indsatsen i Københavns Kommune for at imødegå social dumping ved hjælp af målopfyldelses-model......Evaluering af indsatsen i Københavns Kommune for at imødegå social dumping ved hjælp af målopfyldelses-model...

  20. Northwest Russia and the Dumping of Radioactive Waste: The London Convention Implemented

    Energy Technology Data Exchange (ETDEWEB)

    Stokke, Olav Schram

    1997-12-31

    The `Polar Oceans and the Law of the Sea Project`, POLOS, is a three-year international research project in international law and international relations. This report is one of the publications under POLOS. The subject is the Soviet dumping of radioactive waste in the Barents and Kara Seas. The most intensely radioactive waste is a number of submarine reactors still containing high-level spent fuel. Some of this dumping violated Soviet commitments to the 1972 London Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, and this is the starting point of the report. The discussion focuses on how international regimes may affect the domestic implementation in member states, that is, how international agreements can be converted into behavioural adaptation on the part of target groups. Soviet and later Russian management of nuclear waste in the north has been significantly influenced by regulations and programmes generated under international dumping instruments. These international programmes have been supported by the active participation of the Navy itself in the belief that they would lead to transfer of technology and financial resources to Russia from the West. Inspection of military nuclear waste management is largely left to the Northern Fleet. As for monitoring, measurements were for a long time not taken near the dumping sites. As for regulations, the Northern Fleet continued dumping long into the 1990s without permission. Regarding compliance stimulation, foreign support has helped the Northern Fleet avoid dumping. 113 refs.