WorldWideScience

Sample records for beam dump design

  1. Beam dumps design and local radiation protection at TERA synchrotron.

    Science.gov (United States)

    Porta, A; Campi, F; Agosteo, S

    2005-01-01

    The realisation of the National Center of Hadrontherapy was funded by the Italian Government in 2002. The Centre will be built in the area of Pavia (Italy). The synchrotron designed in the framework of this programme will accelerate protons and carbon ions up to 250 MeV and 400 MeV u(-1), respectively. Some of the main aspects which were taken into account in the design of the acceleration system are the patient's safety and the beam control. From this point of view an important role is played by the beam dumps in the synchrotron ring and upstream of the extraction system. In particular, an horizontal and a vertical beam dump will be installed in the synchrotron ring: the former will be used for lowering the beam intensity and the latter for beam abortion. The dump at the extraction will absorb the particles during the mounting and the falling ramps of the synchrotron magnetic cycle, thus extracting only the flat top of the ion spill. Beam dumps can produce intense fields of secondary radiation (neutrons, charged light-hadrons and photons) and high rates of induced activity, since they can absorb the beam completely. Usually they have to be shielded to protect the electronics during machine operation and to attenuate the radiation dose below the limits imposed by the law when the personnel access to the synchrotron hall. The part of the shielding design of the beam dumps concerning with the acceleration of protons was made using Monte Carlo simulations with the FLUKA code. Both induced activity and secondary radiation were taken into account. The shields against secondary radiation produced by carbon ions were designed, referring only to secondary neutrons, taking double-differential distributions from the literature as sources for the FLUKA simulations. The induced activity from carbon ions interactions was estimated analytically, using the data generated by the EPAX 2 code. The dose-equivalent rates from the induced radionuclides were calculated at 1 m from the

  2. The International Linear Collider beam dumps

    OpenAIRE

    Appleby, R.; Keller, L; Markiewicz, T.; Seryi, A.; Sugahara, R.; Walz, D.

    2006-01-01

    The ILC beam dumps are a key part of the accelerator design. At Snowmass 2005, the current status of the beam dump designs were reviewed, and the options for the overall dump layout considered. This paper describes the available dump options for the baseline and the alternatives and considers issues for the dumps that require resolution.

  3. RIA Fragmentation Line Beam Dumps

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W

    2003-08-08

    The Rare Isotope Accelerator project involves generating heavy-element ion beams for use in a fragmentation target line to produce beams for physics research. The main beam, after passing through the fragmentation target, may be dumped into a beam dump located in the vacuum cavity of the first dipole magnet. For a dump beam power of 100 kW, cooling is required to avoid excessive high temperatures. The proposed dump design involves rotating cylinders to spread out the energy deposition and turbulent subcooled water flow through internal water cooling passages to obtain high, nonboiling, cooling rates.

  4. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  5. The design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    Science.gov (United States)

    Paterson, J. A.; Koehler, G.; Wells, R. P.

    1981-10-01

    To test neutral beam sources up to 170 keV, 65 Amps, with 30 second beam on times, actively cooled beam dumps for both the neutral and ionized particles are required. The dumps should be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/sq cm anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on two different panel designs. The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies.

  6. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  7. The design of the electron beam dump unit of Turkish Accelerator Center (TAC)

    Science.gov (United States)

    Cite, L. H.; Yilmaz, M.

    2016-03-01

    The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in the bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.

  8. Detailed mechanical design of the LIPAc beam dump radiological shielding

    OpenAIRE

    Nomen Escoda, Oriol; Mollá, Joaquin; Sanmartí, Manel; José I. Martínez; Arranz, Fernando; Iglesias, Daniel; Barrera, German; Brañas, Beatriz; Ogando, Francisco

    2013-01-01

    The LIPAc is a 9 MeV, D+ linear prototype accelerator for the validation of the IFMIF accelerator design. The high intensity, 125 mA CW beam is stopped in a copper cone involving a high production of neutrons and gamma radiation and activation of its surface. The beam stopper is surrounded by a shielding to attenuate the resulting radiation so that dose rate values comply with the limits at the different zones of the installation. The shielding includes for that purpose polyethylene rings...

  9. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  10. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  11. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  12. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Science.gov (United States)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-03-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  13. SPIDER beam dump as diagnostic of the particle beam

    Science.gov (United States)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  14. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  15. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parro Albeniz, M.

    2015-07-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  16. Design and simulations of the neutron dump for the back-streaming white neutron beam at CSNS

    Science.gov (United States)

    Zhang, L. Y.; Jing, H. T.; Tang, J. Y.; Wang, X. Q.

    2016-10-01

    For nuclear data measurements with a white neutron source, to control the background at the detector is a key issue. The neutron dump which locates at the end of the white neutron beam line at CSNS has a very important impact to the neutron and gamma backgrounds in the endstation. A sophisticated neutron dump was designed to reduce the backgrounds to the level of about 10-8 relative to the neutron flux. In this paper, the method to suppress both neutron and gamma backgrounds near a white-spectrum neutron dump is introduced. The optimized geometry structure and materials of the dump are described, and the neutron and gamma space distributions have been calculated by using the FLUKA code for different operation settings which are defined by beam spots of Φ30 mm, Φ60 mm and 90 mm×90 mm, respectively.

  17. Replacing the Beam Dump at the Booster

    CERN Multimedia

    2013-01-01

    The PS Booster Dump, designed in the 1960’s to cope with beam energies in the order of 800 MeV, has been dismantled and replaced with a new one, capable of withstanding the 2 GeV beam provided by the upcoming LINAC4 at CERN. This video shows the installation of that new dump core inside a one-metre diameter cavity, surrounded by five shielding rings made of concrete and steel. It is the culmination of months of preparation, an interdisciplinary work involving several teams from the Engineering, Beams and Technology Departments, as well as the collaboration and supervision of radio-protection experts.

  18. Replacing the Beam Dump at the Booster

    CERN Multimedia

    2013-01-01

    The PS Booster Dump, designed in the 1960’s to cope with beam energies in the order of 800 MeV, has been dismantled and replaced with a new one, capable of withstanding the 2 GeV beam provided by the upcoming LINAC4 at CERN. This video shows the installation of that new dump core inside a one-metre diameter cavity, surrounded by five shielding rings made of concrete and steel. It is the culmination of months of preparation, an interdisciplinary work involving several teams from the Engineering, Beams and Technology Departments, as well as the collaboration and supervision of radio-protection experts.

  19. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  20. Radiation Protection Study for the Shielding Design of the LINAC4 Beam Dump at CERN

    CERN Document Server

    Blaha, Jan

    2013-01-01

    The aim of this study is to determine an optimal shielding of the LINAC4 beam dump fulfilling the radiation protection requirements. Therefore a detailed Monte-Carlo calculation using FLUKA particle transport and interaction code has been performed and the relevant physics quantities, such as particle fluences, neutron energy spectra, residual and prompt dose rates, air and water activation have been evaluated for different LINAC4 operation phases.

  1. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  2. Design aspects related to the reliability of the control architecture of the LHC beam dump kicker systems

    CERN Document Server

    Carlier, E; Bobbio, P; Gräwer, G; Marchand, A; Uythoven, J; Verhagen, H

    2003-01-01

    The LHC beam dump extraction kicker system consists per ring of 15 magnets and their pulse generators. Their task is to extract the beams on request, over the whole operational beam energy range and synchronously with the beam abort gap. This operation must be fail-safe to avoid damage to accelerator equipment by undesired beam losses. The control system of the LHC beam dump kickers will be based on a modular architecture composed of different subsystems, each with a specific function like slow control, beam energy tracking, beam abort gap synchronisation, fast pulse signal monitoring and post-mortem data acquisition. Depending on the required functionality, the subsystems will be based either on passive fault-tolerant redundant hardware solutions or on active fail-safe hardware and software solutions. In addition, for the most critical subsystems like the beam energy tracking and the beam abort gap synchronisation, two redundant solutions based on different technologies will be implemented in order to preven...

  3. Neutral beam dump with cathodic arc titanium gettering.

    Science.gov (United States)

    Smirnov, A; Krivenko, A S; Murakhtin, S V; Savkin, V Ya; Korepanov, S A; Putvinski, S

    2011-03-01

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 × 10(17) H∕(cm(2) s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is ∼0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  4. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  5. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  6. Chevron beam dump for ITER edge Thomson scattering system

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  7. Enhancement of resistance against high energy laser pulse injection with chevron beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, Eiichi; Hatae, Takaki [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Bassan, Michele; Vayakis, George; Walsh, Michael [ITER Organization, St Paul Lez Durance Cedex, Provence 13067 (France); Itami, Kiyoshi [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. • The absorbed energy density is the correct figure of the laser-induced damage. • Experiments validated the design of a new beam dump called chevron beam dump. • The chevron beam dump would have much longer lifetime than conventional beam dumps. - Abstract: The laser beam dump of the Edge Thomson scattering (ETS) in ITER is being developed and a new type of beam dump called the chevron beam dump was proposed recently. The laser-induced damage on the surface is one of the most severe issues to be overcome. The key concept of the chevron beam dump is to reduce the laser energy absorption per unit area and to absorb the laser beam gradually. The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. It was clarified that the absorbed (rather than incident) energy density of the laser pulses should be the correct figure of merit for the laser-induced damage. Therefore, the concept of the chevron beam dump design, that minimizes the absorbed laser energy density per unit area, was validated experimentally. The chevron beam dump enables us to extend its lifetime drastically relative to conventional beam dumps. Potential methods to improve the laser-induced damage threshold (LIDT) are also discussed in this paper.

  8. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  9. Calculation of New Beam Dump Shielding for CYCIAE-100

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 100 MeV high intensity cyclotron, CYCIAE-100, places a demanding requirement on the collection device to accept the proton beam. According to the original design, the beam dump would be settled in the cyclotron vault. It uses pure aluminum as the target material,

  10. Collective Deceleration: Toward a Compact Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.-C.; /Munich, Max Planck Inst. Quantenopt.; Tajima, T.; Habs, D.; /Munich, Max Planck Inst. Quantenopt. /Munich U.; Chao, A.W.; /SLAC; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  11. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  12. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  13. SEA participation in the design of local shielding the beam dump of IFMIF; Participacion de sea en el diseno del blindaje local del beam dumpo de IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, P.

    2012-07-01

    The beam dump is a very important source of radiation both during the operation and after the throttle stop, so it requires the availability of a local shielding to minimize dose in the neighboring rooms during operation as well as the dose to the teams maintenance during shutdown.

  14. Collective deceleration: Toward a compact beam dump

    Directory of Open Access Journals (Sweden)

    H.-C. Wu

    2010-10-01

    Full Text Available With the increasing development of laser electron accelerators, electron energies beyond a GeV have been reached and higher values are expected in the near future. A conventional beam dump based on ionization or radiation loss mechanisms is cumbersome and costly, not to mention the radiological hazards. We revisit the stopping power theory of high-energy charged particles in matter and discuss the associated problem of beam dumping from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than that described by the Bethe-Bloch formulas and associated with multiple electromagnetic cascades in solids. At the same time, the tenuous density of the gas makes the radioactivation negligible. Such a compact beam dump without radioactivation works well for short and dense bunches, as they are typically generated from a laser wakefield accelerator. In addition, the nonuniform transverse wakefield can induce microbunching of the electron bunch by betatron oscillation. The microstructure could serve as a prebunched source for coherent radiation or feeding a free electron laser.

  15. Performance Improvements of the SPS Internal Beam Dump for the HL-LHC Beam

    CERN Document Server

    Velotti, F M; Bracco, C; Carlier, E; Chiggiato, P; Ferreira Somoza, J A; Goddard, B; Meddahi, M; Senaj, V; Uythoven, J

    2013-01-01

    The SPS internal beam dump has been designed for beam specifications well below the HL-LHC ones, and for modes of operation which may not be adequate for the HL-LHC era. The present system suffers from several limitations in the allowed intensity and energy range, and its vacuum performance affects nearby high-voltage kicker systems. In this report the limitations of the internal beam dump system are reviewed, and the possible improvements compared. Preliminary upgrade proposals are presented, taking into consideration the expected operational HL-LHC parameters.

  16. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  17. Challenges and plans for injection and beam dump

    CERN Document Server

    Barnes, M; Mertens, V; Uythoven, J

    2015-01-01

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  18. Beam dump experiment at future electron–positron colliders

    Directory of Open Access Journals (Sweden)

    Shinya Kanemura

    2015-12-01

    Full Text Available We propose a new beam dump experiment at future colliders with electron (e− and positron (e+ beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of e± beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at e+e− linear collider significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  19. Uncoupled thermoelasticity solutions applied on beam dumps

    Science.gov (United States)

    Ouzia, A.; Antonakakis, T.

    2016-06-01

    In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions

  20. Thermal, mechanical and fluid flow aspects of the high power beam dump for FRIB

    Science.gov (United States)

    Avilov, Mikhail; Aaron, Adam; Amroussia, Aida; Bergez, Wladimir; Boehlert, Carl; Burgess, Thomas; Carroll, Adam; Colin, Catherine; Durantel, Florent; Ferrante, Paride; Fourmeau, Tiffany; Graves, Van; Grygiel, Clara; Kramer, Jacob; Mittig, Wolfgang; Monnet, Isabelle; Patel, Harsh; Pellemoine, Frederique; Ronningen, Reginald; Schein, Mike

    2016-06-01

    The Facility for Rare Isotope Beams (FRIB) under construction at Michigan State University is based on a 400 kW heavy ion accelerator and uses in-flight production and separation to generate rare isotope beams. The first section of the fragment separator houses the rare isotope production target, and the primary beam dump to stop the unreacted primary beam. The experimental program will use 400 kW ion beams from 16O to 238U. After interaction with the production target, over 300 kW in remaining beam power must be absorbed by the beam dump. A rotating water-cooled thin-shell metal drum was chosen as the basic concept for the beam dump. Extensive thermal, mechanical and fluid flow analyses were performed to evaluate the effects of the high power density in the beam dump shell and in the water. Many properties were optimized simultaneously, such as shell temperature, mechanical strength, fatigue strength, and radiation resistance. Results of the analyses of the beam dump performance with different design options will be discussed. For example, it was found that a design modification to the initial water flow pattern resulted in a substantial increase in the wall heat transfer coefficient. A detailed evaluation of materials for the shell is in progress. The widely used titanium alloy, Ti-6Al-4V (wt%), is presently considered as the best candidate, and is the subject of specific tests, such as studies of performance under heavy ion irradiation.

  1. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  2. Performance Studies of the SPS Beam Dump System for HL-LHC Beams

    CERN Document Server

    Velotti, FM; Bracco, C; Carlier, E; Cerutti, F; Cornelis, K; Ducimetiere, L; Goddard, B; Kain, V; Losito, R; Maglioni, C; Meddahi, M; Pasdeloup, F; Senaj, V; Steele, GE

    2014-01-01

    The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described.

  3. Results from the LHC Beam Dump Reliability Run

    CERN Document Server

    Uythoven, J; Carlier, E; Castronuovo, F; Ducimetière, L; Gallet, E; Goddard, B; Magnin, N; Verhagen, H

    2008-01-01

    The LHC Beam Dumping System is one of the vital elements of the LHC Machine Protection System and has to operate reliably every time a beam dump request is made. Detailed dependability calculations have been made, resulting in expected rates for the different system failure modes. A 'reliability run' of the whole system, installed in its final configuration in the LHC, has been made to discover infant mortality problems and to compare the occurrence of the measured failure modes with their calculations.

  4. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  5. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  6. Notes on dumping gold beam in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  7. The LHC Beam Dumping System Trigger Synchronisation and Distribution System

    CERN Document Server

    Antoine, A; Voumard, N

    2005-01-01

    Two LHC beam dumping systems (LBDS) will fast-extract the counter-rotating beams safely from the LHC collider during setting-up of the accelerator, at the end of a physics run and in case of emergencies. They consist of 15 fast pulsed magnets per ring for beam extraction from the accelerator combined with 10 fast pulsed magnets for horizontal and vertical beam dilution. Dump requests will come from 3 different sources: the machine protection system for emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These spontaneously issued dump requests will be synchronised with the 3 µs beam abort gap within a fail-safe trigger synchronisation unit (TSU) based on a digital phase lock loop (DPLL) locked on the beam revolution frequency with a maximum phase error of 40 ns. Afterwards, the synchronised trigger pulse will be distributed to the fast pulsed magnet high voltage generators through a redundant fault tolerant trigger distribution system based on the...

  8. ALPtraum: ALP production in proton beam dump experiments

    CERN Document Server

    Döbrich, Babette; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai

    2016-01-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments su...

  9. ALPtraum. ALP production in proton beam dump experiments

    Energy Technology Data Exchange (ETDEWEB)

    Doebrich, Babette [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in 'dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  10. Design of a detector to study associated charm production in the SHiP beam dump facility

    CERN Document Server

    Iuliano, Antonio; Di Crescenzo, Antonia

    A dedicated experiment has been proposed by the SHiP Collaboration, to study associated charm production and decay of charmed hadrons. In this thesis we report the first design of such an experiment. This work has been carried out within the Naples neutrino group that participates to the SHiP experiment. The aim of the experiment designed in this thesis is to measure the differential associated charm production cross sections with respect to the angular and energy spectra of charmed particles. This measurement could give the acceptance of the SHiP detector for hidden particles and tau neutrinos, which are produced from charmed hadron decays.

  11. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    Science.gov (United States)

    Biebel, O.; Braibant, S.; de Jong, S. J.; Hammarström, R.; Hilgers, R.; Honma, A. K.; Jovanovic, P.; Lauber, J. A.; Neal, H. A.

    1998-02-01

    The radiation monitoring and beam dump system of the OPAL silicon microvertex detector is described. This system was designed and implemented to measure the radiation dose over time scales varying from a millisecond to a year, and to induce a fast beam dump if the radiation exceeds a given threshold in dose and in dose rate within a very small time interval. The system uses reverse-biased silicon diodes as sensitive elements and good stability is achieved by AC coupling of the amplifiers to the sensors.

  12. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  13. Irradiation Effects on RIA Fragmentation Cu Beam Dump

    CERN Document Server

    Reyes, Susana; Boles, Jason; Stein, Werner; Wirth, Brian

    2005-01-01

    Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks...

  14. Search for Dark Matter with LHC proton Beam Dump

    CERN Document Server

    Kumar, Ashok; Sharma, Archana

    2016-01-01

    Dark Matter (DM) comprising particles in the mass range of a few MeV to GeV is waiting to be explored, given the many theoretical models accommodating cosmological abundance. We hereby propose an experiment with the LHC proton beam of 7 TeV striking onto the beam dump target, emitting neutrinos and possibly, Dark Matter candidates. This experiment would also permit to observe signatures involving elastic and inelastic processes involving DM candidates, electrons and strongly interacting particles present in nuclei of the dump target. There will be residual neutrino background present in each of these signatures, hence the proposed experimental detector sub-systems would be such that they would involve as final states, elastically or inelasticity scattered, standard model particles. The bump or the excess in the tail of the kinematic distributions will eventually give us glimpse of presence of new particles which could possibly be Dark Matter candidates. Given the parameters of the LHC machine, the sensitivity...

  15. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  16. Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort

    CERN Document Server

    Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T

    2008-01-01

    The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.

  17. Beam dumps, stoppers and Faraday cups at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Walz, D.R.; McFarlane, A.; Lewandowski, E.

    1989-04-01

    This presentation features most of the beam dumps and stoppers necessary to absorb and dissipate SLC e/sup +-/ beams with transverse sizes from several tens to a few hundred microns (..mu..m). Solutions are based on electromagnetic cascade shower calculations for N = 5 /times/ 10/sup 10/ e/bunch and momenta ranging from 1.2 GeV/c in the damping ring transport systems to 50 GeV/c in the arcs matching sections and the Final Focus region. 3 refs., 2 figs.

  18. Calculation of the energy deposition in a water beam dump

    CERN Document Server

    Schönbacher, Helmut

    1975-01-01

    The energy deposition per interacting proton in GeV/cm/sup 3/ and the star density in star/cm/sup 3/ have been calculated in a water cylinder with a Monte Carlo computer program. These calculations permit the estimation of the temperature rise, induced radioactivity, etc., in beam dumps of high energy accelerator and storage rings. The calculation assumed a cylinder of different diameters and lengths and an incident proton beam energy of 20, 200, 300 and 400 GeV. (5 refs).

  19. Design of a Compact Dump Resistor System for LCD Magnet

    CERN Document Server

    Gaddi, A

    2010-01-01

    In this technical note we suggest a possible solution for the choice of the detector magnet dump resistor. The push-pull scenario for Linear Collider Detectors imposes new solutions for magnet powering and protection lines, else than what developed for LHC detectors. The magnet dump resistor is the protecting equipment that has the function of extracting a significant amount of magnetic stored energy, from the coil winding to a dump. The LCD magnet has to move with the experiment from the garage to the beam position, so it has to be compact and reliable at the same time. We make here a proposal for a passive water-cooled dumper, we calculate the minimum amount of water required, the resistor hot-spot temperature, the overall mechanical design. The electrical part is not covered by this note, as it can be assumed that the solutions adopted by LHC detector magnets, in terms of quench instrumentation, energy extraction and maximum voltage, are not significantly affected by the push-pull scenario.

  20. Beam Commissioning and Performance Characterisation of the LHC Beam Dump Kicker Systems

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Kain, V; Magnin, N

    2010-01-01

    The LHC beam dump system was commissioned with beam in 2009. This paper describes the operational experience with the kicker systems and the tests and measurements to qualify them for operation. The kicker performance was characterized with beam by measurements of the deflection angles, using bunches extracted at different times along the kicker sweep. The kicker performance was also continuously monitored for each dump with measurement and analysis of all kick pulses, allowing diagnostic of errors and of long-term drifts. The results are described and compared to the expectations.

  1. 40 CFR 228.15 - Dumping sites designated on a final basis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Dumping sites designated on a final... DUMPING CRITERIA FOR THE MANAGEMENT OF DISPOSAL SITES FOR OCEAN DUMPING § 228.15 Dumping sites designated on a final basis. (a)(1) The sites identified in this section are approved for dumping the...

  2. Radiation-hard Beam Position Detector for Use in the Accelerator Dump Lines

    CERN Document Server

    Degtiarenko, Pavel; Popov, Vladimir

    2005-01-01

    Proper transport of the electron beam with over 0.5MW of power to the beam dump is a prerequisite for operations at Jefferson Lab. Operations has relied on imaging the beam on a beam viewer located at the entrance to the beam dump. The large beam size at the dump entrance, due to beam scattering in the experimental target, sometimes results in no observable image on the view-screen. Chemical vapor deposited silicon carbide (CVD) material with its large thermal conductivity and high melting point is well suited for surviving the thermal effects of beam exposure with this power density. We are exploring the CVD properties and how it can be used as a robust beam position monitor. Results of some beam tests with 0.5MW beams will be presented.

  3. Heavy Flavour Cascade Production in a Beam Dump

    CERN Document Server

    2015-01-01

    SHiP will use a 400~GeV/c proton beam impinging on a several interaction length long Molybdenum target. Heavy flavour hadrons produced in the dump can decay semi-leptonically, which can produce both the Heavy Neutral Leptons as signal, but also potential background from muons and neutrinos. The absolute rate of heavy flavour production is taken from measurements. Pythia is used to predict the phase space distribution of the charm and beauty hadrons which are produced both in the primary interaction of the 400~GeV/c proton and in interactions of the secondaries produced in the cascade. The full cascade production of both HNL and background is compared to that reported in the SHiP Technical Proposal, where only the primary $pN$ interactions were taken into account.

  4. Automatic Post-Operational Checks for the LHC Beam Dump System

    CERN Document Server

    Gallet, E; Baggiolini, V; Carlier, E; Goddard, B; Kain, V; Lamont, M; Magnin, N; Verhagen, H; Uythoven, J

    2008-01-01

    In order to ensure the required level of reliability of the LHC beam dump system a series of post-operational checks must be performed after each dump action. This paper describes the various data handling and data analysis systems which are required internally and at different levels of the LHC control system, for postoperational checks, and the experience from the commissioning of the equipment where these systems were used to analyse the dump kicker performance.

  5. The Performance of the New TCDQ System in the LHC Beam Dumping Region

    CERN Document Server

    Presland, Andrew; Weterings, Wim

    2005-01-01

    The superconducting quadrupole magnet Q4 and other downstream LHC machine elements risk destruction in the event of a beam dump that is not synchronised with the abort gap. In order to protect these elements, a single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and iron shield TCDQM, will be installed in front of Q4. This protection system should also intercept spurious particles in the beam abort gap to prevent quenches from occurring during regular beam aborts, and must also intercept the particles from the secondary halo during low beam lifetime without provoking quenches. The conceptual design of the TCDQ system is briefly presented, with the load conditions and performance criteria. The FLUKA simulations are described results discussed in the context of the expected performance levels for LHC operation.

  6. Status of the OPAL microvertex detector and new radiation monitoring and beam dump system

    Science.gov (United States)

    Jong, Sijbrand de

    1998-11-01

    The status of the OPAL Phase III microvertex detector is discussed briefly. This is followed by a more detailed description of the OPAL microvertex detector radiation monitoring and beam dump system. This system measures AC currents induced by radiation on each passing of the beams in silicon diodes mounted close to the microvertex detector front-end electronics. Examples are shown for incidents leading to a beam dump trigger. The integrated radiation dose is also discussed.

  7. FLUKA simulations and measurements for a dump for a 250 GeV/c hadron beam

    CERN Document Server

    Agosteo, S; Para, A; Silari, Marco; Ulrici, L

    2001-01-01

    FLUKA is a Monte Carlo code, transporting hadron and lepton cascades from several TeV down to a few keV (thermal energies for neutrons). The code is widely employed in various applications, such as particle detector design, shielding, radiation therapy, high energy physics experiments. The FLUKA results were compared with experimental data of dose equivalent and spectral fluence of neutrons produced by a 250 GeV/c proton/pion beam impinging on a beam dump installed in one of the secondary beam lines of the CERN super proton synchrotron (SPS). The dump is a shielding structure made of iron/concrete, designed to absorb completely the high-energy beam. The actual geometry of the clump was modeled in the simulations and the scoring of neutron track length was performed at various locations around it. Importance sampling and Russian Roulette mere used as variance reduction techniques. The simulations results were compared with experimental measurements performed with a Bonner sphere system for neutron spectrometry...

  8. Segmented Beam Dump for Time Resolved Spectrometry on a High Current Electron Beam

    CERN Document Server

    Lefèvre, T; Bravin, E; Braun, H H

    2008-01-01

    In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities induces transient effects such that the head of the pulse is accelerated twice as much as the rest of the pulse. Three spectrometer lines are installed along the linac with the aim of measuring energy spread versus time with a 20ns resolution. A major difficulty is due to the high power carried by the beam which imposes extreme constraints of thermal and radiation resistances on the detector. This paper presents the design and the performances of a simple and easy-to-maintain device, called ‘segmented dump'. In this device, the particles are stopped inside metallic plates and the deposited charge is measured in the same way as in Faraday cups. Simulations were carried out with the Monte Carlo code ‘FLUKA' to evaluate the problems arising from the energy deposition and to find ways to prevent or reduce them. The detector resolution was optimized by an adequate choice of material and thickness of the...

  9. Beam dump system design for 100 MeV high intensity proton cyclotron%100 MeV强流质子回旋加速器束流调试靶系统

    Institute of Scientific and Technical Information of China (English)

    贾先禄; 张天爵; 王峰; 吕银龙; 魏素敏; 毕远杰; 宋国芳; 解怀东

    2013-01-01

    中国原子能科学研究院正在建造一台100 MeV,200 μA的强流质子回旋加速器,需要使用束流调试靶来调试加速器,为此设计了一套束流功率为20 kW的质子束调试系统.对该系统的束流输运线、靶材料的选取、靶结构、水冷计算、屏蔽结构等作了介绍.给出了整条束流输运线的匹配计算结果;通过对质子打靶后的中子产额、角通量、靶的活化等方面的比较,最终选用铝作为靶材料;根据加速器引出束流能量和功率,设计了分层式靶结构,同时对靶进行了水冷计算;打靶产生的出射粒子平均能量较高,导致产生的辐射剂量很大,考虑到对环境与工作人员的影响及费用,需要对其进行局部屏蔽,给出了屏蔽计算结果及屏蔽结构的设计.%A 100 MeV proton cyclotron, referred to as CYCIAE-100, is designed to provide proton beams with energy up to 200 μA. When the cyclotron is under commissioning, a beam dump is required to measure the beam with a power of 20 kW. The paper introduces the beam line, target material selecting, target configuration, cooling calculation and the local shielding structure. The calculation result of the beam line matching is given. After comparing the neutron yield, flux angle and thermal activation of the targets of different materials by the proton targeting, the aluminum is selected as the target material. Based on the extraction beam energy and power of the cyclotron, a layered target configuration is designed, and the cooling calculation result is presented. The average energy of the emergent particle produced by the proton targeting is relatively high, so it will produce large radiation dose. Considering the harmful effect on the environment and personnel, the local shielding is selected for use. The calculation result and configuration of the local shielding are also presented in the paper.

  10. Design and R and D for manufacturing the MITICA Neutraliser and Electron Dump

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sartori, Emanuele; Gonzalez, Winder [Università degli Studi di Padova, Padova (Italy); Tiso, Andrea; Trevisan, Lauro; Zaccaria, Pierluigi [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy)

    2013-10-15

    Highlights: ► Analyses and verifications supporting the design of the MITICA Neutraliser and Electron Dump. ► Instrumentation and control systems have been analysed for protection, calorimetry, interlock. ► Assembly procedure, acceptance tests, and RH compatibility have been verified. ► R and D activities for design validation are ongoing to demonstrate the technical feasibility. -- Abstract: One MeV negative particle beam accelerated in the beam source of the ITER Neutral Beam Injectors (NBIs) will be neutralised in the Neutraliser gas cell. Four narrow beam channels are foreseen in the Neutraliser where the neutralisation process will occur with controlled gas pressure being the four channels delimited by five copper wall panels. Stray particles will be dumped on the copper Electron Dump and CuCrZr leading edges to be installed at the Neutraliser frontal section: the Electron Dump will intercept stray electrons in order to reduce the cryo pump thermal load; enhanced heat transfer in subcooled boiling conditions will occur in the panel leading edges with twisted tapes as turbulence promoters. The copper panels will be thermally controlled by means of embedded cooling circuits; thermo-hydraulic and thermo-mechanical analyses and verifications have been carried out considering several load combinations and satisfying the design rules as for ITER structural design criteria for in vessel components. Gas flow analyses have been carried out with molecular flow in the in-vessel vacuum environment to evaluate the gas pressure profile along the beam line also considering the presence of the Electron Dump. Furthermore, transient analyses of the gas flow inside channels have been performed to simulate the effect of last valve closure; analysis results demonstrate that gas flow variations can be detected by thermal measurements. The Neutraliser assembly, installation, and positioning inside the vacuum vessel have been verified considering alignment requirements and

  11. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  12. The 40 kA dumping system for the ISR beams

    CERN Document Server

    Schnuriger, J C

    1975-01-01

    It has been necessary to build a fast and reliable system which can dump the beam whenever safety monitors indicate a hardware fault or a beam loss. The beam in each ISR is dumped by means of four fast pulsed magnets deflecting the particles vertically onto an absorber block situated in the same long straight section. The 0.75 Omega , 40 kA pulse generator now energizing the four fast pulsed magnets is described with special attention to the principles and technological solutions which were adopted in order to achieve the necessary reliability of the system for each type of operation, and particularly during long colliding beam experiments. (7 refs).

  13. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    CERN Document Server

    Battaglieri, M; De Vita, R; Izaguirre, E; Krnjaic, G; Smith, E; Stepanyan, S; Bersani, A; Fanchini, E; Fegan, S; Musico, P; Osipenko, M; Ripani, M; Santopinto, E; Taiuti, M; Schuster, P; Toro, N; Dalton, M; Freyberger, A; Girod, F -X; Kubarovsky, V; Ungaro, M; De Cataldo, G; De Leo, R; Di Bari, D; Lagamba, L; Nappi, E; Perrino, R; Carpinelli, M; Sipala, V; Aiello, S; Bellini, V; De Napoli, M; Giusa, A; Mammoliti, F; Leonora, E; Noto, F; Randazzo, N; Russo, G; Sperduto, M; Sutera, C; Ventura, C; Barion, L; Ciullo, G; Contalbrigo, M; Lenisa, P; Movsisyan, A; Spizzo, F; Turisini, M; De Persio, F; Cisbani, E; Fanelli, C; Garibaldi, F; Meddi, F; Urciuoli, G M; Pereira, S Anefalos; De Sanctis, E; Hasch, D; Lucherini, V; Mirazita, M; Montgomery, R; Pisano, S; Simi, G; D'Angelo, A; Lanza, L Colaneri L; Rizzo, A; Schaerf, C; Zonta, I; Calvo, D; Filippi, A; Holtrop, M; Peremuzyan, R; Glazier, D; Ireland, D; McKinnon, B; Afanasev, D Sokhan A; Briscoe, B; Kalantarians, N; Fassi, L El; Weinstein, L; Beltrame, P; Murphy, A; Watts, D; Zana, L; Hicks, K

    2014-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m$^3$ segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 10$^{22}$ electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies ($\\sim$1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m$^3$ prototype based on the s...

  14. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  15. Further Study of Prompt Neutrino Production in a Proton Beam Dump Experiment

    CERN Multimedia

    2002-01-01

    In previous beam dump experiments at CERN, the production of prompt @n^e and @n(@m) in proton-nucleus collisions has been established. A difference in the prompt @n^e and @n(@m) fluxes which would indicate new physics, cannot be ruled out on the basis of existing data.\\\\ \\\\ The main aim of this beam dump experiment is to check with much better accuracy the equality of the prompt @n^e and @n(@m) fluxes. The use of two copper dumps with average density 1 and 1/3 permits the separation of the prompt and conventional neutrino fluxes by extrapolation to infinite density. The dumps will be located at the downstream end of the decay tunnel of the SPS neutrino facility.

  16. Thermal analysis and neutron production characteristics of a low power copper beam dump-cum-target for LEHIPA

    Science.gov (United States)

    Sawant, Y. S.; Thomas, R. G.; Verma, V.; Agarwal, A.; Prasad, N. K.; Bhagwat, P. V.; Saxena, A.; Singh, P.

    2016-01-01

    Monte Carlo simulations of heat deposition and neutron production have been carried out for the low power beam dump-cum-target for the 20 MeV Low Energy High Intensity Proton Accelerator (LEHIPA) facility at BARC using GEANT4 and FLUKA. Thermal analysis and heat transfer calculations have also been carried out using the computational fluid dynamics code CFD ACE+. In this work we present the details of the analysis of the low power beam dump-cum-target designed for conditioning of the accelerator upto a maximum power of 600 kW with a duty cycle of 2% which corresponds to an average power of 12 kW in the first phase.

  17. 78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-06-27

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site... Entities B. Background C. Disposal Volume Limit D. Site Management and Monitoring Plan E. Ocean Dumping.... Ocean Dumping Site Designation Criteria In proposing to designate these Sites, the EPA assessed...

  18. Radiation Simulations and Development of Concepts for High Power Beam Dumps, Catchers and Pre-separator Area Layouts for the Fragment Separators for RIA

    CERN Document Server

    Ronningen, Reginald; Beene, James R; Blideanu, Valetin; Boles, Jason; Bollen, Georg; Burgess, Thomas; Carter, Ken; Conner, David L; Gabriel, Tony A; Geissel, Hans; Gomes, Itacil C; Heilbronn, Lawrence; Iwase, Hiroshi; Lawton, Don; Levand, Anthony; Mansur, Louis; Momozaki, Yoichi; Morrissey, David; Nolen, Jerry; Reed, Claude; Remec, Igor; Rennich, Mark; Reyes, Susana; Sherrill, Bradley; Stein, Werner; Stoyer, Mark; Stracener, Dan; Wendel, Mark; Zeller, Al

    2005-01-01

    The development of high-power beam dumps and catchers, and pre-separator layouts for proposed fragment separators of the Rare-Isotope Accelerator (RIA) facility are important in realizing how to handle the 400 kW in the primary beam. We will present examples of pre-conceptual designs of beam dumps, fragment catchers, and the pre-separator layout. We will also present examples of ongoing work on radiation simulations using the heavy-ion-transport code PHITS, characterizing the secondary radiation produced by the high-power ion beams interacting with these devices. Results on radiation heating of targets, magnet coils, associated hardware and shielding, component activation, and levels of radiation dose will be presented. These initial studies will yield insight into the impact of the high-power dissipation on fragment separator design, remote handling concepts, nuclear safety and potential facility hazard classification, shielding design, civil construction design, component design, and material choices. Furth...

  19. Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project

    CERN Document Server

    Uythoven, Jan; Goddard, Brennan; Hrivnak, Jan; Lechner, Anton; Maciariello, Fausto; Mereghetti, Alessio; Perillo Marcone, Antonio; Vittal Shetty, N; Shetty, Nikhil Vittal; Steele, Genevieve

    2014-01-01

    The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfil the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.

  20. Geotechnical aspects for the optimization of dump design at Chinh Bac Mine waste dump in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Fuchsschwanz, M.; Ziegler, M. [Aachen Univ., Aachen (Germany). Dept. of Geotechnical Engineering; Ahmad, S.; Fernandez, J.B.P.; Martens, P.N. [Aachen Univ., Aachen (Germany). Inst. of Mining Engineering; Deissmann, G. [Brenk Systemplanung GmbH, Aachen (Germany)

    2009-07-01

    Vietnam's Quang Ninh province is one of the country's most important coal producing regions. Several open pit mines are being operated in the area by Nui Beo Coal Company (NBCC). The construction of large waste dumps for overburden removed by blasting have led to environmental problems at the mining sites, including dust emissions from mining and dumping operations; ground and surface water contamination by acid mine drainage; and slope stability problems caused by heavy rainfall and dump movements. This paper discussed investigations regarding the influence of the dump layout on slope stability and erosion. The paper described the project site and ongoing activities for the development of optimized stabilization and rehabilitation concepts with a particular focus on geotechnical aspects. The site was described in terms of coal and waste rock production; Chinh Bac waste rock dump; crack mapping; material properties of dumped material; density; and settlements. Ongoing activities focus on the effect of benches on slope stability; influence of benches on erosion; and layered dumping. 7 refs., 4 figs.

  1. Physics and engineering design of the accelerator and electron dump for SPIDER

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Serianni, G.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2011-06-01

    The ITER Neutral Beam Test Facility (PRIMA) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size ion source with low voltage extraction called SPIDER and a full size neutral beam injector at full beam power called MITICA. SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H- and in a later stage D- ions) from an ITER size ion source. The main requirements of this experiment are a H-/D- extracted current density larger than 355/285 A m-2, an energy of 100 keV and a pulse duration of up to 3600 s. Several analytical and numerical codes have been used for the design optimization process, some of which are commercial codes, while some others were developed ad hoc. The codes are used to simulate the electrical fields (SLACCAD, BYPO, OPERA), the magnetic fields (OPERA, ANSYS, COMSOL, PERMAG), the beam aiming (OPERA, IRES), the pressure inside the accelerator (CONDUCT, STRIP), the stripping reactions and transmitted/dumped power (EAMCC), the operating temperature, stress and deformations (ALIGN, ANSYS) and the heat loads on the electron dump (ED) (EDAC, BACKSCAT). An integrated approach, taking into consideration at the same time physics and engineering aspects, has been adopted all along the design process. Particular care has been taken in investigating the many interactions between physics and engineering aspects of the experiment. According to the 'robust design' philosophy, a comprehensive set of sensitivity analyses was performed, in order to investigate the influence of the design choices on the most relevant operating parameters. The design of the SPIDER accelerator, here described, has been developed in order to satisfy with reasonable margin all the requirements given by ITER, from the physics and engineering points of view. In particular, a new approach to the compensation of unwanted beam deflections inside the accelerator

  2. Reliability Analysis of the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System

    CERN Document Server

    Filippini, R

    2013-01-01

    The Trigger Synchronisation and Distribution System (TSDS) is one of the core components of the LHC Beam Dumping System and an essential element to guarantee that operation with the beam is always safe. The most critical failure of the TSDS is the missed trigger and re-trigger of at least 2 MKD magnets. This report presents the modelling and analysis of the likelihood of the TSDS to develop such a failure scenario during operation. The analysis returns the Safety Integrity Level (SIL) for the TSDS, and the list of the most important contributors. Sensitivity analysis is performed with respect to the failure parameters and with respect to failure dependencies among components that are in the redundant sets. This includes a study of the common cause failures that are in the TSDS architecture. The results in terms of SIL for the TSDS will be compared to the SIL for the previous architecture which was operational until the Long Shutdown 1. Recommendations in order to obtain higher safety by design will also be gi...

  3. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; et al.

    2017-02-08

    The MiniBooNE-DM collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8 GeV Booster proton beam in a dedicated run with $1.86 \\times 10^{20}$ protons delivered to a steel beam dump. The MiniBooNE detector, 490~m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to an 90\\% confidence limit on the dark-matter cross section parameter, $Y=\\epsilon^2\\alpha^\\prime(m_\\chi/m_v)^4 \\lesssim10^{-8}$, for $\\alpha^\\prime=0.5$ and for dark-matter masses of $0.01beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  4. Beam dumping ghost signals in electric sweep scanners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, M.P.; /SNS Project, Oak Ridge /Tennessee U.; Leitner, M.; /LBL, Berkeley; Moehs, D.P.; /Fermilab; Keller, R.; /LBL, Berkeley; Welton, R.F.; /SNS Project, Oak Ridge

    2004-12-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  5. The control system for the LEP beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, E. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Aimar, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Bretin, J.L. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Marchand, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Mertens, V. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Verhagen, H. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland))

    1994-12-15

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))

  6. Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.

    Science.gov (United States)

    Batell, Brian; Essig, Rouven; Surujon, Ze'ev

    2014-10-24

    We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.

  7. Dark Matter Search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Univ. of Genova (Italy). National Institute for Nuclear Physics. et al

    2016-07-05

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the results obtained with a prototype detector running at INFN-LNS (Italy), while the beam-related background has been evaluated by GEANT4 Monte Carlo simulations. The proposed experiment will be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments in the MeV-GeV DM mass range by up to two orders of magnitude.

  8. A concept of the photon collider beam dump

    CERN Document Server

    Shekhtman, L I

    2014-01-01

    Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long, pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.

  9. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    CERN Document Server

    Battaglieri, M; Caiffi, B; Celentano, A; De Vita, R; Fanchini, E; Marsicano, L; Musico, P; Osipenko, M; Panza, F; Ripani, M; Santopinto, E; Taiuti, M; Bellini, V; Bondí, M; De Napoli, M; Mammoliti, F; Leonora, E; Randazzo, N; Russo, G; Sperduto, M; Sutera, C; Tortorici, F; Baltzell, N; Dalton, M; Freyberger, A; Girod, F X; Kubarovsky, V; Pasyuk, E; Smith, E S; Stepanyan, S; Ungaro, M; Whitlatch, T; Izaguirre, E; Krnjaic, G; Snowden-Ifft, D; Loomba, D; Carpinelli, M; Sipala, V; Schuster, P; Toro, N; Essig, R; Wood, M H; Holtrop, M; Paremuzyan, R; De Cataldo, G; De Leo, R; Di Bari, D; Lagamba, L; Nappi, E; Perrino, R; Balossino, I; Barion, L; Ciullo, G; Contalbrigo, M; Lenisa, P; Movsisyan, A; Spizzo, F; Turisini, M; De Persio, F; Cisbani, E; Garibaldi, F; Meddi, F; Urciuoli, G M; Hasch, D; Lucherini, V; Mirazita, M; Pisano, S; Simi, G; D'Angelo, A; Lanza, L; Rizzo, A; Schaerf, C; Zonta, I; Filippi, A; Fegan, S; Kunkel, M; Bashkanov, M; Beltrame, P; Murphy, A; Smith, G; Watts, D; Zachariou, N; Zana, L; Glazier, D; Ireland, D; McKinnon, B; Sokhan, D; Colaneri, L; Pereira, S Anefalos; Afanasev, A; Briscoe, B; Strakovsky, I; Kalantarians, N; Weinstein, L; Adhikari, K P; Dunne, J A; Dutta, D; Fassi, L El; Ye, L; Hicks, K; Cole, P; Dobbs, S; Fanelli, C

    2016-01-01

    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This proposal presents the MeV-GeV DM discovery potential for a $\\sim$1 m$^3$ segmented CsI(Tl) scintillator detector placed downstream of the Hall A beam-dump at Jefferson Lab, receiving up to 10$^{22}$ electrons-on-target (EOT) in 285 days. This experiment (Beam-Dump eXperiment or BDX) would be sensitive to elastic DM-electron and to inelastic DM scattering at the level of 10 counts per year, reaching the limit of the neutrino irreducible background. The distinct signature of a DM interaction will be an electromagnetic shower of few hundreds of MeV, together with a reduced activity in the surrounding active veto counters. A detailed description of the DM particle $\\chi$ production in the dump and subsequent interaction in the detector has been performed by means of Monte Carlo simulations. Different approaches have been used to evaluate the expected backgrounds: the cosmogenic background has been extrapolated from the result...

  10. Neutron measurements around a beam dump bombarded by high energy protons and lead ions

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Silari, M.; Ulrici, L.

    2001-02-01

    Measurements of the spectral fluence and the ambient dose equivalent of secondary neutrons produced by 250 GeV/ c protons and 158 GeV/ c per nucleon lead ions were performed at CERN around a thick beam dump. The experimental results obtained with protons were compared with calculations performed with the FLUKA Monte Carlo code. As the available Monte Carlo codes do not transport particles with mass larger than one atomic mass unit, it is shown that for high energy heavy ions, estimates can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number.

  11. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    Energy Technology Data Exchange (ETDEWEB)

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  12. Prompt neutrino production in the 1982 beam dump experiment at CERN

    CERN Document Server

    Bostock, Paul

    Principles of beam dump experiments are reviewed and the 1982 beam dump at CERN using the Big European Bubble Chamber is described in detail. Neutrino events have been detected using both the bubble chamber and its associated electronic detectors. Prompt event rates are established for Vμ , Ṽμ , Ve and Ṽe . The prompt rates are consistent with lepton universality. The charm production cross-section required to explain the prompt electron-(anti)neutrino signal is approximately 16-105/μb per nucleon, assuming linear dependence of this cross-section on nucleon number. This range of values reflects the fact that we have not been able to find a model which is consistent with all aspects of the data. The neutral to charged current ratio for electron-neutrinos is found to be 0.23 ±0.16. The expected number of tau-neutrino events is estimated and kinematic and visual searches for tau-neutrino interactions are described. One visually detected candidate is described in detail. No positive evidence for a tau-ne...

  13. Estimation of the neutron field around the HERA proton beam dump

    Science.gov (United States)

    Möhring, H.-J.; Noack, K.; Zazula, J. M.

    1991-01-01

    In this article we present estimates for the neutron fluences above 0.1 MeV to be expected around the proton beam dump of the HERA machine at DESY at 1000 GeV incident energy. The most important details of the absorber and tunnel layout are approximately modeled using the Cartesian and combinatorial geometry packages. In our method a volume neutron source for MORSE Monte Carlo neutron transport calculations has been determined from star densities obtained from the FLUKA Monte Carlo hadronic shower code, combined with estimates of low-energy neutron yields based on results of intranuclear cascade calculations and of the statistical model of evaporation. The calculated neutron fluences are in reasonable agreement with results obtained by the FLUNEV version of the FLUKA code, currently developed at DESY, as well as with estimates based on empirically determined conversion factors between star density and neutron fluence. Additionally, we present neutron spectra and the corresponding dose equivalents as well as the absorbed doses in beam dump materials obtained from the FLUNEV code.

  14. SHiP: a new multipurpose beam-dump experiment at the SPS

    Directory of Open Access Journals (Sweden)

    Dijkstra H.B.

    2016-01-01

    to be constructed beam-dump facility at the CERN SPS. The SHiP Technical Proposal has been submitted to the CERN SPS Committee in April 2015. The 400 GeV/c proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 × 1020 proton on target in five years. A detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c2. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutral Leptons (HNL. The sensitivity to HNL will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Integrated in SHiP is an Emulsion Cloud Chamber, already used in the OPERA experiment, which will allow to study active neutrino cross-sections and angular distributions. In particular SHiP can distinguish between vτ and v̄τ, and their deep inelastic scattering cross sections will be measured with statistics three orders of magnitude larger than currently available.

  15. 78 FR 37759 - Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation

    Science.gov (United States)

    2013-06-24

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 228 Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule and draft Environmental...

  16. New exclusion limits for dark gauge forces from proton Bremsstrahlung in beam-dump data

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Brunner, Juergen [Aix-Marseille Univ. CNRS/IN2P3 (France). CPPM

    2013-11-15

    We re-analyze published proton beam dump data taken at the U70 accelerator at IHEP Serpukhov with the {nu}-calorimeter I experiment in 1989 to set mass-coupling limits for dark gauge forces. The corresponding data have been used for axion and light Higgs particle searches before. More recently, limits on dark gauge forces have been derived from this data set, considering a dark photon production from {pi}{sup 0}-decay. Here we determine extended mass and coupling exclusion bounds for dark gauge bosons ranging to masses m{sub {gamma}'} of 624 MeV at admixture parameters {epsilon}{approx_equal}10{sup -6} considering high-energy Bremsstrahlung of the U-boson of the initial proton beam and different detection mechanisms.

  17. 75 FR 22524 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Science.gov (United States)

    2010-04-29

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of... according to the ocean dumping regulations at 40 CFR 227.13 and guidance developed by EPA and the Corps. In... acceptable for ocean dumping without further testing. Dredged material which does not meet the criteria of...

  18. 75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...

    Science.gov (United States)

    2010-02-04

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of... any person, EPA and the Corps must evaluate the project according to the ocean dumping regulatory criteria (40 CFR part 227) and authorize disposal. EPA independently evaluates proposed dumping and has...

  19. A high current sinusoidal pulse generator for the diluter magnets of the LHC beam dump system

    CERN Document Server

    Vossenberg, Eugène B; Ducimetière, L; Schröder, G H

    2000-01-01

    CERN is constructing the Large Hadron Collider (LHC), a superconducting accelerator that will collide protons at a center of mass energy of 14 TeV. The two colliding beams will each store an energy of up to 540 MJ, which must be safely deposited within one beam revolution of 89 mu s on two external absorbers located about 700 m from the extraction points at the end of dedicated extraction tunnels. To avoid evaporation of the graphite absorber material by the very high energy density of the incident beams, the deposition area of the beams on the absorber front face will be increased. This is done by a pair of sinusoidally powered orthogonal magnet systems producing approximately an e-shape figure of about 35 mm diameter, with a minimum velocity of 10 mm/ mu s during the dumping process. The pulse generators of the horizontally and vertically deflecting diluter magnets are composed of capacitor banks, discharged by stacks of solid state closing switches. They are connected to the magnets by 28 m long low induct...

  20. The Validity of the Weizsacker-Williams Approximation and the Analysis of Beam Dump Experiments

    CERN Document Server

    Liu, Yu-Sheng; Miller, Gerald A

    2016-01-01

    Beam dump experiments have been aimed at searching for new particles or putting constraint limits on their existence by comparing null results with expectations based on the cross section calculated using the Weizsacker-Williams (WW) and other approximations to simplify the phase space integral and amplitude calculation. We examine the validity of the widely used WW approximation along with other popular assumptions. Using scalar boson production as an example, we perform the complete calculation to obtain the cross section and the resulting number of particles produced without such approximations, apply these results to exclusion plot and data fitting, and examine the error when using these commonly used approximations. We find that there could be more than 100\\% errors in cross sections and 20\\% errors in exclusion plot boundaries for certain parameters. In the event of a discovery, the mass and coupling of the new boson as determined by the approximate and exact calculations could differ at more than the $...

  1. SHiP: a new multipurpose beam-dump experiment at the SPS

    Science.gov (United States)

    Dijkstra, H. B.

    2016-11-01

    SHiP is an experiment to look for very weakly interacting particles at a new to be constructed beam-dump facility at the CERN SPS. The SHiP Technical Proposal has been submitted to the CERN SPS Committee in April 2015. The 400 GeV/c proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2 × 1020 proton on target in five years. A detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c2. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutral Leptons (HNL). The sensitivity to HNL will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Integrated in SHiP is an Emulsion Cloud Chamber, already used in the OPERA experiment, which will allow to study active neutrino cross-sections and angular distributions. In particular SHiP can distinguish between vτ and v¯τ, and their deep inelastic scattering cross sections will be measured with statistics three orders of magnitude larger than currently available.

  2. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  3. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  4. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  5. Dumping Syndrome

    Science.gov (United States)

    ... System & How it Works Digestive Diseases A-Z Dumping Syndrome What is dumping syndrome? Dumping syndrome occurs when food, especially sugar, ... the colon and rectum—and anus. What causes dumping syndrome? Dumping syndrome is caused by problems with ...

  6. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  7. Conceptual design of Dump resistor for Superconducting CS of SST-1

    Science.gov (United States)

    Roy, Swati; Raj, Piyush; Panchal, Arun; Pradhan, Subrata

    2017-04-01

    Under upgradation activities for SST-1, the existing resistive central solenoid (CS) coil will be replaced with Nb3Sn based superconducting coil. Design of Central solenoid had been completed and some of the initiative has already taken for its manufacturing. The superconducting CS will store upto 3 MJ of magnetic energy per operation cycle with operating current upto 14 kA. During quench, energy stored in the coils has to be extracted rapidly with a time constant of 1.5 s by inserting a 20 mΩ dump resistor in series with the superconducting CS which is normally shorted by circuit breakers. As a critical part of the superconducting CS quench protection system, a conceptual design of the 20 mΩ dump resistor has been proposed. The required design aspects and a dimensional layout of the dump resistor for the new superconducting CS has been presented and discussed. The basic structure of the proposed dump resistor comprises of stainless steel grids connected in series in the form of meander to minimize the stray inductance and increase the surface area for cooling. Such an array of grids connected in series and parallel will cater to the electrical as well as thermal parameters. It will be cooled by natural convection. During operation, the estimated maximum temperature of the proposed dump resistor will raise upto 600 K.

  8. SHiP: a new multipurpose beam-dump experiment at the SPS.

    CERN Document Server

    Dijkstra, Hans

    2016-01-01

    SHiP is an experiment to look for very weakly interacting particles at a new to be constructed beam-dum p facility at the CERN SPS. The SHiP Technical Proposal has been submitted to the CERN SPS Committee in April 2015. The 400 GeV/c proton beam extracted from the SPS will be dumped on a heavy target with the aim of integ rating $2\\times 10^{20}$ proton on target in five years. A detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c$^2$. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutral Leptons (HNL). The sensitivity to HNL will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained...

  9. The ILC Beam Delivery System - Conceptual Design and RD Plans

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei; /SLAC

    2005-05-27

    The Beam Delivery System of the ILC has many stringent and sometimes conflicting requirements. To produce luminosity, the beams must be focused to nanometer size. To provide acceptable detector backgrounds, particles far from the beam core must be collimated. Unique beam diagnostics and instrumentation are required to monitor parameters of the colliding beams such as the energy spectrum and polarization. The detector and beamline components must be protected against errant beams. After collision, the beams must also be transported to the beam dumps safely and with acceptable losses. An international team is actively working on the design of the ILC Beam Delivery System in close collaboration. Details of the design, recent progress and remaining challenges will be summarized in this paper.

  10. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser.

    Science.gov (United States)

    Fröhlich, Lars; Casarin, Katia; Vascotto, Alessandro

    2015-02-01

    The authors examine the radiation field produced in the vicinity of the main beam dump of the FERMI free-electron laser under the impact of a 1.4-GeV electron beam. Electromagnetic and neutron dose rates are calculated with the Fluka Monte Carlo code and compared with ionisation chamber and superheated drop detector measurements in various positions around the dump. Experimental data and simulation results are in good agreement with a maximum deviation of 25 % in a single location.

  11. Search for Light Dark Matter Produced in a Proton Beam Dump

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Remington Tyler [Indiana Univ., Bloomington, IN (United States)

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  12. Measurements of Linac4 H(-) ion source beam with a magnetized Einzel lens electron dump.

    Science.gov (United States)

    Midttun, Øystein; Lettry, Jacques; Scrivens, Richard

    2014-02-01

    Linac4 is a part of the upgrade of CERN's accelerator complex for increased luminosity in the Large Hadron Collider (LHC). A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H(-) ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.

  13. Measurements of Linac4 H$^{-}$ ion source beam with a magnetized Einzel lens electron dump

    CERN Document Server

    Midttun, O; Scrivens, R

    2014-01-01

    Linac4 is a part of the upgrade of CERN’s accelerator complex for increased luminosity in the LHC. A new system to extract the ion beam from the plasma generator has been designed and tested, in order to improve the reliability and beam optics of the pulsed H- ion source. This paper presents the successfully implemented extraction system and three different beam measurements. The simulations compare well to the measurements and show that the plasma density was too low for the extraction system design during the measurements.

  14. Accelerator physics studies on the effects from an asynchronous beam dump onto the LHC experimental region collimators

    CERN Document Server

    Lari, L; Boccone, V; Bruce, R; Cerutti, F; Rossi, A; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A

    2012-01-01

    Asynchronous beam aborts at the LHC are estimated to occur on average once per year. Accelerator physics studies of asynchronous dumps have been performed at different beam energies and beta-stars. The loss patterns are analyzed in order to identify the losses in particular on the Phase 1 Tertiary Collimators (TCT), since their tungsten-based active jaw insert has a lower damage threshold than the carbon-based other LHC collimators. Settings of the tilt angle of the TCTs are discussed with the aim of reducing the thermal loads on the TCT themselves.

  15. Beam optical design of in-flight fragment separator for high-power heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yun, C.C.; Kim, Mi-Jung; Kim, D.G.; Song, J.S.; Kim, Myeong-Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Kim, J.W., E-mail: jwkim@ibs.re.kr [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Kim, J.R. [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Wan, W. [Accelerator Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States)

    2013-12-15

    Highlights: • An in-flight fragment separator is designed in beam optics using GICOSY, COSY Infinity, LISE++ and MOCADI. • High power primary beam is removed in the pre-separator employing four dipole magnets. • Different charge states of the primary and unwanted isotope beams help in reducing peak power density at the beam dump. -- Abstract: An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is {sup 238}U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.

  16. Light sgoldstino's interactions analysis and prospects for potential discovery in electron beam dump experiment at CERN SPS

    OpenAIRE

    Astapov, K. O.; Kirpichnikov, D. V.

    2016-01-01

    In the present paper we have discussed light sgoldstino in context of MSSM model. We have analyzed couplings of scalar sgoldstino to SM particles, namely to photons, $Z^0$ bosons, leptons and quarks. We also took into account the impact on those interactions of the admixture of lightest MSSM Higgs scalar in the sgoldstino state. The signal rate of rare decays at CERN electron beam dump experiment NA64 for the scalar sgoldstino has been estimated. Expected signal rate allowed us to exclude som...

  17. ITER neutral beam system US conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  18. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump 2, Monte Carlo simulations

    CERN Document Server

    Roesler, Stefan; Rokni, Sayed H; Taniguchi, Shingo

    2003-01-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators. (5 refs).

  19. Neutron energy and time-of-flight spectra behind the lateral shield of a high-energy electron accelerator beam dump. Part 2. Monte Carlo simulations

    CERN Document Server

    Roesler, S; Rokni, S H; Taniguchi, S

    2003-01-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  20. Design of an internal waste dump within the boundaries of the open pit

    OpenAIRE

    Panov, Zoran; Minov, Kirco; Karanakova Stefanovska, Radmila; Stojanov, Slobodan; Doneva, Blagica

    2011-01-01

    With the deepening of the open pit, the transport distances for the sterile mass and the ore increased. This paper deals with the formation of an internal waste dump within the boundaries of the open pit. The development of such waste dump should be in function of the space for disposing the waste according to existing situation on the field and the space for dumping. The internal waste dump will be used for permanent dumping and waste storage. Modern methods will be used to asses...

  1. DTM-based Design of Mine Waste Dump%基于DTM的矿山排土场设计

    Institute of Scientific and Technical Information of China (English)

    胡俊; 刘景秀; 李慧

    2013-01-01

    针对矿山排土场(废石场)设计的方法和要求,探讨了将地理信息系统的数字地面模型(digital terrain model,DTM)技术运用于矿山排土场的选址设计方案的可行性.以矿区地形数字高程模型以及排土场设计要素为依据,模拟出设计面的数字高程模型,并且计算出了相应的排土场容量.采用该技术可提高矿山排土场设计的工作效率并具有较高的准确性和智能化水平.%Based on the methods and requirements for the design of mining waste dump, digital terrain model (DTM) technology in the geographic information system was applied for choosing sit of mining waste dump. Digital elevation model of design surface was simulated according to mining area terrain digital elevation model and design elements of waste dump. The capacity of the waste dump were stimulated and calculated. This technique can be used to improve the efficiency of designing the mining waste dump in high accuracy and level of intelligence.

  2. Beam optical design of in-flight fragment separator for high-power heavy ion beam

    Science.gov (United States)

    Yun, C. C.; Kim, Mi-Jung; Kim, D. G.; Song, J. S.; Kim, Myeong-Jin; Kim, J. W.; Kim, J. R.; Wan, W.

    2013-12-01

    An in-flight fragment separator has been designed for the rare isotope science project (RISP) in Korea. A beam used for the design is 238U in the energy of 200 MeV/u with the maximum beam power of 400 kW. The use of high-power beam requires careful removal of the primary beam by pre-separator, for which its configuration was revised to employ four dipole magnets instead of two. Different configurations of the separator have been tested in search of optimal design in non-linear optics, which was complicated by the space needed for the target, beam dump and radiation shielding. Non-linear optical calculations have been carried out using GICOSY and COSY Infinity including the fringe fields of large-aperture quadrupole magnets. Correction of non-linear terms is made with multipole coils located inside the superconducting quadrupole magnets and by external multipole magnets. Beam simulations using LISE++ and MOCADI have been performed to consider the effects of multiple charge states of the primary and isotope beams produced at the target. Layout of the separator is being finalized, and detailed optics simulation will continue to refine its design.

  3. ION Production and RF Generation in the DARHT-II Beam Dump

    Science.gov (United States)

    2013-06-01

    kicker and quadrupole septum and then transported for several meters to a high Z material target for conversion to x-rays for radiography. The un...of the kicker . The bias dipole, collocated with the kicker , deflects the beam downward by about 1 to 1.5 o . The beam enters the horizontally...NM 87545, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S

  4. A Large Scintillating Screen for the LHC Dump Line

    CERN Document Server

    Lefèvre, T; Bravin, E; Burger, S; Goddard, B; Hutchins, S; Renaglia, T

    2008-01-01

    The 7 TeV proton beam from the LHC ring is ejected through a long transfer line to beam dump blocks, approximately 100m downstream of the ejection septa, a series of dilution kicker magnets provide a sweeping deflection spreading the extracted beam over a 40 cm diameter area on the face of the beam dump cores. During normal operation, the quality of each dump event must be recorded and verified. The so-called â€ワPost-Mortem” dataset will include information from the beam dumping system (logic signals, kicker pulses…) as well as from the beam diagnostics along the extraction lines. For this purpose, profile monitors in front of the dump blocks must be permanently available during machine operation. With more than 1014 protons stored in LHC, the energy deposited in the screen becomes an issue and thermalresistant materials have to be considered. In this paper, the design of this quite unusual device is presented. The different technical options considered for the choice of the screen material are ...

  5. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator

    Science.gov (United States)

    Kim, Y.; Choi, S.; Hong, I. S.

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  6. Social dumping

    DEFF Research Database (Denmark)

    Pedersen, Klaus

    2010-01-01

    bidrag til, at OK-2010 "landes" fredeligt, fordi aftalen giver fagforeningerne en væsentlig indrømmelse i indsatsen mod social dumping. Aftalen har rigtignok til formål at imødekomme et af fagbevægelsens centrale overenskomstkrav om nye redskaber i indsatsen mod "social dumping". Men hvad er det aftalen...

  7. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  8. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  9. ITER neutral beam system US conceptual design. Final vesion

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  10. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  11. A magnetized Einzel lens electron dump for the Linac4 H- ion source

    Science.gov (United States)

    Midttun, Ø.; Kalvas, T.; Kronberger, M.; Lettry, J.; Pereira, H.; Scrivens, R.

    2013-02-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H-) into CERN's Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H- and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  12. Dumping Syndrome

    Science.gov (United States)

    ... stomach move to your small intestine in an uncontrolled, abnormally fast manner. This is most often related to changes in your stomach associated with surgery. Dumping syndrome can occur after any stomach operation or removal of the esophagus (esophagectomy). Gastric bypass surgery for ...

  13. Diagnostics for High Power Targets and Dumps

    CERN Document Server

    Gschwendtner, E

    2012-01-01

    High power targets are generally used for neutrino, antiproton, neutron and secondary beam production whereas dumps are needed in beam waste management. In order to guarantee an optimized and safe use of these targets and dumps, reliable instrumentation is needed; the diagnostics in high power beams around targets and dumps is reviewed. The suite of beam diagnostics devices used in such extreme environments is discussed, including their role in commissioning and operation. The handling and maintenance of the instrumentation components in high radiation areas is also addressed.

  14. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  15. Dump assembly

    Science.gov (United States)

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  16. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  17. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  18. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  19. The CERN Beam Interlock System: Principle and Operational Experience

    CERN Document Server

    Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B

    2010-01-01

    A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...

  20. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  1. Media in the dump

    OpenAIRE

    Gabrys, Jennifer

    2006-01-01

    'Media in the Dump' examines the phenomenon of electronic waste through five locations, from sites of manufacture (Silicon Valley) to disposal (China). This essay is original in its interdisciplinary approach to the topic of electronic waste. It synthesises fieldwork and scholarship from technology to design and cultural studies. The structure for this essay is original in its surveying of five 'waste ecologies' that traverse the globe.

  2. LHC injection and dump protection

    CERN Document Server

    Bartmann, W; Bracco, C; Goddard, B; Kain, V; Rossi, A; Wollmann, D

    2010-01-01

    The machine protection against fast failures including injection or dump kickers relies on fixed and movable devices. Results will be shown from the low-intensity beam commissioning of the moveable injection protection devices in the SPS to LHC transfer lines and downstream of the LHC injection kickers, and of the LHC dump protection elements in IR6. This paper is almost exclusively focussing on the issues arising during the 2009 commissioning. The implications of these results and a commissioning status report with the planning for 2010 will be addressed.

  3. Design of Pre-Dumping Ring Spin Rotator with a Possibility of Helicity Switching for Polarized Positrons at the ILC

    CERN Document Server

    Malysheva, L I; Hartin, A; Kovalenko, V; List, B; Moortgat-Pick, G A; Riemann, S; Staufenbiel, F; Ushakov, A; Walker, N J

    2016-01-01

    The use of polarized beams enhance the possibility of the precision measurements at the International Linear Collider (ILC). In order to preserve the degree of polarization during beam transport spin rotators are included in the current TDR ILC Lattice. In this report some advantages of using a combined spin rotator/spin flipper are discussed. A few possible lattice designs of spin flipper developed at DESY in 2012 are presented.

  4. Progress in the MITICA beam source design

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, P.; Agostinetti, P.; Marcuzzi, D.; Pavei, M.; Pilan, N.; Rizzolo, A.; Sonato, P.; Spada, F.; Trevisan, L. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2012-02-15

    In the framework of the development of the ITER neutral beam (NB) system, a test facility is planned to be built in Padova. A full size prototype of the ITER heating NB injector (MITICA) shall be built and tested at full beam power (17 MW) as per ITER requirements. The design of the MITICA beam source has further progressed following updated optimization and overall integration criteria. In the paper, the major design choices and revisions are presented, together with some results of numerical analyses carried out in order to assess the electrostatic and thermo-mechanical behaviour of the source.

  5. Progress in the MITICA beam source design.

    Science.gov (United States)

    Zaccaria, P; Agostinetti, P; Marcuzzi, D; Pavei, M; Pilan, N; Rizzolo, A; Sonato, P; Spada, F; Trevisan, L

    2012-02-01

    In the framework of the development of the ITER neutral beam (NB) system, a test facility is planned to be built in Padova. A full size prototype of the ITER heating NB injector (MITICA) shall be built and tested at full beam power (17 MW) as per ITER requirements. The design of the MITICA beam source has further progressed following updated optimization and overall integration criteria. In the paper, the major design choices and revisions are presented, together with some results of numerical analyses carried out in order to assess the electrostatic and thermo-mechanical behaviour of the source.

  6. Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of a new scalar boson

    Science.gov (United States)

    Liu, Yu-Sheng; McKeen, David; Miller, Gerald A.

    2017-02-01

    Beam dump experiments have been used to search for new particles with null results interpreted in terms of limits on masses mϕ and coupling constants ɛ . However these limits have been obtained by using approximations [including the Weizsäcker-Williams (WW) approximation] or Monte-Carlo simulations. We display methods, using a new scalar boson as an example, to obtain the cross section and the resulting particle production numbers without using approximations or Monte-Carlo simulations. We show that the approximations cannot be used to obtain accurate values of cross sections. The corresponding exclusion plots differ by substantial amounts when seen on a linear scale. In the event of a discovery, we generate pseudodata (assuming given values of mϕ and ɛ ) in the currently allowed regions of parameter space. The use of approximations to analyze the pseudodata for the future experiments is shown to lead to considerable errors in determining the parameters. Furthermore, a new region of parameter space can be explored without using one of the common approximations, mϕ≫me. Our method can be used as a consistency check for Monte-Carlo simulations.

  7. Steel Tape-wound Cut Cores as Magnet Yokes for the Beam Dump Kickers of the Large Hadron Collider

    CERN Document Server

    Mayer, M; Jansson, U; Fox, D

    2004-01-01

    Fast pulsed magnets, also called kickers, are used in particle accelerators for beam injection, extraction and similar applications. To excite these magnets, typically current pulses with rise and fall times in the range of 100 ns to 10 µs, with pulse duration of up to 100 µs and amplitudes in the order of kilo Amperes, are used. The short rise time imposes low inductance circuits and high voltage operation. The yokes are usually made out of ferrite, with reaches field saturation at about 0.5 T.

  8. Dumping syndrome (image)

    Science.gov (United States)

    Dumping syndrome occurs when the contents of the stomach empty too quickly into the small intestine. The ... causing nausea, cramping, diarrhea, sweating, faintness, and palpitations. Dumping usually occurs after the consumption of too much ...

  9. Linac design for intense hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuan

    2009-12-14

    Based on the RFQ and H-type DTL structures, this dissertation is dedicated to study the beam dynamics in the presence of significantly strong space-charge effects while accelerating intense hadron beams in the low- and medium-{beta} region. Besides the 5 mA/30 mA, 17 MeV proton injector (RFQ+DTL) and the 125 mA, 40 MeV deuteron DTL of the EUROTRANS and IFMIF facilities, a 200 mA, 700 keV proton RFQ has been also intensively studied for a small-scale but ultra-intense neutron source FRANZ planned at Frankfurt University. The most remarkable properties of the FRANZ RFQ and the IFMIF DTL are the design beam intensities, 200 mA and 125 mA. A new design approach, which can provide a balanced and accelerated beam bunching at low energy, has been developed for intense beams. To design the IFMIF DTL and the injector DTL part of the EUROTRANS driver linac, which have been foreseen as the first real applications of the novel superconducting CH-DTL structure, intensive attempts have been made to fulfill the design goals under the new conditions. For the IFMIF DTL, the preliminary IAP design has been considerably improved with respect to the linac layout as well as the beam dynamics. By reserving sufficient drift spaces for the cryosystem, diagnostic devices, tuner and steerer, introducing SC solenoid lenses and adjusting the accelerating gradients and accordingly other configurations of the cavities, a more realistic, reliable and efficient linac system has been designed. On the other hand, the specifications and positions of the transverse focusing elements as well as the phase- and energy-differences between the bunch-center particle and the synchronous particle at the beginning of the {phi}{sub s}=0 sections have been totally redesigned. For the EUROTRANS injector DTL, in addition to the above-mentioned procedures, extra optimization concepts to coordinate the beam dynamics between two intensities have been applied. In the beam transport simulations for both DTL designs

  10. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    . Furthermore, the devised beam model is able account for the different levels of anisotropic elastic couplings which depend on the laminate lay-up. An optimization model based on multi-material topology optimization techniques is described. The design variables represent the volume fractions of the different...

  11. Free Electron Lasers using `Beam by Design'

    CERN Document Server

    Henderson, J R; McNeil, B W J

    2015-01-01

    Several methods have been proposed in the literature to improve Free Electron Laser output by transforming the electron phase-space before entering the FEL interaction region. By utilising `beam by design' with novel undulators and other beam changing elements, the operating capability of FELs may be further usefully extended. This paper introduces two new such methods to improve output from electron pulses with large energy spreads and the results of simulations of these methods in the 1D limit are presented. Both methods predict orders of magnitude improvements to output radiation powers.

  12. Neutron capture therapy beam design at Harwell.

    Science.gov (United States)

    Constantine, G

    1990-01-01

    At Harwell, we have progressed from designing, building, and using small-diameter beams of epithermal neutrons for radiobiology studies to designing a radiotherapy facility for the 25-MW research reactor DIDO. The program is well into the survey phase, where the main emphasis is on tailoring the neutron spectrum. The incorporation of titanium and vanadium in an aluminium spectrum shaper in the D2O reflector has been shown to yield a significant reduction in the mean energy of neutrons incident on the patient by suppression of streaming through the cross-section window in aluminium at 25 keV.

  13. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  14. Harmonic beam splitter design and fabrication

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Ma(马小凤); Yingjian Wang(王英剑); Zhengxiu Fan(范正修); Jianda Shao(邵建达)

    2004-01-01

    Two problems of half-wave hole and high ripples in the transmittance region for a harmonic beam splitter had been pointed out and analyzed. Based on the application of a half-wavelength control and a new admittance matching methods, a harmonic beam splitter was designed and fabricated. The former method eliminated the half-wave hole fundamentally, and the latter smoothed high ripples in the transmittance region effectively. The matching stack consisted of a symmetrically periodic structure and provided a complete matching at the desired wavelength, i.e., both conditions for the equivalent admittance and phase thickness were fulfilled. Furthermore, both the theoretical and the tested curves had been given, and a good agreement between them was obtained.

  15. Concrete beams fire design using graphs

    Directory of Open Access Journals (Sweden)

    G. B. M. L. Albuquerque

    Full Text Available The most expeditious method for the design of concrete beams under fire situation is the tabular method, presented by the Brazilian standard ABNT NBR 15200:2012. Albeit simple, this method constrains the engineer's work, as it prevents him to seek alternative solutions to the few tabulated values. Yet, the Brazilian standard allows employing more advanced methods. Hence, the purpose of this work was to perform a thermal and structural analysis of beams with several widths, heights, covers and diameters/layouts of steel reinforcement (upper and lower. From those results, graphs were constructed, associating the ratio between the applied bending moment in fire over the resistance bending moment at ambient temperature, for the fire resisting time of each situation. These graphs also allow taking into account the redistribution of moments from positive to negative, which will lead to savings in the solution found.

  16. Linux Crash Dump的设计与实现%AN INTRODUCTION TO DESIGN AND IMPLEMENTATION OF Linux Crash Dump

    Institute of Scientific and Technical Information of China (English)

    王勇; 沈亚谦; 潘金贵

    2002-01-01

    本文介绍了Linux Crash Dump的设计与实现方法.Linux Crash Dump提供了一种保存系统在发生Crash时内存映象的能力.通过对Dump结果的分析,可以有效地帮助诊断系统出错的原因.本文介绍了如何进行Crash Dump,以及Dump的数据的组织和保存方法等.

  17. Muon Beam Helical Cooling Channel Design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  18. Laser processing with specially designed laser beam

    Science.gov (United States)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  19. The design of controlled-release formulations resistant to alcohol-induced dose dumping--a review.

    Science.gov (United States)

    Jedinger, N; Khinast, J; Roblegg, E

    2014-07-01

    The concomitant intake of alcoholic beverages together with oral controlled-release opioid formulations poses a serious safety concern since alcohol has the potential to alter the release rate controlling mechanism of the dosage form which may result in an uncontrolled and immediate drug release. This effect, known as alcohol-induced dose dumping, has drawn attention of the regulatory authorities. Thus, the Food and Drug Administration (FDA) recommends that in vitro drug release studies of controlled-release dosage forms containing drugs with narrow therapeutic range should be conducted in ethanolic media up to 40%. So far, only a limited number of robust dosage forms that withstand the impact of alcohol are available and the development of such dosage forms is still a challenge. This review deals with the physico-chemical key factors which have to be considered for the preparation of alcohol-resistant controlling dosage forms. Furthermore, appropriate matrix systems and promising technological strategies, which are suitable to prevent alcohol-induced dose dumping, are discussed.

  20. Beam-powered lunar rover design

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as ``Rove First.`` A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  1. Beam-powered lunar rover design

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J.E.; Coomes, E.P.; Antoniak, Z.I.; Bamberger, J.A.; Bates, J.M.; Chiu, M.A.; Dodge, R.E.; Wise, J.A.

    1992-03-01

    Manned exploration of our nearest neighbors in the solar systems is the primary goal of the Space Exploration Initiative (SEI). An integral part of any manned lunar or planetary outpost will be a system for manned excursions over the surface of the planet. This report presents a preliminary design for a lunar rover capable of supporting four astronauts on long-duration excursions across the lunar landscape. The distinguishing feature of this rover design is that power is provided to rover via a laser beam from an independent orbiting power satellite. This system design provides very high power availability with minimal mass on the rover vehicle. With this abundance of power, and with a relatively small power-system mass contained in the rover, the vehicle can perform an impressive suite of mission-related activity. The rover might be used as the first outpost for the lunar surface (i.e., a mobile base). A mobile base has the advantage of providing extensive mission activities without the expense of establishing a fixed base. This concept has been referred to as Rove First.'' A manned over, powered through a laser beam, has been designed for travel on the lunar surface for round-trip distances in the range of 1000 km, although the actual distance traveled is not crucial since the propulsion system does not rely on energy storage. The life support system can support a 4-person crew for up to 30 days, and ample power is available for mission-related activities. The 8000-kg rover has 30 kW of continuous power available via a laser transmitter located at the Earth-moon L1 libration point, about 50,000 km above the surface of the moon. This rover, which is designed to operate in either day or night conditions, has the flexibility to perform a variety of power-intensive missions. 24 refs.

  2. Dump system concepts for the Future Circular Collider

    CERN Document Server

    Bartmann, Wolfgang; Barnes, Mike; Borburgh, Jan; Burkart, Florian; Goddard, Brennan; Kramer, Thomas; Lechner, Anton; Sanz Ull, Alejandro; Schmidt, Rudiger; Stoel, Linda; Ostojic, Ranko; Rodziewicz, Janusz Pawel; van Trappen, Pieter; Barna, Dani

    2017-01-01

    The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.

  3. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  4. Helical Muon Beam Cooling Channel Engineering Design

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  5. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary project was approved by the DOE

  6. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  7. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  8. 翻车机在线监测多线程数据处理系统设计%Rotary Dump Online Monitoring System Design Based on Multi-thread Technology

    Institute of Scientific and Technical Information of China (English)

    李景松; 刘泉

    2009-01-01

    The rotary dump is one of the most complex and important equipments in the dump system, and its effectiveness has directly influence on the efficiency of dump work. This paper researches Multi-thread technology in windows operation sys-tem, utilizes extend of Multi-thread and parallel execute of code, implements real time data collection and paocession of Rotary Dump Monitor points, investigates a data acquisition and analysis flowchart, and designs a system of Rotary Dump Health On-line Monitoring.%翻车机是装卸系统中最复杂、最关键的设备之一,其健康状况直接影响系统作业效率的高低.通过研究Win-dows操作系统中的多线程技术,利用多任务的扩展和代码的并行执行,实现了翻车机监测点信息的实时采集与处理,设计了基于多线程技术的数据采集与数据分析处理流程,开发了翻车机健康状况在线监测系统.

  9. Design of four-beam IH-RFQ linear accelerator

    Science.gov (United States)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  10. Ocean Dumping: International Treaties

    Science.gov (United States)

    The London Convention and London Protocol are global treaties to protect the marine environment from pollution caused by the ocean dumping of wastes. The Marine, Protection, Research and Sanctuaries Act implements the requirements of the LC.

  11. Design of the digitizing beam position limit detector.

    Energy Technology Data Exchange (ETDEWEB)

    Merl, R.

    1998-05-27

    The Digitizing Beam Position Limit Detector (DBPLD) is designed to identify and react to beam missteering conditions in the Advanced Photon Source (APS) storage ring. The high power of the insertion devices requires these missteering conditions to result in a beam abort in less than 2 milliseconds. Commercially available beam position monitors provide a voltage proportional to beam position immediately upstream and downstream of insertion devices. The DBPLD is a custom VME board that digitizes these voltages and interrupts the heartbeat of the APS machine protection system when the beam position exceeds its trip limits.

  12. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  13. Parametric Design and Mechanical Analysis of Beams based on SINOVATION

    Science.gov (United States)

    Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.

    2017-07-01

    In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.

  14. Conceptual design of proton beam window

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Kaminaga, Masanori; Terada, Atsuhiko; Ishikura, Syuichi; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In a MW-scale neutron scattering facility coupled with a high-intensity proton accelerator, a proton beam window is installed as the boundary between a high vacuum region of the proton beam transport line and a helium environment around the target assembly working as a neutron source. The window is cooled by water so as to remove high volumetric heat generated by the proton beam. A concept of the flat-type proton beam window consisting of two plates of 3 mm thick was proposed, which was found to be feasible under the proton beam power of 5 MW through thermal-hydraulic and structural strength analyses. (authors)

  15. Active and passive beam application design guide for global application

    CERN Document Server

    Rimmer, Julian

    2015-01-01

    The Active and Passive Beam Application Design Guide is the result of collaboration by worldwide experts to give system designers a current, authoritative guide on successfully applying active and passive beam technology. Active and Passive Beam Application Design Guide provide energy-efficient methods of cooling, heating, and ventilating indoor areas, especially spaces that require individual zone control and where internal moisture loads are moderate. The systems are simple to operate, with low maintenance requirements. This book is an essential resource for consulting engineers, architects, owners, and contractors who are involved in the design, operation, and installation of these systems. Building on REHVA’s Chilled Beam Application Guidebook, this new guide provides up-to-date tools and advice for designing, commissioning, and operating chilled-beam systems to achieve a determined indoor climate, and includes examples of active and passive beam calculations and selections. Dual units (SI and I-P) are...

  16. Design method of coaxial reflex hollow beam generator

    Science.gov (United States)

    Wang, Jiake; Xu, Jia; Fu, Yuegang; He, Wenjun; Zhu, Qifan

    2016-10-01

    In view of the light energy loss in central obscuration of coaxial reflex optical system, the design method of a kind of hollow beam generator is introduced. First of all, according to the geometrical parameter and obscuration ratio of front-end coaxial reflex optical system, calculate the required physical dimension of hollow beam, and get the beam expanding rate of the hollow beam generator according to the parameters of the light source. Choose the better enlargement ratio of initial expanding system using the relational expression of beam expanding rate and beam expanding rate of initial system; the traditional design method of the reflex optical system is used to design the initial optical system, and then the position of rotation axis of the hollow beam generator can be obtained through the rotation axis translation formula. Intercept the initial system bus bar using the rotation axis after the translation, and rotate the bus bar around the rotation axis for 360°, so that two working faces of the hollow beam generator can be got. The hollow beam generator designed by this method can get the hollow beam that matches the front-end coaxial reflex optical system, improving the energy utilization ratio of beam and effectively reducing the back scattering of transmission system.

  17. Design of Condition Monitoring System for Motor Wheel Dump Trucks Based on CAN Bus%基于CAN总线的电动轮自卸车运行状态监测系统设计

    Institute of Scientific and Technical Information of China (English)

    何艳芳; 刘德顺; 陈晓可

    2011-01-01

    According to the requirements of remote monitoring and intelligent diagnostics for dump trucks,a dump truck condition monitoring system based on CAN bus was designed for 154T mining motor wheel dump truck. This paper introduced an embedded operating system DSP/BIOS,took digital signal controller TMS320F2812 as the core,realized real-time communication between the main monitor and the dump truck controller through CAN network. This system can collect the running parameters of each system in the dump truck,an integrated treatment of data transmitted to host computer and the LCD screen. The system solves the problems on the centralized collection of scattered signal for complex system,and lays the foundation for the dump truck's remote monitoring,fault prediction and diagnosis.%根据自卸车状态监控与智能诊断的需要,针对某公司的154T交流电传动电动轮自卸车,设计了一种基于CAN总线的自卸车运行状态监测系统.文中以数字信号处理器TMS320F2812为核心,引入嵌入式操作系统DSP/BIOS,通过CAN网络实现了主监测器与自卸车内部控制系统的实时通信,采集的状态参数进行数据处理后传至上位机及液晶显示屏.该系统不仅解决了复杂系统的分散信号集中采集的难题,也为自卸车的远程监控、故障预测与诊断奠定了基础.

  18. Optimized design of parallel beam-splitting prism

    Institute of Scientific and Technical Information of China (English)

    Peitao Zhao(赵培涛); Guohua Li(李国华)

    2004-01-01

    A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.

  19. Studies of the Machine Induced Background, simulations for the design of the Beam Condition Monitor and implementation of the Inclusive $\\phi$ Trigger at the LHCb experiment at CERN

    CERN Document Server

    Lieng, Magnus

    2011-01-01

    LHCb is one of the four major experiments of the LHC at CERN, built to perform precision measurements of CP violation and rare decays. In order to protect the sensitive elements of the experiment from adverse beam conditions the Beam Condition Monitor has been created. Such conditions increase the particle flux arriving from the LHC, known as Machine Induced Background. These particles interfere with the experiment, for example through the physics trigger. In this thesis software development and simulations for the design and validation of the Beam Condition Monitor is shown, ranging from LHCb-specific algorithm implementation to beam dump threshold determination. Furthermore, software development in order to attain a complete simulation chain of machine induced background is shown. The results of these simulations are compared to early data collected at LHCb. Lastly, the development and implementation of the Inclusive $\\phi$ trigger line for the High Level Trigger is presented. This line aims to reconstruct ...

  20. BEAM STOP DESIGN METHODOLOGY AND DESCRIPTION OF A NEW SNS BEAM STOP

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Yarom [ORNL; Plum, Michael A [ORNL; Geoghegan, Patrick J [ORNL; Jacobs, Lorelei L [ORNL; Lu, Wei [ORNL; McTeer, Stephen Mark [ORNL

    2010-01-01

    The design of accelerator components such as magnets, accelerator cavities and beam instruments tends to be a fairly standardized and collective effort within the particle accelerator community with well established performance, reliability and, in some cases, even budgetary criteria. Beam stop design, by contrast, has been comparatively subjective historically with much more general goals. This lack of rigor has lead to a variety of facility implementations with limited standardization and minimal consensus on approach to development within the particle accelerator community. At the Spallation Neutron Source (SNS), for example, there are four high power beam stops in use, three of which have significantly different design solutions. This paper describes the design of a new off-momentum beam stop for the SNS. The technical description of the system will be complemented by a discussion of design methodology. This paper presented an overview of the new SNS HEBT off-momentum beam stop and outlined a methodology for beam stop system design. The new beam stop consists of aluminium and steel blocks cooled by a closed-loop forced-air system and is expected to be commissioned this summer. The design methodology outlined in the paper represents a basic description of the process, data, analyses and critical decisions involved in the development of a beam stop system.

  1. Design and Analysis of Diffractive Axicons for Gaussian Beam Illumination

    Institute of Scientific and Technical Information of China (English)

    PU Jixiong; Shojiro Nemoto

    2001-01-01

    The diffractive axicon for the illumination with Gaussian beams is designed. The stationary phase method and the numerical calculation are used to analyze the diffraction integral describing the diffraction field. It is shown that with the Gaussian beam illumination of a smaller beam radius, the axicon can produces the uniform-axial-intensity with the lower oscillation frequency and the smaller oscillation amplitude. In addition, with the Gaussian beam illumination of a suitable beam radius, we can achieve the more uniform central-core width.

  2. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sojeong, E-mail: sojung8681@postech.ac.kr; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-11

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  3. Designing single-beam multitrapping acoustical tweezers

    CERN Document Server

    Silva, Glauber T

    2014-01-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.

  4. Design, test, and calibration of an electrostatic beam position monitor

    OpenAIRE

    Maurice Cohen-Solal

    2010-01-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerato...

  5. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  6. STRUCTURE DESIGN OF THE BEIJING SPECTROMETER Ⅲ BEAM PIPE

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lifang; JI Quan; WANG Li; LI Xunfeng; XU Shaowang; DONG Sujun; ZHAO Libin; LIU Jianping

    2008-01-01

    The Beijing spectrometer Ⅲ (BESⅢ) beam pipe is in the center of the BESⅢ, which is the detector of the upgrade project of Beijing electron and positron collider (BEPCⅡ). Electrons and positrons collide in the BESⅢ beam pipe. According to the demands of the BEPCⅡ, a key program of Chinese Academy of Sciences, the BESⅢ beam pipe is designed based on the finite elements analysis. The BESⅢ beam pipe is installed in the inner cylinder of the BESⅢ drift chamber. As a vacuum tube, the BESⅢ beam pipe is designed as 1 000 mm in length, 63 mm in inner diameter and 114 mm in outer diameter, respectively. The BESⅢ beam pipe consists of a central beryllium pipe cooled by EDM-1, the oil No.1 for electric discharge machining, and two extended copper pipes cooled by deionized water (DW). The three parts are jointed by vacuum welding. Factors taken into account in the design are as follows. ① The wall thickness of the central beryllium pipe should be designed as small as possible to reduce the multi-scattering and improve the particle momentum resolution. And the wall thickness of the extended copper pipe should be designed as large as possible to protect the detectors from the backgrounds. ② The BESⅢ beam pipe must be sufficiently cooled to avoid the damage and prevents its influence to the BESⅢ drift chamber (DC) operation. The inner surface temperature of the DC inner cylinder must be maintained at 293±2 K. ③ The magnetic permeability of the materials used in the BESⅢ beam pipe must be less than 1.05 H/m to avoid large magnetic field distortions. ④ The static pressure of the vacuum chamber of the BESⅢ beam pipe must be less than 800 (Pa. The simulating results show that the designed structure of the BESⅢ beam pipe satisfies the requirements mentioned above. The structure design scheme is evaluated and adopted by the headquarters of BEPCⅡ.

  7. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  8. Concept Design of Movable Beam of Hydraulic Press

    Directory of Open Access Journals (Sweden)

    Li Yancong

    2017-01-01

    Full Text Available The hydraulic press movable beam is one of the key components of the hydraulic press; its design quality impacts the accuracy of the workpiece that the press suppressed. In this paper, first, with maximum deflection and material strength as constraints, mechanical model of the movable beam is established; next, the concept design model of the moveable beam structure is established; the relationship among the force of the side cylinder, the thickness of the inclined plate, outer plate is established also. Taking movable beam of the 100MN type THP10-10000 isothermal forging hydraulic press as an example, the conceptual design result is given. This concept design method mentoned in the paper has general meaning and can apply to other similar product design.

  9. Dump valve assembly

    Science.gov (United States)

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  10. Getting Dumped On

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Chinese shoe manufacturers cry foul over anti-dumping duties imposed by the EU and set up an alliance to lobby for an overturn Hong Guangsheng, General Manager of Guangzhou Yunfang Shoes Co., is feeling the heat over his company's exports to Europe. According to a contract he signed with an Italian client in early April, the vol-

  11. Design for maximum band-gaps in beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...

  12. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    CERN Document Server

    Fraser, M A; Jones, R M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...

  13. 75 FR 33708 - Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final Rule for...

    Science.gov (United States)

    2010-06-15

    ... AGENCY 40 CFR Part 228 Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final... typographical error in the Final Rule for the Ocean Dumping; De-designation of Ocean Dredged Material Disposal... amended by revising paragraphs (n)(3) and (n)(4) to read as follows: Sec. 228.15 Dumping sites...

  14. Design of Ring-Focus Elliptical Beam Reflector Antenna

    Directory of Open Access Journals (Sweden)

    Jun-Mo Wu

    2016-01-01

    Full Text Available A new method for the design of elliptical beam reflector antenna is presented in this paper. By means of the basic principles of ring-focus antenna, a circularly symmetric feed and two specially shaped reflectors are used to form an elliptical beam antenna. Firstly, the design process of this ring-focus elliptical beam antenna is studied in detail. Transition function is defined and used in the design process. Then, combining the needs of practical engineering, a ring-focus elliptical beam reflector antenna is manufactured and tested. The gain at center frequency (12 GHz is 37.7 dBi with an aperture efficiency of 74.6%. 3 dB beam-width in φ=0° and φ=90° plane is 2.6° and 1.4°, respectively. Ratio of the elliptical beam (ratio of 3 dB beam-width in φ=0° and φ=90° plane is 2.6/1.4=1.85, substantially equal to designed ratio 2. Simulating and testing results match well, which testify the effectiveness of this design method.

  15. Experimental Verification of Current Shear Design Equations for HSRC Beams

    Directory of Open Access Journals (Sweden)

    Attaullah Shah

    2012-07-01

    Full Text Available Experimental research on the shear capacity of HSRC (High Strength Reinforced Concrete beams is relatively very limited as compared to the NSRC (Normal Strength Reinforced Concrete beams. Most of the Building Codes determine the shear strength of HSRC with the help of empirical equations based on experimental work of NSRC beams and hence these equations are generally regarded as un-conservative for HSRC beams particularly at low level of longitudinal reinforcement. In this paper, 42 beams have been tested in two sets, such that in 21 beams no transverse reinforcement has been used, whereas in the remaining 21 beams, minimum transverse reinforcement has been used as per ACI-318 (American Concrete Institute provisions. Two values of compressive strength 52 and 61 MPa, three values of longitudinal steel ratio and seven values of shear span to depth ratio have been have been used. The beams were tested under concentrated load at the mid span. The results are compared with the equations proposed by different international building codes like ACI, AASHTO LRFD, EC (Euro Code, Canadian Code and Japanese Code for shear strength of HSRC beams.From comparison, it has been observed that some codes are less conservative for shear design of HSRC beams and further research is required to rationalize these equations.

  16. Design of a Ku band miniature multiple beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Ayan Kumar, E-mail: ayan.bandyopadhyay@gmail.com; Pal, Debasish; Kant, Deepender [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India); Saini, Anil; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-09

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  17. Design of Micro-electronic Scale Dumping Type Vibrates Feeding Institutions%电子秤倾倒式振动投料机构设计

    Institute of Scientific and Technical Information of China (English)

    王品越; 周旭红

    2011-01-01

    This article analyzed the main problems of the existing micro electronic feeding systems , introduced the dump ing type vibrates the feeding institutions micro electronic principle of working and the agency solving existing micro-electronic feeding systems method in details, and finally, the agency innovations and use prospect were discussed. The design of the modern electronic scale provides a new and practical method.%通过对现有电子秤给料系统存在的主要问题进行分析,详细介绍了电子秤倾倒式振动给料机构的工作原理及该机构解决现有电子秤给料系统问题的方法与优势,最后对该机构的创新点及使用前景进行了阐述.本文对当今电子称给料系统的设计提供了一种新颖、实用的方法.

  18. Computers and the design of ion beam optical systems

    Science.gov (United States)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  19. Direct design of laser-beam shapers, zoom-beam expanders, and combinations thereof

    Science.gov (United States)

    Duerr, Fabian; Thienpont, Hugo

    2016-10-01

    Laser sources have become indispensable for industrial materials processing applications like surface treatment, cutting or welding to name a few examples. Many of these applications pose different requirements on the delivered laser irradiance distribution. Some applications might not only favor a specific irradiance distribution (e.g. a at-top) but can additionally benefit from time-varying distributions. We present an overview of a recently developed design approach that allows direct calculation of virtually any refractive or reflective laser beam shaping system. The derived analytic solution is fully described by few initial parameters and does allow an increasingly accurate calculation of all optical surfaces. Unlike other existing direct design methods for laser beam shaping, there is almost no limitation in the number of surfaces that can be calculated with this approach. This is of particular importance for optical designs of dynamic systems such as variable optical beam expanders that require four (or more) optical surfaces. Besides conventional static beam shapers, we present direct designs of zoom beam expanders, and as a novelty, a class of dynamic systems that shape and expand the input beam simultaneously. Such dynamic zoom beam shapers consist of a minimal number of optical elements and provide a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  20. Design of the AGS Booster beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E. (Brookhaven National Lab., Upton, NY (USA); European Organization for Nuclear Research, Geneva (Switzerland))

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300{degree}C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs.

  1. Unique railcar dump cuts port costs

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.

    1986-07-01

    A key element in a Suneel Alaska Corp. coal transfer facility is a railcar dumping system, a pit and conveyor arrangement that transfers coal from railcars to temporary stockpiles. The same principles used in the design should have applications at other bulk unloading facilities. The $1.5 million system is compact, minimizes groundwater problems, and allows fast unloading from the railcar.

  2. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    Directory of Open Access Journals (Sweden)

    M. A. Fraser

    2011-02-01

    Full Text Available The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wave resonator and the asymmetry of the rf defocusing forces in the solenoid focusing channel. A racetrack shaped beam port aperture was shown to improve the symmetry of the fields in the high-β quarter-wave resonator and reduce the loss of acceptance under the offset used to compensate the steering force. The methods used to compensate the beam steering are described and an optimization routine written to minimize the steering effect when all cavities of a given family are offset by the same amount, taking into account the different velocity profiles across the range of mass-to-charge states accepted. The assumptions made in the routine were shown to be adequate and the results well correlated with the beam quality simulated in multiparticle beam dynamics simulations. The specification of the design tolerances is outlined based on studies of the sensitivity of the beam to misalignment and errors, with particular

  3. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  4. Final design of the beam source for the MITICA injector

    Science.gov (United States)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M.; Boilson, D.; Graceffa, J.; Hemsworth, R. S.; Choi, C. H.; Marti, M.; Roux, K.; Singh, M. J.; Masiello, A.; Froeschle, M.; Heinemann, B.; Nocentini, R.; Riedl, R.; Tobari, H.; de Esch, H. P. L.; Muvvala, V. N.

    2016-02-01

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  5. Driver beam-led EURISOL target design constraints

    CERN Document Server

    Noah, Etam; Catherall, Richard; Kadi, Yacine; Kharoua, Cyril; Lettry, Jacques

    2008-01-01

    The EURISOL (European Isotope Separation Online) Design Study is addressing new high power target design challenges. A three-step method [1] was proposed to split the high power linac proton driver beam into one $H^{-}$ branch for the 4 $MW_{b}$ [2] mercury target that produces radioactive ion beams (RIB) via spallation neutroninduced fission in a secondary actinide target and three 100 $kW_{b}$ $H^{+}$ branches for the direct targets producing RIBs via fragmentation and spallation reactions. This scheme minimises transient thermo-mechanical stresses on targets and preserves the cw nature of the driver beam in the four branches. The heat load for oxides, carbides, refractory metal foils and liquid metals is driven by the incident proton driver beam while for actinides, exothermic fission reactions are an additional contribution. This paper discusses the constraints that are specific to each class of material and the target design strategies.

  6. Design Study of a Superconducting Gantry for Carbon Beam Therapy

    CERN Document Server

    Kim, J

    2016-01-01

    This paper describes the design study of a gantry for a carbon beam. The designed gantry is compact such that its size is comparable to the size of the proton gantry. This is possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics and variable beam size as well as point-to-parallel scanning of a beam. For large-aperture magnet, three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  7. Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator

    CERN Document Server

    Fraser, MA; Pasini, M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...

  8. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    CERN Document Server

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  9. Validity of the Weizsäcker-Williams approximation and the analysis of beam dump experiments: Production of an axion, a dark photon, or a new axial-vector boson

    Science.gov (United States)

    Liu, Yu-Sheng; Miller, Gerald A.

    2017-07-01

    Beam dump experiments have been used to search for new particles, ϕ , with null results interpreted in terms of limits on masses mϕ and coupling constants ɛ . However these limits have been obtained by using approximations [including the Weizsäcker-Williams (WW) approximation] or Monte Carlo simulations. We display methods to obtain the cross section and the resulting particle production rates without using approximations on the phase space integral or Monte Carlo simulations. In our previous work we examined the case of the new scalar boson production; in this paper we explore all possible new spin-0 and spin-1 particles. We show that the approximations cannot be used to obtain accurate values of cross sections. The corresponding exclusion plots differ by substantial amounts when seen on a linear scale. Furthermore, a new region (mϕ<2 me) of parameter space can be explored without using one of the common approximations, mϕ≫me. We derive new expressions for the three-photon decays of dark photon and four-photon decays of new axial-vector bosons. As a result, the production cross section and exclusion region of different low mass (mϕ<2 me) bosons are very different. Moreover, our method can be used as a consistency check for Monte Carlo simulations.

  10. Full simulation of the beam-related backgrounds at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Anne [DESY (Germany); KIT (Germany)

    2016-07-01

    The ILC has been proposed as the next machine at the energy frontier and a Technical Design Report was presented in 2012. As part of the site-specific studies to prepare the hosting of the ILC in Japan, the final focus region of the ILC had to be adapted. In this contribution, updated results for the beam-related background as well as new results for the backgrounds originating from the beam dump are presented. The beam-related backgrounds are simulated using GuineaPig and are then propagated through the full simulation of the SiD detector. The impact of various modifications in the final-focus region on the detector occupancies are then evaluated. For the neutron background from the beam dump, the FLUKA simulation suite is used, which is well established for dosimetry and shielding studies. With this program, the effect of the neutrons from the ILC beam dumps on the ILC detectors are studied.

  11. Design and cooling of BESIII beryllium beam pipe

    Science.gov (United States)

    Li, Xunfeng; Ji, Quan; Wang, Li; Zheng, Lifang

    2008-01-01

    The beryllium beam pipe was restructured according to the requirements of the upgraded BESIII (Beijing Spectrometer) experiment. SMO-1 (sparking machining oil no. 1) was selected as the coolant for the central beryllium beam pipe. The cooling gap width of the beryllium beam pipe was calculated, the influence of concentrated heat load on the wall temperature of the beryllium beam pipe was studied, and the optimal velocity of the SMO-1 in the gap was determined at the maximum heat load. A cooling system for the beam pipe was developed to control the outer wall temperature of the beam pipe. The cooling system is reported in this paper with regard to the following two aspects: the layouts and the automation. The performance of the cooling system was tested on the beam pipe model with trim size. The test results show that the design of the beryllium beam pipe is reasonable and that the cooling system achieves the BESIII experimental aim. The cooling system has already passed the acceptance test and has been installed in position. It will be put into practice for the BESIII experiment in 2008.

  12. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  13. A button - type beam position monitor design for TARLA facility

    Science.gov (United States)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  14. Conceptual design of heavy ion beam compression using a wedge

    Directory of Open Access Journals (Sweden)

    Jonathan C. Wong

    2015-10-01

    Full Text Available Heavy ion beams are a useful tool for conducting high energy density physics (HEDP experiments. Target heating can be enhanced by beam compression, because a shorter pulse diminishes hydrodynamic expansion during irradiation. A conceptual design is introduced to compress ∼100  MeV/u to ∼GeV/u heavy ion beams using a wedge. By deflecting the beam with a time-varying field and placing a tailor-made wedge amid its path downstream, each transverse slice passes through matter of different thickness. The resulting energy loss creates a head-to-tail velocity gradient, and the wedge shape can be designed by using stopping power models to give maximum compression at the target. The compression ratio at the target was found to vary linearly with (head-to-tail centroid offset/spot radius at the wedge. The latter should be approximately 10 to attain tenfold compression. The decline in beam quality due to projectile ionization, energy straggling, fragmentation, and scattering is shown to be acceptable for well-chosen wedge materials. A test experiment is proposed to verify the compression scheme and to study the beam-wedge interaction and its associated beam dynamics, which will facilitate further efforts towards a HEDP facility.

  15. Performance based design of reinforced concrete beams under impact

    Directory of Open Access Journals (Sweden)

    S. Tachibana

    2010-06-01

    Full Text Available The purpose of this research is to collect fundamental data and to establish a performance-based design method for reinforced concrete beams under perpendicular impact load.

    Series of low speed impact experiments using reinforced concrete beams were performed varying span length, cross section and main reinforcement.

    The experimental results are evaluated focusing on the impact load characteristics and the impact behaviours of reinforced concrete beams. Various characteristic values and their relationships are investigated such as the collision energy, the impact force duration, the energy absorbed by the beams and the beam response values. Also the bending performance of the reinforced concrete beams against perpendicular impact is evaluated.

    An equation is proposed to estimate the maximum displacement of the beam based on the collision energy and the static ultimate bending strength. The validity of the proposed equation is confirmed by comparison with experimental results obtained by other researchers as well as numerical results obtained by FEM simulations. The proposed equation allows for a performance based design of the structure accounting for the actual deformation due to the expected impact action.

  16. A Highly Adjustable Helical Beam: Design and Propagation Characteristic

    CERN Document Server

    Wen, Yuanhui; Yu, Siyuan

    2016-01-01

    Light fields with extraordinary propagation behaviours such as nondiffracting and self-bending are useful in optical delivery for energy, information, and even objects. A kind of helical beams is constructed here based on the caustic method. With appropriate design, the main lobe of these helical beams can be both well-confined and almost nondiffracting while moving along a helix with its radius, period, the number of rotations and main lobes highly adjustable. In addition, the main lobe contains almost half of the optical power and the peak intensity fluctuates below 15% during propagation. These promising characteristics may enable a variety of potential applications based on these beams.

  17. Conceptual design report for a Beta-Beam facility

    CERN Document Server

    Benedikt, M; Borgnolutti, F; Bouquerel, E; Bozyk, L; Bruer, J; Chance, A; Delahaye, P; Fabich, A; Hancock, S; Hansen, C; Jensen, E; Kallberg, A; Kirk, M; Lachaize, A; Lindroos, M; Loiselet, M; Magistris, M; Mitrofanov, S; Mueller, A C; Payet, J; Podlech, H; Puppel, P; Silari, M; Simonsson, A; Spiller, P; Stadlmann, J; Stora, T; Tkatchenko, A; Trovati, S; Vlachoudis, V; Wildner, E

    2011-01-01

    The Beta-Beam is a concept of large-scale facility that aims at providing pure electronic neutrino and antineutrino beams for the measurement of v(e) -> v(mu) oscillations. Beta-decaying nuclides are produced in large amounts in a facility of the scale of EURISOL, and are then post-accelerated and stored at large gamma in a racetrack decay ring. We present here a conceptual design of the accelerator chain of a Beta-Beam based at CERN.

  18. Radiation Shielding Design for ISOL System Beam Line

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; QIN; Jiu-chang

    2013-01-01

    The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm

  19. Optical approach to design a beam-down heliostats plant

    Science.gov (United States)

    Fontani, Daniela; Sansoni, Paola; Francini, Franco; Jafrancesco, David

    2017-06-01

    The optical design development of beam-down heliostat fields is complex and timewasting. It requires the use of an optical design software package in order to evaluate the interactions between light and surfaces and the solar divergence effects. This paper proposes a three-step procedure devoted to design a beam-down heliostat field taking into account the actual technical constraints; in particular, the shaping of the field starts from the request to have a sufficient uniformity irradiance on the internal surfaces of the receiver. The procedure is applied to an effective field simulation in order to allow a better understanding of its different phases.

  20. Beam Interlocks for LHC and SPS

    CERN Document Server

    Dinius, A; Gimeno-Vicente, J; Nouchi, P; Puccio, B; Schmidt, R; Wenninger, J

    2003-01-01

    The Large Hadron Collider at CERN (LHC) will operate at 7 TeV/c with a luminosity of 10 cms. This requires two beams with about 3^10 protons/beam, corresponding to a stored energy of about 350 MJ, sufficient to heat and melt 500 kg of copper. Protection of equipment from damage in case of uncontrolled beam losses is challenging. Injection of the beam from the SPS to the LHC could already damage equipment and is only permitted when all LHC systems are correctly prepared. In case of an uncontrolled loss of the circulating LHC beams, it is required to extract the beams into a specially designed target as soon as possible. Beam loss monitors and equipment for hardware surveillance are distributed around the 26 km long accelerator. In case of failures or beam losses, the beam interlock system is informed and sends a dump request to the beam dumping system. The beam interlock system also inhibits injection when the LHC is not ready for beam. In this paper the requirements for the beam interlock system are discussed...

  1. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  2. Stochastic boundary control design for Timoshenko beams with large motions

    Science.gov (United States)

    Do, K. D.

    2017-08-01

    This paper considers modeling and boundary control of Timoshenko beams with large motions under both deterministic and stochastic external loads. The original nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The control design is based on the Lyapunov direct method. The proposed controllers guarantee globally practically K∞-exponentially p-stability of the beam motions at the reference state. Well-posedness and stability are analyzed based on a Lyapunov-type theorem developed to study well-posedness and stability for a class of stochastic evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  3. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  4. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  5. Conceptual design for the ZEPHYR neutral-beam injection system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.S.; Elischer, V.P.; Goldberg, D.A.; Hopkins, D.B.; Jacobson, V.L.; Lou, K.H.; Tanabe, J.T.

    1981-03-01

    In June 1980, the Lawrence Berkeley Laboratory began a conceptual design study for a neutral beam injection system for the ZEPHYR ignition tokamak proposed by the Max-Planck-Institut fur Plasmaphysik in Garching, Germany. The ZEPHYR project was cancelled, and the LBL design effort concluded prematurely in January 1981. This report describes the conceptual design as it existed at that time, and gives brief consideration to a schedule, but does not deal with costs.

  6. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  7. Modeling and design of metasurfaces for beam scanning

    Science.gov (United States)

    Ratni, Badreddine; de Lustrac, André; Piau, Gérard-Pascal; Burokur, Shah Nawaz

    2017-01-01

    The aim of the present contribution is to show that a judicious phase engineering in metasurfaces can be efficiently used in the design of low-profile beam-steerable antennas. We present the design, simulation and experimental validation of the proposed low-profile antennas. The phase modulation on the metasurface is derived from the ray optics analysis. Such a non-uniform metasurface is utilized as a partially reflective surface in Fabry-Perot cavity antenna. Beam scanning is obtained, and depending on the phase modulation applied, the scan angle can be controlled. Furthermore, an active metasurface incorporating electronic components is fabricated and tested in an electronically steerable antenna.

  8. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  9. Upgrade of the TCDQ: A dumping protection system for the LHC

    CERN Document Server

    Antonakakis, T

    2012-01-01

    In the context of the LHC, an asynchronous beam dump could be destructive. In order to ensure the safety of the machine and its surroundings a model of the TCDQ dump has been designed. The length of the TCDQ dump is increased by 50% and its material distribution along its length is changed from graphite to a carbon composite that clearly withstands higher stresses then its counterpart. There are two different density composites used along the dump‘s length in a similar distribution than that of the TCDS, varying from high density to low then back to high. The power deposition within the duration of a pulse is given by FLUKA simulations and is used to predict temperature and stress distributions in space and time. The results are compared with previous studies in which graphite material was used. The difference in the thermal expansion coefficient of the two materials explains the reduced stresses in the newer design. Due to the high cost of carbon composites an alternative solution is thought without jeopar...

  10. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  11. Dumping in a Global World

    NARCIS (Netherlands)

    J.L. Moraga-Gonzalez (José Luis); J.M.A. Viaene (Jean-Marie)

    2004-01-01

    textabstractAnti-dumping actions are now the trade policy of choice of developing and transition economies. To understand why these economies have increasingly applied anti-dumping laws, we build a simple theoretical model of vertical intra-industry trade and investigate the strategic incentives of

  12. 排土机配重臂的优化设计与有限元分析%Optimization design and FEA of counterweight boom of dumping spreader

    Institute of Scientific and Technical Information of China (English)

    许波; 李琳琳; 卢寿福; 关玉明

    2013-01-01

    配重臂是维持排土机质心稳定的重要部分.目前配重臂上的配重块均为固定式,排土机不能在空载和满载工况下都达到最佳平衡.将固定式配重块改为滑动式配重块,通过在不同工况下调整配重块的位置,使排土机达到整机平衡.并利用ANSYS对排土机在不加装配重块、加装固定式配重块和加装滑动式配重块时空载和满载工况下的质心偏移量进行了仿真分析.结果表明,相比采用固定式配重块,采用滑动式配重块极大地提高了排土机在不同工况下的稳定性.%The counterweight boom is an important part of maintaining the stability of the dumping spreader's center of mass.At present,the counterweight block is fixed in the counterweight boom,thus the dumping spreader fails to achieve the best balance both in the no-load and full-load mode.In the paper,the fixed counterweight block was replaced by the sliding one,by adjusting the position of the sliding counterweight block to make the dumping spreader reach balance.In addition,ANSYS was used to simulate the offset of the dumping spreader's center of mass separately in without counterweight block mode,with fixed counterweight block mode and with sliding counterweight block mode.The results showed that compared with the dumping spreader with fixed counterweight block,the dumping spreader with sliding counterweight block was characterized by excellent stability in various operation modes.

  13. CLIC two-beam module design and integration

    CERN Document Server

    Riddone, G; Gudkov, D

    2010-01-01

    Abstract The Compact LInear Collider (CLIC) is based on twobeam acceleration concept currently developed at CERN. The RF power is generated by a high-current electronbeam, called Drive Beam, (DB) running parallel to the Main Beam (MB). The DB is decelerated in dedicated power extraction structures (PETS) and the generated RF power is transferred via waveguides to the accelerating structures (AS). To facilitate the matching of the beams, components are assembled in 2-m long modules of few different types. Special modules are needed in damping regions or to contain dedicated instrumentation and vacuum equipment. The module design and integration has to cope with challenging requirements from the different technical systems. This paper reports the status of the engineering design and related technical issues.

  14. Beam dynamics design for uranium drift tube linear accelerator

    Science.gov (United States)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  15. KONUS Beam Dynamics Design of Uranium DTL for HIAF

    CERN Document Server

    Dou, W P; Lu, Y R

    2013-01-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0emA, is accelerated from injection energy of 0.35MeV/u to output energy of 1.3MeV/u by IH-DTL operated at 81.25MHz in HIAF project at IMP of CAS. It achieves transmission efficiency of 94.95% with the cavity length 267.8cm. Optimization aims are the reduction of emittance growth, of beam loss and of project costs. Because of the requirements of CW mode operation,the designed average acceleration gradient is about 2.48MV/m. Maximum axial filed is 10.2MV/m, meanwhile Kilpatrick breakdown field is 10.56MV/m at 81.25MHz.

  16. Beam Loss Control for the Unstripped Ions from the PS2 Charge Exchange Injection

    CERN Document Server

    Bartmann, W; Benedikt, M; Goddard, B; Kramer, T; Papaphilippou, Y; Vincke, Hel

    2010-01-01

    Control of beam losses is an important aspect of the H-injection system for the PS2, a proposed replacement of the CPS in the CERN injector complex. H- ions may pass the foil unstripped or be partially stripped to excited H0 states which may be stripped in the subsequent strong-field chicane magnet. Depending on the choice of the magnetic field, atoms in the ground and first excited states can be extracted and dumped. The conceptual design of the waste beam handling is presented, including local collimation and the dump line, both of which must take into account the divergence of the beam from stripping in fringe fields. Beam load estimates and activation related requirements of the local collimators and dump are briefly discussed.

  17. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  18. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  19. Helical channel design and technology for cooling of muon beams

    CERN Document Server

    Yonehara, K; Johnson, R P

    2012-01-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  20. Design study of a superconducting gantry for carbon beam therapy

    Science.gov (United States)

    Kim, J.; Yoon, M.

    2016-09-01

    This paper describes beam-optics design of a gantry for carbon ions in cancer therapy accelerators. A compact design is important for such a gantry. The designed gantry is compact such that its size is comparable to the size of the existing proton gantries. This is made possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics, a variable beam size, and point-to-parallel scanning of a beam. For large-aperture magnet, a three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with a three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of a genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  1. Detail design of the beam source for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.i [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy)

    2010-12-15

    The ITER Neutral Beam Test Facility (PRIMA-Padova Research on Injector Megavolt Accelerated) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size plasma source with low voltage extraction called SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and a full size neutral beam injector at full beam power called MITICA (Megavolt ITER Injector Concept Advancement). SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H{sup -} and in a later stage D{sup -} ions) from an ITER size ion source. The main requirements of this experiment are a H{sup -}/D{sup -} current of approximately 70 A/50 A and an energy of 100 keV. This paper presents an overview of the SPIDER beam source design, with a particular focus on the main design choices, aiming at reaching the best compromise between physics, optics, thermo-mechanical, cooling, assembly and electrical requirements.

  2. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...... or significantly suppressed for a range of external excitation frequencies. Maximization of the band-gap is therefore an obvious objective for optimum design. This problem is sometimes formulated by optimizing a parameterized design model which assumes multiple periodicity in the design. However, it is shown...

  3. Design of multidirectional neutron beams for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Yanch, J.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Shefer, R.E. [Newton Scientific, Inc., Cambridge, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  4. Optimum design of band-gap beam structures

    DEFF Research Database (Denmark)

    Olhoff, Niels; Niu, Bin; Cheng, Gengdong

    2012-01-01

    -sectional area. To study the band-gap for travelling waves, a repeated inner segment of the optimized beams is analyzed using Floquet theory and the waveguide finite element (WFE) method. Finally, the frequency response is computed for the optimized beams when these are subjected to an external time......The design of band-gap structures receives increasing attention for many applications in mitigation of undesirable vibration and noise emission levels. A band-gap structure usually consists of a periodic distribution of elastic materials or segments, where the propagation of waves is impeded...

  5. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...

  6. The 12 kV, 50 kA Pulse Generator for the SPS MKDH Horizontal Beam Dump Kicker System,equipped with Semiconductor Switches

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The high current pulses for the MKDH magnets are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via low inductance transmission lines. They are equipped with a stack of four Fast High Current Thyristors, together with snubber capacitors, a voltage divider and a specially designed trigger transformer.

  7. Design study of a movable mask with low beam impedance

    Directory of Open Access Journals (Sweden)

    Y. Suetsugu

    2006-10-01

    Full Text Available A novel design of a movable mask (collimator for high-current accelerators is proposed. The mask head is supported by a ceramic rod to reduce interference with the beam. One side of the support is coated with a thin (∼1   μm conductive material to avoid extra charge up of the head. The head is also made of ceramics to avoid direct damage from an intense beam. To investigate the availability of the new movable mask, the rf properties, such as the impedances of trapped modes and the loss factors, were evaluated by simulation codes. The frequencies and the Q values of the trapped modes were also measured using a test model, and compared with calculated ones. Two trial modes for KEKB are being manufactured, and will be tested with beams next year.

  8. 30 CFR 77.1608 - Dumping facilities.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities. 77.1608 Section 77.1608... Haulage § 77.1608 Dumping facilities. (a) Dumping locations and haulage roads shall be kept reasonably free of water, debris, and spillage. (b) Where the ground at a dumping place may fail to support...

  9. RF Design of the TW Buncher for the CLIC Drive Beam Injector

    CERN Document Server

    Shaker, H

    2015-01-01

    The CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the first report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This report includes the design of the power couplers. The fundamental mode beam loading and higher order modes effect were preliminary studied.

  10. High heat flux engineering for the upgraded neutral beam injection systems of MAST-U

    Energy Technology Data Exchange (ETDEWEB)

    Dhalla, F., E-mail: Fahim.dhalla@ccfe.ac.uk; Mistry, S.; Turner, I.; Barrett, T.R.; Day, I.; McAdams, R.

    2015-10-15

    Highlights: • A new Residual Ion Dump (RID) and bend magnet system for the upgraded NBI systems have been designed for the 5 s MAST-U pulse requirements. • Design scoping was performed using numerical ion-tracing analysis software (MAGNET and OPERA codes). • A more powerful bending magnet will separate the residual ions into full, half and third energy components. • Three separate CuCrZr dumps spread the power loading resulting in acceptable power footprints. • FE thermo-mechanical analyses using ANSYS to validate the designs against the ITER SDC-IC code. • New bend magnet coils, yoke and CuCrZr water-cooled plates are in the procurement phase. - Abstract: For the initial phase of MAST-U operation the two existing neutral beam injection systems will be used, but must be substantially upgraded to fulfil expected operational requirements. The major elements are the design, manufacture and installation of a bespoke bending magnet and Residual Ion Dump (RID) system. The MAST-design full energy dump is being replaced with new actively-cooled full, half and third energy dumps, designed to receive 2.4 MW of ion power deflected by an iron-cored electromagnet. The main design challenge is limited space available in the vacuum vessel, requiring ion-deflection calculations to ensure acceptable heat flux distribution on the dump panels. This paper presents engineering and physics analysis of the upgraded MAST beamlines and reports the current status of manufacture.

  11. The SPL-based Neutrino Super Beam

    CERN Document Server

    Baussan, E; Bobeth, C; Bouquerel, E; Caretta, O; Cupial, P; Davenne, T; Densham, C; Dracos, M; Fitton, M; Gaudiot, G; Kozien, M; Lacny, L; Lepers, B; Longhin, A; Loveridge, P; Osswald, F; Poussot, P; Rooney, M; Skoczen, B; Szybinski, B; Ustrzycka, A; Vassilopoulos, N; Wilcox, D; Wroblewski, A; Wurtz, J; Zeter, V; Zito, M

    2012-01-01

    The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Fr\\'ejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.

  12. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  13. Design of a relativistic klystron two-beam accelerator prototype

    Energy Technology Data Exchange (ETDEWEB)

    Westenskow, G.; Caporaso, G.; Chen, Y. [and others

    1995-10-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  14. Dual-Beam Antenna Design for Autonomous Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Jean-Marie Floc'h

    2012-01-01

    Full Text Available This paper describes our contribution in the ANR project called CAPNET dedicated to the site security (autonomous sensor network. The network is autonomous in term of energy and it is very easy to deploy on the site (the time to deploy each node of the network is around 10 minutes. The first demonstrator was deployed in the fire base station of Brest, France with 10 nodes with a security perimeter around 1.5 km. Our contribution takes place in the field of antennas, with the development of two systems: a single-beam antenna reserved for the supervisor or the last node of the network, and a dual-beam antenna dedicated to the node in linear configuration. For the design and optimization of antennas, we use HFSS CAD software from ANSOFT. The antennas have been designed and successfully measured.

  15. WC5E型铰接式四驱矿用自卸车传动轴的设计%Design of transmission shafts of WC5E articulated mine dump truck with four-wheel driving

    Institute of Scientific and Technical Information of China (English)

    王庆祥; 郭培燕; 王素慧

    2012-01-01

    针对WC5E型铰接式四驱矿用自卸车的结构特点和传动轴布置形式,通过分析各传动轴的工作状态和运动轨迹,确定了传动轴的长度、伸缩量和断面尺寸等主要性能参数,并根据所传递扭矩和转速对其进行了强度计算和校核,最终设计出满足整车使用要求的传动轴,为此类车辆传动系统的设计提供了方法和依据。%According to the structural features of WC5E articulated mine dump truck with four-wheel driving and the layout of its transmission shafts, after analyzing the operation status and motion track of each transmission shaft, the paper determined the main parameters of the transmission shafts such as the length, shrinkage and cross dimension etc. In addition, the strength calculation and checking of the transmission shafts were conducted according to the transmitted torque and rotary speed. Finally, the transmission shafts meeting the employment requirements of the dump truck were designed, which offered methods and references for design of the transmission system in the truck.

  16. Optical beam-shaping design based on aspherical lenses for circularization collimation, and expansion of elliptical laser beams

    Science.gov (United States)

    Serkan, Mert; Kirkici, Hulya

    2008-01-01

    We present two optical system designs using aspherical lenses for beam circularization, collimation, and expansion of semiconductor lasers for possible application in lidar systems. Two different optical lens systems are investigated; namely, two aspherical lens and single aspherical lens systems. Software package programs of ZEMAX and MATLAB to simulate the optical designs are used. The beam reshaping results are presented for one specific laser beam output.

  17. The Design of Plywood Webs for Airplane Wing Beams

    Science.gov (United States)

    Trayer, George W

    1931-01-01

    This report deals with the design of plywood webs for wooden box beams to obtain maximum strength per unit weight. A method of arriving at the most efficient and economical web thickness, and hence the most suitable unit shear stress, is presented and working stresses in shear for various types of webs and species of plywood are given. The questions of diaphragm spacing and required glue area between the webs and flange are also discussed.

  18. Freeform optical design of an XY-zoom beam expander

    Science.gov (United States)

    Duerr, Fabian; Thienpont, Hugo

    2016-04-01

    Laser sources have become indispensable for industrial materials processing applications. These applications are accompanied with a variety of different demands and requirements on the delivered laser irradiance distributions. With a high spatial uniformity, top-hat beams provide benefits for applications like surface heat treatment or welding, in which it is desirable to uniformly illuminate a target surface. Some applications might not only favor a specific beam irradiance distribution but can benefit additionally from time-varying distributions. In this work, we present the analytic design of an XY-zoom beam expander based on movable freeform optics that allows to simultaneously vary the magnification in x- and y-direction, respectively. This optical functionality is not new; what is new is the idea that axially moving freeform lenses are used to achieve such an optical functionality by optimally exploiting the additional degrees of freedom that freeform surfaces offer. The developed analytic solution is fully described by very few initial parameters and does allow an increasingly accurate calculation of four freeform lenses described by high order XY Taylor polynomial surfaces. Moreover, this solution approach can be adapted to cope with additional optical surfaces and/or lens groups to further enhance the overall optical performance. In comparison with (existing) combinations of rotated cylindrically symmetric zoom beam expanders, such a freeform system consists of less optical elements and provides a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  19. Base Line Design for a Beta/Beam Neutrino Facility

    CERN Document Server

    Benedikt, Michael

    2004-01-01

    The term beta-beam has been coined for the production of pure beams of electron neutrinos or their antiparticles through the decay of radioactive ions circulating in a storage ring. The neutrino source itself consists of a high-energy storage ring (gamma ~150), with long straight sections in line with the experiment(s). The radioactive ions (6He and 18Ne) will be produced in an ISOL type target system. Due to the short life times of around 1 s at rest, the beam needs to be accelerated as quickly as possible. For this a staged system of accelerators is proposed. The chain starts with a linac followed by a rapid cycling synchrotron for acceleration up to ~300 MeV/u. For further acceleration the existing PS and SPS machines are used. Finally, after acceleration to SPS top energy, the ions are transferred to a decay ring where they are merged with the existing bunches through a longitudinal stacking procedure. The baseline design of the beta-beam facility will be presented together with its major problems. Potent...

  20. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  1. Charging for the waste dumping of open-pit metal mines

    Institute of Scientific and Technical Information of China (English)

    Yunbing Hou; Zhaoxiang Zhang; Haifeng Duan; Liming Xue

    2006-01-01

    Based on the externality theory and the environmental value theory, the hypothesis of charging for waste dumping of open-pit metal mines was put forth. The charging methods were designed according to the characteristics of waste dumping of openpit metal mines, including charging based on the dumping amount of the total waste, multi-charging factors, exceeding standard punishment charging, and so on. The main charging parameter is based on the dumping area rather than the total amount of waste dumping.The charging model of waste dumping of open-pit mines was formulated, and the charging rate was divided into two parts, i.e., the standard charging rate and the differential charging rate. The standard charging rate was derived using the equilibrium dynamic model,whereas the differential one was obtained by establishing the fuzzy synthesized evaluation model.

  2. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...... size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices....

  3. LISE++: Exotic beam production with fragment separators and their design

    Science.gov (United States)

    Tarasov, O. B.; Bazin, D.

    2016-06-01

    Since the LISE++ code presentation at the EMIS 2007 conference (Tarasov and Bazin, 2008), important improvements have been made in the analytical and Monte Carlo calculations of transmission, and accuracy of reaction product distributions. In this paper new features of the code in ion-beam optics, creation of new LISE++ blocks, and development of some reaction models will be discussed. Large progress has been done in ion-beam optics with the introduction of "elemental" blocks, that allows optical matrices calculation within LISE++. New type of configurations based on these blocks allow a detailed analysis of the transmission, useful for fragment separator design, and can be used for optics optimization based on user constraints.

  4. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  5. EU Lobbying and Anti-Dumping Policy

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Ulff-Møller; Svendsen, Gert Tinggaard

    2012-01-01

    of petitioning firms and Council voting in the case of anti-dumping policy. If the political position of countries in anti-dumping cases is influenced by domestic lobbying efforts, we expect that the empirical pattern of country distribution of petitioning firms in EU anti-dumping cases corresponds closely...... to the empirical pattern of EU country distribution in Council voting. Our results show a low petitioning intensity for anti-dumping investigations and a high voting intensity against anti-dumping measures in Northern Europe. Thus, it seems likely that domestic lobbying efforts have influenced the political...... position of countries in the special case of EU anti-dumping policy....

  6. The potential for dose dumping in normal tissues with IMRT for pelvic and H&N cancers.

    Science.gov (United States)

    Reddy, Nandanuri M S; Mazur, Andrzej K; Sampath, Seshadri; Osian, Adrian; Sood, Brij M; Ravi, Akkamma; Nori, Dattatreyudu

    2008-01-01

    The purpose of this study is to understand the potential for dose dumping in normal tissues (>85% of prescription dose) and to analyze effectiveness of techniques used in reducing dose dumping during IMRT. Two hundred sixty-five intensity modulated radiation therapy (IMRT) plans for 55 patients with prostate, head-and-neck (H&N), and cervix cancers with 6-MV photon beams and >5 fields were reviewed to analyze why dose dumping occurred, and the techniques used to reduce dose dumping. Various factors including gantry angles, depth of beams (100-SSD), duration of optimization, severity of dose-volume constraints (DVC) on normal structures, and spatial location of planning treatment volumes (PTV) were reviewed in relation to dose dumping. In addition, the effect of partial contouring of rectum in beam's path on dose dumping in rectum was studied. Dose dumping occurred at d(max) in 17 pelvic cases (85% to 129%). This was related to (1) depth of beams (100 SSD [source-to-skin distance]), (2) PTV located between normal structures with DVC, and (3) relative lack of rectum and bladder in beam's path. Dose dumping could be reduced to 85% by changing beam angles and/or DVC for normal structures in 5 cases and by creating "phantom structures" in 12 cases. Decreasing the iterations (duration of optimization) also reduced dose dumping and monitor units (MUs). Part of uncontoured rectum, if present in the field, received a higher dose than the contoured rectum with DVC, indicating that complete delineation of normal structures and DVC is necessary to prevent dose dumping. In H&N, when PTV extends inadvertently into air beyond the body even by a few millimeters, dose dumping occurred in beam's path (220% for 5-field and 170%, 7-field plans). Keeping PTV margins within body contour reduced this type of dose dumping. Beamlet optimization, duration of optimization, spatial location of PTV, and DVC on PTV and normal structures has the potential to cause dose dumping. However, these

  7. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    Science.gov (United States)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  8. The FCC-ee design study: luminosity and beam polarization

    CERN Document Server

    Koratzinos, M

    2015-01-01

    The FCC-ee accelerator is considered within the FCC design study as a possible first step towards the ultimate goal of a 100 TeV hadron collider. It is a high luminosity e+e- storage ring collider, designed to cover energies of around 90, 160, 240 and 350GeV ECM (for the Z peak, the WW threshold, the ZH and ttbar cross-section maxima respectively) leading to different operating modes. We report on the current status of the design study, on the most promising concepts and relevant challenges. The expected luminosity performance at all energies, and first studies on transverse polarization for beam energy calibrations will be presented.

  9. High-$\\gamma$ Beta Beams within the LAGUNA design study

    CERN Document Server

    Orme, Christopher

    2010-01-01

    Within the LAGUNA design study, seven candidate sites are being assessed for their feasibility to host a next-generation, very large neutrino observatory. Such a detector will be expected to feature within a future European accelerator neutrino programme (Superbeam or Beta Beam), and hence the distance from CERN is of critical importance. In this article, the focus is a $^{18}$Ne and $^{6}$He Beta Beam sourced at CERN and directed towards a 50 kton Liquid Argon detector located at the LAGUNA sites: Slanic (L=1570 km) and Pyh\\"{a}salmi (L=2300 km). To improve sensitivity to the neutrino mass ordering, these baselines are then combined with a concurrent run with the same flux directed towards a large Water \\v{C}erenkov detector located at Canfranc (L=650 km). This degeneracy breaking combination is shown to provide comparable physics reach to the conservative Magic Baseline Beta Beam proposals. For $^{18}$Ne ions boosted to $\\gamma=570$ and $^{6}$He ions boosted to $\\gamma=350$, the correct mass ordering can be...

  10. LHeC ERL Design and Beam-dynamics Issues

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Bogacz, I. Shin, D. Schulte, F. Zimmermann

    2011-09-01

    We discuss machine and beam parameter choices for a Linac-Ring option of the Large Hadron electron Collider (LHeC) based on the LHC. With the total wall-plug power limited to 100 MW and a target current of about 6 mA the desired luminosity of 1033 cm-2 s-1 can be reached, providing one exploits unique features of the Energy Recovery Linac (ERL). Here, we describe the overall layout of such ERL complex located on the LHC site. We present an optimized multi-pass linac optics enabling operation of the proposed 3-pass Recirculating Linear Accelerator (RLA) in the Energy Recovery mode. We also describe emittance preserving return arc optics architecture; including layout and optics of the arc switch-yard. Furthermore, we discuss importance of collective effects such as: beam breakup in the RLA, as well as ion accumulation, with design-integrated mitigation measures, and the electron-beam disruption in collision. Finally, a few open questions are highlighted.

  11. Design and Fabrication of a Slanted-Beam MEMS Accelerometer

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2017-03-01

    Full Text Available This paper presents a novel capacitive microelectromechanical systems (MEMS accelerometer with slanted supporting beams and all-silicon sandwich structure. Its sensing mechanism is quite similar to an ordinary sandwich-type MEMS accelerometer, except that its proof mass is suspended by a beam parallel to the {111} plane of a (100 silicon wafer. In this way, each sensing element can detect accelerations in two orthogonal directions. Four of these sensing elements could work together and constitute a 3-axis micro-accelerometer by using a simple planar assembly process. This design avoids the traditional 3-axis accelerometer’ disadvantage of possible placement inaccuracy when assembling on three different planes and largely reduces the package volume. The slanted-beam accelerometer’s performance was modeled and analyzed by using both analytical calculations and finite element method (FEM simulations. A prototype of one sensing element was fabricated and tested. Measured results show that this accelerometer has a good bias stability 76.8 ppm (1σ, tested immediately after power on, two directional sensitivities (sensitivity angle α = 45.4° and low nonlinearity (<0.5% over a sensing range up to ±50 g, which demonstrates a great opportunity for future high-precision three-axis inertial measurement.

  12. Design optimization of continuous partially prestressed concrete beams

    Science.gov (United States)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  13. Design for e-beam: design insights for direct-write maskless lithography

    Science.gov (United States)

    Fujimura, Aki

    2010-09-01

    Designers always want maximum freedom in design, but they understand that chips have to yield and at a reasonable cost. The strong ecosystem support of restricted design rules to make 193i workable for sub-30nm nodes is evidence of this. In direct write e-beam, there are design insights that lead to a tangible improvement in throughout while minimizing the restrictions on the designer. It turns out that a smaller number of primitive cells in a standard cell methodology can enable data compression for multi-beam systems, and enable faster write times for character projection in VSB-based multiple column machines. This requires a co-design of the standard cell library with the stencil mask (either virtual or real) that goes into the machine. This co-design step is required only once per library and not on a design-by-design basis, thus minimizing the impact on designers. 10-20X speedups in e-beam throughput depending on layer are seen in typical layout examples for character projection machines.

  14. Recent improvements to the ITER neutral beam system design

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R., E-mail: lgrisham@pppl.gov [Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Agostinetti, P. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Barrera, G. [EURATOM-CIEMAT Association, Avda. Complutense 40, 28040 Madrid (Spain); Blatchford, P. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Boilson, D.; Chareyre, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Chitarin, G. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Esch, H.P.L. de [CEA-Cadarache, IRFM, F-13108 Saint-Paul-lez-Durance (France); De Lorenzi, A. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Gagliardi, M. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Hemsworth, R.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kashiwagi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); King, D. [Culham Center for Fusion Energy, Abingdon, Oxon. OX14 3DB (United Kingdom); Krylov, A. [Russian Research Centre, Kurchatov Institute, Moscow (Russian Federation); Kuriyama, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Marconato, N.; Marcuzzi, D. [Consorzio RFX, Euratom-ENEA Association, C.so Stati Uniti 4, I-35127 Padova (Italy); Roccella, M. [L.T. Calcoli SaS, Via C. Baslini 13, 23807 Merate (Italy); and others

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Improvements to ITER accelerator voltage holding. Black-Right-Pointing-Pointer Improvements to ITER negative ion source design. Black-Right-Pointing-Pointer Improvements to ITER megavolt bushing. Black-Right-Pointing-Pointer Improvements to beamline components. Black-Right-Pointing-Pointer Accelerator design improvements. - Abstract: The ITER [1] fusion device is expected to demonstrate the feasibility of magnetically confined deuterium-tritium plasma as an energy source which might one day lead to practical power plants. Injection of energetic beams of neutral atoms (up to 1 MeV D{sup 0} or up to 870 keV H{sup 0}) will be one of the primary methods used for heating the plasma, and for driving toroidal electrical current within it, the latter being essential in producing the required magnetic confinement field configuration. The design calls for each beamline to inject up to 16.5 MW of power through the duct into the tokamak, with an initial complement of two beamlines injecting parallel to the direction of the current arising from the tokamak transformer effect, and with the possibility of eventually adding a third beamline, also in the co-current direction. The general design of the beamlines has taken shape over the past 17 years [2], and is now predicated upon an RF-driven negative ion source based upon the line of sources developed by the Institute for Plasma Physics (IPP) at Garching during recent decades [3-5], and a multiple-aperture multiple-grid electrostatic accelerator derived from negative ion accelerators developed by the Japan Atomic Energy Agency (JAEA) across a similar span of time [6-8]. During the past years, the basic concept of the beam system has been further refined and developed, and assessment of suitable fabrication techniques has begun. While many design details which will be important to the installation and implementation of the ITER beams have been worked out during this time, this paper focuses

  15. Injection and Dump Systems

    CERN Document Server

    Bracco, C; Barnes, M J; Carlier, E; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Performance and failures of the LHC injection and ex- traction systems are presented. In particular, a comparison with the 2010 run, lessons learnt during operation with high intensity beams and foreseen upgrades are described. UFOs, vacuum and impedance problems related to the injection and extraction equipment are analysed together with possible improvements and solutions. New implemented features, diagnostics, critical issues of XPOC and IQC applications are addressed.

  16. 75 FR 33747 - Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final Rule for...

    Science.gov (United States)

    2010-06-15

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 228 Ocean Dumping; Correction of Typographical Error in 2006 Federal Register Final... Final Rule for the Ocean Dumping; De-designation of Ocean Dredged Material Disposal Site and...

  17. A Clamped Be Window for the Dump of the HiRadMat Experiment at CERN

    CERN Document Server

    Delonca, M; Grenier, D; Maglioni, C; Sarrio Martinez, A

    2012-01-01

    At CERN, the High Radiation to Materials facility (HiRadMat) is designed to test accelerator components under the impact of high-intensity pulsed beams and will start operation in 2012. In this frame an LHC TED-type dump was installed at the end of the line, working in nitrogen over-pressure, and a 254μm-thick beryllium window was placed as barrier between the inside of the dump and the external atmosphere. Because of the special loading conditions, a clamped window design was especially developed, optimized and implemented, the more standard welded window not being suitable for such loads. Considering then the clamping force and the applied differential pressures, the stresses on the window components were carefully evaluated thanks to empirical as well as numerical models, to guarantee the structural integrity of the beryllium foil. This paper reports on choices and optimizations that led to the final design, presenting also comparative results from different solutions and the detailed results for the adop...

  18. A Clamped Be Window for the Dump of the HiRadMat Experiment at CERN

    CERN Document Server

    Delonca, M; Grenier, D; Maglioni, C; Sarrio Martinez, A

    2012-01-01

    At CERN, the High Radiation to Materials facility (HiRadMat) is designed to test accelerator components under the impact of high-intensity pulsed beams and will start operation in 2012. In this frame an LHC TED-type dump was installed at the end of the line, working in nitrogen overpressure, and a 254μm-thick beryllium window was placed as barrier between the inside of the dump and the external atmosphere. Because of the special loading conditions, a clamped window design was especially developed, optimized and implemented, the more standard welded window not being suitable for such loads. Considering then the clamping force and the applied differential pressures, the stresses on the window components were carefully evaluated thanks to empirical as well as numerical models, to guarantee the structural integrity of the beryllium foil. This paper reports on choices and optimizations that led to the final design, presenting also comparative results from different solutions and the detailed results for the adopt...

  19. Design process for NIF laser alignment and beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Grey, A., LLNL

    1998-06-09

    In a controller for an adaptive optic system designed to correct phase aberrations in a high power laser, the wavefront sensor is a discrete Hartmann-Shack design. It uses an army of lenslets (like a fly` s eye) to focus the laser into 77 spots on a CCD camera. Average local tilt of the wavefront across each lenslet changes the position of its focal spot. The system requires 0.1 pixel accuracy in determining the focal spot location. We determine a small area around each spot` s previous location. Within this area, we calculate the centroid of the light intensity in x and y. This calculation fails if the spot regions overlap. Especially during initial acquisition of a highly distorted beam, distinguishing overlapping spots is difficult. However, low resolution analysis of the overlapping spots allows the system to estimate their positions. With this estimate, it can use the deformable mirror to correct the beam enough so we can detect the spots using conventional image processing.

  20. A Summary of Design Formulas for Beams Having Thin Webs in Diagonal Tension

    Science.gov (United States)

    Kuhn, Paul

    1933-01-01

    This report presents an explanation of the fundamental principles and a summary of the essential formulas for the design of diagonal-tension field beams, i.e. beams with very thin webs, as developed by Professor Wagner of Germany.

  1. Dumping in Developing and Transition Economies

    NARCIS (Netherlands)

    J.L. Moraga-Gonzalez (José Luis); J.M.A. Viaene (Jean-Marie)

    2004-01-01

    textabstractWe build a simple theoretical model to understand why developing and transition economies have increasingly applied anti-dumping laws. To that end, we investigate the strategic incentives of oligopolistic exporting firms to undertake dumping in these economies. We show that dumping may b

  2. Design, development and fabrication of a deployable/retractable truss beam model for large space structures application

    Science.gov (United States)

    Adams, Louis R.

    1987-01-01

    The design requirements for a truss beam model are reviewed. The concept behind the beam is described. Pertinent analysis and studies concerning beam definition, deployment loading, joint compliance, etc. are given. Design, fabrication and assembly procedures are discussed.

  3. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  4. Chemical munitions dumped at sea

    Science.gov (United States)

    Edwards, Margo; Bełdowski, Jacek

    2016-06-01

    Modern chemical warfare is a byproduct of the industrial revolution, which created factories capable of rapidly producing artillery shells that could be filled with toxic chemicals such as chlorine, phosgene and mustard agent. The trench warfare of World War I inaugurated extensive deployments of modern chemical weapons in 1915. Concomitantly, the need arose to dispose of damaged, captured or excess chemical munitions and their constituents. Whereas today chemical warfare agents (CWA) are destroyed via chemical neutralization processes or high-temperature incineration in tandem with environmental monitoring, in the early to middle 20th century the options for CWA disposal were limited to open-air burning, burial and disposal at sea. The latter option was identified as the least likely of the three to impact mankind, and sea dumping of chemical munitions commenced. Eventually, the potential impacts of sea dumping human waste were recognized, and in 1972 an international treaty, the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, was developed to protect the marine environment from pollution caused by the dumping of wastes and other matter into the ocean. By the time this treaty, referred to as the London Convention, was signed by a majority of nations, millions of tons of munitions were known to have been disposed throughout the world's oceans.

  5. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  6. Lattice design for head-on beam-beam compensation at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.

    2011-03-28

    Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.

  7. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  8. Influences on the occurrence of dumping syndrome.

    Science.gov (United States)

    Kaushik, S P; Ralphs, D N; Hobsley, M

    1983-03-01

    A dumping provocation test using 50% of glucose solution labeled with Indium 115 m, was performed on 146 occasions pre- and postoperatively in 85 patients. Dumping elicited by the test was defined by the symptoms produced by the test and various objective measures of dumping. The influence of various factors other than the type of operation on the occurrence of dumping has been studied in detail. The incidence of dumping symptoms induced by the test has shown no significant correlation with age, sex, weight, height, smoking habits, race, dose of hypertonic glucose, and the time elapsed since surgery. However, a significant relationship has been observed between the duration of ulcer symptoms before operation and the occurrence of dumping symptoms induced by the test. The test not only reproduced the symptoms patients had reported after eating ordinary foods, it also helped in eliminating patients with borderline symptoms as our objective measures collectively differentiated three patients from those with the dumping syndrome.

  9. Beam Collimation and Machine-Detector Interface at the International Linear Collider

    CERN Document Server

    Mokhov, Nikolai V; Kostin, Mikhail A

    2005-01-01

    Synchrotron radiation, spray from the dumps and extraction lines, beam-gas and beam halo interactions with collimators and other components in the ILC beam delivery system create fluxes of muons and other secondaries which can exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We concentrate on collimation system and mask design and optimization, short- and long-term survivability of the critical components (spoilers, absorbers, magnets, separators, dumps), dynamic heat loads and radiation levels in magnets and other components, machine-related backgrounds and damage in collider detectors, and environmental aspects (prompt dose, ground-water and air activation).

  10. Optimal Design of Proposed 800 MeV Proton Cyclotron Beam Dynamics

    Institute of Scientific and Technical Information of China (English)

    YANG; Jian-jun; LI; Ming; ZHANG; Tian-jue; SONG; Guo-fang; AN; Shi-zhong

    2015-01-01

    The high intensity beam dynamic simulation shows that the theoretic beam current limit of the original design version of the 800 MeV proton cyclotron CYCIEA-800is 1mA.In order to further improve the current limit and reduce beam losses in the cyclotron,the layout of the cyclotron

  11. Down at the Dump.

    Science.gov (United States)

    Markle, Sandra

    1988-01-01

    Using the problem of trash disposal as an example, students participate in science activities designed to develop the following science skills: classifying, observing, measuring, communicating, inferring, and predicting. Activities are described in detail and a reproducible page is provided. (JL)

  12. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  13. Controlling beam halo-chaos via backstepping design

    Institute of Scientific and Technical Information of China (English)

    Gao Yuan; Kong Feng

    2008-01-01

    A backstepping control method is proposed for controlling beam halo-chaos in the periodic focusing channels PFCs) of high-current ion accelerator. The analysis and numerical results show that the method, via adjusting an exterior magnetic field, is effective to control beam halo chaos with five types of initial distribution ion beams, all statistical quantities of the beam halo-chaos are largely reduced, and the uniformity of ion beam is improved. This control method has an important value of application, for the exterior magnetic field can be easily adjusted in the periodical magnetic focusing channels in experiment.

  14. Evaluation of the Beam Coupling Impedance of New Beam Screen Designs for the LHC Injection Kicker Magnets

    CERN Document Server

    Day, Hugo; Caspers, Fritz; Jones, Roger; Metral, Elias; Salvant, Benoit

    2012-01-01

    During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedance. Due to concerns about future heating with the increased total intensity to nominal and ultimate luminosities a review of the impedance reduction techniques within the magnet was required. A number of new beam screen designs are proposed and their impedance evaluated. Heating estimates are also given with a particular attention paid to future intensity upgrades to ultimate parameters.

  15. Assessment of impact on health of children working in the garbage dumping site in Dhaka, Bangladesh.

    Science.gov (United States)

    Lahiry, Gargy; Rahman, Tania; Hasan, A K M Mahbub; Dutta, Alak K; Arif, Md; Howlader, Zakir H

    2011-12-01

    Waste dumping is one of the major causes of environment pollution in Bangladesh. This study was designed to assess the impact on health of children working in one of the garbage dumping sites in Dhaka. Blood samples were collected from exposed (n = 20, aged: 8-15 years, exposed to dumped garbage from 6 months to 6 years) and control subjects (n = 15, age matched and never worked in the garbage dumping site). Oxidative stress markers like lipid hydroperoxides, thiobarbituric acid reactive substances and protein carbonyl content were measured. Alkaline comet assay was performed to assess the possible damage in DNA. To check the consequences of possible toxic exposure, we performed liver function tests of the study subjects. Oxidative stress-mediated damage of macromolecules was found to be significantly increased in the exposed children. Liver function tests were found normal. Thus, the children working in garbage dumping site are in severe health risk.

  16. Patient dumping, outlier payments, and optimal healthcare payment policy under asymmetric information.

    Science.gov (United States)

    Takahara, Tsuyoshi

    2016-12-01

    We analyze a rationale for official authorization of patient dumping in the prospective payment policy framework. We show that when the insurer designs the healthcare payment policy to let hospitals dump high-cost patients, there is a trade-off between the disutility of dumped patients (changes in hospitals' rent extraction due to low-severity patients) and the shift in the level of cost reduction efforts for high-severity patients. We also clarify the welfare-improving conditions by allowing hospitals to dump high-severity patients. Finally, we show that if the efficiency of the cost reduction efforts varies extensively and the healthcare payment cost is substantial, or if there are many private hospitals, the patient dumping policy can improve social welfare in a wider environment.

  17. New Beam Position Monitor System Design for the APS Injector

    Science.gov (United States)

    Lill, R.; Singh, O.; Arnold, N.

    2002-12-01

    Demands on the APS injector have evolved over the last few years to the point that an upgrade to the existing beam position monitor (BPM) electronics is required. The injector is presently being used as a source for both the low-energy undulator test line (LEUTL) project and the top-up mode of operation. These new requirements and the fact that many new rf receiver components are available at reasonable cost make this upgrade very desirable at this time. The receiver topology selected is a logarithmic processor, which is designed around the Analog Devices AD8313 log amplifier demodulation chip. This receiver will become the universal replacement for all injector applications measuring positions signals from 352 to 2856 MHz with minimum changes in hardware and without the use of a downconverter. The receiver design features integrated front-end gain and built-in self test. The data acquisition being considered at this time is a 100-MHz, 12-bit transient recorder digitizer. The latest experimental and commissioning data and results will be presented.

  18. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  19. DESIGN OF ILC EXTRACTION LINE FOR 20 MRAD CROSSING ANGLE

    Energy Technology Data Exchange (ETDEWEB)

    Nosochkov, Y.; Moffeit, K.; Seryi, A.; Woods, M.; /SLAC; Arnold, R.; /Massachusetts U., Amherst; Oliver, W.; /Tufts U.; Parker, B.; /Brookhaven; Torrence, E.; /Oregon U.

    2005-05-16

    One of the two ILC Interaction Regions will have a large horizontal crossing angle which would allow to extract the spent beams in a separate beam line. In this paper, the extraction line design for 20 mrad crossing angle is presented. This beam line transports the primary e{sup +}/e{sup -} and beamstrahlung photon beams from the IP to a common dump, and includes diagnostic section for energy and polarization measurements. The optics is designed for a large energy acceptance to minimize losses in the low energy tail of the disrupted beam. The extraction optics, diagnostic instrumentation and particle tracking simulations are described.

  20. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Science.gov (United States)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  1. 7 CFR 48.7 - Evidence to justify dumping.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Evidence to justify dumping. 48.7 Section 48.7... Dumping § 48.7 Evidence to justify dumping. Any person, receiving produce in interstate commerce or in the..., prior to such destroying, abandoning, discarding or dumping, obtain a dumping certificate or...

  2. 49 CFR 176.97 - Prohibition of dump scows.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Prohibition of dump scows. 176.97 Section 176.97... Requirements for Barges § 176.97 Prohibition of dump scows. Dump scows are barges having cargo carrying compartments of the hopper type and fitted with a bottom dump or a side dump. This type of barge is...

  3. Evaluation of size dependent design shear strength of reinforced concrete beams without web reinforcement

    Indian Academy of Sciences (India)

    G Appa Rao; S S Injaganeri

    2011-06-01

    Analytical studies on the effect of depth of beam and several parameters on the shear strength of reinforced concrete beams are reported. A large data base available has been segregated and a nonlinear regression analysis (NLRA) has been performed for developing the refined design models for both, the cracking and the ultimate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength of RC beams is size dependent, which needs to be evaluated and incorporated in the appropriate size effect models. The proposed models are functions of compressive strength of concrete, percentage of flexural reinforcement and depth of beam. The structural brittleness of large size beams seems to be severe compared with highly ductile small size beams at a given quantity of flexural reinforcement. The proposed models have been validated with the existing popular models as well as with the design code provisions.

  4. An Accurate and Efficient Design Tool for Large Contoured Beam Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sørensen, Stig B.; Jørgensen, Erik;

    2012-01-01

    illuminations. Two offset contoured beam reflectarrays that radiate a highgain beam on an European coverage have been designed, manufactured, and measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. An excellent agreement is obtained for the simulated and measured patterns. To show the design...

  5. Design of phase plates for shaping partially coherent beams by simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Long; Lü Bai-Da

    2008-01-01

    Taking the Gaussian Schell-model beam as a typical example of partially coherent beams,this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams.A flow diagram is presented to illustrate the procedure of phase optimization by the SA algorithm.Numerical examples demonstrate the advantages of the SA algorithm in shaping partially coherent beams.An uniform flat-topped beam profile with maximum reconstruction error RE < 1.74% is achieved.A further extension of the approach is discussed.

  6. 40 CFR 227.14 - Criteria for evaluating the need for ocean dumping and alternatives to ocean dumping.

    Science.gov (United States)

    2010-07-01

    ... ocean dumping and alternatives to ocean dumping. 227.14 Section 227.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Need for Ocean Dumping § 227.14 Criteria for evaluating the need for...

  7. Development and Optimization of a Novel Prolonged Release Formulation to Resist Alcohol-Induced Dose Dumping

    OpenAIRE

    Gujjar, Chaitanya Yogananda; Rallabandi, Balaramesha Chary; Gannu, Ramesh; Deulkar, Vallabh Subashrao

    2015-01-01

    Alcohol-induced dose dumping is a serious concern for the orally administered prolonged release dosage forms. The study was designed to optimize the independent variables, propylene glycol alginate (PGA), Eudragit RS PO (ERS) and coating in mucoadhesive quetiapine prolonged release tablets 200 mg required for preventing the alcohol-induced dose dumping. Optimal design based on response surface methodology was employed for the optimization of the composition. The formulations are evaluated for...

  8. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  9. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  10. Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

    Science.gov (United States)

    Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki; Ikegami, Masanori

    2015-02-01

    In the J-PARC (Japan Proton Accelerator Research Complex) linac, an energy-upgrade project has started to achieve a design beam power of 1 MW at the exit of the downstream synchrotron. To account for the significant beam parameter upgrades, we will use the newly-fabricated beam monitors for the beam commissioning. This paper discusses the design and assembly of the beam position monitor, phase monitor, current monitor, transverse profile monitor, and beam loss monitor for the energy-upgraded linac. We periodically installed the newly-fabricated monitors for the upgraded beam line, as well as for longitudinal matching, because of the frequency jump between the original RF cavity and the newly-developed cavity. We employed two debunchers to correct for momentum spread and jitter. To account for the new debunchers, we fabricated and installed additional pairs of phase monitors in order to tune the debunchers to the adequate RF set point. Finally, we propose commissioning plans to support the beam monitor check. We will begin to establish the 181-MeV operation to confirm the proper functioning of beam monitors. Herein, we will examine the response to changes of the knobs that control the quadrupole magnets after the energy upgrade. After proper functioning of the beam monitors is confirmed, we will use the new beam monitors to establish the 400-MeV acceleration operation.

  11. Design and Performance of the CNGS Secondary Beam Line

    CERN Document Server

    Gschwendtner, E; Elsener, K; Ferrari, A; Guglielmi, A; Meddahi, M; Pardons, A; Rangod, Stephane; Sala, P

    2007-01-01

    An intense muon-neutrino beam (1017nm /day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. In the presently approved physics programme, it is foreseen to run the CNGS facility with 4.5.1019 protons per year for five years. During a nominal CNGS cycle, i.e. every 6s, two nominal SPS extractions of 2.4.1013 protons each at 400GeV/c are sent down the proton beam line to the target. The CNGS secondary beam line, starting with the target, has to cope with this situation, which pushes the beam line equipment and instrumentation to the limits of radiation hardness and mechanical stresses during the CNGS operation. An overview of the CNGS secondary beam line is given. Emphasis is on the target, the magnetic focusing lenses (horn and reflector) and the muon monitors. The performance of the secondary beam line during beam commissioning and physics operation is discussed and measurements are compared with simulations.

  12. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  13. Simplified Beam Design for Semi-Rigid Composite Frames at the Serviceability Limit State

    Institute of Scientific and Technical Information of China (English)

    WANG Jingfeng; LI Guoqiang

    2008-01-01

    This paper presents a simplified beam design method for semi-rigid composite frames with vertical loading at the serviceability limit state.Equations were developed to determine the deflections of the composite beam allowing for both joint flexibility and beam sectional properties,along with a formula for the connection secant stiffness.The equations for the connection stiffness are more accurate than previous equations used because it considers the beam-to-column stiffness ratio and the beam-to-connection stiffnessratio.The equations were validated by the experimental results for two semi-rigid composite frames.The equations agree well with the experimental data because they take into account the actual beam-to-column connections and the composite action between the steel beam and the concrete slab.

  14. Laser beam riding guided system principle and design research

    Science.gov (United States)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  15. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  16. Orbiter Water Dump Nozzles Redesign Lessons Learned

    Science.gov (United States)

    Rotter, Hank

    2017-01-01

    Hank Rotter, NASA Technical Fellow for Environmental Control and Life Support System, will provide the causes and lessons learned for the two Space Shuttle Orbiter water dump icicles that formed on the side of the Orbiter. He will present the root causes and the criticality of these icicles, along with the redesign of the water dump nozzles and lessons learned during the redesign phase.

  17. Anti-Dumping on and from China

    Institute of Scientific and Technical Information of China (English)

    Patrick H. Zhao

    2007-01-01

    @@ The past years saw an increased cases of anti-dumping on China mostly from the developed countries, some from developing countries. But Pakistan, a friendly neighbor to China, recently adds up to that list of ranks for an anti-dumping investigation on China.

  18. DUMPING SYNDROME IN A YOUNG-CHILD

    NARCIS (Netherlands)

    DEVRIES, TW; DODDEMA, JW; HEIJMANS, HSA

    1995-01-01

    We describe a 17-month-old child with dumping syndrome after plication of the right diaphragm. He presented with periods of abdominal distension and pallor, recurrent convulsions, glucosuria and refusal of Feeding. After changing the diet the symptoms disappeared. Conclusion Although dumping syndrom

  19. Design of low energy beam transport for new LANSCE H+ injector

    Science.gov (United States)

    Batygin, Y. K.; Draganic, I. N.; Fortgang, C. M.; Garnett, R. W.; Kurennoy, S. S.; McCrady, R. C.; O'Hara, J. F.; Rybarcyk, L. J.

    2014-07-01

    The present LANSCE injector utilizes two 750-keV Cockcroft-Walton (CW) based injectors for simultaneous injection of H+ and H- beams into 800-MeV accelerator. To reduce long-term operational risks, the new project to replace the existing H+ CW injector with a Radio-Frequency Quadrupole (RFQ) accelerator is underway [1]. The new injector requires a Low-Energy Beam Transport (LEBT). An ion source and 2-solenoid magnetic LEBT have been designed and optimized to transport beams over a wide range of space-charge neutralization and transverse emittance, while allowing sufficient space for diagnostics and a beam deflector. The design layout minimizes the beam size in the LEBT and potential emittance growth due to solenoid aberrations and nonlinear space-charge forces. This paper describes the details of the LEBT design activity.

  20. Design of low energy beam transport for new LANSCE H{sup +} injector

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.K., E-mail: batygin@lanl.gov; Draganic, I.N.; Fortgang, C.M.; Garnett, R.W.; Kurennoy, S.S.; McCrady, R.C.; O’Hara, J.F.; Rybarcyk, L.J.

    2014-07-01

    The present LANSCE injector utilizes two 750-keV Cockcroft–Walton (CW) based injectors for simultaneous injection of H{sup +} and H{sup −} beams into 800-MeV accelerator. To reduce long-term operational risks, the new project to replace the existing H{sup +} CW injector with a Radio-Frequency Quadrupole (RFQ) accelerator is underway [1]. The new injector requires a Low-Energy Beam Transport (LEBT). An ion source and 2-solenoid magnetic LEBT have been designed and optimized to transport beams over a wide range of space-charge neutralization and transverse emittance, while allowing sufficient space for diagnostics and a beam deflector. The design layout minimizes the beam size in the LEBT and potential emittance growth due to solenoid aberrations and nonlinear space-charge forces. This paper describes the details of the LEBT design activity.

  1. Finite element analysis and structural design of pretensioned inverted T-beams with web openings

    Institute of Scientific and Technical Information of China (English)

    Hock Tian CHENG; Bashar S. MOHAMMED; Kamal Nasharuddin MUSTAPHA

    2009-01-01

    This paper presents the results of a research project aimed at providing standard circular web openings to the popular precast pretensioned inverted T-beam.Opening size and placement and required materials strengths were investigated. In this paper the nonlinear analysis and design of simply supported pretensioned inverted T-beam with circular web openings are presented.Two design parameters are varied: opening location and number of openings. The results from nonlinear finite element analysis were substantiated by test results from five pretensioned inverted T-beams with web opening and one solid beam. Good agreement is shown between the theoretical and the experimental results. The test results obtained from this investigation show that the performance of the specimens with web openings is almost identical to that of the specimen without web openings. A simple design method for pretensioned inverted T-beam with

  2. A Design of High-Power Beam Combiner at Millimeter Wavelengths Utilizing Wire Grids

    Science.gov (United States)

    Lin, Mei; Yu, Yanzhong

    2009-05-01

    A beam combiner, which can combine multiple Gaussian beams into a single one, has many important applications, such as high-power radar and weapon. In this paper, we propose a new scheme of the design of high-power beam combiner at millimeter wavelengths by using wire grids. The design tool is to combine a genetic algorithm (GA) for global optimization and an Ansoft HFSS for rigorous electromagnetic computation. The design method is described in detail and the optimized results are presented. Finally, a brief summary is given.

  3. Advanced rapid prototyping by laser beam sintering of metal prototypes: design and development of an optimized laser beam delivery system

    Science.gov (United States)

    Geiger, Manfred; Coremans, A.; Neubauer, Norbert; Niebling, F.

    1996-08-01

    Fast technological advances and steadily increasing severe worldwide competition force industry to respond all the time faster to new and chanced customer wishes. Some of the recently emerged processes, commonly referred to as 'rapid prototyping' (RP), have proved to be powerful tools for accelerating product and process development. Early approaches aimed at the automated production of plastic models. These techniques achieved industrial maturity extremely fast and are meanwhile established as standard utilities in the field of development/design processes. So far, their applicability to metal working industry was limited to design studies because the mechanical properties of the prototypes, e.g. modulus of elasticity and mechanical strength were not comparable to the final products they represented. Therefore, RP-processes aimed at the direct production of metallic prototypes gained more and more importance during recent years. A technique belonging to this group is manufacturing of prototypes by using a laser beam sintering machine capable of directly processing metal powders. This so called laser beam sintering process showed a great potential for direct manufacturing of functional tools and prototypes in early feasibility studies. Detailed examinations were performed at several research centers to determine the attainable quality of the parts concerning roughness, dimensional accuracy and mechanical strength. These examinations showed, that there still is a considerable demand for quality improvements of the previously mentioned parameters. The practical application and the potential for improvement of the geometrical accuracy of laser beam sintered parts by using a dual beam concept was proven. An innovative beam guiding and forming concept, similar to the previously mentioned patented beam guiding system, was developed and built with the goal to improve the process parameters governing mechanical properties as well as geometrical accuracy. Further reaching

  4. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  5. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD-chip impleme......To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD...

  6. Hybrid neural network model for the design of beam subjected to bending and shear

    Indian Academy of Sciences (India)

    H Sudarsana Rao; B Ramesh Babu

    2007-10-01

    There is no direct method for design of beams. In general the dimensions of the beam and reinforcement are initially assumed and then the interaction formula is used to verify the suitability of chosen dimensions. This approach necessitates few trials for coming up with an economical and safe design. This paper demonstrates the applicability of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for the design of beams subjected to moment and shear. A hybrid neural network model which combines the features of feed forward neural networks and genetic algorithms has been developed for the design of beam subjected to moment and shear. The network has been trained with design data obtained from design experts in the field. The hybrid neural network model learned the design of beam in just 1000 training cycles. After successful learning, the model predicted the depth of the beam, area of steel, spacing of stirrups required for new problems with accuracy satisfying all design constraints. The various stages involved in the development of a genetic algorithm based neural network model are addressed at length in this paper.

  7. Feasibility of In-Situ Aeration of Old Dumping Ground for Land Reclamation

    Directory of Open Access Journals (Sweden)

    Huan-Huan Tong

    2013-12-01

    Full Text Available Dumping grounds are characterized by the absence of engineering controls such as base liners and cover layer. Consequently, these dumping grounds present risks for surrounding resources such as soil, groundwater and air. The concern for groundwater contamination by leachate from tropical dumping grounds is heightened due to the greater amounts of rainfall and subsequent infiltration and percolation through the waste mass. The emergent demand for old dumping grounds reclamation drives the need to employ remediation technologies. Generally, in-situ aeration is a remediation method that promotes aerobic conditions in the later stage of dumping ground. It accelerates carbon transfer, reduces remaining organic load, and generally shortens the post closure period. However, high rainfall in tropical areas straitens this technique. For example, pollutants could be easily flushed out and more energy should be required to overcome hydrostatic pressure. Although heavy rainfall could supply sufficient water to the substrate and accelerate degradation of organic matter, it may inhibit aerobic activities due to limited air transfer. The waste characterization from Lorong Halus Dumping Ground (closed dumping ground in Singapore showed that the waste materials were stabilized after 22 years closure. According to the Waste Acceptance Criteria set by European Communities Council, the waste materials could be classified as inert wastes. One interesting finding was that leachate layer detected was about of 5 - 8 meter depth, which entirely soaked the waste materials. Hence, the reclamation design and operation should be carefully adjusted according to these characters. Lorong Halus Dumping Ground case study can provide a guideline for other tropical closed landfills or dumping grounds.

  8. An Innovative Beam Halo Monitor system for the CMS experiment at the LHC: Design, Commissioning and First Beam Results

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00344917; Dabrowski, Anne

    The Compact Muon Solenoid (CMS) is a multi-purpose experiment situated at the Large Hadron Collider (LHC). The CMS has the mandate of searching new physics and making precise measurements of the already known mechanisms by using data produced by collisions of high-energy particles. To ensure high quality physics data taking, it is important to monitor and ensure the quality of the colliding particle beams. This thesis presents the research and design, the integration and the first commissioning results of a novel Beam Halo Monitor (BHM) that was designed and built for the CMS experiment. The BHM provides an online, bunch-by-bunch measurement of background particles created by interactions of the proton beam with residual gas molecules in the vacuum chamber or with collimator material upstream of the CMS, separately for each beam. The system consists of two arrays of twenty direction-sensitive detectors that are distributed azimuthally around the outer forward shielding of the CMS experiment. Each detector is ...

  9. Design of an EBIS charge breeder system for rare-isotope beams

    Science.gov (United States)

    Park, Young-Ho; Son, Hyock-Jun; Kim, Jongwon

    2016-09-01

    Rare-isotope beams will be produced by using the isotope separation on-line (ISOL) system at the Rare Isotope Science Project (RISP). A proton cyclotron is the driver accelerator for ISOL targets, and uranium carbide (UCx) will be a major target material. An isotope beam of interest extracted from the target will be ionized and selected by using a mass separator. The beam emittance will then be reduced by using a radio-frequency quadrupole (RFQ) cooler before the beam is injected into the electron-beam ion-source (EBIS) charge breeder (CB). The maximum electron beam current of the EBIS is 3 A from a cathode made of IrCe in an applied magnetic field of 0.2 T. The size of the electron beam is compressed by magnetic fields of up to 6 T caused in the charge-breeding region by a superconducting solenoid. The design of EBIS-CB was performed by using mechanics as well as beam optics. A test stand for the electron gun and its collector, which can take an electron-beam power of 20 kW, are under construction. The gun assembly was first tested by using a high-voltage pulse so as to measure its perveance. The design of the EBIS, along with its test stand, is described.

  10. Design and construction of a prototype of a flat top beam interferometer and initial tests

    Energy Technology Data Exchange (ETDEWEB)

    Agresti, J [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); D' Ambrosio, E [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); DeSalvo, R [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Forest, D [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Lagrange, B [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Mackowski, J M [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Michel, C [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Montorio, J L [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Morgado, N [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Pinard, L [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Remillieux, A [Laboratoire des Materiaux Avances, 22 Bd.Niels Bohr, Villeurbane (France); Simoni, B [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); Tarallo, M [University of Pisa, Largo Pontecorvo 3, Pisa (Italy); Willems, P [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2006-03-02

    A non-Gaussian, flat-top laser beam profile, also called Mesa Beam Profile, supported by non spherical mirrors known as Mexican Hat (MH) mirrors, has been proposed as a way to depress the mirror thermal noise and thus improve the sensitivity of future interferometric Gravitational Wave detectors, including Advanced LIGO. Non-Gaussian beam configurations have never been tested before hence the main motivation of this project is to demonstrate the feasibility of this new concept. A 7m rigid suspended Fabry-Perot (FP) cavity which can support a scaled version of a Mesa beam applicable to the LIGO interferometers has been developed. The FP cavity prototype is being designed to prove the feasibility of actual MH mirror profiles, determine whether a MH mirror cavity is capable of transforming an incoming Gaussian beam into a flat top beam profile, study the effects of unavoidable mirror imperfections on the resulting beam profile and gauge the difficulties associated with locking and maintaining the alignment of such an optical cavity. We present the design of the experimental apparatus and simulations comparing Gaussian and Mesa beams performed both with ideal and current (measured) mirror profiles. An overview of the technique used to manufacture this kind of mirror and initial results showing Mesa beam properties are presented.

  11. Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

    Science.gov (United States)

    Zhang, Shuxin; Du, Jingli; Wang, Wei; Zhang, Xinghua; Zong, Yali

    2017-05-01

    A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

  12. FATIGUE WELDING JOINT RESISTANCE OF MINING DUMP TRUCK BEARING CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Rakitsky

    2010-01-01

    Full Text Available The paper investigates a possibility to apply European norms on designing of welded constructions for frames of heavy-load mining dump trucks. Comparison of results concerning tests of welding joint specimen made of local steel with recommended standards of fatigue curves is executed in the paper. The paper reveals that while forecasting resource of automotive constructions with the accepted practical accuracy it is possible to use generalized fatigue resistance characteristics of standard welding joints. 

  13. DESIGN OF BEAM-EXTRACTION SEPTUM MAGNET FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; LEE,Y.Y.; RANK,J.; TUOZZOLO,J.

    2001-06-18

    The beam-extraction process from the SNS accumulator ring [1,2] requires a Lambertson septum magnet. In this paper we discuss the geometrical and magnetic field requirements of the magnet and present results obtained from two and three dimensional magnetic field calculations that shows the field quality in the regions of interest of the septum magnet.

  14. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  15. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  16. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  17. Pilot Beam Pattern Design for Channel Estimation in Massive MIMO Systems

    Science.gov (United States)

    Noh, Song; Zoltowski, Michael D.; Sung, Youngchul; Love, David J.

    2014-10-01

    In this paper, the problem of pilot beam pattern design for channel estimation in massive multiple-input multiple-output systems with a large number of transmit antennas at the base station is considered, and a new algorithm for pilot beam pattern design for optimal channel estimation is proposed under the assumption that the channel is a stationary Gauss-Markov random process. The proposed algorithm designs the pilot beam pattern sequentially by exploiting the properties of Kalman filtering and the associated prediction error covariance matrices and also the channel statistics such as spatial and temporal channel correlation. The resulting design generates a sequentially-optimal sequence of pilot beam patterns with low complexity for a given set of system parameters. Numerical results show the effectiveness of the proposed algorithm.

  18. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams......, and a slider. The kinematic analysis of this new mechanism is studied, using nonlinear Elastica buckling beam theory, the PRBM of a large deflecting cantilever beam, the vector loop closure equations, and numerically solving nonlinear algebraic equations. A design method of the bistable mechanism...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  19. Studies for the LHeC Beam Transfer System

    CERN Document Server

    Bracco, C

    2013-01-01

    The LHeC would allow for collisions between an electron beam from a new accelerator with the existing LHC hadron beam. Two possible configurations were studied: a separate linac (Linac-Ring) or a new electron ring superimposed on the LHC (Ring-Ring). The racetrack linac is now considered as the baseline for the LHeC design, with the Ring-Ring solution as a backup. The studies performed for the considered options are presented in this paper. For the Linac-Ring option the requirements for the post collision line and the beam dump design have been evaluated in the case of a 60 GeV and a 140 GeV electron beam. In the Ring-Ring option, studies have been performed on the optics design of the transfer line from a 10 GeV injector linac into the LHeC ring and of the injection system. The internal 60 GeV electron beam dump design has also been considered.

  20. Heat transfer law in leaching dump

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; WANG Hong-jiang; XI Yong; YANG Bao-hua; LI Jian-feng; YIN Sheng-hua; ZHA Ke-bing

    2005-01-01

    Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyzed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living.

  1. Concepts for the magnetic design of the MITICA neutral beam test facility ion acceleratora)

    Science.gov (United States)

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  2. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  3. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    Science.gov (United States)

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  4. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  5. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.

    Science.gov (United States)

    Allen, D A; Beynon, T D; Green, S; James, N D

    1999-01-01

    This paper is concerned with the proposed Birmingham accelerator-based epithermal neutron beam for boron neutron capture therapy (BNCT). Details of the final moderator design, such as beam delimiter, shield, and beam exit surface shape are considered. Monte Carlo radiation transport simulations with a head and body phantom have shown that a simple flat moderator beam exit surface is preferable to the previously envisioned spherical design. Dose rates to individual body organs during treatment have been calculated using a standard MIRD phantom. We have shown that a simple polyethylene shield, doped with natural lithium, is sufficient to provide adequate protection to the rest of the body during head irradiations. The effect upon the head phantom dose distributions of the use of such a shield to delimit the therapy beam has been evaluated.

  6. Robust design of broadband EUV multilayer beam splitters based on particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hui, E-mail: jianghui@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Zhangheng Road 239, Pudong District, Shanghai 201204 (China); King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom); Michette, Alan G. [King' s College London, Department of Physics, Strand, London WC2R 2LS (United Kingdom)

    2013-03-01

    A robust design idea for broadband EUV multilayer beam splitters is introduced that achieves the aim of decreasing the influence of layer thickness errors on optical performances. Such beam splitters can be used in interferometry to determine the quality of EUVL masks by comparing with a reference multilayer. In the optimization, particle swarm techniques were used for the first time in such designs. Compared to conventional genetic algorithms, particle swarm optimization has stronger ergodicity, simpler processing and faster convergence.

  7. An overview of design for CSNS/RCS and beam transport

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The China Spallation Neutron Source (CSNS) is the first accelerator-based pulsed neutron source in China. Its accelerators are made up of an 80 MeV H- linac, a Rapid Cycling Synchrotron (RCS) and two beam transport lines. RCS accumulates and accelerates protons to the design energy of 1.6 GeV, and extracts high energy beam to strike the target. The overview of RCS is presented, and the key problems of the physics design are discussed. The two beam transport lines, from linac to RCS and from RCS to the target, are also introduced.

  8. National Ignition Facility, subsystem design requirements beam control {ampersand} laser diagnostics SSDR 1.7

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, E.

    1996-11-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control & Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs.

  9. Design studies and sensor tests for the beam calorimeter of the ILC detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, E.

    2007-03-15

    The International Linear Collider (ILC) is being designed to explore particle physics at the TeV scale. The design of the Very Forward Region of the ILC detector is considered in the presented work. The Beam Calorimeter - one of two electromagnetic calorimeters situated there - is the subject of this thesis. The Beam Calorimeter has to provide a good hermeticity for high energy electrons, positrons and photons down to very low polar angles, serve for fast beam diagnostics and shield the inner part of the detector from backscattered beamstrahlung remnants and synchrotron radiation. As a possible technology for the Beam Calorimeter a diamond-tungsten sandwich calorimeter is considered. Detailed simulation studies are done in order to explore the suitability of the considered design for the Beam Calorimeter objectives. Detection efficiency, energy and angular resolution for electromagnetic showers are studied. At the simulation level the diamondtungsten design is shown to match the requirements on the Beam Calorimeter performance. Studies of polycrystalline chemical vapour deposition (pCVD) diamond as a sensor material for the Beam Calorimeter are done to explore the properties of the material. Results of the measurements performed with pCVD diamond samples produced by different manufacturers are presented. (orig.)

  10. Anti-Dumping on and from China

    Institute of Scientific and Technical Information of China (English)

    Patrick; H.Zhao

    2007-01-01

    The past years saw an increased cases of anti-dumping on China mostly from the developed countries,some from developing countries.But Pakistan,a friendly neighbor to China,recently adds up to that list of ranks for an anti-dumping investigation on China.It is the national interests that count most,after all. It gives out a signal that anti-dumping would be a frequent tool to defend or to attack. Evidences show China is a target for this trade remedy,but is also targeting others.

  11. Beam by design: laser manipulation of electrons in modern accelerators

    CERN Document Server

    Hemsing, Erik; Xiang, Dao; Zholents, Alexander

    2014-01-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation ...

  12. 27 CFR 19.748 - Dump/batch records.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dump/batch records. 19.748... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Records and Reports Processing Account § 19.748 Dump/batch records. (a) Format of dump/batch records. Proprietor's dump/batch records shall contain,...

  13. PRELIMINARY DESIGN OF THE BEAM LOSS MONITORING SYSTEM FOR THE SNS.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.; GASSNER,D.

    2002-05-06

    The SNS to be built at Oak Ridge National Laboratory will provide a high average intensity 1 GeV beam to produce spallation neutrons. Loss of a even small percentage of this intense beam would result in high radiation. The Beam Loss Monitor (ELM) system must detect such small, long term losses yet be capable of measuring infrequent short high losses. The large dynamic range presents special problems for the system design. Ion chambers will be used as the detectors. A detector originally designed for the FNAL Tevatron, was considered but concerns about ion collection times and low collection efficiency at high loss rates favor a new design. The requirements and design concepts of the proposed approach will be presented. Discussion of the design and testing of the ion chambers and the analog j-Point end electronics will be presented. The overall system design will be described.

  14. Design method for automotive high-beam LED optics

    Science.gov (United States)

    Byzov, Egor V.; Moiseev, Mikhail A.; Doskolovich, Leonid L.; Kazanskiy, Nikolay L.

    2015-09-01

    New analytical method for the calculation of the LED secondary optics for automotive high-beam lamps is presented. Automotive headlamps should illuminate the road and the curb at the distance of 100-150 meters and create a bright, flat, relatively powerful light beam. To generate intensity distribution of this kind we propose to use TIR optical element (collimator working on the total internal reflection principle) with array of microlenses (optical corrector) on the upper surface. TIR part of the optical element enables reflection of the side rays to the front direction and provides a collimated beam which incidents on the microrelief. Microrelief, in its turn, dissipates the light flux in horizontal direction to meet the requirements of the Regulations 112, 113 and to provide well-illuminated area across the road in the far field. As an example, we computed and simulated the optical element with the diameter of 33 millimeters and the height of 22 millimeters. Simulation data shows that three illuminating modules including Cree XP-G2 LED and lens allow generating an appropriate intensity distribution for the class D of UNECE Regulations.

  15. Vessel design and interfaces development for the 1 MV ITER Neutral Beam Injector and Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rigato, Wladi [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: wladi.rigato@igi.cnr.it; Dal Bello, Samuele; Marcuzzi, Diego; Rizzolo, Andrea [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2009-06-15

    In the framework of the design activities for the ITER Neutral Beam Injector (NBI) and full power neutral beam injector prototype, the vacuum vessel has been designed concurrently with the whole other components, and in particular with the Beam Source (BS) and the large Cryopumps, that strongly conditioned the design. The definition of the interfaces has been focused on the design for the 1 MV neutral beam injector prototype, anyway keeping to the absolute minimum the differences with respect to the ITER NBI Vessel. The Vacuum Vessel is composed of two separate parts which shall be welded on site: the Beam Line Vessel (BLV) and the Beam Source Vessel (BSV). Three main bolted lids are foreseen for horizontal and vertical access to the internal components. The vessel is composed of double wall and ribs in critical areas to minimize deformations and stresses under the atmospheric pressure load. New concepts for the Beam Source Support, Positioning and Tilting Systems have been developed and an engineering design has been carried out, able to satisfy precise requirements on stiffness, accuracy of regulation, vacuum compatibility, electric insulation and Remote Handling operation. These components and the BS have been fully integrated inside the BSV by means of support structures and vacuum feedthroughs for mechanical links allowing the transmission of motion and forces. The interfaces between the BLV and the Beam Line Components (BLCs) have been revised to be compatible with the new vessel design and the BLCs support frames. Further interfaces with the high voltage bushing, the vacuum pumping and the diagnostic systems have been considered. The number and the position of the diagnostic viewports were identified taking into account both diagnostics and structural requirements. Static, buckling and seismic analyses, based on EN 13445, have been performed considering operative and exceptional load cases. Requirements, criteria and design details are presented in the paper

  16. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  17. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  18. Design and first operation of a supersonic gas jet based beam profile monitor

    Directory of Open Access Journals (Sweden)

    Vasilis Tzoganis

    2017-06-01

    Full Text Available Noninterceptive beam profile monitors are of great importance for many particle accelerators worldwide. Extra challenges are posed by high energy, high intensity machines and low energy low intensity accelerators. For these applications, existing diagnostics are no longer suitable due to the high power of the beam or the very low intensity. In addition, many other accelerators, from medical to industrial will benefit from a noninvasive, real time beam profile monitor. In this paper we present a new beam profile monitor with a novel design for the nozzle and skimmer configuration to generate a supersonic gas jet meeting ultrahigh vacuum conditions and we describe the first results for such a beam profile monitor at the Cockcroft Institute. This monitor is able to measure two-dimensional profiles of the particle beam while causing negligible disturbance to the beam or to the accelerator vacuum. The ultimate goal for this diagnostic is to provide a versatile and universal beam profile monitor suitable for measuring any beams.

  19. The ITER neutral beam test facility: Designs of the general infrastructure, cryosystem and cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France)]. E-mail: jean-jacques.cordier@cea.fr; Hemsworth, R. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Chantant, M. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Gravil, B. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Henry, D. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Sabathier, F. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Doceul, L. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Thomas, E. [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Houtte, D. van [Association EURATOM-CEA, DSM, Departement Recherche Fusion Controlee, CEA/Cadarache, bat 506, F-13108 Saint Paul Lez Durance Cedex (France); Zaccaria, P. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antoni, V. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Bello, S. Dal; Marcuzzi, D. [CONSORZIO RFX Association EURATOM-ENEA, Corso Stati Uniti 4, I-35127 Padova (Italy); Antipenkov, A.; Day, C.; Dremel, M. [FZK, Institut fuer Technische Physik, Karlsruhe 76021 (Germany); Mondino, P.L. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany)

    2005-11-15

    The CEA Association is involved, in close collaboration with ENEA, FZK, IPP and UKAEA European Associations, in the first ITER neutral beam (NB) injector and the ITER neutral beam test facility design (EFDA task ref. TW3-THHN-IITF1). A total power of about 50 MW will have to be removed in steady state on the neutral beam test facility (NBTF). The main purpose of this task is to make progress with the detailed design of the first ITER NB injector and to start the conceptual design of the ITER NBTF. The general infrastructure layout of a generic site for the NBTF includes the test facility itself equipped with a dedicated beamline vessel [P.L. Zaccaria, et al., Maintenance schemes for the ITER neutral beam test facility, this conference] and integration studies of associated auxiliaries such as cooling plant, cryoplant and forepumping system.

  20. Magnet Design for the ISIS Second Target Station Proton Beam Line

    CERN Document Server

    Thomas, Chris; Jago, Stephen

    2005-01-01

    The ISIS facility, based at the Rutherford Appleton Laboratory in the UK, is an intense source of neutrons and muons for condensed matter research. The accelerator facility delivers an 800 MeV proton beam of 2.5x1013 protons per pulse at 50 Hz to the present target station. As part of a facility upgrade, it is planned to share the source with a second, 10 Hz, target station. The beam line supplying this target will extract from the existing target station beam line. Electromagnetic Finite Element Modelling techniques have been used to design the magnets required to meet the specified beam line optics. Kicker, septum, dipole, quadrupole, and steering magnets are covered. The magnet design process, involving 2D and 3D modelling, the calculation of ideal shims and chamfers, choice of steel, design of conducting coils, handling of heating issues and eddy current effects, is discussed.

  1. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  2. Optimum Design of Composite Corrugated Web Beams Using Hunting Search Algorithm

    Directory of Open Access Journals (Sweden)

    Ferhat Erdal

    2017-07-01

    Full Text Available Over the past few years there has been sustainable development in the steel and composite construction technology. One of the recent additions to such developments is the I-girders with corrugated web beams. The use of these new generation beams results in a range of benefits, including flexible, free internal spaces and reduced foundation costs. Corrugated web beams are built-up girders with a thin-walled, corrugated web and wide plate flanges. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In this paper, optimum design of corrugated composite beams is presented. A recent stochastic optimization algorithm coded that is based on hunting search is used for obtaining the solution of the design problem. In the optimisation process, besides the thickness of concrete slab and studs, web height and thickness, distance between the peaks of the two curves, the width and thickness of flange are considered as design variables. The design constraints are respectively implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3 BS-8110 and DIN 18-800 Teil-1. Furthermore, these selections are also carried out such that the design limitations are satisfied and the weight of the composite corrugated web beam is the minimum.

  3. Electric wheel dump truck mine design condition monitoring and fault diagnosis system%矿用电动轮自卸车状态监测和故障诊断系统设计

    Institute of Scientific and Technical Information of China (English)

    谭秀腾; 郭小定; 张轶; 余亮

    2014-01-01

    矿用电动轮自卸车由于其趋向大型自动化、结构复杂化,使设备故障维护难度加大,因此文中根据实际需求设计了在线状态监测和故障诊断系统。在该系统中,为了提高数据合理有效的采集与传输,采用了CAN 网络总线结构,同时系统使用了高性能的数字信号处理器TMS320F2812作为信息单元、状态监测器的微控制芯片,并在状态监测控制器上采用了实时多任务嵌入式操作系统DSP/BIOS,满足了诊断系统并发多任务的需要,上位机设计了基于故障诊断专家的管理系统。实验表明,系统基本满足设计要求。%Due to its tendency of large automation and complicated structure,mine explosion-proof electric wheel dump truck makes the equipment fault maintenance harder;therefore according to the actual requirements, the online condition monitoring and fault diagnosis system is designed in this paper.In the system,in order to improve the reasonable and effective data collection and transmission,the system adopts CAN bus network architecture,and meanwhile the system uses the high performance digital signal processor TMS320F2812 as the controller of information unit and the state monitoring.The streamlined real -time multitasking embedded operating system DSP/BIOS is adopted on the condition monitoring controller,which will meet the needs of concurrent multitasking.The management system based on fault diagnosis expert is designed on the upper machine.Experiment shows that the system can meet the design requirements.

  4. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  5. Design of a compact Faraday cup for low energy, low intensity ion beams

    Science.gov (United States)

    Cantero, E. D.; Sosa, A.; Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D.; Welsch, C. P.

    2016-01-01

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  6. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform.

    Science.gov (United States)

    Zhang, Wang; Su, Tao

    2016-09-22

    In the field of fast Fourier transform (FFT)-based frequency invariant beamforming (FIB), there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI) over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL). The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  7. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D.C., E-mail: pacedc@fusion.gat.com; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-11-15

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  8. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  9. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  11. [The effect of somatostatin in dumping syndrome].

    Science.gov (United States)

    Tulassay, Z; Tulassay, T; Szathmári, M; Gohér, A; Tamás, G

    1990-11-04

    The effect of cyclic somatostatin on early and late dumping syndrome was studied in 12 patients with gastric resection. Each patient underwent two glucose challenges with 75 grams of glucose administered orally. In the control study isotonic sodium chloride was given, while in the other study cyclic somatostatin in a dose of 250 micrograms bolus injection followed by infusion of 80 ng/kg/min for a period of 270 minutes. In the control study all patients showed subjective symptoms of the early dumping syndrome with significant increases in pulse rate, hematocrit, and vasoactive intestinal polypeptide. Ten patients showed asymptomatic hypoglycemia, as a sign of the late dumping syndrome associated with a significant increases of insulin, gastric inhibitory peptide and glucagon levels. During the administration of somatostatin these changes failed to develop. These results indicate that somatostatin alleviates the symptoms of early and late postprandial dumping syndrome.

  12. European Anti-dumping Law and China

    Directory of Open Access Journals (Sweden)

    Piet Eeckhout

    1997-04-01

    Full Text Available The paper examines recent developments in the European Union's anti-dumping policy, as it is applied towards China. It concentrates on recent court cases involving dumping from China and on the basic non-market economy issue. The author essentially argues that the European Union's policy does not take account sufficiently of China's development towards a market economy, and that there are various legal flaws in the way the policy is applied.

  13. [Postgastrectomy dumping treated with octreotide (Sandostatin)].

    Science.gov (United States)

    Møller, T D; Carlsen, C U

    1993-06-07

    Somatostatin and the long acting somatostatin analogue Sandostatin have been shown to be effective in the management of dumping syndrome. We describe a patient with early dumping in whom this management provided total symptomatic relief. The doses was reduced from 50 micrograms to 12.5 micrograms s.c., t.i.d. At this dose clinical and biochemical parameters (blood pressure, pulse rate, packed cell volume, hematocrit, and blood glucose) were found to be within normal levels.

  14. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs

    National Research Council Canada - National Science Library

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-01-01

    ...) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design...

  15. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2015-05-01

    Full Text Available The 10 MeV accelerator-driven subcritical system (ADS Injector I test stand at Institute of High Energy Physics (IHEP is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC spoke cavities with β=0.12. The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β=0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ∼5  MeV. Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  16. Design and performance of a high resolution, low latency stripline beam position monitor system

    Science.gov (United States)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  17. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  18. Beam Shear Design According to Eurocode 2 - Limitations for the Concrete Strut Inclinations

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Hestbech, Lars; Fisker, Jakob

    2011-01-01

    The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested and are p......The beam shear design method adopted in Eurocode 2 is based on a lower bound plastic solution. This method is combined with limitations on the concrete strut inclination, θ. These limitations are introduced to ensure acceptable crack width in the SLS. 7 full scale beams have been tested...... and are presented. These beams are all designed to fail in shear and the shear reinforcement is designed for different values of the concrete strut inclinations (cot θ varies from 1.5 to 3.4). These tests indicate a clear connection between the values of the concrete strut inclinations and crack width in the SLS....... In cases where larger crack widths (w > 0.4 mm) can be accepted, larger values of the concrete strut inclinations can be chosen. This will lead to less shear reinforcements. The results are also compared with analytical analysis based on energy methods. At the SLS the beams are expected to be cracked...

  19. The logarithmic beam position monitor

    Science.gov (United States)

    Medvedko, Evgeny A.; Smith, Stephen R.

    2000-11-01

    Modern logarithmic amplifiers offer wide dynamic range, high bandwidth, good logarithmic conformance, and low cost making them attractive for beam position measurements. A log-ratio beam position monitor has been designed and built at SLAC for use at the PEP-II B-Factory. An integrated circuit logarithmic amplifier from Analog Devices, the AD8307, recovers the envelope of the 476 MHz harmonic of the beam signal. A log BPM board with two logarithmic and one differential amplifier performs the basic function of forming an output voltage proportional to the difference of the logarithms of the signal amplitudes on opposite electrodes. This voltage is approximately linear with beam position. For this application, we have limited the video bandwidth of the log amps to 50 kHz in order to remove fill pattern dependence. The log BPM board has an interface for testing and simulating beam offsets. The log BPMs were developed for a PEP-II ring protection chassis. Here the log BPMs function to identify dangerous orbit excursions. These excursions are signaled to a system, which can dump the beam. Two such chassis serve to protect the PEP-II rings.

  20. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    Science.gov (United States)

    Dayyani Kelisani, M.; Doebert, S.; Aslaninejad, M.

    2017-04-01

    For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  1. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Science.gov (United States)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  2. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    Institute of Scientific and Technical Information of China (English)

    A. Caliskan; M. Yi1maz

    2012-01-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project.Optimization criteria in cavity design are effective shunt impedance (ZTT),transit-time factor and electrical breakdown limit.In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor.Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA.The results of both codes have been compared.In the beam dynamical studies,the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  3. Design and Simulation of Symmetric Nanostructures Using Two-beam Modulated Interference Lithography Technique

    CERN Document Server

    Raj, A Alfred Kiruba; Devaprakasam, D

    2013-01-01

    Interferometry lithography is a maturing technology for patterning sub-micron structures in arrays covering large areas. This paper presents a method for the measurement of nanoscale surface patterns produced by two-beam laser interference lithography (LIL). The objective in this study is to simulate and design periodic and quasi-periodic 1D, 2D and 3D nanostructures using two-beam interference technique. We designed and simulated periodic and quasi-periodic structures by two-beam interference patterning using a MATLAB program by varying angle of incidence, wavelength and geometry. The simulated patterns show that the symmetries of the interference maxima depend mostly on the angles of incidence and perturbations of incidents beams. Using this technique, we can achieve potentially high-volume of uniformity, throughput, process control, and repeatability. By varying different input parameters, we have optimized simulated patterns with controlled periodicity, density and aspect ratio also it can be programmed t...

  4. Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors

    CERN Document Server

    Skowronski, P K; Ghigo, A; Marcellini, F; Burrows, PN; Christian, GB; Perry, C; Gerbershagen, A; Roberts, J; Ikarios, E

    2013-01-01

    The CLIC two beam acceleration technology requires a drive beam phase stability better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurements and their subsequent correction in a chicane with the help of fast kickers. A prototype of such a system is being installed in the CLIC Test Facility CTF3. In this paper its design and implementation is described in detail. Additionally, the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, as measured with the drive beam, is presented.

  5. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  6. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C. [Fermi National Accelerator Lab., Batavia, IL (United States); Brown, K.L.; Rothacker, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  7. American Material Culture: Investigating a World War II Trash Dump

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2005-10-01

    The Idaho National Laboratory: An Historical Trash Trove Historians and archaeologists love trash, the older the better. Sometimes these researchers find their passion in unexpected places. In this presentation, the treasures found in a large historic dump that lies relatively untouched in the middle of the Idaho National Laboratory (INL) will be described. The U.S. military used the central portion of the INL as one of only six naval proving grounds during World War II. They dumped trash in dry irrigation canals during and after their wartime activities and shortly before the federal government designated this arid and desolate place as the nation’s nuclear reactor testing station in 1949. When read critically and combined with memories and photographs, the 60-year old trash provides a glimpse into 1940s’ culture and the everyday lives of ordinary people who lived and worked during this time on Idaho’s desert. Thanks to priceless stories, hours of research, and the ability to read the language of historic artifacts, the dump was turned from just another trash heap into a treasure trove of 1940s memorabilia. Such studies of American material culture serve to fire our imaginations, enrich our understanding of past practices, and humanize history. Historical archaeology provides opportunities to integrate inanimate objects with animated narrative and, the more recent the artifacts, the more human the stories they can tell.

  8. American Material Culture: Investigating a World War II Trash Dump

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2005-10-01

    The Idaho National Laboratory: An Historical Trash Trove Historians and archaeologists love trash, the older the better. Sometimes these researchers find their passion in unexpected places. In this presentation, the treasures found in a large historic dump that lies relatively untouched in the middle of the Idaho National Laboratory (INL) will be described. The U.S. military used the central portion of the INL as one of only six naval proving grounds during World War II. They dumped trash in dry irrigation canals during and after their wartime activities and shortly before the federal government designated this arid and desolate place as the nation’s nuclear reactor testing station in 1949. When read critically and combined with memories and photographs, the 60-year old trash provides a glimpse into 1940s’ culture and the everyday lives of ordinary people who lived and worked during this time on Idaho’s desert. Thanks to priceless stories, hours of research, and the ability to read the language of historic artifacts, the dump was turned from just another trash heap into a treasure trove of 1940s memorabilia. Such studies of American material culture serve to fire our imaginations, enrich our understanding of past practices, and humanize history. Historical archaeology provides opportunities to integrate inanimate objects with animated narrative and, the more recent the artifacts, the more human the stories they can tell.

  9. Design and performance of the beam transfer lines for the HIE-ISOLDE Project

    CERN Document Server

    Parfenova, A; Bauche, J; Cantero, E D; Farantatos, P; Fraser, M A; Goddard, B; Kadi, Y; Kolehmainen, A J; Lanaia, D; Martino, M; Mompo, R; Siesling, E; Sosa, A G; Timmins, M; Vandoni, G; Voulot, D; Zografos, E

    2013-01-01

    Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1] have been carried out in MadX [2], and benchmarked against Trace3D results [3, 4]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. As a result, the tolerances for the various error-contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical aperture were validated. The methodology and results of the studies are presented.

  10. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Meier, W.R. [Lawrence Livermore National Lab., CA (United States); Reyes, S. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad Nacional de Educacion a Distancia and Instituto de Fusion Nuclear, Dept. Ingenieria Energetica, Bilbao (Spain)

    2000-07-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  11. Design of a support system for the vertical beam transfer lines of the ELENA project

    CERN Document Server

    Bozhkov, Kristiyan

    2016-01-01

    This report aims to present the design of a support system for the vertical beam transfer lines of the ELENA project. Two different designs can be found in this report. The mechanical strength and the structure performance of the support are analysed by a finite element model.

  12. Generalized Timoshenko modelling of composite beam structures: sensitivity analysis and optimal design

    Science.gov (United States)

    Augusta Neto, Maria; Yu, Wenbin; Pereira Leal, Rogerio

    2008-10-01

    This article describes a new approach to design the cross-section layer orientations of composite laminated beam structures. The beams are modelled with realistic cross-sectional geometry and material properties instead of a simplified model. The VABS (the variational asymptotic beam section analysis) methodology is used to compute the cross-sectional model for a generalized Timoshenko model, which was embedded in the finite element solver FEAP. Optimal design is performed with respect to the layers' orientation. The design sensitivity analysis is analytically formulated and implemented. The direct differentiation method is used to evaluate the response sensitivities with respect to the design variables. Thus, the design sensitivities of the Timoshenko stiffness computed by VABS methodology are imbedded into the modified VABS program and linked to the beam finite element solver. The modified method of feasible directions and sequential quadratic programming algorithms are used to seek the optimal continuous solution of a set of numerical examples. The buckling load associated with the twist-bend instability of cantilever composite beams, which may have several cross-section geometries, is improved in the optimization procedure.

  13. Design method for a laser line beam shaper of a general 1D angular power distribution

    Science.gov (United States)

    Oved, E.; Oved, A.

    2016-05-01

    Laser line is a beam of laser, spanned in one direction using a beam shaper to form a fan of light. This illumination tool is important in laser aided machine vision, 3D scanners, and remote sensing. For some applications the laser line should have a specific angular power distribution. If the distribution is nonsymmetrical, the beam shaper is required to be nonsymmetrical freeform, and its design process using optical design software is time consuming due to the long optimization process which usually converges to some local minimum. In this paper we introduce a new design method of a single element refractive beam shaper of any predefined general 1D angular power distribution. The method makes use of a notion of "prism space", a geometrical representation of all double refraction prisms, and any 1D beam shaper can be described by a continuous curve in this space. It is shown that infinitely many different designs are possible for any given power distribution, and it is explained how an optimal design is selected among them, based on criteria such as high transmission, low surface slopes, robustness to manufacturing errors etc. The method is non-parametric and hence does not require initial guess of a functional form, and the resultant optical surfaces are described by a sequence of points, rather than by an analytic function.

  14. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    Science.gov (United States)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  15. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  16. Design and Analysis of Muon Beam Stop Support Structures

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, Udenna [Northern Illinois Univ., DeKalb, IL (United States)

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  17. Technological assessment of a mining-waste dump at the Dexing copper mine, China, for possible conversion to an in situ bioleaching operation.

    Science.gov (United States)

    Wu, Aixiang; Yin, Shenghua; Wang, Hongjiang; Qin, Wenqin; Qiu, Guanzhou

    2009-03-01

    In order to extract copper metal from the waste dump of Dexing copper mine and resolve the environmental problems caused by acidic water and heavy metals, a dump bioleaching plant was designed based on a series of experimental investigations. The investigation shown that the low-grade of the dump, refractoriness of chalcopyrite, leakage of pad, small Acidithiobacillus population and low dump permeability are the main factors that contribute to the challenges faced by the plant. Stability of the high and steep slope of the dump is the other hidden danger to which much attention is not paid. To evaluate the potential unstability of the dump, the leaching process, ore surface erosion, particle size, chemical elements and mechanical properties of the waste rock in DCM were investigated through experiment in this paper.

  18. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K.; Blasques, J.P.; Kim, T.; Fedorov, V.A.; Berring, P.; Bitsche, R.D.; Berggreen, C.

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  19. Establishment of ocean dumping area capacity assessment model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhizu; ZUO Juncheng; XU Ren; JIN Zuowen; CHEN Meixiang

    2016-01-01

    Dumping area capacity is mainly affected by the hydrodynamic process (tidal sediment, storm surge and wave, etc.) as well as the size and depth of dumping area. Based on three-dimensional ocean circulation model known as FVCOM (Finite Volume Coast and Ocean Model) and the stochastic dynamic statistical analysis model, taking advantage of dumping ground topography evolution and dumping quantity, the author aims to discuss the influence of hydrodynamic processes and dumping activity so as to built a new model of ocean dumping area capacity. With the data of depth and dumped amount in the dumping area, the changes of bottom topographic which caused by tidal current under the natural condition based on the FVCOM hydrodynamic and sediment module, the author strive to analyze the statistical relation of the changes for dumping amount, tidal current and bottom topographic. Through real data to fit revision coefficient values, which will be regarded as topographic changes reference value affected by wave and storm surges. Thus taking this evaluation as the long-term changes in the dumping capacity. In the premise of setting up the threshold of bottom topographic changes, the dumping area capacity is calculated. Take Yangtze Estuary No. 1 dumping area as an example, As the water depth reduces by 0.5 m annually, the dumping area capacity is about 6.7 million m3/a, the model results are in reasonable agreement with the actual amount. Then the model is validated in Luoyuan Bay dumping area, Shengsishangchuan Mountain dumping area, Dongding dumping area, Dongshan dumping area, and Wenzhou Port dumping area, it is turns out the results are similar to that of the actual observations.

  20. Design of medium energy beam transport line between the RFQ and the Linac in the radioactive ion beam facility at VECC, Kolkata

    Indian Academy of Sciences (India)

    S Dechoudhury; Vaishali Naik; Manas Mondal; Hemendra Kumar Pandey; Avik Chatterjee; Dirtha Sanyal; Debasis Bhowmick; Alok Chakrabarti

    2010-09-01

    The design of a medium energy beam transport (MEBT) line comprising of a re-buncher and four quadrupoles, two upstream and the other two downstream of the re-buncher, has been presented. The design was done to ensure almost 100% transport of heavy-ion beams of about 99 keV/u energy from RFQ having a / not less than 1/14 through the re-buncher and then through IH Linac of about 0.6 m length in which beam would be accelerated to about 185 keV/u. The re-buncher has been designed to operate at 37.8 MHz, the resonating frequency of both the RFQ and the IH Linac. The entire beam line has been installed and recently O5+ beam from RFQ has been transported through the re-buncher and subsequently accelerated in the IH Linac successfully.

  1. Design, fabrication, and beam commissioning of a continuous-wave four-rod rf quadrupole

    Science.gov (United States)

    Yin, X. J.; Yuan, Y. J.; Xia, J. W.; He, Y.; Zhao, H. W.; Zhang, X. H.; Du, H.; Li, Z. S.; Li, X. N.; Jiang, P. Y.; Yang, Y. Q.; Ma, L. Z.; Wu, J. X.; Xu, Z.; Sun, L. T.; Zhang, W.; Zhang, X. Z.; Meng, J.; Zhou, Z. Z.; Yao, Q. G.; Cai, G. Z.; Lu, W.; Wang, H. N.; Chen, W. J.; Zhang, Y.; Xu, X. W.; Xie, W. J.; Lu, Y. R.; Zhu, K.; Liu, G.; Yan, X. Q.; Gao, S. L.; Wang, Z.; Chen, J. E.

    2016-01-01

    A new heavy-ion linac within a continuous-wave (CW) 4-rod radio-frequency quadrupole (RFQ) was designed and constructed as the injector for the separated-sector cyclotron (SSC) at the Heavy Ion Research Facility at Lanzhou (HIRFL). In this paper, we present the development of and the beam commissioning results for the 53.667 MHz CW RFQ. In the beam dynamics design, the transverse phase advance at zero current, σ0 ⊥ , is maintained at a relatively high level compared with the longitudinal phase advance (σ0 ∥ ) to avoid parametric resonance. A quasi-equipartitioning design strategy was applied to control the emittance growth and beam loss. The installation error of the electrodes was checked using a FARO 3D measurement arm during the manufacturing procedure. This method represents a new approach to measuring the position shifts of electrodes in a laboratory environment and provides information regarding the manufacturing quality. The experimental results of rf measurements exhibited general agreement with the simulation results obtained using CST code. During on-line beam testing of the RFQ, two kinds of ion beams (40Ar 8 + and 16O5+ ) were transported and accelerated to 142.8 keV /u , respectively. These results demonstrate that the SSC-Linac has made a significant progress. And the design scheme and technology experiences developed in this work can be applied to other future CW RFQs.

  2. Design, fabrication, and beam commissioning of a continuous-wave four-rod rf quadrupole

    Directory of Open Access Journals (Sweden)

    X. J. Yin

    2016-01-01

    Full Text Available A new heavy-ion linac within a continuous-wave (CW 4-rod radio-frequency quadrupole (RFQ was designed and constructed as the injector for the separated-sector cyclotron (SSC at the Heavy Ion Research Facility at Lanzhou (HIRFL. In this paper, we present the development of and the beam commissioning results for the 53.667 MHz CW RFQ. In the beam dynamics design, the transverse phase advance at zero current, σ_{0⊥}, is maintained at a relatively high level compared with the longitudinal phase advance (σ_{0∥} to avoid parametric resonance. A quasi-equipartitioning design strategy was applied to control the emittance growth and beam loss. The installation error of the electrodes was checked using a FARO 3D measurement arm during the manufacturing procedure. This method represents a new approach to measuring the position shifts of electrodes in a laboratory environment and provides information regarding the manufacturing quality. The experimental results of rf measurements exhibited general agreement with the simulation results obtained using CST code. During on-line beam testing of the RFQ, two kinds of ion beams (^{40}Ar^{8+} and ^{16}O^{5+} were transported and accelerated to 142.8  keV/u, respectively. These results demonstrate that the SSC-Linac has made a significant progress. And the design scheme and technology experiences developed in this work can be applied to other future CW RFQs.

  3. Design and analysis of spectral beam combining system for fiber lasers based on a concave grating

    Institute of Scientific and Technical Information of China (English)

    WU Zhuo-liang; ZHAO Shang-hong; CHU Xing-chun; ZHANG Xi; ZHAN Sheng-bao; MA Li-hua

    2012-01-01

    Anovel fiber laser spectral beam combining scheme based on a concave grating is presented.The principle of the presented system is analyzed,and a concave grating with blazed structure for spectral beam combining is designed.The combining potential of the system is analyzed,and the results show that 39 Yb-doped fiber laser can be spectrally beam combined via the designed system.By using scalar diffraction theory,the combining effect of the system is analyzed.The results show that the diffraction efficiency of the designed concave grating is higher than 72% over the whole gain bandwidth,and the combining efficiency is 73.4%.With output power of 1 kW for individual fiber laser,combined power of 28.6 kW can be achieved.

  4. Design and Development of a Diagnostics Client for a Beam Loss Measurement System at CERN

    CERN Document Server

    Angelogiannopoulos, Emmanouil; Jackson, Stephen

    The European Organization for Nuclear Research, known as CERN, is one of the biggest research centers in the field of particle physics. Its main function is to provide particle accelerators and other infrastructure needed for high energy physics research. Particles are accelerated through a complex of accelerators and are brought into collision, in order to study the fundamental elements of matter and the forces acting between them. Of course, such complex and expensive machines need control and protection. For that purpose, a variety of different systems -hardware and/or software- is needed. One such system is the Beam Loss Monitoring (BLM) system of an accelerator. This kind of system is designed for measuring beam losses around an accelerator. An appropriate design of the BLM system and an appropriate location of the monitors enable a wide field of very useful beam diagnostics and machine protection possibilities. This thesis focuses on the design and development of a client application, which is realized ...

  5. Design of low-energy neutron beams for boron neutron capture synovectomy

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Binello, E.

    1997-02-01

    A novel application of the 10B(n, (alpha) )7Li nuclear reaction for the treatment of rheumatoid arthritis is under development. this application, called Boron Neutron Capture Synovectomy (BNCS), is briefly described here and the differences between BNCS and Boron Neutron Capture Therapy (BNCT) are discussed in detail. These differences lead to substantially altered demands on neutron beam design for each therapy application. In this paper the considerations for neutron beam design for the treatment of arthritic joints via BNCS are discussed, and comparisons with the design requirements for BNCT are made. This is followed by a description of potential moderator/reflector assemblies that are calculated to produce intense, high- quality neutron beams based on the 7Li(p,n) accelerator- based reactions. Total therapy time and therapeutic ratios are given as a function of both moderator length and boron concentration. Finally, a means of carrying out multi- directional irradiations of arthritic joints is proposed.

  6. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  7. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  8. Neutron beam line design of a white neutron source at CSNS

    Science.gov (United States)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  9. Design progress for the National Ignition Facility laser alignment and beam diagnostics

    Science.gov (United States)

    Bliss, Erlan S.; Boege, Steven J.; Boyd, Robert D.; Davis, Donald T.; Demaret, Robert D.; Feldman, Mark; Gates, Alan J.; Holdener, Fred R.; Knopp, Carl F.; Kyker, R. D.; Lauman, C. W.; McCarville, Tom J.; Miller, John L.; Miller-Kamm, Victoria J.; Rivera, W. E.; Salmon, J. Thaddeus; Severyn, J. R.; Sheem, Sang K.; Thomas, Stan W.; Thompson, Calvin E.; Wang, David Y.; Yoeman, M. F.; Zacharias, Richard A.; Chocol, Clifford J.; Hollis, J.; Whitaker, Daniel E.; Brucker, J.; Bronisz, L.; Sheridan, T.

    1999-07-01

    Earlier papers have described approaches to NIF alignment and laser diagnostics tasks. Now, detailed design of alignment and diagnostic systems for the National Ignition Facility (NIF) laser is in its last year. Specifications are more detailed, additional analyses have been completed, Pro- E models have been developed, and prototypes of specific items have been built. In this paper we update top level concepts, illustrate specific areas of progress, and show design implementations as represented by prototype hardware. The alignment light source network has been fully defined. It utilizes an optimized number of lasers combined with fiber optic distribution to provide the chain alignment beams, system centering references, final spatial filter pinhole references, target alignment beams, and wavefront reference beams. The input and output sensor are being prototyped. They are located respectively in the front end just before beam injection into the full aperture chain and at the transport spatial filter, where the full energy infrared beam leaves the laser. The modularity of the input sensor is improved, and each output sensor mechanical package now incorporates instrumentation for four beams.

  10. Detailed design of the RF source for the 1 MV neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D.; Palma, M. Dalla [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy); Pavei, M. [Consorzio RFX, Euratom-ENEA Association, Corso Stati Uniti 4, I35127 Padova (Italy)], E-mail: mauro.pavei@igi.cnr.it; Heinemann, B.; Kraus, W.; Riedl, R. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Botzmannstr. 2, D-85748 Garching (Germany)

    2009-06-15

    In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out. Results coming from ongoing R and D on IPP test beds [A. Staebler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design. An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering. The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections. In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.

  11. Fast Computation of Wideband Beam Pattern for Designing Large-Scale 2-D Arrays.

    Science.gov (United States)

    Chi, Cheng; Li, Zhaohui

    2016-06-01

    For real-time and high-resolution 3-D ultrasound imaging, the design of sparse distribution and weights of elements of a large-scale wideband 2-D array is needed to reduce hardware cost and achieve better directivity. However, due to the high time consumption of computing the wideband beam pattern, the design methods that need massive iterations have rarely been applied to design large-scale wideband 2-D arrays by directly computing the wideband beam pattern. In this paper, a fast method is proposed to realize the computation of a wideband beam pattern of arbitrary 2-D arrays in the far field in order to design large-scale wideband 2-D arrays. The proposed fast method exploits two important techniques: 1) nonuniform fast Fourier transform (FFT) and 2) short inverse FFT. Compared with the commonly used ultrasound simulator Field II, two orders of magnitude improvement in computation speed is achieved with comparable accuracy. The proposed fast method enables massive iterations of direct wideband beam pattern computation of arbitrary large-scale 2-D arrays. A design example in this paper demonstrates that the proposed fast method can help achieve better performance in designing large-scale wideband 2-D arrays.

  12. Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE

    CERN Document Server

    Fraser, M A; Magdau, I B

    2013-01-01

    An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.

  13. Beam Dynamics Based Design of Solenoid Channel for TAC Proton Linac

    CERN Document Server

    Kisoglu, H F

    2014-01-01

    Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. It transports the proton beam ejected by an ion source, and matches it with the Radio Frequency Quadrupole (RFQ) that is an important part of the linac. The LEBT channel would be consisted of two focusing solenoids and some diagnostic elements such as faraday cup, BC transformers, etc. This paper includes a beam dynamical design and optimization study of LEBT channel for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER and comparing of the simulation results with the theoretical expectations.

  14. Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    CERN Document Server

    Carron, G.; Luong, M.; Millich, A.; Rugo, E.; Syratchev, I.; Thorndahl, L.

    2000-01-01

    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 ms pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed for the CLIC main beam, and the "Slotted Iris - Constant Aperture" structure. Both use 4 SiC loads per cell for effective higher-order mode damping. A full-size prototype of the TDS structure has been built and tested successfully at full power. A first prototype of the SICA structure is being built

  15. Design of the beam transport line and injection system of the compact storage ring for TTX

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this article, we present the design of the beam transport line and injection system of the compact storage ring for the Tsinghua Thomson scattering X-ray (TTX) source. The layout of the beam transport line fits in with the limited available space. The injection system is simplified, consisting of only one single kicker; the stray field on the reference orbit is also reduced without the septum magnet. We choose a travelling wave kicker and present both 2D and 3D simulations for the structure design.

  16. Using MCNP in the design of neutron sources and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hergenreder, Daniel F.; Lecot, Carlos A.; Lovotti, Osvaldo P. [INVAP S.A., San Carlos de Bariloche (Argentina). Nuclear Projects Department. Nuclear Engineering Division

    2002-07-01

    The calculation methodology used to design cold, thermal and hot neutron sources and their associated neutron beam transport systems is presented. The design goal is to evaluate the performance of the neutron sources, their beam tubes and neutron guides at specific experimental locations in the reactor hall as well as in the neutron hall. The Monte Carlo method is a unique and powerful tool to transport neutrons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of system. The proper use of MCNP as the main tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors. (author)

  17. Design and fabrication of electrostatic microcolumn in multiple electron-beam lithography

    Science.gov (United States)

    Du, Zhidong; Wen, Ye; Traverso, Luis; Datta, Anurup; Chen, Chen; Xu, Xianfan; Pan, Liang

    2016-03-01

    Microcolumns are widely used for parallel electron-beam lithography because of their compactness and the ability to achieve high spatial resolution. A design of an electrostatic microcolumn for our recent nanoscale photoemission sources is presented. We proposed a compact column structure (as short as several microns in length) for the ease of microcolumn fabrication and lithography operation. We numerically studied the influence of several design parameters on the optical performance such as microcolumn diameter, electrode thickness, beam current, working voltages, and working distance. We also examined the effect of fringing field between adjacent microcolumns during parallel lithography operations. The microcolumns were also fabricated to show the possibility.

  18. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  19. Design of a bullet beam pattern of a micro ultrasound transducer (Conference Presentation)

    Science.gov (United States)

    Roh, Yongrae; Lee, Seongmin

    2016-04-01

    Ultrasonic imaging transducer is often required to compose a beam pattern of a low sidelobe level and a small beam width over a long focal region to achieve good image resolution. Normal ultrasound transducers have many channels along its azimuth, which allows easy formation of the sound beam into a desired shape. However, micro-array transducers have no control of the beam pattern along their elevation. In this work, a new method is proposed to manipulate the beam pattern by using an acoustic multifocal lens and a shaded electrode on top of the piezoelectric layer. The shading technique split an initial uniform electrode into several segments and combined those segments to compose a desired beam pattern. For a given elevation width and frequency, the optimal pattern of the split electrodes was determined by means of the OptQuest-Nonlinear Program (OQ-NLP) algorithm to achieve the lowest sidelobe level. The requirement to achieve a small beam width with a long focal region was satisfied by employing an acoustic lens of three multiple focuses. Optimal geometry of the multifocal lens such as the radius of curvature and aperture diameter for each focal point was also determined by the OQ-NLP algorithm. For the optimization, a new index was devised to evaluate the on-axis response: focal region ratio = focal region / minimum beam width. The larger was the focal region ratio, the better was the beam pattern. Validity of the design has been verified through fabricating and characterizing an experimental prototype of the transducer.

  20. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  1. CLIC TWO-BEAM MODULE FOR THE CLIC CONCEPTUAL DESIGN AND RELATED EXPERIMENTAL PROGRAM*

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  2. CLIC Two-Beam Module for the CLIC Conceptual Design and related experimental program

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  3. Improved design of proton source and low energy beam transport line for European Spallation Source

    Science.gov (United States)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  4. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    CERN Document Server

    Tecimer, M; Efimov, S; Gover, A; Sokolowski, J

    2001-01-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 pi mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic i...

  5. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    Science.gov (United States)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  6. Building and shaping overburden dumps in layers

    Energy Technology Data Exchange (ETDEWEB)

    Pichler, E.

    1988-08-01

    Discusses problem of stabilizing overburden dumps soon to be built to heights of 120-220 m at mines in the Krusna Hora brown coalfield. Describes mathematics involved in calculating critical height and stability of dumps with a constant slope angle and in determining critical height of layers with 32-38 degree slope angles. Shows in tabular form the relationship between degree of stability, critical height and type of material. Describes methods of constructing dumps in layers, which has become more viable with increasing development of belt conveyor technology. Methods described require use of ZP 2500 and ZP 6600 spreaders, but in future it is expected that ZP 10000 and ZP 13000 spreaders,which have longer reach, will be used to better effect. Concludes by giving examples of planned layer heights for the Merkur, Ceskoslovenska Armada and Jan Sverma mines, based on calculation of intergranular angle of internal friction. 5 refs.

  7. Beam Trail Tracking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab; Carmichael, Linden Ralph [Fermilab; Neswold, Richard [Fermilab; Yuan, Zongwei [Fermilab

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  8. A retarding potential analyzer design for keV-level ion thruster beams

    Science.gov (United States)

    Zhang, Zhe; Tang, Haibin; Zhang, Zun; Wang, Joseph; Cao, Shuai

    2016-12-01

    We present a new Retarding Potential Analyzer (RPA) design that is capable of measuring keV-level energy, high-density plasma beams. This instrument overcomes the limitations of existing RPAs and can operate in plasmas with densities in excess of 1 × 1015 m-3 and ion energies up to 1200 eV. The RPA design parameters were determined by analyzing the electron density and temperature, the sheath thickness, and the ion density in the beam based on the Faraday probe and Langmuir probe measurements. A previously unobserved grid spacing arcing phenomenon was observed in experiments. This arcing phenomenon was also investigated and a grid spacing criterion was proposed to eliminate the arcing. We present measurement results on the plasma beam emitted from the 20 cm Xenon ion thruster used on the Chinese SJ-9A satellite.

  9. Development and Optimization of a Novel Prolonged Release Formulation to Resist Alcohol-Induced Dose Dumping.

    Science.gov (United States)

    Gujjar, Chaitanya Yogananda; Rallabandi, Balaramesha Chary; Gannu, Ramesh; Deulkar, Vallabh Subashrao

    2016-04-01

    Alcohol-induced dose dumping is a serious concern for the orally administered prolonged release dosage forms. The study was designed to optimize the independent variables, propylene glycol alginate (PGA), Eudragit RS PO (ERS) and coating in mucoadhesive quetiapine prolonged release tablets 200 mg required for preventing the alcohol-induced dose dumping. Optimal design based on response surface methodology was employed for the optimization of the composition. The formulations are evaluated for in vitro drug release in hydrochloric acid alone and with 40% v/v ethanol. The responses, dissolution at 120 min without alcohol (R1) and dissolution at 120 min with alcohol (R2), were statistically evaluated and regression equations are generated. PGA as a hydrophilic polymeric matrix was dumping the dose when dissolutions are carried in 0.1 N hydrochloric acid containing 40% v/v ethanol. ERS addition was giving structural support to the swelling and gelling property of PGA, and thus, was reducing the PGA erosion in dissolution media containing ethanol. Among the formulations, four formulations with diverse composition were meeting the target dissolution (30-40%) in both the conditions. The statistical validity of the mathematical equations was established, and the optimum concentration of the factors was established. Validation of the study with six confirmatory runs indicated high degree of prognostic ability of response surface methodology. Further coating with ReadiLycoat was providing an additional resistance to the alcohol-induced dose dumping. Optimized compositions showed resistance to dose dumping in the presence of alcohol.

  10. LAW PROTECTION FOR DOMESTIC INDUSTRIES DUE TO DUMPING PRACTICE

    Directory of Open Access Journals (Sweden)

    Anita Kamilah

    2015-12-01

    Full Text Available International trade is business transactions conducted across borders, which has the goal accumulated maximum profit (profit optimal. In this implementation, corporations often do business by unfair competition, such as dumping, which could damage the order of the importing country trading system. The problem is what factors are causing a corporation carrying out the practice of dumping, and also; and How is legal protection against a country as a result of dumping practices. Factors that cause dumping, to profit by setting lower prices in the import market and the monopoly in the market of the importing country. A form of protection for countries that suffered losses as a result of dumping practices which could impose "anti-dumping duty", as a punishment for the exporting country. Due to losses caused by dumping, the government should make a law that specifically regulates the protection of domestic industry due to the practice of dumping.

  11. 30 CFR 57.9301 - Dump site restraints.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...

  12. Social dumping - supranational regulering og dens implikationer

    OpenAIRE

    Hansen, Mia Pough; Christensen, Nadja Zea Lintrup; Gregersen, Mille Natalie

    2015-01-01

    This paper aims at explaining why the institutional integration in the EU creates social dumping in Denmark. The study is based on a case study, which examines the posting of workers directive (96/71/EC). In explaining how the directive leads to social dumping, we use outcome-explanatory process-tracing. This is to examine how the causal mechanisms X, leads to an outcome Y. Concepts from Historical Institutionalism such as spill-over and Rational Choice Institutionalisms principal-agent theor...

  13. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  14. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  15. Design of a Push-Broom Multi-Beam Radiometer for Future Ocean Observations

    DEFF Research Database (Denmark)

    Cappellin, C.; Pontoppidan, K.; Nielsen, P. H.

    2015-01-01

    The design of a push-broom multi-beam radiometer for future ocean observations is described. The radiometer provides a sensitivity one order of magnitude higher than a traditional conical scanning radiometer, and has the big advantage of being fully stationary relative to the satellite platform...

  16. Beam Steering at Higher Photonic Bands and Design of a Directional Cloak Formed by Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Venkatachalam Subramanian

    2013-02-01

    Full Text Available Beam steering due to anomalous dispersion at higher photonic bands in dielectric photonic crystal is reported in this work. Based on this concept, directional cloak is designed that conceals a larger dimensional scattering object against the normal incident, linearly polarizedelectromagnetic waves.

  17. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    Klooster, van 't J.W.; Roeloffzen, C.G.H.; Meijerink, A.; Zhuang, L.; Marpaung, D.A.I.; Etten, van W.C.; Heideman, R.G.; Leinse, A.; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  18. Design and Application of a Beam Testing System for Experiential Learning in Mechanics of Materials

    Science.gov (United States)

    Sullivan, R. Warsi; Rais-Rohani, M.

    2009-01-01

    Research shows that students can significantly improve their understanding and retention of topics presented in an engineering course when discussions of theoretical and mathematical approaches are combined with active-learning exercises involving hands-on physical experiments. In this paper, the design and application of a beam testing system…

  19. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  20. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Science.gov (United States)

    Garg, Akash Deep; Karnewar, A. K.; Ojha, A.; Shrivastava, B. B.; Holikatti, A. C.; Puntambekar, T. A.; Navathe, C. P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8-18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 μm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  1. Design study of a radio-frequency quadrupole for high-intensity beams

    Science.gov (United States)

    Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk

    2017-07-01

    The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant

  2. Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    CERN Document Server

    Goddard, B; Presland, A; Weterings, W

    2006-01-01

    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.

  3. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).

    Science.gov (United States)

    Clement, S D; Choi, J R; Zamenhof, R G; Yanch, J C; Harling, O K

    1990-01-01

    Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams.

  4. Landfills - OPEN_DUMPS_IDEM_IN: Open Dump Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — OPEN_DUMPS_IDEM_IN is a point shapefile that contains open dump site locations in Indiana, provided by personnel of Indiana Department of Environmental Management,...

  5. 7 CFR 46.22 - Accounting for dumped produce.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Accounting for dumped produce. 46.22 Section 46.22... Market Receivers § 46.22 Accounting for dumped produce. A clear and complete record shall be maintained... justifying dumping shall be forwarded to the consignor or joint account partner with the accounting and...

  6. 30 CFR 56.19103 - Dumping facilities and loading pockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities and loading pockets. 56.19103 Section 56.19103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Personnel Hoisting Shafts § 56.19103 Dumping facilities and loading pockets. Dumping facilities and...

  7. 45 CFR 152.28 - Preventing insurer dumping.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Preventing insurer dumping. 152.28 Section 152.28...-EXISTING CONDITION INSURANCE PLAN PROGRAM Oversight § 152.28 Preventing insurer dumping. (a) General rule... for a determination of dumping. A PCIP shall establish procedures to identify and report to...

  8. 30 CFR 57.19103 - Dumping facilities and loading pockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities and loading pockets. 57.19103 Section 57.19103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Personnel Hoisting Shafts § 57.19103 Dumping facilities and loading pockets. Dumping...

  9. Multi-beam Lidar Instrument Design, Measurement Capabilities, and Technical Readiness

    Science.gov (United States)

    Blair, B.; Ranson, J.; Dubayah, R.; Coyle, B.; Salerno, C.

    2007-12-01

    A multi-beam Laser Altimeter has been designed and studied at NASA Goddard Space Flight Center and the critical technologies have developed and tested resulting in a mature and technically ready instrument approach. The instrument consists of three separate beams each providing a near-contiguous profile of 25 m diameter laser footprints. The across-track separation of the beams can be design includes a high-quality GPS receiver for providing precise orbital position information and a state-of-the-art Star Tracker and Inertial Measurement Unit to provide precise and accurate laser beam pointing knowledge. The digitizer-based ranging system will provide ranging to bare surfaces with ~3 cm range precision. The return waveforms will also provide vegetation height measurements with ~1 m of accuracy. The laser transmitters have been fully developed, characterize, and tested. Engineering Test Unit has been built at NASA/GSFC for environmental testing. Test units of the laser demonstrated 5 Billion shots without damage and diode testing indicates lifetimes of ~10 Billion shots per laser can be expected. A new waveform digitizer has been developed with improvements in sampling rate and dynamic range over the ICESat digitizer system, thus allowing higher quality waveforms to be collected, which is critical importantly for vegetation studies. This multi-beam Lidar design is the basis for the Lidar on the DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission described in the NRC Decadal Survey Report that consists of a Multi-beam Lidar and an L-band InSAR to be launched in the 2010-2013 timeframe.

  10. Off-axis mirror based optical system design for circularization, collimation, and expansion of elliptical laser beams

    Science.gov (United States)

    Serkan, Mert; Kirkici, Hulya; Cetinkaya, Hakan

    2007-08-01

    In this paper, we present two optical system design methods for beam circularization, collimation, and expansion of semiconductor laser output beam for possible application in LIDAR systems. Two different optical mirror systems are investigated: an off-axis hyperbolic/parabolic mirror system and an off-axis parabolic mirror system. Equations specific to these mirror systems are derived and computer package programs such as ZEMAX and MATLAB are used to simulate the optical designs. The beam reshaping results are presented.

  11. Design and application of 3D-printed stepless beam modulators in proton therapy

    Science.gov (United States)

    Lindsay, C.; Kumlin, J.; Martinez, D. M.; Jirasek, A.; Hoehr, C.

    2016-06-01

    A new method for the design of stepless beam modulators for proton therapy is described and verified. Simulations of the classic designs are compared against the stepless method for various modulation widths which are clinically applicable in proton eye therapy. Three modulator wheels were printed using a Stratasys Objet30 3D printer. The resulting depth dose distributions showed improved uniformity over the classic stepped designs. Simulated results imply a possible improvement in distal penumbra width; however, more accurate measurements are needed to fully verify this effect. Lastly, simulations were done to model bio-equivalence to Co-60 cell kill. A wheel was successfully designed to flatten this metric.

  12. Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption.

    Science.gov (United States)

    Dresel, T; Beyerlein, M; Schwider, J

    1996-12-10

    Computer-generated phase-only holograms can be used for laser beam shaping, i.e., for focusing a given aperture with intensity and phase distributions into a pregiven intensity pattern in their focal planes. A numerical approach based on iterative finite-element mesh adaption permits the design of appropriate phase functions for the task of focusing into two-dimensional reconstruction patterns. Both the hologram aperture and the reconstruction pattern are covered by mesh mappings. An iterative procedure delivers meshes with intensities equally distributed over the constituting elements. This design algorithm adds new elementary focuser functions to what we call object-oriented hologram design. Some design examples are discussed.

  13. RF design of X-band RF deflector for femtosecond diagnostics of LCLS electron beam

    Science.gov (United States)

    Dolgashev, Valery A.; Wang, Juwen

    2012-12-01

    We designed a successful constant impedance traveling wave X-band rf deflector for electron beam diagnostics at the 14 GeV SLAC Linac Coherent Light Source (LCLS). This is the first practical deflector built with a waveguide coupler. The 1-meter rf deflector produces 24 MeV peak transverse kick when powered with 20 MW of 11.424 GHz rf. The design is based on our experience with high gradient X-band accelerating structures. Several deflectors of this design have been built at SLAC and are currently in use. Here we describe the design and distinguishing features of this device.

  14. Beam dynamics design of the main accelerating section with KONUS in the CSR-LINAC

    CERN Document Server

    Xiao-Hu, Zhang; Jia-Wen, Xia; Xue-Jun, Yin; Heng, Du

    2013-01-01

    The CSR-LINAC injector has been proposed in Heavy Ion Research Facility in Lanzhou (HIRFL). The linac mainly consists of two parts, the RFQ and the IH-DTL. The KONUS (Kombinierte Null Grad Struktur) concept has been introduced into the DTL section. In this paper, the re-matching of the main accelerating section will be finished in the 3.7 MeV/u scheme and the new beam dynamics design up to 7 MeV/u will be also shown. Through the beam re-matching, the relative emittance growth has been suppressed greatly along the linac.

  15. Design of titania nanotube structures by focused laser beam direct writing

    Energy Technology Data Exchange (ETDEWEB)

    Enachi, Mihai [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Stevens-Kalceff, Marion A. [School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Sarua, Andrei [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ursaki, Veaceslav [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of); Tiginyanu, Ion, E-mail: tiginyanu@asm.md [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of)

    2013-12-21

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.

  16. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  17. Weighted Integrate-And-Dump Filter

    Science.gov (United States)

    Sadr, Ramin

    1989-01-01

    Digital weighted integrate-and-dump filter (WIDF) proposed for detection of weak rectangular-pulse signals corrupted by additive white Gaussian noise. Received signal first low-pass prefiltered, and samples taken at multiple of symbol frequency. Improved performance means lower sampling and processing rates used for given symbol rate, reducing cost of system.

  18. Design and development of a tantalum foil target for the production of high intensity radioactive beams

    CERN Document Server

    Densham, Cristopher John

    2000-01-01

    The design and development of a high power target and ion source for the production of Radioactive Beams at intensities approaching two orders of magnitude greater than currently possible is presented. This was a key aim of the RIST experiment, designed to utilise the proton synchrotron of the ISIS facility at Rutherford Appleton laboratory, Chilton, Oxfordshire, where an 800 MeV proton beam is available at currents of up to 200 mu A. A number of different target designs were considered and analysed, and high temperature power dissipation tests were conducted. This culminated in the manufacture of a diffusion bonded structure comprising 6000 separate tantalum foil discs and spacer washers. The target was installed in the RIST facility, and thermal tests using electron beam heating demonstrated that the target was capable of dissipating 24 kW by thermal radiation, at the desired temperature of 2000 deg C. This is equivalent to running with the 800 MeV ISIS proton beam at a current of 100 mu A. A smaller diamet...

  19. Improvement for design of beam structures in large vibrating screen considering bending and random vibration

    Institute of Scientific and Technical Information of China (English)

    彭利平; 刘初升; 宋宝成; 武继达; 王帅

    2015-01-01

    Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation (FRT), bending vibration (BV) and axial linear-distributed random rigid translation (ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom (SDOF) elastic system analytically, the BV can be solved by the Rayleigh’s method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.

  20. Preliminary Design of the HiLumi-LHC Triplet Area Beam Screen

    CERN Document Server

    Kersevan, R; Kos, N

    2014-01-01

    The so-called beam screen (BS) is a proven solution for intercepting the thermal loads caused by the circulating beams in the cryogenically-cooled sections of the LHC and minimizing dynamic vacuum effects [1]. The new triplet area foreseen for the HiLumi-LHC (HL-LHC) machine upgrade [2] has the additional feature of needing internal tungsten shields to reduce the amount of collision debris which is deflected by the high-gradient triplet magnets towards the superconducting magnets' cold masses and coils. The very aggressive optics design, based on large beam separations, calls for a maximum of physical space to remain available to the counter rotating beams in the common BS. This places severe constraints to the fabrication and installation tolerances of the BS itself, in addition to affecting the design and routing of the cryogenic lines in the area. The latest version of the BS design will be shown and discussed, together with future plans for testing materials, fabrication procedures, and installation.

  1. Measurements and predictions of surface gas fluxes and actual evaporation on mine waste rock dump

    Energy Technology Data Exchange (ETDEWEB)

    Kabwe, L.K.; Wilson, G.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering

    2006-07-01

    Long-term closure issues with respect to the mining industry and acid rock drainage (ARD) management require accurate measurements, predictions and monitoring of surface gas fluxes and actual evaporation on mine waste-rock dumps. This study uses a technique, called the dynamic closed chamber system (DCC) that measures the oxygen flux into mine waste dumps. The technique was used with an oxygen gas analyzer to directly measure the change in the oxygen concentration in the headspace of the chamber installed at the surface of the waste dumps. A SoilCover model was also used to predict evaporation fluxes on a waste-rock pile after heavy rainfall events. Measurement of actual evaporation across the surfaces of waste dumps is important in the design of soil covers. The paper discussed the site locations including the Key Lake uranium mine located at the southern rim of the Athabasca Basin in north central Saskatchewan as well as the Syncrude Canada Ltd. mine, located 30 km north of Fort McMurray, Alberta. Materials and methods used in the study as well as results and subsequent discussion were also presented. The effect of relative humidity and the effect of soil cover system on oxygen diffusion was reviewed. It was concluded that the SoilCover numerical model can be a useful tool for prediction of actual evaporation on mine waste dumps. 21 refs., 4 figs.

  2. Design of a 11.4 GHz, 150-MW, Sheet Beam, PPM-Focused Klystron

    Science.gov (United States)

    Caryotakis, G.; Krasnykh, A.; Neubauer, M.; Phillips, R.; Scheitrum, G.; Sprehn, D.; Steele, R.; Jensen, A.; Smithe, D.

    2003-12-01

    The current baseline design for the 500-GeV SLAC/KEK future collider requires approximately 5000 75-MW, 1.6 μs, PPM pencil-beam klystrons. A prototype is currently on test. Although the estimated cost of the klystrons is a small part of the total collider cost, this number of klystrons is at least an order of magnitude higher than the klystron population in any scientific or military system ever fielded. A back-up sheet-beam klystron design has been under study at SLAC for the last six years. It offers several advantages: If two sheet beams were employed in parallel, the current density at the two cathodes would be low, and the power density at the output cavity a fraction of that in the pencil-beam klystron. Furthermore, because of significantly fewer vacuum parts, the 150-MW SBK should have a substantially lower cost than the baseline 75-MW pencil-beam klystron. Finally, it is considered that because of the lower power density, a longer rf pulse (3.2 μs) could be employed. All this means is that, with more pulse compression, the total number of klystrons in the collider could be reduced by a factor of 4, to approximately 1250. The total cost of the klystrons would be cut by an even larger factor. Since a practical SBK has never been designed before, two major problems had to be solved before a meaningful computer simulation of the entire tube could be performed. First, a sheet-beam gun had to be designed, along with a periodically-focused beam transport system outside the vacuum. Secondly, since extended interaction cavities are used throughout, new techniques had to be developed to provide useful designs with adequate stability and mode separation. This work is essentially complete. The work to parallel 24 CPUs, and modify the MAGIC 3D code so simulations of the complete SBK can be performed in a reasonable time, has progressed sufficiently for an interim report on the project to be presented.

  3. Principles and design of a Zeeman-Sisyphus decelerator for molecular beams

    CERN Document Server

    Fitch, N J

    2016-01-01

    We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak-field seeking state as they move towards each strong field region, and into a strong-field seeking state as they move towards weak field. The method is time-independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods.

  4. Physics design of the injector source for ITER neutral beam injector (invited).

    Science.gov (United States)

    Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P

    2014-02-01

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.

  5. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  6. Investigation of beam window buckling with consideration of irradiation effects for conceptual ADS design

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Takanori, E-mail: sugawara.takanori@jaea.go.j [Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kikuchi, Kenji; Nishihara, Kenji; Oigawa, Hiroyuki [Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan)

    2010-03-15

    The investigation of the beam window, which is a key component in the conceptual design of an Accelerator Driven System, has been performed. In the past studies, it was found that buckling failure due to hydrostatic pressure in the liquid lead bismuth was critical failure mode for the beam window and detailed structural analyses were performed. These investigations, however, did not consider irradiation effects by neutrons and protons. In this study, investigations based on the latest knowledge for irradiation effects obtained in the spallation target irradiation program are presented. By using the experimental data, it was found that the buckling pressure increased about 80% by the irradiation (20 dpa). It was assumed that if the beam window had integrity in the unirradiated condition, the buckling failure would not be critical issue during the ADS operation.

  7. Design of acoustic beam aperture modifier using gradient-index phononic crystals.

    Science.gov (United States)

    Lin, Sz-Chin Steven; Tittmann, Bernhard R; Huang, Tony Jun

    2012-06-15

    This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers.

  8. Physics design of the injector source for ITER neutral beam injector (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, c.so Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy)

    2014-02-15

    Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.

  9. Design and Fabrication of the Suspended High-Q Spiral Inductors with X-Beams

    CERN Document Server

    Hsieh, M C; Fang, Y K; Lin, C S

    2008-01-01

    In this paper, deep sub-micron CMOS process compatible high Q on chip spiral inductors with air gap structure were designed and fabricated. In the design the electromagnetic were used for electrical-characteristics and maximum mechanical strength, respectively. The copper wires were capped with electroless Ni plating to prevent the copper from oxidizing. A Si3N4/ SiO2 X-beam was designed to increase the mechanical strength of the inductor in air gap. The enhancement of maximum mechanical strength of a spiral inductor with X-beams is more than 4500 times. Among these structures, the measured maximum quality factor (Q) of the suspending inductor and frequency at maximum Q are improved from 5.2 and 1.6GHz of conventional spiral inductor to 7.3 and 2.1 GHz, respectively.

  10. Design and Qualification of Transparent Beam Vacuum Chamber Supports for the LHCb Experiment

    CERN Document Server

    Bosch, JL; Garion, C

    2014-01-01

    Three beryllium beam vacuum chambers pass through the aperture of the large dipole magnet and particle acceptance region of the LHCb experiment, coaxial to the LHC beam. At the interior of the magnet, a system of rods and cables supports the chambers, holding them rigidly in place, in opposition to the vacuum forces caused by their conical geometry. In the scope of the current upgrade programme, the steel and aluminium structural components are replaced by a newly designed system, making use of beryllium, in addition to a number of organic materials, and are optimised for overall transparency to incident particles. Presented in this paper are the design criteria, along with the unique design developments carried out at CERN, and furthermore, a description of the technologies procured from industrial partners, specifically in obtaining the best solution for the cable components.

  11. External beam's nozzle design for the CRC cyclotron PIXE/PIGE

    Science.gov (United States)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-02-01

    Recently, 13-MeV proton cyclotrons have been applied to non-destructive trace element analytical techniques, such as proton-induced X-ray emission (PIXE) and proton-induced gamma-ray emission (PIGE). A new extended beam line has been designed for PIXE/PIGE measurements in order to deliver protons to the target with minimal losses, thus reducing secondary radiation. A target chamber for PIXE/PIGE measurements is installed at the end of the extended beam line, and the beam size may be optimized by using a series of collimators that are located in front of the target. The optimized proton beam, with low currents (˜nA) for PIXE/PIGE experiments, requires a small beam size with variable energies from ˜10 keV to 3 MeV. Based on the ionization cross-section curve, a 3-MeV proton beam has been determined to be suitable for PIXE/PIGE measurements. Therefore, the 13-MeV protons extracted from the cyclotron must be reduced to 3 MeV, and this is achieved through the incorporation of an energy degrader. The appropriate thickness of the energy degrader has been estimated by using the stopping range in matter (SRIM) program. Also, suitable materials must be used for the construction of the collimator and the energy degrader in order to meet the requirements of low neutron activation due to the application of protons. In this study, we evaluated a number of suitable materials with low neutron yields and with little energy spread as the beam passes through the energy degrader and collimator. The appropriate thickness of the energy degrader for the reduction of the proton energy from 13 MeV to 3 MeV was determined using the SRIM code. Also, the neutron yield at the nozzle was estimated using the MCNPX code.

  12. LEDA and APT beam position measurement system: Design and initial tests

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.; Power, J.F.; Shurter, R.B.; Stettler, M. [Los Alamos National Lab., NM (United States); O`Hara, J.F. [AlliedSignal Inc., Albuquerque, NM (United States); Martinez, D. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Beam position measurements are being designed and fabricated for the Low Energy Demonstration Accelerator (LEDA), a 20-MeV, 100-mA-cw proton-accelerator, presently under construction at Los Alamos. Similar position measurements will provide position information for a steering scheme within the Accelerator Production of Tritium (APT) linac magnetic lattice. The steering scheme, which centers the beam in the magnetic lattice, uses two position measurements and two translatable quadrupole magnets every 5.5-FODO-lattice periods. What makes these beam position measurements unique is how they will attain, maintain and verify the required accuracy. The position measurement systems consist of micro-stripline beam position monitors (BPMs) and RF coaxial cables, log-ratio processors, on-line error correction sub-systems, and a control system interface including associated algorithms and computer software. This paper discusses the mapping of the BPM probe response, the algorithm used to calculate low beam-velocity response, and the expected log-ratio processor performance.

  13. Design and fabrication of a sub-millimeter multi-beam folded waveguide structure

    Science.gov (United States)

    Yan, Sheng-mei; Su, Wei; Zhang, Guo-liang

    2017-01-01

    A novel multi-beam folded waveguide (MBFW) circuit, which can enhance the output power and interaction efficiency of sub-terahertz (THz) traveling wave tube (TWT), is presented in the paper. Operating with fundamental mode and multiple electron beams means that a larger beam current can be used for a higher output power. The characteristics of the MBFW structure are analyzed and optimized. Compared with the single-beam folded waveguide (SBFW) TWT, the output power of the MBFW TWT increases from 3.64 W to 25.45 W at 140 GHz and its electronic efficiency increases from 1.06% to 7.4% under the conditions of an input peak power of 10 mW, a beam voltage of 9.55 kV and a current of 12 mA. The optimized MBFW structure can be successfully fabricated by micro milling, with dimension errors below expectation, and the measured transmission characteristics are in good agreement with the design.

  14. Design of mechanically-tunable photonic crystal split-beam nanocavity.

    Science.gov (United States)

    Lin, Tong; Tian, Feng; Shi, Peng; Chau, Fook Siong; Zhou, Guangya; Tang, Xiaosong; Deng, Jie

    2015-08-01

    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We have proposed and experimentally demonstrated a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical-quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm that provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75-nm air gap. Experimental results emphasize that the quality factor of the second-order TE mode can be as high as 1.99×10(4). Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator, and the quality factor maintains quite well even if there is a lateral offset up to 64 nm. Potentially promising applications, such as sensitive optomechanical torque sensor, local tuning of Fano resonance, all-optical-reconfigurable filters, etc., are foreseen.

  15. Design and Initial Commissioning of Beam Diagnostics for the PEP-II B Factory.

    Science.gov (United States)

    Fisher, A. S.; Alzofon, D.; Arnett, D.; Bong, E. L.; Brugnoletti, B.; Collins, B.; Daly, E.; Gioumousis, A.; Johnson, R.; Kulikov, A.; Kurita, N.; Langton, J.; McCormick, D.; Noriega, R.; Smith, S.; Smith, V.; Stege, R.; Bjork, M.; Chin, M.; Hinkson, J.; McGill, R.; Suwada, T.

    1997-05-01

    PEP-II is a 2.2-km-circumference collider with a 2.1-A, 3.1-GeV positron ring (the Low-Energy Ring) 1 m above a 1-A, 9-GeV electron ring (the High-Energy Ring); both are designed for 3 A maximum. We will describe the beam diagnostics and present initial measurements from HER commissioning, expected to start in March 1997. LER commissioning will follow in 1998. The beam size and pulse duration are measured using near-UV synchrotron light extracted by grazing-incidence mirrors that must withstand up to 200 W/cm. To measure the charge in every bucket at 60 Hz with an accuracy of ≈0.5%, the sum signal from a set of 4 pickup buttons is digitized and averaged over 256 samples per bucket. The sum is normalized to the ring current, measured by a DC current transformer. The 300 beam-position monitors per ring are multiplexed to share 171 processor modules, which use DSPs for recording positions over 1024 turns and for calibration. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure beam losses and abort the beam in case of high loss.

  16. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

    Science.gov (United States)

    Bleuel, D L; Donahue, R J; Ludewigt, B A; Vujic, J

    1998-09-01

    The 7Li(p,n)7Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF3, 7LiF, and D2O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo N-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF3 or 7LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to approximately 50% higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a 7LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq.

  17. Engineering design and study of the beam position accuracy in the "Riesenrad" ion gantry

    CERN Document Server

    Reimoser, S A

    2001-01-01

    Beams of carbon ions are particularly well suited for radiotherapy. Their physical properties allow the 3D-conformal tumour irradiation with a sub-millimetre precision, provided that the beam is delivered by a rotating gantry equipped with a pencil-beam scanning system. However, the expected size and weight of such a carbon-ion gantry together with the requirement to direct the beam to the patient with an extreme position accuracy has so far prevented its realisation and stimulated the search for alternative solutions. One of them, the "Riesenrad" ion gantry, is introduced in the present paper. In contrast to conventional isocentric gantries, the main bending magnet of the Riesenrad is placed on the axis of gantry rotation, hence minimising the moment of inertia of the mobile structure and maximising its rigidity. The treatment cabin is smoothly moved towards the desired treatment position by a system that is mechanically de-coupled from the gantry. The engineering design as well as some aspects of the beam t...

  18. Design and performance of a high resolution, low latency stripline beam position monitor system

    Directory of Open Access Journals (Sweden)

    R. J. Apsimon

    2015-03-01

    Full Text Available A high-resolution, low-latency beam position monitor (BPM system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6±0.1  ns. A single-pass beam position resolution of 291±10  nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  19. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  20. Design and Analysis of a Fast Steering Mirror for Precision Laser Beams Steering

    Directory of Open Access Journals (Sweden)

    Qingkun ZHOU

    2009-03-01

    Full Text Available Precision laser beam steering is critical in numerous applications. Also, precise pointing of laser beams is essential in challenging environments. The optical signal may be deflected, drift and wander due to environmental influences. The core problem of steering performances is to deal with the jitter disturbance. Based on the analysis of the beam angle steering system, some important factors to design the structure of a Fast Steering Mirror (FSM and the layout of laser optics steering system are presented. Flexure hinges with compliant mechanisms are used to build the FSM structure. A 4-quadrant detector is used as the sensor for the incoming light. A design of the developed control loop and concepts of the FSM model are discussed. A comparison between the measured gain response and the simulation model of the FSM reveals similarity between the theoretical simulation model and the real system, and offers a way to improve the model to better resemble the real system. A laser beam jitter control test bed is also introduced to improve jitter control techniques.

  1. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    Science.gov (United States)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  2. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    Energy Technology Data Exchange (ETDEWEB)

    Dal Forno, Massimo, E-mail: massimo.dalforno@phd.units.it [Department of Industrial Engineering and Information Technology, University of Trieste (Italy); Craievich, Paolo, E-mail: paolo.craievich@elettra.trieste.it [Sicrotrone Trieste S.C.p.A., Basovizza, Trieste (Italy); Baruzzo, Roberto [Cinel Strumenti Scientifici s.r.l., Vigonza, Padova (Italy); De Monte, Raffaele; Ferianis, Mario [Sicrotrone Trieste S.C.p.A., Basovizza, Trieste (Italy); Lamanna, Giuseppe [Cinel Strumenti Scientifici s.r.l., Vigonza, Padova (Italy); Vescovo, Roberto [Department of Industrial Engineering and Information Technology, University of Trieste (Italy)

    2012-01-11

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI-Elettra project . New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS and CST Particle Studio , and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  3. Design of beam optics for the Future Circular Collider e+e- -collider rings

    CERN Document Server

    Oide, K.; Aumon, S.; Benedikt, M.; Blondel, A.; Bogomyagkov, A.; Boscolo, M.; Burkhardt, H.; Cai, Y.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J.M.; Koop, I.; Koratzinos, M.; Levichev, E.; Medina, L.; Ohmi, K.; Papaphilippou, Y.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Sullivan, M.; Wenninger, J.; Wienands, U.; Zhou, D.; Zimmermann, F.; CERN. Geneva. ATS Department

    2016-01-01

    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Su...

  4. Evaluation of Beam Losses and Energy Depositions for a Possible Phase II Design for LHC Collimation

    CERN Document Server

    Lari, L; Bracco, C; Brugger, M; Cerutti, F; Doyle, E; Ferrari, A; Keller, L; Lundgren, S; Keller, L; Mauri, M; Redaelli, S; Sarchiapone, L; Smith, J; Vlachoudis, V; Weiler, T

    2008-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can ...

  5. Digitally compensated beam current transformer

    CERN Document Server

    Kesselman, Martin

    2005-01-01

    The Spallation Neutron Source (SNS) is being built by a collaboration of six laboratories. Beam current monitors (BCMs) will be used to record the current of H-minus and H-plus beams ranging from 15 mA (tune-up in the Front End and Linac) to over 60A fully accumulated in the Ring and dumped to the load as a single pulse in the Ring to Beam Target (RTBT). The time structure of these beams ranges from 645ns "mini" bunches at the 1.05 MHz ring revolution rate, to an overall 1 ms long macro-pulse. The requirements for the BCMs will depend upon their location within the system. The need to measure individual mini-pulses, examine the characteristics of the chopper edge, as well as the longer average current pulse of the macropulse, or long duration pulses during Linac tuning place wide requirements upon the response of current transformers. To obtain the desired accuracy and resolution, current transformers must have less than 1 ns rise time and droops of 0.1 %/ms. This places a significant design burden on the cur...

  6. Design and analysis of high-numerical-aperture beam shaping systems; Design und Analyse von Strahlformungssystemen hoher numerischer Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Hagen

    2009-11-24

    The generation of light tailored to measure stands today in the center of many innovative applications. A possibility of the flexible manipulation of light is the laser-beam shaping.Aim is thereby to transform the intensity profile of a laser beam to a wanted profile. The main topic of this thesis is the modeling and propagation of laser light in paraxial and non-paraxial beam-shaping systems as well as the optimization of these systems by means of a generalized projection algorithm. This algorithm is applied for the optimization by means of aspherical formula or polynomials point-by-point parametrized beam shaping surfaces. It is shown that during the optimization a regardment of diffraction, interference, and abberations is possible. The latter can not only be regarded, but directly used for the beam shaping. Finally it is shown that the aberrations of spherical catalogue lenses are already sufficient for some beam-shaping applications. The efficiency of the developed optimization algorithms is demonstrated both on paraxial and on non-paraxial beam-shaping examples with a numerical aperture of up to 0.62. Finally in the present thesis concepts for the achromatization and for the wave-length multiplexing are introduced, which are based on the application of diverse surfaces and materials with different dispersion. While the achromatization aims to make the optical function of a beam-shaping system wave-length independent, the wavelength multiplexing tries directly to realize different optical functions for diverse design wavelengths. [German] Die Erzeugung massgeschneiderten Lichts steht heute im Mittelpunkt vieler innovativer Anwendungen. Eine Moeglichkeit der flexiblen Manipulation von Licht ist die Laserstrahlformung. Ziel ist es dabei, das Intensitaetsprofil eines Laserstrahls in ein gewuenschtes Profil umzuformen. Schwerpunkt dieser Arbeit ist die Modellierung und Ausbreitung von Laserlicht in paraxialen und nicht-paraxialen Strahlformungssystemen sowie die

  7. A new bi-axial cantilever beam design for biomechanics force measurements.

    Science.gov (United States)

    Lin, Huai-Ti; Trimmer, Barry A

    2012-08-31

    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists.

  8. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  9. Beam Delivery System Dogleg Design and Integration for the International Linear Collider

    CERN Document Server

    Jones, J

    2010-01-01

    It is proposed to investigate the option of moving the positron source to the end of the main linac as a part of the central integration in the International Linear Collider(ILC) project. The positron source incorporates an undulator at the end of the main linac and the photons generated in the undulator are transported to the target, located at a distance of around 400 m. The dogleg design has been optimised to provide the required transverse offset at the location of the target and to give minimum emittance growth at 500 GeV. The design of the dogleg, the layout changes and the tolerances on beam tuning as a result of locating this dogleg in the beginning of the beam delivery system (BDS) are presented.

  10. The design and construction of the beam scintillation counter for CMS

    CERN Document Server

    Bell, Alan James

    2008-01-01

    This thesis presents the design qualification and construction of the Beam Scintillator Counter (BSC) for the CMS Collaboration at CERN in 2007 - 2008. The BSC detector is designed to aid in the commissioning of the Compact Muon Solenoid (CMS) during the first 2 years of operation and provide technical triggering for beam halo and minimum-bias events. Using plastic scintillator tiles mounted at both ends of CMS, it will detect minimum ionizing particles through the low-to-mid luminosity phases of the Large Hadron Collider (LHC) commissioning. During these early phases, the BSC will provide probably the most interesting and widely used data of any of the CMS sub-detectors and will be employed in the track based alignment procedure of the central tracker and commissioning of the Forward Hadron Calorimeter.

  11. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  12. Multistage depressed collector conceptual design for thin magnetically confined electron beams

    Science.gov (United States)

    Pagonakis, Ioannis Gr.; Wu, Chuanren; Illy, Stefan; Jelonnek, John

    2016-04-01

    The requirement of higher efficiency in high power microwave devices, such as traveling wave tubes and gyrotrons, guides scientific research to more advanced types of collector systems. First, a conceptual design approach of a multistage depressed collector for a sheet electron beam confined by a magnetic field is presented. The sorting of the electron trajectories, according to their initial kinetic energy, is based on the E × B drift concept. The optimization of the geometrical parameters is based on the analytical equations under several general assumptions. The analysis predicts very high levels of efficiency. Then, a design approach for the application of this type of collector to a gyrotron cylindrical hollow electron beam is also presented with very high levels of efficiency more than 80%.

  13. Reflective Optics Design for an LED High Beam Headlamp of Motorbikes

    Directory of Open Access Journals (Sweden)

    Peng Ge

    2015-01-01

    Full Text Available We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell’s law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE vehicle regulations R113 revision 2 (Class C.

  14. High intensity multi beam design of SANS instrument for Dhruva reactor

    Science.gov (United States)

    Abbas, Sohrab; Désert, S.; Aswal, V. K.

    2016-05-01

    A new and versatile design of Small Angle Neutron Scattering (SANS) instrument based on utilization of multi-beam is presented. The multi-pinholes and multi-slits as SANS collimator for medium flux Dhruva rearctor have been proposed and their designs have been validated using McStas simulations. Various instrument configurations to achieve different minimum wave vector transfers in scattering experiments are envisioned. These options enable smooth access to minimum wave vector transfers as low as ~ 6×10-4 Å-1 with a significant improvement in neutron intensity, allowing faster measurements. Such angularly well defined and intense neutron beam will allow faster SANS studies of agglomerates larger than few tens of nm.

  15. Designing of an Automatic Paraffin Controlling Device for a Beam Well

    Institute of Scientific and Technical Information of China (English)

    YAN Jian; LIU Xiao-juan; LI Shu-qin; YANG Shi-hao; ZHANG Ning-sheng

    2008-01-01

    Aiming at the paraffin-deposition problem of a beam well,the automatic paraffin-controlling device is designed by making use of ratchet-pallet mechanism,cam echanism and modern designing method.The device has four main functions:paraffin-controlling,paraffin removal,centralizing the pumping rod,and improving the safety of well tubing.This device integrates the advantages of the paraffin control,such as strong magnetic paraffin controlling and mechanical paraffin-cntting.Theoretical analysis shows that this device has fine working reliability.It turns out to be a new device which can solve the paraffin-deposition problem of a beam well economieally and efficiently.

  16. Conceptual design of the DEMO neutral beam injectors: main developments and R&D achievements

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Bolzonella, T.; Cismondi, F.; Fantz, U.; Fassina, A.; Franke, T.; Furno, I.; Hopf, C.; Jenkins, I.; Sartori, E.; Tran, M. Q.; Varje, J.; Vincenzi, P.; Zanotto, L.

    2017-05-01

    The objectives of the nuclear fusion power plant DEMO, to be built after the ITER experimental reactor, are usually understood to lie somewhere between those of ITER and a ‘first of a kind’ commercial plant. Hence, in DEMO the issues related to efficiency and RAMI (reliability, availability, maintainability and inspectability) are among the most important drivers for the design, as the cost of the electricity produced by this power plant will strongly depend on these aspects. In the framework of the EUROfusion Work Package Heating and Current Drive within the Power Plant Physics and Development activities, a conceptual design of the neutral beam injector (NBI) for the DEMO fusion reactor has been developed by Consorzio RFX in collaboration with other European research institutes. In order to improve efficiency and RAMI aspects, several innovative solutions have been introduced in comparison to the ITER NBI, mainly regarding the beam source, neutralizer and vacuum pumping systems.

  17. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

    Science.gov (United States)

    Zhang, Haifeng; Afzalul, Karim

    2014-06-01

    The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design.

  18. Design and development of an electrically-controlled beam steering mirror for microwave tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, A., E-mail: tayebiam@msu.edu [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Tang, J.; Paladhi, P. Roy; Udpa, L.; Udpa, S. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI-48824, USA and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2015-03-31

    Microwave tomography has gained significant attention due to its reliability and unhazardous nature in the fields of NDE and medical industry. A new microwave tomography system is presented in this paper, which significantly reduces the design and operational complexities of traditional microwave imaging systems. The major component of the proposed system is a reconfigurable reflectarray antenna which is used for beam steering in order to generate projections from multiple angles. The design, modeling and fabrication of the building block of the antenna, a tunable unit cell, are discussed in this paper. The unit cell is capable of dynamically altering the phase of the reflected field which results in beam steering ability of the reflectarray antenna. A tomographically reconstructed image of a dielectric sample using this new microwave tomography system is presented in this work.

  19. Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

    Indian Academy of Sciences (India)

    A K Sinha; K J S Sawhney; R V Nandedkar

    2001-12-01

    This paper describes the design of an in-vacuum, water-cooled beam stop (X-ray shutter) for the materials science (X-ray diffraction) beamline proposed to be built on the wavelength shifter in the Indus-2 (2.5 GeV) synchrotron radiation source. The radiation source impinges ∼ 1 kW power on the beam stop and the heat transfer capabilities of the beam stop have been evaluated. Temperature distribution in the beam stop has been obtained under various cooling conditions using the finite element analysis calculations with ANSYS software. Design parameters of the beam stop have been optimised. It is also shown that radiation cooling alone is not sufficient for taking away the heat load. Water-cooling of the beam stop is essential.

  20. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Brombin, M.; Cervaro, V.; Chitarin, G.; Delogu, R.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Tollin, M.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) (Italy); Bonomo, F. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) (Italy); Istituto Gas Ionizzati del CNR, Corso Stati Uniti, 4, I-35127, Padova (Italy); Cristofaro, S. [Università degli Studi di Padova, Via 8 Febbraio 2, I-35122 Padova (Italy); De Muri, M. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) (Italy); INFN-LNL, v.le dell' Università 2, I-35020, Legnaro (PD) Italy (Italy); Franzen, P.; Ruf, B.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany); Muraro, A. [Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125, Milano (Italy)

    2015-04-08

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.