WorldWideScience

Sample records for beam deposition techniques

  1. Study of indium tin oxide thin films deposited on acrylics substrates by Ion beam assisted deposition technique

    OpenAIRE

    Meng Lijian; Liang Erjun; Gao Jinsong; Teixeira, Vasco M. P.; Santos, M. P. dos

    2009-01-01

    Indium tin oxide (ITO) thin films have been deposited onto acrylics (PMMA) substrates by ion beam assisted deposition technique at different oxygen flows. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, transmittance, FTIR, ellipometry and Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the ellipsometric spectra. The effects of the oxygen flow on the properties of the ...

  2. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  3. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques

    Indian Academy of Sciences (India)

    Nishat Arshi; Junqing Lu; Chan Gyu Lee; Jae Hong Yoon; Bon Heun Koo; Faheem Ahmed

    2013-10-01

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD pattern revealed that the films deposited using d.c. magnetron sputtering have HCP symmetry with preferred orientation along (002) plane, while those deposited with e-beam evaporation possessed fcc symmetry with preferred orientation along (200) plane. The presence of metallic Ti was also confirmed by XPS analysis. FESEM images depicted that the finite sized grains were uniformly distributed on the surface and AFM micrographs revealed roughness of the film. The electrical resistivity measured using four-point probe showed that the film deposited using d.c. magnetron sputtering has lower resistivity of ∼13 cm than the film deposited using e-beam evaporation technique, i.e. ∼60 cm. The hardness of Ti films deposited using d.c. magnetron sputtering has lower value (∼7.9 GPa) than the film deposited using e-beam technique (∼9.4 GPa).

  4. Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective

    NARCIS (Netherlands)

    Botman, A.; Mulders, J.J.L.; Hagen, C.W.

    2009-01-01

    The creation of functional nanostructures by electron-beam-induced deposition (EBID) is becoming more widespread. The benefits of the technology include fast ‘point-and-shoot’ creation of three-dimensional nanostructures at predefined locations directly within a scanning electron microscope. One sig

  5. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  6. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  7. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  8. Oberst beam test technique

    Science.gov (United States)

    Fasana, Alessandro; Garibaldi, Luigi; Giorcelli, Ermanno; Ruzzene, Massimo

    1998-06-01

    The definition of the mechanical properties of viscoelastic materials, i.e. the elastic modulus and the loss factor, is carried out, according to many national and international standards, with many different techniques, both of the resonant and non-resonant type. In this paper we focus our attention on the pros and cons of the resonant technique based on the classical Oberst beam method. When the damping material to be tested is not self-supporting, its properties are determined taking start from the measured modal frequencies and loss factors of a laminated beam, constituted by one or two metallic strips, ideally undamped, and one or two viscoelastic layers. The formulae specified on the standards hold valid under the assumptions of the theory developed by Kerwin, Ungar and Ross and we try in this paper to quantify witch deviation of the results should be expected when moving away from their ideal hypotheses.

  9. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    Science.gov (United States)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  10. Fabrication of Ag:TiO2 Nanocomposite Thin Films by Sol-Gel Followed by Electron Beam Physical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2013-01-01

    Full Text Available Ag:TiO2 nanocomposite films have been synthesized by sol-gel method followed by electron beam physical vapour deposition. Targets for this deposition were prepared by a hydraulic press using a powder containing Ag and TiO2 prepared by sol-gel technique. Microstructure, surface, and plasmonic properties of nanocomposite films were studied using glancing angle X-ray diffractometer, atomic force microscopy, field emission secondary electron microscopy, and UV-Vis spectroscopy. Microstructural study reveals that Ag nanoparticles are embedded in TiO2 matrix consisting of mixed phases of anatase and rutile. Size estimation using Scherrer formula reveals that average crystallite size of Ag nanoparticles is 23 nm. Surface morphological studies indicate that deposited films are uniform and intact to the substrate and have very low value of root mean square roughness. Optical studies exhibit a surface plasmon resonance induced absorption band in visible region, which is the characteristic feature of Ag nanoparticles. The intensity of this absorption band is found to increase with the increase in deposition time. Multiple peaks observed in absorption band were explained using the concepts of extended Mie scattering. Preliminary experiments also suggested that these nanocomposite films exhibit promising photocatalytic properties, which can be used for water treatment.

  11. Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO{sub 2} thin films deposited by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P. [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kabiraj, D. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mandal, R.K. [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kulriya, P.K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sinha, A.S.K. [Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rath, Chandana, E-mail: chandanarath@yahoo.com [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2014-04-15

    TiO{sub 2} thin films deposited by electron beam evaporation technique annealed in either O{sub 2} or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O{sub 2} atmosphere. While the pristine film shows a super-paramagnetic behavior, both O{sub 2} and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford’s backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O{sub 2} annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O{sub 2} annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O{sub 2} annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO{sub 2} film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]). - Highlights: • TiO{sub 2} films were deposited by e-beam evaporation technique and post annealed under O{sub 2}/Ar at 500 °C. • The pristine film shows SPM behavior where as O{sub 2} and Ar annealed films demonstrate RTFM. • The presence of magnetic impurities has been discarded by various characterization techniques. • The magnetic moment is found to be higher in O{sub 2} annealed film than the Ar annealed one. • The higher M{sub s} in O{sub 2

  12. Technology basis and perspectives on focused electron beam induced deposition and focused ion beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rius, Gemma, E-mail: rius.gemma@nitech.ac.jp

    2014-12-15

    The main characteristics of focused electron beam induced deposition (FEBID) and focused ion beam induced deposition (FIBID) are presented. FEBID and FIBID are two nanopatterning techniques that allow the fabrication of submicron patterns with nanometer resolution on selected locations of any kind of substrate, even on highly structured supports. The process consists of mask less serial deposition and can be applied to a wide variety of materials, depending strictly on the precursor material source used. The basic mechanism of FEBID and FIBID is the adsorption of volatile precursor molecules onto the sample surface and decomposition of the molecules induced by the energetic electron and ion focused beams. The essential similarities of the two techniques are presented and especial emphasis is dedicated to highlighting their main differences, such as aspects related to resolution, deposition rate, deposits purity, substrate integrity, etc. In both cases, the factors interplay and complex mechanisms are still understood in a qualitative basis, so much work can still be done in terms of modeling and simulating the processes involved in FEBID and FIBID. Current work on FEBID and FIBID is presented through examples of achievements, interesting results and novel approaches.

  13. Characterization of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films deposited by electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H; Parlak, M [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Kaleli, M, E-mail: parlak@metu.edu.t [Department of Physics, Sueleyman Demirel University, 32260 Isparta (Turkey)

    2009-08-21

    AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were deposited onto a quartz substrate by the electron-beam technique. For the investigation of the annealing effect on structural, optical and electrical properties of deposited films, samples were annealed in the temperature range 300-775 {sup 0}C. The composition analyses of the deposited films carried out by energy dispersive x-ray analysis measurements have shown that the deposited AgGa{sub 0.5}In{sub 0.5}Se{sub 2} films were indium- and gallium-rich but selenium- and slightly silver-deficient and there was a remarkable change in composition with annealing. As a result of x-ray diffraction measurements, the as-deposited films were found to have an amorphous structure and after annealing at 300 {sup 0}C a polycrystalline structure with different phases was observed. However, subsequent annealing resulted in the formation of single phase AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin film at about 775 {sup 0}C. The absorption coefficient of the films was determined from the transmission spectra and the band gap values were calculated and found to vary between 1.57 and 2.43 eV following annealing in the temperature range 300-775 {sup 0}C. The refractive index (n) and extinction coefficient (k) of the films were evaluated by applying the envelope method to the transmission spectra. The spectral distributions of these quantities for both as-deposited and annealed films were determined in detail and it was observed that there has been a remarkable influence of annealing on these quantities. The electrical properties of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were also investigated by means of temperature dependent conductivity measurements in the temperature range 100-460 K. The resistivity of the samples depending on the annealing temperature varied between 6.5 x 10{sup 5} and 16 {Omega} cm. As a result of the hot-probe method it was observed that the as-deposited films have indicated an n-type behaviour, while all the

  14. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  15. Focused helium-ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, P.F.A.; Miro, H. [Delft University of Technology, Kavli Institute of Nanoscience, Delft (Netherlands)

    2014-12-15

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He{sup +} ions in the tens of keV energy range with materials - i.e., minimal deflection and mainly energy loss via electronic excitations - renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm{sup 3}/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal. (orig.)

  16. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  17. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  18. Proximity effect in ion-beam-induced deposition of nanopillars

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    Ion-beam-induced deposition (IBID) is a powerful technique for prototyping three-dimensional nanostructures. To study its capability for this purpose, the authors investigate the proximity effect in IBID of nanopillars. In particular, the changes in shape and dimension of pillars are studied when a

  19. Fabrication of plasmonic nanostructures with electron beam induced deposition

    NARCIS (Netherlands)

    Acar, H.

    2013-01-01

    The work described in this thesis was shaped by the goal---coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. Thes

  20. Focused electron beam induced deposition: A perspective

    Directory of Open Access Journals (Sweden)

    Michael Huth

    2012-08-01

    Full Text Available Background: Focused electron beam induced deposition (FEBID is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical

  1. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  2. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    Science.gov (United States)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  3. Electron beam niobium oxide powder deposition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, D.S. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil); Nono, M.C.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M. [Universidade de Brasilia (UnB), Brasilia, DF (Brazil)

    2009-07-01

    Full text: Zirconium oxide applied by Electron Beam –Physical Vapor Deposition can produce high quality coatings for high temperature blades. In this work niobium, yttrium and zirconium oxides were applied on metallic substrates, using EB-PVD, aiming thermal conductivity reduction. Coating characterization has been performed by X-ray diffractometry and scanning electron microscopy. X-ray diffractometry shows only tetragonal phase for the composition range evaluated, with tetragonality increase for higher niobium oxide amounts. Higher amounts of niobium promote reduction of ceramic coating theoretical density and thermal conductivity. (author)

  4. Lifetime obtained by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakaroun, M. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France); Antony, R. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)], E-mail: remi.antony@unilim.fr; Taillepierre, P.; Moliton, A. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)

    2007-09-15

    We have fabricated green organic light-emitting diodes based on tris-(8-hydroxyquinoline)aluminium (Alq3) thin films. In order to favor the charge carriers transport from the anode, we have deposited a N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) layer (hole transport layer) on a ITO anode. Cathode is obtained with a calcium layer covered with a silver layer. This silver layer is used to protect the other layers against oxygen during the OLED use. All the depositions are performed under vacuum and the devices are not exposed to air during their realisation. In order to improve the silver layer characteristics, we have realized this layer with the ion beam assisted deposition process. The aim of this process is to densify the layer and then reduce the permeation of H{sub 2}O and O{sub 2}. We have used argon ions to assist the silver deposition. All the OLEDs optoelectronic characterizations (I = f(V), L = f(V)) are performed in the ambient air. We compare the results obtained with the assisted layer with those obtained with a classical cathode realized by thermal unassisted evaporation. We have realized lifetime measurements in the ambient air and we discuss about the assisted layer influence on the OLEDs performances.

  5. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  6. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  7. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  8. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  9. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  10. Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, E. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Sandu, C.S., E-mail: cosmin.sandu@3d-oxides.com [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Harada, S.; Benvenuti, G. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Savu, V. [Laboratoire de Microsystèmes 1, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne (Switzerland); Muralt, P. [Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-01

    Chemical Beam Vapour Deposition is a gas phase deposition technique, operated under high vacuum conditions, in which evaporated chemical precursors are thermally decomposed on heated substrates to form a film. In the particular equipment used in this work, different chemical beams effuse from a plurality of punctual precursor sources with line of sight trajectory to the substrate. A shadow mask is used to produce 3D-structures in a single step, replicating the apertures of a stencil as deposits on the substrate. The small gap introduced between substrate and mask induces a temperature difference between both surfaces and is used to deposit selectively solely on the substrate without modifying the mask, taking advantage of the deposition rate dependency on temperature. This small gap also enables the deposition of complex patterned structures resulting from the superposition of many patterns obtained using several precursor beams from different directions through a single mask aperture. A suitable process parameter window for precursor flow and substrate temperature is evidenced to maximize resolution. - Highlights: • Micro-feature growth with stencil mask by Chemical Beam Vapour Deposition • Growth of complex structured oxide films in one step • The gap between substrate and mask avoids deposition on the stencil. • Fabrication of 3D structures by superposing deposits from several beams • The versatile setup combines few chemical beams, variable geometry and stencil mask patterns.

  11. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  12. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    Science.gov (United States)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  13. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Science.gov (United States)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  14. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  15. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  16. Mo SILICIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    T.H. Zhang; Z.Z. Yi; X.Y. Wu; S.J. Zhang; Y.G. Wu; X. Zhang; H.X. Zhang; A.D. Liu; X.J. Zhang

    2002-01-01

    Mo silicides MosSi3 with high quality were prepared using ion beam deposition equip-ment with two Filter Metal Vacuum Arc Deposition (FMEVAD). When the numberof alternant deposition times was 198, total thickness of the coating is 40nm. Thecoatings with droplet free can be readily obtained, so the surface is smooth. TEMobservation shows that Mo and Si alternant deposition coating is conpact structure.The fine Mo silicide grains densely distributed in the coating. The coating adherenceon silicon is excellent.

  17. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  18. Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition

    NARCIS (Netherlands)

    Botman, A.; Hesselberth, M.; Mulders, J.J.L.

    2008-01-01

    Focused electron-beam-induced deposition (EBID) allows the rapid fabrication of three-dimensional nanodevices and metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. The authors present two topics on platinum-containing nanostructures created by EBI

  19. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  20. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan; Liu Hongxue; Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Gu, Man [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Khokhlov, Mikhail; Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Guilford College, Greensboro, North Carolina 27410 (United States)

    2013-01-14

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  1. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Science.gov (United States)

    Comes, Ryan; Gu, Man; Khokhlov, Mikhail; Liu, Hongxue; Lu, Jiwei; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  2. Scaling in film growth by pulsed laser deposition and modulated beam deposition.

    Science.gov (United States)

    Lee, Sang Bub

    2011-04-01

    The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t(0) were deposited instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t(1) (0≤t(1)≤t(0)) within each period. If t(1)=0, MBD will be identical to PLD and, if t(1)=t(0), MBD will become usual molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density reported for PLD, and the scaling of island density was studied regarding the growth for 0MBE growth was observed as t(1) increased. The phase diagram was also presented.

  3. Effect of negative substrate bias on the microstructure and mechanical properties of Ti-Si-N films deposited by a hybrid filtered cathodic arc and ion beam sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yujuan, E-mail: cnzhangyujuan@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China); Yang Yingze; Zhai Yuhao; Zhang Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-07-01

    A hybrid cathodic arc and ion beam sputtering method was employed to synthesize Ti-Si-N films. The influence of negative substrate bias on the structure and mechanical properties was investigated by using XRD, XPS, HRTEM, nanoindentor and so on. With the increasing of negative bias there is a decrease in the TiN crystallite size from 36 nm to 10 nm. Negative substrate bias promoted the conformation of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite structure with complete phase separation and uniform crystallite size. Superhard TiSiN films with a maximum hardness of 46 GPa were successfully synthesized under 100 V negative bias. Severe oxidation occurred in films deposited under 200 V and 300 V negative substrate bias due to the decreasing of deposition rate, which led to the hardness of films reduced to the value of 26 GPa and 22 GPa respectively.

  4. Solid gold nanostructures fabricated by electron beam deposition

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Rasmussen, A.M.;

    2003-01-01

    Direct writing with gold by electron beam deposition is a method for rapid fabrication of electrically conducting nanostructures. An environmental scanning electron microscope (ESEM) equipped with a source of the precursor gas dimethylacetylacetonate gold(Ill) was used to fabricate nanoscale tips...

  5. Power deposition of deuteron beam in fast ignition

    Science.gov (United States)

    Azadifar, R.; Mahdavi, M.

    2017-02-01

    In ion fast ignition (FI) inertial confinement fusion (ICF), a laser accelerated ion beam called igniter provides energy required for ignition of a fuel pellet. The laser accelerated deuteron beam is considered as igniter. The deuteron beam with Maxwellian energy distribution produced at the distance d = 500 μm, from fuel surface, travels during time t = 20 ps and arrives with power P1D(t,TD) to the fuel surface. Then, the deuteron beam deposits its energy into fuel by Coulomb and nuclear interactions with background plasma particles during time t = 10 ps, with power P2D(t,TD,Tb). Since time and power of the two stages have same order, to calculate the total power deposited by igniter beam, both stages must be considered simultaneously. In this paper, the exact power of each stage has been calculated separately, and the total power Ptotal(t,TD,Tb) has been obtained. The obtained results show that the total power deposition Ptotal(t,TD,Tb) is significantly reduced due to reducing different temperature between projectile and target particles.

  6. Purity and resistivity improvements for electron-beam-induced deposition of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, J.J.L. [FEI Company, Eindhoven (Netherlands)

    2014-12-15

    Electron-beam-induced deposition (EBID) of platinum is used by many researchers. Its main application is the formation of a protective layer and the ''welding material'' for making a TEM lamella with a focused ion beam thinning process. For this application, the actual composition of the deposition is less relevant, and in practice, both the mechanical strength and the conductivity are sufficient. Another important application is the creation of an electrical connection to nanoscale structures such as nano-wires and graphene. To serve as an electrical contact, the resistivity of the Pt deposited structure has to be sufficiently low. Using the commonly used precursor MeCpPtMe{sub 3} for deposition, the resistivity as created by the basic process is 10{sup +5}-10{sup +6} higher than the value for bulk Pt, which is 10.6 μΩ cm. The reason for this is the high abundance of carbon in the deposition. To improve the deposition process, much attention has been given by the research community to parameter optimization, to ex situ or in situ removal of carbon by anneal steps, to prevention of carbon deposition by use of a carbon-free precursor, to electron beam irradiation under a high flux of oxygen and to the combination with other techniques such as atomic layer deposition (ALD). In the latter technique, the EBID structures are used as a 1-nm-thick seed layer only, while the ALD is used to selectively add pure Pt. These techniques have resulted in a low resistivity, today approaching the 10-150 μΩ cm, while the size and shape of the structure are preserved. Therefore, now, the technique is ready for application in the field of contacting nano-wires. (orig.)

  7. Focused electron beam induced deposition of magnetic nanostructures

    Science.gov (United States)

    de Teresa, Jose M.

    2011-03-01

    Nanopatterning strategies of magnetic materials normally rely on standard techniques such as electron-beam lithography using electron-sensitive resists. Focused electron beam induced deposition (FEBID) is currently being investigated as an alternative single-step route to produce functional magnetic nanostructures. Thus, Co-based and Fe-based precursors have been recently investigated for the growth of magnetic nanostructures by FEBID. In the present contribution, I will give an overview of the existing literature on magnetic nanostructures by FEBID and I will focus on the growth of Co nanostructures by FEBID using Co 2 (CO)8 as precursor gas. The Co content in the nanostructures can reach 95%. Magnetotransport experiments indicate that full metallic behaviour is displayed with relatively low residual resistivity and standard anisotropic magnetoresistance (0.8%). The coercive field of nanowires with changing aspect ratio has been determined in nanowires with width down to 150 nm by means of Magneto-optical Kerr Effect and the magnetization reversal has been imaged by means of Magnetic Force Microscopy, Scanning Transmission X-ray Microscopy as well as Lorentz Microscopy experiments. Nano-Hall probes have been grown with remarkable minimum detectable magnetic flux. Noticeably, it has been found that the domain-wall propagation field is lower than the domain-wall nucleation field in L-shaped nanowires, with potential applications in magnetic logic, sensing and storage. The spin polarization of these Co nanodeposits has been determined through Andreev-Reflection experiments in ferromagnetic-superconducting nanocontacts and amounts to 35%. Recent results obtained in Fe-based nanostructures by FEBID using Fe 2 (CO)9 precursor will be also presented. I acknowledge the collaboration in this field with A. Fernandez-Pacheco, R. Cordoba, L. Serrano, S. Sangiao, L.A. Rodriguez, C. Magen, E. Snoeck, L. Morellon, M.R. Ibarra.

  8. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  9. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  10. Calculation of the energy deposition in a water beam dump

    CERN Document Server

    Schönbacher, Helmut

    1975-01-01

    The energy deposition per interacting proton in GeV/cm/sup 3/ and the star density in star/cm/sup 3/ have been calculated in a water cylinder with a Monte Carlo computer program. These calculations permit the estimation of the temperature rise, induced radioactivity, etc., in beam dumps of high energy accelerator and storage rings. The calculation assumed a cylinder of different diameters and lengths and an incident proton beam energy of 20, 200, 300 and 400 GeV. (5 refs).

  11. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  12. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  13. Effect of deuterium ion beam irradiation onto the mirror-like pulsed laser deposited thin films of rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T., E-mail: abu@iitg.ernet.in [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Khare, Alika [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Rao, C.V.S.; Vala, Sudhirsinh; Makwana, R.J.; Basu, T.K. [Neutronics Lab, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2015-01-01

    Highlights: • Rh mirror like thin films are fabricated by PLD technique for FM application. • Rh thin film FMs are irradiated with 10, 20, and 30 keV D ion beam. • Effect of D ion beam irradiation on Rh FM’s reflectivity is investigated. - Abstract: The effect of deuterium ion beam irradiation on the reflectivity of mirror-like pulsed laser deposited (PLD) thin film of rhodium is reported. The deposition parameters; target-substrate distance and background helium gas pressure were optimized to obtain the good quality rhodium films, of higher thickness, oriented preferentially in (1 1 1) plane. The rhodium thin films deposited at optimum PLD parameters were exposed to 10, 20, and 30 keV deuterium ion beam. The changes in surface morphology and UV–Visible–FIR reflectivity of mirror-like rhodium thin films, as a function of energy of deuterium ion beam, after exposure are reported.

  14. Precise thin film synthesis by ion beam sputter deposition; Herstellung von Praezisionsschichten mittels Ionenstrahlsputtern

    Energy Technology Data Exchange (ETDEWEB)

    Gawlitza, P.; Braun, S.; Leson, A.; Lipfert, S. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany); Nestler, M. [Roth und Rau AG, Hohenstein-Ernstthal (Germany)

    2007-04-15

    Ion beam sputter deposition (IBSD) is a promising technique for the fabrication of high performance thin films because of the well defined and adjustable particle energies, which are rather high in comparison to other PVD techniques. Recent developments concerning long-term stability and lateral uniformity of the ion beam sources strengthen the position of the IBSD technique in the field of precise thin film synthesis. Furthermore, IBSD offers a more independent choice of relevant deposition parameters like particle energy and flux, process gas pressure and deposition rate. In this paper we present our currently installed large area IBSD facility 'IonSys 1600', which was developed by Fraunhofer IWS Dresden and Roth and Rau company (Hohenstein-Ernstthal). Substrate sizes of up to 200 mm (circular) or up to 500 mm length (rectangular) can be coated and multilayer stacks with up to six different materials are possible. Tailored 1- or 2- dimensional film thickness distribution with deviations of <0.1% can be fabricated by a relative linear motion of the substrate holder above an aperture. In order to demonstrate the advantages of the IBSD technique especially for sophisticated materials and films with high requirements concerning purity, chemical composition or growth structure, several examples of deposited multilayers for various applications are presented. (orig.)

  15. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  16. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  17. Photon beam convolution using polyenergetic energy deposition kernels

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, P.W.; Murray, D.C.; Round, W.H. (Waikato Univ., Hamilton (New Zealand). Dept. of Physics)

    1994-04-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, [mu], to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio [mu][sub ab]/[mu] as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author).

  18. Hemocompatibility of DLC coatings synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ion beam-assisted diamond-like carbon (DLC) coatings have beenused for growing the human platelet, fibrinogen, and albumin in the control environment in order to assess their hemocompatibility. The hard carbon films were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). Raman spectroscopic analysis proved that the carbon films on PMMA are diamond-like with a higher fraction of sp\\+3 bonds in the structure of mixed sp\\+2+sp\\+3 bonding. The blood protein adsorption tests showed that DLC coatings can adsorb more albumin and are slightly more fibrinogen than the PMMA chosen as a control sample. The platelets adhered on DLC coatings were reduced significantly in number. These results indicate good hemocompatibility of DLC coatings.

  19. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  20. Fabrication of a microreactor by proton beam writing technique

    Science.gov (United States)

    Huszank, R.; Szilasi, S. Z.; Vad, K.; Rajta, I.

    2009-06-01

    Microreactors are innovative and promising tools in technology nowadays because of their advantages compared to the conventional-scale reactors. These advantages include vast improvements in surface to volume ratio, energy efficiency, reaction speed and yield and increased control of reaction conditions, to name a few examples. The high resolution capability of the micromachining technique utilizing accelerated ion beams in the fabrication technology of microreactors has not yet been taken advantage of. In this work we present the design of a prototype micro-electrochemical cell of 1.5 μL volume (2.5 × 2.5 × 0.240 mm) created with a 3 MeV proton microbeam. The cell can be separated into two half-cells with a suitable membrane applicable to galvanic or fuel cells as well. We deposited gold electrodes on both of the half-cells. The operability of the device was demonstrated by electric current flow between the two electrodes in this micro-electrochemical cell containing a simple electrolyte solution. We used a polycapillary film to separate the two half-cells, hindering the mixing of the anolyte and catholyte solutions. As a result of the minimal mixing caused by the polycapillary film, this cell design can be suitable for electro-synthesis. Due to the high resolution of proton beam writing, it is planned to reduce the dimensions of this kind of microreactor.

  1. Strain-dependent conductivity of granular metals prepared by focused particle beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Christina; Baranowski, Markus; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, Frankfurt am Main (Germany); Voelklein, Friedemann [Institut fuer Mikrotechnologien, Hochschule RheinMain, Ruesselsheim (Germany)

    2010-07-01

    We report on the strain-dependence of the electrical conductivity of granular metals prepared by focused particle beam induced deposition. The samples were prepared in a dual-beam electron / Ga ion scanning microscope using selected precursors, such as W(CO){sub 6}. Stripe-like deposits were fabricated on dedicated cantilevers pre-patterned with contact pads made from Cr/Au. The cantilever deflection was induced in-situ by means of a four axes nano-manipulator and the conductivity change was recorded by lock-in technique employing a Wheatstone resistance bridge. Current-voltage characteristics and strain-dependence were measured for samples of various thicknesses and composition. For selected samples time-dependent conductivity data were taken as the samples were slowly exposed to air.

  2. Study of nickel silicide formation by physical vapor deposition techniques

    Science.gov (United States)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  3. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  4. Highly conductive and pure gold nanostructures grown by electron beam induced deposition

    Science.gov (United States)

    Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich

    2016-09-01

    This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

  5. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M. [Argonne National Lab., IL (United States); Lin, Y.P. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science; Schultz, J.A. [Ionwerks, Inc., Houston, TX (United States); Schmidt, H. [Schmidt Instruments, Inc., Houston, TX (United States); Liu, Y.L. [Argonne National Lab., IL (United States)]|[Wisconsin Univ., Milwaukee, WI (United States). Dept. of Materials Science; Auciello, O. [Microelectronics Center of North Carolina, Research Triangle Park, NC (United States); Barr, T. [Wisconsin Univ., Milwaukee, WI (United States). Dept. of Materials Science; Chang, R.P.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science

    1992-08-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described.

  6. Metallization of bacterial surface layer by cross-beam pulsed laser deposition

    Science.gov (United States)

    Pompe, Wolfgang; Mertig, Michael; Kirsch, Remo; Gorbunov, Andre A.; Sewing, Andreas; Engelhardt, Harald; Mensch, Axel

    1996-04-01

    We present first results on thin film metal deposition on the regular bacterial surface layer of Sporsarcina urea by pulsed laser deposition. To prevent structural damage of the biological specimen a recently developed cross beam technique is applied providing an effective filtering of the most energetic plasma particles. The deposited films are examined by low voltage scanning electron microscopy. The surface profile of the S-layer adsorbed onto mica substrate was investigated by atomic force microscopy. A lattice constant of 13.2 nm has been measured. The lattice parameters and the structural appearance of the protein layer is in reasonable agreement with the results of an electron microscopical 3D structural analysis.

  7. Comparison of different experimental techniques used for wax deposition testing

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    Crude oils consist of various fractions of hydrocarbons, including n-paraffins. The paraffins precipitate out of oil below the temperature called WAT (wax appearance temperature) and accumulate in flow lines and pipelines causing major transport problems. Prediction of paraffin deposition is, therefore, a key element of flow assurance programs. The purpose of this study was to develop a general and reliable approach to prediction of wax deposition based on a critical comparison of several practical lab techniques. Wax deposition study was conducted on five separate crude oils by using a varying protocols and equipment. One experimental technique was a cold stress test of wax deposition combined with ketone precipitation of waxy paraffin crystals. Another set of experiments were carried out for wax deposits formed on the surface of U-tubes and cold fingers of different designs. A comparison of the effectiveness of several wax inhibitors was conducted for these crude oils by using the selected deposition techniques. In each test method the amount of precipitated wax was recorded and compared. The deposits were characterized by melting point, qualitative and quantitative analysis of the wax components using DSC, SARA and HTGC analyses. Efficiency of paraffin inhibitors was correlated with a profile of n-paraffins distribution in the deposits. The limitations and advantages of different deposition techniques were analyzed and discussed. (author)

  8. Energy deposition studies for the LBNE beam absorber

    CERN Document Server

    Rakhno, Igor L; Tropin, Igor S

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  9. Single-crystal nanowires grown via electron-beam-induced deposition

    Science.gov (United States)

    Klein, K. L.; Randolph, S. J.; Fowlkes, J. D.; Allard, L. F.; Meyer, H. M., III; Simpson, M. L.; Rack, P. D.

    2008-08-01

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO)6) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF6) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured β-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W3O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  10. Single-crystal nanowires grown via electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Klein, K L; Randolph, S J; Simpson, M L; Rack, P D [Materials Science and Engineering Department, University of Tennessee, 434 Dougherty Hall, Knoxville, TN 37996 (United States); Fowlkes, J D [Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allard, L F; III, H M Meyer [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)], E-mail: prack@utk.edu

    2008-08-27

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO){sub 6}) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF{sub 6}) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured {beta}-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W{sub 3}O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  11. Cobalt-based magnetic nanostructures grown by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Begun, Evgeniya; Schwenk, Johannes; Porrati, Fabrizio; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, D-60438 Frankfurt am Main (Germany)

    2011-07-01

    The fabrication of magnetic nanostructures by means of the direct-writing technique focused-electron-beam-induced deposition (FEBID) is an alternative to more conventional lithographic methods. We have grown magnetic cobalt structures by FEBID using the precursor dicobaltoctacarbonyl Co{sub 2}(CO){sub 8}. The obtained structures have a large metal content of about 85 at.% as compared to other metal-based deposits grown by the same technique, such as tungsten-based structures with 34 at.% maximum tungsten content and platin-based structures with about 24 at.% maximum platin content. We present a growth strategy for cobalt structures with tunable metal content. In particular, we show the influence of different combinations of electron-beam energy and current, the dwell time and the refresh time on the deposit composition, which was determined by energy-dispersive X-ray spectroscopy (EDX) at 5 keV. First results of magnetotransport measurements on these cobalt-based structures are presented.

  12. New techniques in hadrontherapy: intensity modulated proton beams.

    Science.gov (United States)

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  13. Atomic layer deposition ultrathin film origami using focused ion beams

    Science.gov (United States)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  14. Dual ion beam deposition of carbon films with diamondlike properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  15. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  16. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  17. A Investigation of Radiotherapy Electron Beams Using Monte Carlo Techniques

    Science.gov (United States)

    Ding, George X.

    1995-01-01

    Radiotherapy electron beams are more complicated than photon beams due to variations in the beam production, the scattering of low-energy electrons, and the presence contaminant photons. The detailed knowledge of a radiotherapy beam is essential to an accurate calculation of dose distribution for a treatment planning system. This investigation aims to enhance our understanding of radiotherapy beams by focusing on electron beams used in radiotherapy. It starts with a description of the Monte Carlo simulation code, BEAM, and a detailed simulation of an accelerator head to obtain realistic radiotherapy beams. The simulation covers electron beams from various accelerators, including the NRC research accelerator, the NPL (UK), accelerator, A Varian Clinac 2100C, a Philips SL75-20, a Siemens KD2, an AECL Therac 20, and a Scanditronix MM50. The beam energies range from 4 to 50 MeV. The EGS4 user code, BEAM, is extensively benchmarked against experiment by comparing calculated dose distributions with measured dose distributions in water. The simulated beams are analyzed to obtain the characteristics of various electron beams from a variety of accelerators. The simulated beams are also used as inputs to calculate the following parameters: the mean electron energy, the most probable energy, the energy-range relationships, the depth-scaling factor to convert depths in plastic to water-equivalent depths, the water-to-air stopping-power ratios, and the electron fluence correction factors used to convert dose measured in plastics to dose in water. These parameters are essential for electron beam dosimetry. The results from this study can be applied in cancer clinics to improve the accuracy of the absolute dosimetry. The simulation also provides information about the backscatter into the beam monitor chamber, and predicts the influence on the beam output factors. This investigation presents comprehensive data on the clinical electron beams, and answers many questions which could

  18. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  19. Electron-beam-induced deposition of platinum at low landing energies

    NARCIS (Netherlands)

    Botman, A.; De Winter, D.A.M.; Mulders, J.J.L.

    2008-01-01

    Electron-beam-induced deposition of platinum from methylcyclopentadienyl-platinum-trimethyl was performed with a focused electron beam at low landing energies, down to 10 eV. The deposition growth rate is maximal at 140 eV, with the process being over ten times more efficient than at 20 kV. No signi

  20. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  1. Beam dynamics in rf guns and emittance correction techniques

    Science.gov (United States)

    Serafini, Luca

    1994-02-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results.

  2. Tribological Properties of DLC Film Prepared by C + Ion Beam-assisted Deposition (IBAD)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    C + ion beam-assisted deposition was utilized to prepare deposit diamond-like carbon (DLC) film.With the help of a series of experiments such as Raman spectroscopy, FT- IR spectroscopy, AFM and nanoindentation, the DLC film has been recognized as hydrogenated DLC film and its tribological properties have been evaluated.The ball-on-disc testing results show that the hardness and the tribological properties of the DLC film produced by C + ion beam-assisted deposition are improved significandy.DLC film produced by C+ ion beam-assisted deposition is positive to have a prosperous tribological application in the near future.

  3. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  4. Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques

    CERN Document Server

    Magnes, J; Hartke, J; Fountain, M; Florence, L; Davis, V

    2006-01-01

    We present a comparative overview of existing laser beam profiling methods. We compare the the knife-edge, scanning slit, and pin-hole methods. Data is presented in a comparative fashion. We also elaborate on the use of CCD profiling methods and present appropriate imagery. These methods allow for a quantitative determination of transverse laser beam-profiles using inexpensive and accessible methods. The profiling techniques presented are inexpensive and easily applicable to a variety of experiments.

  5. Characterisation of the properties of a negative hydrogen ion beam by several beam diagnostic techniques

    Science.gov (United States)

    Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.

    2016-06-01

    The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.

  6. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  7. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques

    Science.gov (United States)

    Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.

    2016-05-01

    The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.

  8. Radiosurgery with high energy photon beams: a comparison among techniques

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E.B.; Pike, G.B.; Olivier, A.; Pla, M.; Souhami, L.

    1989-03-01

    The presently known radiosurgical techniques with high energy photon beams are based either on the commercially available Gamma unit utilizing 201 stationary cobalt beams or on isocentric linear accelerators. The techniques using linear accelerators are divided into the single plane rotation, the multiple non-coplanar arcs, and the dynamic rotation. A brief description of these techniques is given, and their physical characteristics, such as precision of dose delivery, dose fall-off outside the target volume, and isodose distributions are discussed. It is shown that the multiple non-coplanar arcs technique and the dynamic rotation give dose distributions similar to those of the Gamma unit, which makes these two linear accelerator based techniques attractive alternatives to radiosurgery with the Gamma unit.22 references.

  9. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    Science.gov (United States)

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  10. Large areas elemental mapping by ion beam analysis techniques

    Science.gov (United States)

    Silva, T. F.; Rodrigues, C. L.; Curado, J. F.; Allegro, P.; Moro, M. V.; Campos, P. H. O. V.; Santos, S. B.; Kajiya, E. A. M.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.

    2015-07-01

    The external beam line of the Laboratory for Material Analysis with Ion Beams (LAMFI) is a versatile setup for multi-technique analysis. X-ray detectors for Particle Induced X-rays Emission (PIXE) measurements, a Gamma-ray detector for Particle Induced Gamma- ray Emission (PIGE), and a particle detector for scattering analysis, such as Rutherford Backscattering Spectrometry (RBS), were already installed. In this work, we present some results, using a large (60-cm range) XYZ computer controlled sample positioning system, completely developed and build in our laboratory. The XYZ stage was installed at the external beam line and its high spacial resolution (better than 5 μm over the full range) enables positioning the sample with high accuracy and high reproducibility. The combination of a sub-millimeter beam with the large range XYZ robotic stage is being used to produce elemental maps of large areas in samples like paintings, ceramics, stones, fossils, and all sort of samples. Due to its particular characteristics, this is a unique device in the sense of multi-technique analysis of large areas. With the continuous development of the external beam line at LAMFI, coupled to the robotic XYZ stage, it is becoming a robust and reliable option for regular analysis of trace elements (Z > 5) competing with the traditional in-vacuum ion-beam-analysis with the advantage of automatic rastering.

  11. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  12. Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures.

    Science.gov (United States)

    Belić, Domagoj; Shawrav, Mostafa M; Gavagnin, Marco; Stöger-Pollach, Michael; Wanzenboeck, Heinz D; Bertagnolli, Emmerich

    2015-02-04

    Three-dimensional gold (Au) nanostructures offer promise in nanoplasmonics, biomedical applications, electrochemical sensing and as contacts for carbon-based electronics. Direct-write techniques such as focused-electron-beam-induced deposition (FEBID) can provide such precisely patterned nanostructures. Unfortunately, FEBID Au traditionally suffers from a high nonmetallic content and cannot meet the purity requirements for these applications. Here we report exceptionally pure pristine FEBID Au nanostructures comprising submicrometer-large monocrystalline Au sections. On the basis of high-resolution transmission electron microscopy results and Monte Carlo simulations of electron trajectories in the deposited nanostructures, we propose a curing mechanism that elucidates the observed phenomena. The in situ focused-electron-beam-induced curing mechanism was supported by postdeposition ex situ curing and, in combination with oxygen plasma cleaning, is utilized as a straightforward purification method for planar FEBID structures. This work paves the way for the application of FEBID Au nanostructures in a new generation of biosensors and plasmonic nanodevices.

  13. Nanopillar growth by focused helium ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Veldhoven, E. van; Sanford, C.A.; Salemink, H.W.M.; Maas, D.J.; Smith, D.A.; Rack, P.D.; Alkemade, P.F.A.

    2010-01-01

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3) 3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that el

  14. Electron beam deposition and characterization of thin film Ti-Ni for shape memory applications

    Institute of Scientific and Technical Information of China (English)

    NOH Hae-Yong; JEE Kwang-Koo; LEE Kyu-Hwan; LEE Young-Kook

    2006-01-01

    Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS).It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices.Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates.The targets used for the evaporation were first prepared by electron beam melting.The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).The mechanical property of the thin films was evaluated by the nano-indentation test.The martensitic transformation temperature was measured by differential scanning calorimetry (DSC).It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials.Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation.Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains.The hardness and elastic modulus of thin films decreases with an increase in Ti contents.

  15. Beaming teaching application: recording techniques for spatial xylophone sound rendering

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophone...... played at student's location is required at teacher's site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering. Directivity pattern of the xylophone was measured and spatial properties of the sound field created by a xylophone as a distributed sound...

  16. Pulsed Helium Ion Beam Induced Deposition: A Means to High Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, Paul F. A. [Delft University of Technology, Delft, Netherlands; Miro, Hozanna [Delft University of Technology, Delft, Netherlands; Van Veldhoven, Emile [TNO Van Leeuwenhoek Laboratory; Maas, Diederick [TNO Van Leeuwenhoek Laboratory; Smith, Daryl [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH{sub 3}){sub 3}Pt(CPCH{sub 3}) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.

  17. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  18. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  19. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2016-12-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  20. Study of ion beam induced depolymerization using positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F

    2001-04-01

    Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.

  1. Crystalline inverted membranes grown on surfaces by electrospray ion beam deposition in vacuum.

    Science.gov (United States)

    Rauschenbach, Stephan; Rinke, Gordon; Malinowski, Nikola; Weitz, R Thomas; Dinnebier, Robert; Thontasen, Nicha; Deng, Zhitao; Lutz, Theresa; de Almeida Rollo, Pedro Martins; Costantini, Giovanni; Harnau, Ludger; Kern, Klaus

    2012-05-22

    Crystalline inverted membranes of the nonvolatile surfactant sodium dodecylsulfate are found on solid surfaces after electrospray ion beam deposition (ES-IBD) of large SDS clusters in vacuum. This demonstrates the equivalence of ES-IBD to conventional molecular beam epitaxy.

  2. Effect of deposition technique of Ni on the perpendicular magnetic anisotropy in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, S., E-mail: sakbulut@gtu.edu.tr [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey); Akbulut, A. [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey); Özdemir, M. [Marmara University, Physics Department, Göztepe, Istanbul (Turkey); Yildiz, F., E-mail: fyildiz@gtu.edu.tr [Gebze Technical University, Physics Department, Istanbul Cad, PK 41400 Gebze/Kocaeli (Turkey)

    2015-09-15

    The perpendicular magnetic anisotropy (PMA) of Si/Pt 3.5/(Co 0.3/Ni 0.6){sub n} /Co 0.3/ Pt 3 (all thicknesses are nm) multilayers were investigated for two different sample sets by using ferromagnetic resonance (FMR) and magnetooptic Kerr effect (MOKE) techniques. In the first sample set all layers (buffer, cap, Co and Ni) were grown by magnetron sputtering technique while in the second sample set Ni sub-layers were grown by molecular beam epitaxy (MBE) at high vacuum. Apart from deposition technique of Ni, all other parameters like thicknesses and growth rates of each layers are same for both sample sets. Multilayers in these two sample sets display PMA in the as grown state until a certain value of bilayer repetition (n) and the strength of PMA decreases with increasing n. Magnetic easy axis's of the multilayered samples switched from film normal to the film plane when n is 9 and 5 for the first and second sample sets, respectively. The reason for that, PMA was decreased due to increasing roughness with increasing n. This was confirmed by X Ray Reflectivity (XRR) measurements for both sample sets. Moreover, in the first sample set coercive field values are smaller than the second sample set, which means magnetic anisotropy is lower than the latter one. This stronger PMA is arising due to existence of stronger Pt (111) and Co/Ni (111) textures in the second sample set. - Highlights: • Effect of deposition techniques for Ni sub-layers on magnetic properties in [Co/Ni]{sub n} multilayered films was studied. • Ni sub-layers were deposited by two different techniques, molecular beam epitaxy (MBE) and magnetron sputtering. • Spin reorientation thickness and magnitude of the anisotropy are strongly depending on growing techniques.

  3. Characterisation of molecular thin films grown by organic molecular beam deposition

    CERN Document Server

    Bayliss, S M

    2000-01-01

    This work concerns the growth and characterisation of molecular thin films in an ultra high vacuum regime by organic molecular beam deposition (OMBD). Films of three different molecular materials are grown, namely free base phthalocyanine (H sub 2 Pc), perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) and aluminium tris-8-hydroxyquinoline (Alq sub 3). The relationship between the growth parameters such as film thickness, growth rate, and substrate temperature during and after growth, and the structural, optical and morphological properties of the film are investigated. These investigations are carried out using various ex-situ techniques. X-ray diffraction, Raman spectroscopy and electronic absorption spectroscopy are used to probe the bulk film characteristics, whilst Nomarski microscopy and atomic force microscopy are used to study the surface morphology. Three different levels of influence of the growth parameters on the film properties are observed. In the case of H sub 2 Pc, two crystal phases are fo...

  4. Roles of secondary electrons and sputtered atoms in ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    The authors report the results of investigating two models for ion-beam-induced deposition (IBID). These models describe IBID in terms of the impact of secondary electrons and of sputtered atoms, respectively. The yields of deposition, sputtering, and secondary electron emission, as well as the ener

  5. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack.

    Science.gov (United States)

    Gao, Xin; Ohashi, Hiroyuki; Okamoto, Hiroshi; Takasaka, Masaomi; Shinoda, Kazunori

    2006-06-01

    We report a beam-shaping technique that reconfigures the beams to improve the beam quality and enhance the power density for a ten-array high-power laser-diode stack by using two optical rectangular cubes and two stripe-mirror plates. The reshaped beam has threefold improvement in beam quality, and its power density is effectively enhanced. On the basis of this technique, we focus the beam of the high-power laser-diode stack to effectively end pump a high-power fiber laser.

  6. Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Patzig, Christian; Miessler, Andre [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Permoserstrasse 15, 04318 Leipzig (Germany); Karabacak, Tansel [University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Rauschenbach, Bernd [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Permoserstrasse 15, 04318 Leipzig (Germany); Universitaet Leipzig, Institut fuer Experimentalphysik II, Linnestrasse 5, 04103 Leipzig (Germany)

    2010-06-15

    Using glancing angle deposition by ion beam sputtering, sculptured thin films (STFs) consisting of various Si nanostructures of manyfold shapes, such as inclined and vertical columns, screws, and spirals, were deposited on Si substrates. It will be shown that morphology, shape, and diameter of the structures are influenced and can thus be controlled by adjusting various deposition parameters, including substrate temperature and ratio of substrate rotational speed to film deposition rate. Especially the temperature-controlled surface diffusion is found to play an important role in the growth of STFs. Cross-sectional scanning electron microscopy micrograph of helical Si nanostructures, deposited with ion beam sputter glancing angle deposition. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  8. Ion Beam Assisted Deposition Of Optical Thin Films - Recent Results

    Science.gov (United States)

    McNally, J. J.; Al-Jumaily, G. A.; Wilson, S. R.; McNeil, J. R.

    1985-11-01

    We have examined the properties of dielectric (Ti02, Si02, -Al203, Ta205 and Hf02) films deposited using ion-assisted deposition (IAD). The films were characterized using an angularly resolved scatterometer, spectrophotometer and Raman spectroscopy. A reduction in optical scatter, especially that due to low spatial frequencies, is observed for films deposited with simultaneous ion bombardment. Higher values of refractive index are obtained for films deposited using IAD. Raman spectra indicate a crystalline phase change in TiO2 films is induced by bombardment of samples with 02 ions during deposition. Other experimental data and the effects of the induced phase transition on the optical properties of TiO2 will be discussed.

  9. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  10. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    CERN Document Server

    Yang Hai Liang; Zhang Jia Sheng; Huang Jian Jun; Sun Jian Feng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  11. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  12. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang

    2006-01-01

    As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.

  13. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  14. Dual self-image technique for beam collimation

    Science.gov (United States)

    Herrera-Fernandez, Jose Maria; Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas; Bernabeu, Eusebio

    2016-07-01

    We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of δ φ =+/- 1.57 μ {rad}.

  15. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  16. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  17. Introduction to focused ion beams instrumentation, theory, techniques and practice

    CERN Document Server

    Giannuzzi, Lucille A

    2005-01-01

    The focused ion beam (FIB) instrument has experienced an intensive period of maturation since its inception. Numerous new techniques and applications have been brought to fruition, and over the past few years, the FIB has gained acceptance as more than just an expensive sample preparation tool. It has taken its place among the suite of other instruments commonly available in analytical and forensic laboratories, universities, geological, medical and biological research institutions, and manufacturing plants. Although the utility of the FIB is not limited to the preparation of specimens for subsequent analysis by other analytical techniques, it has revolutionized the area of TEM specimen preparation. The FIB has also been used to prepare samples for numerous other analytical techniques, and offers a wide range of other capabilities. While the mainstream of FIB usage remains within the semiconductor industry, FIB usage has expanded to applications in metallurgy, ceramics, composites, polymers, geology, art, bio...

  18. Structural and magnetic studies of thin Fe57 films formed by ion beam assisted deposition

    Science.gov (United States)

    Lyadov, N. M.; Bazarov, V. V.; Vagizov, F. G.; Vakhitov, I. R.; Dulov, E. N.; Kashapov, R. N.; Noskov, A. I.; Khaibullin, R. I.; Shustov, V. A.; Faizrakhmanov, I. A.

    2016-08-01

    Thin Fe57 films with the thickness of 120 nm have been prepared on glass substrates by using the ion-beam-assisted deposition technique. X-ray diffraction, electron microdiffraction and Mössbauer spectroscopy studies have shown that as-deposited films are in a stressful nanostructured state containing the nanoscaled inclusions of α-phase iron with the size of ∼10 nm. Room temperature in-plane and out-of-plane magnetization measurements confirmed the presence of the magnetic α-phase in the iron film and indicated the strong effect of residual stresses on magnetic properties of the film as well. Subsequent thermal annealing of iron films in vacuum at the temperature of 450 °C stimulates the growth of α-phase Fe crystallites with the size of up to 20 nm. However, electron microdiffraction and Mössbauer spectroscopic data have shown the partial oxidation and carbonization of the iron film during annealing. The stress disappeared after annealing of the film. The magnetic behaviour of the annealed samples was characterized by the magnetic hysteresis loop with the coercive field of ∼10 mT and the saturation magnetization decreased slightly in comparison with the α-phase Fe magnetization due to small oxidation of the film.

  19. Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors.

    Science.gov (United States)

    Kannan, Vasudevan; Inamdar, Akbar I; Pawar, Sambaji M; Kim, Hyun-Seok; Park, Hyun-Chang; Kim, Hyungsang; Im, Hyunsik; Chae, Yeon Sik

    2016-07-13

    We report an efficient method for growing NiO nanostructures by oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor applications. This facile physical vapor deposition technique combined with OAD presents a unique, direct, and economical route for obtaining high width-to-height ratio nanorods for supercapacitor electrodes. The NiO nanostructure essentially consists of nanorods with varying dimensions. The sample deposited at OAD 75° showed highest supercapacitance value of 344 F/g. NiO nanorod electrodes exhibits excellent electrochemical stability with no degradation in capacitance after 5000 charge-discharge cycles. The nanostructured film adhered well to the substrate and had 131% capacity retention. Peak energy density and power density of the NiO nanorods were 8.78 Wh/kg and 2.5 kW/kg, respectively. This technique has potential to be expanded for growing nanostructured films of other interesting metal/metal oxide candidates for supercapacitor applications.

  20. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    Science.gov (United States)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  1. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  2. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    2001-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position

  3. Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    CERN Document Server

    Haverkamp, Caspar; Jäckle, Sara; Manzoni, Anna; Christiansen, Silke

    2016-01-01

    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most no...

  4. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Science.gov (United States)

    Mao, Shoudong; Yang, Hengxiu; Li, Jinlong; Huang, Feng; Song, Zhenlun

    2011-04-01

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  5. New approaches for investigating paintings by ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: Lucile.beck@cea.f [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Viguerie, L. de; Walter, Ph.; Pichon, L. [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Gutierrez, P.C. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Salomon, J.; Menu, M. [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Sorieul, S. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3, UMR 5797, Universite de Bordeaux 1, Chemin du Solarium BP120, 33175 Gradignan Cedex (France)

    2010-06-15

    Up to now, among the IBA techniques, only PIXE has been used for analyzing paintings. However, quantitative PIXE analysis is sometimes difficult to interpret due to the layered structure, the presence of varnish and organic binder and, in some cases, discoloration of the pigments has been observed due to the interaction of the ion beam with the compounds. In order to improve the characterization of paintings, we propose some alternative experimental procedures. First of all, backscattering spectrometry (BS) and PIXE are simultaneously combined in order to collect complementary information such as layer thickness and organic compound quantification. The simultaneous PIXE and BS experiments also have the advantage of being able to analyze the same area in one experiment. This combination, implemented with an external beam, was directly applied on paintings and on painting cross-sections for the study of Italian Renaissance masterpieces. We have obtained valuable results not only on the pigment itself but also, for the first time, on the binder to pigment proportion which is not well documented in the ancient recipes. Moreover, in order to restrain beam damages due to the ion stopping power, we propose to analyze very thin painting cross-sections by a combination of PIXE-RBS and Scanning Transmission Ion Microscopy (STIM).

  6. Monitoring corrosion in prestressed concrete beams using acoustic emission technique

    Science.gov (United States)

    ElBatanouny, Mohamed K.; Mangual, Jesé; Vélez, William; Ziehl, Paul H.; Matta, Fabio; González, Miguel

    2012-04-01

    Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

  7. Structural and growth aspects of electron beam physical vapor deposited NiO-CeO{sub 2} nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kuanr, Sushil Kumar; K, Suresh Babu, E-mail: sureshbabu.nst@pondiuni.edu.in [Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605 014 (India)

    2016-03-15

    Deposition of composite materials as thin film by electron beam physical vapor deposition technique (EB-PVD) still remains as a challenge. Here, the authors report the deposition of NiO-CeO{sub 2} (30/70 wt. %) composites on quartz substrate by EB-PVD. Two NiO-CeO{sub 2} nanocomposite targets—one as green compact and the other after sintering at 1250 °C—were used for the deposition. Though the targets varied with respect to physical properties such as crystallite size (11–45 nm) and relative density (44% and 96%), the resultant thin films exhibited a mean crystallite size in the range of 20–25 nm underlining the role of physical nature of deposition. In spite of the crystalline nature of the targets and similar elemental concentration, a transformation from amorphous to crystalline structure was observed in thin films on using sintered target. Postannealing of the as deposited film at 800 °C resulted in a polycrystalline structure consisting of CeO{sub 2} and NiO. Deposition using pure CeO{sub 2} or NiO as target resulted in the preferential orientation toward (111) and (200) planes, respectively, showing the influence of adatoms on the evaporation and growth process of NiO-CeO{sub 2} composite. The results demonstrate the influence of electron beam gun power on the adatom energy for the growth process of composite oxide thin films.

  8. Neutral atom beam technique enhances bioactivity of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Joseph, E-mail: jkhoury@exogenesis.us [Exogenesis Corporation, Billerica, MA 01821 (United States); Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C. [Exogenesis Corporation, Billerica, MA 01821 (United States)

    2013-07-15

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants.

  9. Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Berger, A; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Zhang, D; Clavel, R [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, CH-1015 Lausanne (Switzerland); Michler, J, E-mail: bjoern.eisenhawer@ipht-jena.de [Mechanics of Materials and Nanostructures Laboratory, EMPA-Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland)

    2011-02-18

    Doped silicon nanowires (NWs) were epitaxially grown on silicon substrates by pulsed laser deposition following a vapour-liquid-solid process, in which dopants together with silicon atoms were introduced into the gas phase by laser ablation of lightly and highly doped silicon target material. p-n or p{sup ++}-p junctions located at the NW-silicon substrate interfaces were thus realized. To detect these junctions and visualize them the electron beam induced current technique and two-point probe current-voltage measurements were used, based on nanoprobing individual silicon NWs in a scanning electron microscope. Successful silicon NW doping by pulsed laser deposition of doped target material could experimentally be demonstrated. This doping strategy compared to the commonly used doping from the gas phase during chemical vapour deposition is evaluated essentially with a view to potentially overcoming the limitations of chemical vapour deposition doping, which shows doping inhomogeneities between the top and bottom of the NW as well as between the core and shell of NWs and structural lattice defects, especially when high doping levels are envisaged. The pulsed laser deposition doping technique yields homogeneously doped NWs and the doping level can be controlled by the choice of the target material. As a further benefit, this doping procedure does not require the use of poisonous gases and may be applied to grow not only silicon NWs but also other kinds of doped semiconductor NWs, e.g. group III nitrides or arsenides.

  10. Silicon doping techniques using chemical vapor dopant deposition

    Energy Technology Data Exchange (ETDEWEB)

    Popadic, M.

    2009-11-12

    Ultrashallow junctions are essential for the achievement of superior transistor performance, both in MOSFET and bipolar transistors. The stringent demands require state-of-the-art fabrication techniques. At the same time, in a different context, the accurate fabrication of various n type doping profiles by low-temperature Si epitaxy is a challenge due to autodoping. In this thesis, these two, apparently unrelated, problems are both addressed as the layer of CVD surface-deposited dopant atoms is used as a doping source. It is demonstrated that a layer of dopants deposited on the Si surface can be used as a doping source by either thermal or laser drive-in for the fabrication of both deep and ultrashallow defect-free junctions. In low-temperature CVD epitaxy, autodoping is a consequence of dopant surface segregation and doping from the surface layer. This process has been characterized, and consequently excellent controllability is achieved. In addition, new results related to the CVD of dopants itself are obtained, and two theoretical achievements are made: the analytical model of arbitrarily shallow junctions is derived, and a new C-V profiling technique suitable for the characterization of ultrashallow junctions is developed.

  11. Biaxially textured Ag films by grazing ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Daniel F., E-mail: foerster@ph2.uni-koeln.d [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany); Bleikamp, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany)

    2010-11-01

    The effect of grazing incidence 4 keV Ar{sup +} ion irradiation on the early stage of Ag thin film growth on amorphous Si was investigated. The double effect of axial and surface channeling resulted in grains oriented along the <110> axis in-plane, while the (111) out-of-plane texture was maintained. A slight average tilt of the (111) out-of-plane texture axis towards the ion beam direction is proposed to result from the difference between terrace and step edge sputtering yield. The observed tilt is consistent with a minimum erosion orientation of the surface profile.

  12. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  13. Fabrication of multilayer Laue lenses by a combination of pulsed laser deposition and focused ion beam.

    Science.gov (United States)

    Liese, Tobias; Radisch, Volker; Krebs, Hans-Ulrich

    2010-07-01

    X-ray diffractive techniques using Fresnel zone plate lenses of various forms are of great technical interest because of their ability to form images at very high spatial resolution, but the zone plates are unfortunately very hard to produce by lithography. Alternatively, multilayer Laue lenses (MLLs) and multilayer zone plates are used due to the higher and easily adjustable aspect ratio necessary for different wavelengths. In this paper, the fabrication of a MLL by a combination of pulsed laser deposition and focused ion beam machining is described. All steps of the production of a Ti/ZrO(2) microlens test structure with focal length of 220 microm (for a wavelength of 2.88 nm in the "water window" regime) are explained in detail. It is shown that this combination of two powerful techniques is very effective for the fabrication of MLL. All steps can be done in a very precise and controlled way without introducing damage to the grown multilayer structures.

  14. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    Science.gov (United States)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ˜160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  15. Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique.

    Directory of Open Access Journals (Sweden)

    Joseph T Belter

    Full Text Available In this paper, we present a technique for increasing the strength of thermoplastic fused deposition manufactured printed parts while retaining the benefits of the process such as ease, speed of implementation, and complex part geometries. By carefully placing voids in the printed parts and filling them with high-strength resins, we can improve the overall part strength and stiffness by up to 45% and 25%, respectively. We discuss the process parameters necessary to use this strengthening technique and the theoretically possible strength improvements to bending beam members. We then show three-point bend testing data comparing solid printed ABS samples with those strengthened through the fill compositing process, as well as examples of 3D printed parts used in real-world applications.

  16. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  17. Ion Beam Induced Surface Modulations from Nano to Pico: Optimizing Deposition During Erosion and Erosion During Deposition.

    Energy Technology Data Exchange (ETDEWEB)

    MoberlyChan, W J; Schalek, R

    2007-11-08

    Ion beams of sufficient energy to erode a surface can lead to surface modulations that depend on the ion beam, the material surface it impinges, and extrinsic parameters such as temperature and geometric boundary conditions. Focused Ion Beam technology both enables site-specific placement of these modulations and expedites research through fast, high dose and small efficient use of material. The DualBeam (FIB/SEM) enables in situ metrology, with movies observing ripple formation, wave motion, and the influence of line defects. Nanostructures (ripples of >400nm wavelength to dots spaced <40nm) naturally grow from atomically flat surfaces during erosion, however, a steady state size may or may not be achieved as a consequence of numerous controlled parameters: temperature, angle, energy, crystallography. Geometric factors, which can be easily invoked using a FIB, enable a controlled component of deposition (and/or redeposition) to occur during erosion, and conversely allow a component of etching to be incurred during (ion-beam assisted) deposition. High angles of ion beam inclination commonly lead to 'rougher' surfaces, however, the extreme case of 90.0{sup o} etching enables deposition of organized structures 1000 times smaller than the aforementioned, video-recorded nanostructures. Orientation and position of these picostructures (naturally quantized by their atomic spacings) may be controlled by the same parameters as for nanostructures (e.g. ion inclination and imposed boundary conditions, which are flexibly regulated by FIB). Judicious control of angles during FIB-CVD growth stimulates erosion with directionality that produces surface modulations akin to those observed for sputtering. Just as a diamond surface roughens from 1-D ripples to 2-D steps with increasing angle of ion sputtering, so do ripples and steps appear on carbon-grown surfaces with increase in angle of FIB-CVD. Ion beam processing has been a stalwart of the microelectronics industry

  18. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  19. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, F. [Northern Illinois U.; Piot, P. [Fermilab

    2014-01-01

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structure to realize shape close to the theoretically optimized current profiles.

  20. Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition

    NARCIS (Netherlands)

    Chen, P.

    2010-01-01

    The direct writing technology known as ion-beam-induced deposition (IBID) has been attracting attention mainly because of its high degree of flexibility of locally prototyping three-dimensional (3D) nanostructures. These high-resolution nanostructures have various research applications. However, no

  1. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...

  2. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is attrib

  3. The role of electron-stimulated desorption in focused electron beam induced deposition

    NARCIS (Netherlands)

    van Dorp, Willem F.; Hansen, Thomas W.; Wagner, Jakob B.; De Hosson, Jeff T. M.

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)(6) is used as a precursor it is observed that the growth

  4. Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition

    NARCIS (Netherlands)

    Fraters, B.D.; Cavaliere, E; Mul, G.; Gavioli, L.

    2014-01-01

    In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO2 nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Ram

  5. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  6. In Situ Studies of Energy Deposition by Ion Beams.

    Science.gov (United States)

    1985-06-14

    shift (anout t dB) over th, temperature range of -50 Celciuc to +Q0 -n rIs. Usi-- a somewhat different technique to measure attenuation Tharpe ir...implantation time. The low dose rate implantation time was about 50 tim -,es that of the high dose rate implantation (Fig. 6). Becaus;e of ’he lack of

  7. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    Science.gov (United States)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  8. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  9. SAR IMAGE ENHANCEMENT BASED ON BEAM SHARPENING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    LIYong; ZI-IANGKun-hui; ZHUDai-yin; ZHUZhao-da

    2004-01-01

    A major problem encountered in enhancing SAR image is the total loss of phase information and the unknown parameters of imaging system. The beam sharpening technique, combined with synthetic aperture radiation pattern estimation provides an approach to process this kind of data to achieve higher apparent resolution. Based on the criterion of minimizing the expected quadratic estimation error, an optimum FIR filter with a symmetrical structure is designed whose coefficients depend on the azimuth response of local isolated prominent points because this response can be approximately regarded as the synthetic aperture radiation pattern of the imaging system. The point target simulation shows that the angular resolution is improved by a ratio of almost two to one. The processing results of a live SAR image demonstrate the validity of the method.

  10. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Van Der Straten, P.; Heideman, H.G.M.; Metcalf, H

    2001-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  11. Double-beam pulsed laser deposition for the growth of Al-incorporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Bizarro, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-186, C.P. 04510 México D.F., México (Mexico)

    2014-05-01

    Pulsed laser deposition in a delayed-double beam configuration is used to incorporate in situ Al in ZnO thin films. In this configuration, two synchronized pulsed-laser beams are employed to ablate independently a ZnO and an Al target. We investigated the effects of relative time delay of plasma plumes on the composition of the films with the aim of evaluating the performance of this technique to produce doped materials. Relative delay between plumes was found to control the incorporation of Al in the film in the range from 14% to 30%. However, to produce low impurity concentration of Al-doped ZnO (with Al incorporation less than 2%) the fluence used to produce the plasmas has more influence over the film composition than the relative plume delay. The minimum incorporation of Al corresponded to a relative delay of 0 μs, due to the interaction between plumes during their expansion.

  12. A lithium depth-marker technique for rapid erosion and deposition measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M., E-mail: rsulli@psfc.mit.edu; Pang, A.; Martinez-Sanchez, M.; Whyte, D.G.

    2014-01-15

    Highlights: • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. -- Abstract: A novel, high-resolution technique has been developed for the measurement of erosion and deposition in solid material surfaces. The technique uses a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) to determine the change in depth of a previously implanted marker layer consisting of {sup 7}Li. A scoping study shows that {sup 7}Li is an ideal marker candidate due to a high Q (∼18 MeV) nuclear reaction, {sup 7}Li(p,α){sup 4}He. Net erosion or deposition is measured by NRA of modified alpha energy passing through the bulk material. The reaction’s high cross-section provides for the fast time resolution needed to measure erosion from high flux plasmas, and a highly penetrating proton beam provides for a large range of erosion/deposition measurements. Additionally, the implantation of low-Z Li leads to relatively low vacancy concentrations in the solid material due to implantation. This technique thus provides greater assurance that the measured erosion rate is indicative of the solid material: due to both the low vacancy production and the fact that no films or deposits are involved. Validation was performed by comparing the measured and predicted amount of erosion based on previously measured sputtering yields; the two were found to agree, within the uncertainty of the experiment. The depth resolution of the techniques is ∼60 nm at a net erosion depth of about 1 μm. The benefits of this technique are summarized as: short time scales (minutes) to obtain results, the marker layer can be used in any solid material, greater assurance that the measured erosion is indicative of the unperturbed solid material, and the continuous monitoring of the

  13. Energy deposition of H and He ion beams in hydroxyapatite films: A study with implications for ion-beam cancer therapy

    Science.gov (United States)

    Limandri, Silvina; de Vera, Pablo; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Mello, Alexandre; Garcia-Molina, Rafael; Behar, Moni; Abril, Isabel

    2014-02-01

    Ion-beam cancer therapy is a promising technique to treat deep-seated tumors; however, for an accurate treatment planning, the energy deposition by the ions must be well known both in soft and hard human tissues. Although the energy loss of ions in water and other organic and biological materials is fairly well known, scarce information is available for the hard tissues (i.e., bone), for which the current stopping power information relies on the application of simple additivity rules to atomic data. Especially, more knowledge is needed for the main constituent of human bone, calcium hydroxyapatite (HAp), which constitutes 58% of its mass composition. In this work the energy loss of H and He ion beams in HAp films has been obtained experimentally. The experiments have been performed using the Rutherford backscattering technique in an energy range of 450-2000 keV for H and 400-5000 keV for He ions. These measurements are used as a benchmark for theoretical calculations (stopping power and mean excitation energy) based on the dielectric formalism together with the MELF-GOS (Mermin energy loss function-generalized oscillator strength) method to describe the electronic excitation spectrum of HAp. The stopping power calculations are in good agreement with the experiments. Even though these experimental data are obtained for low projectile energies compared with the ones used in hadron therapy, they validate the mean excitation energy obtained theoretically, which is the fundamental quantity to accurately assess energy deposition and depth-dose curves of ion beams at clinically relevant high energies. The effect of the mean excitation energy choice on the depth-dose profile is discussed on the basis of detailed simulations. Finally, implications of the present work on the energy loss of charged particles in human cortical bone are remarked.

  14. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ˜50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  15. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Rao, C.V.S.; Raole, Prakash M.; Vala, Sudhirsinh; Jakhar, Shrichand; Basu, T.K.; Abhangi, Mitul; Makwana, Rajinikant J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-04-15

    Graphical abstract: The specular FIR reflectivity of the W{sub 1}, W{sub 2}, W{sub 3} and W{sub 4} mirrors before and after 8 keV Hydrogen ion beam irradiation. Highlights: Black-Right-Pointing-Pointer Mirror like W thin films were obtained via PLD. Black-Right-Pointing-Pointer The maximum thickness of the Tungsten thin film was {approx}324 nm. Black-Right-Pointing-Pointer Effect of H-ion beam irradiation on the quality of PLD W mirror is reported. Black-Right-Pointing-Pointer Post exposure reflectivity of Tungsten thin films was hardly changed by 2%. - Abstract: The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  16. Microstructure and photoluminescence of Er-doped SiOx films synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    Duan Shu-Qing; Tan Na; Zhang Qing-Yu

    2005-01-01

    Er-doped Sio_ films were synthesized at 500℃ by ion beam assisted deposition technique and annealed at 800 and 1100℃ for 2h in the air atomosphere. The analysis by using energy dispersive x-ray spectroscopy showed that the ratio of Si to O decreased from 3 in the as-deposited films to about 1 in the annealed films. The investigation by using transmission electron microscopy and x-ray diffraction inducated that annealing induces a microstructure change from amorphous to crystlline. The grain sizes in the films were about 10 and 40nm when annealed at 800 and 1100℃, respectively. The films annealed at temperatures of 800 and 1100℃ exhibited a sharp photoluminescence (PL) at 1.533μm from the Er centres when pumped by 980nm laser. The influence of microstructure and grain size on the PL from Er-doped Sio_ films has been studies and discussed.

  17. Properties of ZnO thin films grown at room temperature by using ionized cluster beam deposition

    CERN Document Server

    Whangbo, S W; Kim, S G; Cho, M H; Jeong, K H; Whang, C N

    2000-01-01

    ZnO films with a thickness of 120 nm were deposited on Si(100) at room temperature by using the reactive-ionized cluster beam deposition technique. The effects of the acceleration voltage (V sub a) on the properties, such as the crystallinity, the induced film strain, the surface roughness, and the electrical and the optical properties of the films, were investigated. The ZnO films had only a (002) crystalline orientation and uniformly composed through the whole thickness. As the V sub a increased, more strain was induced in the film, and the packing density caused by the structural imperfection was lowered. The films prepared under the optimum condition (V sub a = 3 kV) on a glass substrate showed good optical transmittance, and the band-gap of the film was evaluated to be 3.32 eV.

  18. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  19. Processing for optically active erbium in silicon by film co-deposition and ion-beam mixing

    Energy Technology Data Exchange (ETDEWEB)

    Abedrabbo, S., E-mail: sxa0215@yahoo.com [Department of Physics, University of Jordan, Amman 11942 (Jordan); Mohammed, Q. [Tadawul Shares and Bonds Mediation L.L.C., Dubai (United Arab Emirates); Fiory, A.T. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07901 (United States)

    2009-02-01

    Techniques of film deposition by co-evaporation, ion-beam assisted mixing, oxygen ion implantation, and thermal annealing were been combined in a novel way to study processing of erbium-in-silicon thin-film materials for optoelectronics applications. Structures with erbium concentrations above atomic solubility in silicon and below that of silicide compounds were prepared by vacuum co-evaporation from two elemental sources to deposit 200-270 nm films on crystalline silicon substrates. Ar{sup +} ions were implanted at 300 keV. Oxygen was incorporated by O{sup +}-ion implantation at 130 keV. Samples were annealed at 600 deg. C in vacuum. Concentration profiles of the constituent elements were obtained by Rutherford backscattering spectrometry. Results show that diffusion induced by ion-beam mixing and activated by thermal annealing depends on the deposited Si-Er profile and reaction with implanted oxygen. Room temperature photoluminescence spectra show Er{sup 3+} transitions in a 1480-1550 nm band and integrated intensities that increase with the oxygen-to-erbium ratio.

  20. Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lavrijsen, R; Schoenaker, F J; Ellis, T H; Barcones, B; Kohlhepp, J T; Swagten, H J M; Koopmans, B [Department of Applied Physics, Center for NanoMaterials and COBRA Research Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Cordoba, R; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50009 Zaragoza (Spain); De Teresa, J M; Magen, C [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Trompenaars, P; Mulders, J J L, E-mail: r.lavrijsen@tue.nl, E-mail: deteresa@unizar.es [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2011-01-14

    We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between {approx} 50 and 80 at.% with overall low C content ({approx}16 {+-} 3 at.%) by adding H{sub 2}O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

  1. Investigations in CO2 laser beam caustics measuring techniques

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Bagger, Claus

    2004-01-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved.......The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved....

  2. Electron-beam induced deposition and autocatalytic decomposition of Co(CO3NO

    Directory of Open Access Journals (Sweden)

    Florian Vollnhals

    2014-07-01

    Full Text Available The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID and electron beam-induced surface activation (EBISA is studied for two precursors: iron pentacarbonyl, Fe(CO5, and cobalt tricarbonyl nitrosyl, Co(CO3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM and scanning transmission X-ray microscopy (STXM, including near edge X-ray absorption fine structure (NEXAFS spectroscopy. It has previously been shown that Fe(CO5 decomposes autocatalytically on Fe seed layers (EBID and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO3NO and compare it to results obtained from Fe(CO5. Co(CO3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  3. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter

    2014-01-01

    Summary The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures. PMID:25161851

  4. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO.

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter; Marbach, Hubertus

    2014-01-01

    The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  5. XPS analysis and luminescence properties of thin films deposited by the pulsed laser deposition technique

    Science.gov (United States)

    Dolo, J. J.; Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Dejene, B. F.

    2010-04-01

    This paper presents the effect of substrate temperature and oxygen partial pressure on the photoluminescence (PL) intensity of the Gd2O2S:Tb3 + thin films that were grown by using pulsed laser deposition (PLD). The PL intensity increased with an increase in the oxygen partial pressure and substrate temperature. The thin film deposited at an oxygen pressure of 900 mTorr and substrate temperature of 900°C was found to be the best in terms of the PL intensity of the Gd2O2S:Tb3 + emission. The main emission peak due to the 5D4-7F5 transition of Tb was measured at a wavelength of 545 nm. The stability of these thin films under prolonged electron bombardment was tested with a combination of techniques such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Cathodoluminescence (CL) spectroscopy. It was shown that the main reason for the degradation in luminescence intensity under electron bombardment is the formation of a non-luminescent Gd2O3 layer, with small amounts of Gd2S3, on the surface.

  6. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    This paper describes a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. Since ash deposit thermal conductivity is thought to be strongly dependent on deposit microstructure, the technique is designed to minimize the disturbance of the natural deposit microstructure. Traditional techniques for measuring deposit thermal conductivity generally do not preserve the sample microstructure. Experiments are described that demonstrate the technique, quantify experimental uncertainty, and determine the thermal conductivity of highly porous, unsintered deposits. The average measured conductivity of loose, unsintered deposits is 0.14 {+-} 0.03 W/(m K), approximately midway between rational theoretical limits for deposit thermal conductivity.

  7. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  8. p-Type Transparent NiO Thin Films By e-Beam Evaporation Techniques

    Directory of Open Access Journals (Sweden)

    K.J. Patel1,

    2011-01-01

    Full Text Available Nickel oxide (NiO semiconductors thin films were prepared by e-beam evaporation technique at different substrate temperatures ranging from room temperature to 400 °C on glass substrate. Glancing incident X-ray diffraction depict that with the increases in substrate temperature the preferred orientation changes from (111 to (200 direction. Atomic force microscopy was used to investigate the surface morphology of the NiO thin films. The transmittance of NiO thin film increases with substrate temperature. NiO thin film was also deposited on n-type indium tin oxide (ITO thin films to investigate the diode characteristic of p-NiO/n-ITO junction.

  9. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M.I. Ahymah; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkura@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India)

    2013-06-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  10. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  11. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  12. Nitrogen as a carrier gas for regime control in focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Wachter Stefan

    2014-01-01

    Full Text Available This work reports on focused electron beam induced deposition (FEBID using a custom built gas injection system (GIS equipped with nitrogen as a gas carrier. We have deposited cobalt from Co2(CO8, which is usually achieved by a heated GIS. In contrast to a heated GIS, our strategy allows avoiding problems caused by eventual temperature gradients along the GIS. Moreover, the use of the gas carrier enables a high control over process conditions and consequently the properties of the synthesized nanostructures. Chemical composition and growth rate are investigated by energy dispersive X-ray spectroscopy (EDX and atomic force microscopy (AFM, respectively. We demonstrate that the N2 flux is strongly affecting the deposit growth rate without the need of heating the precursor in order to increase its vapour pressure. Particularly, AFM volume estimation of the deposited structures showed that increasing the nitrogen resulted in an enhanced deposition rate. The wide range of achievable precursor fluxes allowed to clearly distinguish between precursor- and electron-limited regime. With the carrier-based GIS an optimized deposition procedure with regards to the desired deposition regime has been enabled

  13. Organic molecular beam deposition system and initial studies of organic layer growth

    Energy Technology Data Exchange (ETDEWEB)

    Andreasson, M [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Ilver, L [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Kanski, J [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Andersson, T G [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden)

    2006-09-01

    This work describes an organic molecular beam deposition system with substrate entry/exit chamber, buffer chamber and with the possibility to transfer substrate from a III-V molecular beam deposition system. Flux calibrations of organic molecules and the initial growth of organic layers are described. For this purpose, the molecules 3,4,9,10 perylene tetra carboxylic dianhydride and copper phtalocyanine were used. Layers were grown on oxidized and hydrogen passivated Si(100), Indium tin oxide and glass respectively. The growth was investigated with atomic force microscopy, reflection high energy electron diffraction and ultraviolet photoemission spectroscopy. An investigation with x-ray photoelectron and Raman spectroscopy on the effect of atmospheric exposure is also included, showing little effect of surface pollution when the samples were handled carefully. The initial formation (monolayers) of copper phtalocyanine thin films was studied by ultraviolet photoemission spectroscopy.

  14. The Technique of Genetic Transformation Mediated by keV Ion Beam

    Institute of Scientific and Technical Information of China (English)

    卞坡; 余增亮

    2005-01-01

    The application of keV ion beam in life science started in China several decades ago. In 1986, researchers initially studied the mutagenic effect of ion beam, and successfully applied it to plant breeding. Nowadays, ion beam implantation technique has been extensively applied to many biological fields. This paper mainly introduces one of its important applications: genetic transformation mediated by keV ion beam.

  15. Ion beam deposition and surface characterization of thin multi-component oxide films during growth.

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.; Im, J.; Smentkowski, V.; Schultz, J.A.; Auciello, O.; Gruen, D.M.; Holocek, J.; Chang, R.P.H.

    1998-01-13

    Ion beam deposition of either elemental targets in a chemically active gas such as oxygen or nitrogen, or of the appropriate oxide or nitride target, usually with an additional amount of ambient oxygen or nitrogen present, is an effective means of depositing high quality oxide and nitride films. However, there are a number of phenomena which can occur, especially during the production of multicomponent films such as the ferroelectric perovskites or high temperature superconducting oxides, which make it desirable to monitor the composition and structure of the growing film in situ. These phenomena include thermodynamic (Gibbsian), and oxidation or nitridation-driven segregation, enhanced oxidation or nitridation through production of a highly reactive gas phase species such as atomic oxygen or ozone via interaction of the ion beam with the target, and changes in the film composition due to preferential sputtering of the substrate via primary ion backscattering and secondary sputtering of the film. Ion beam deposition provides a relatively low background pressure of the sputtering gas, but the ambient oxygen or nitrogen required to produce the desired phase, along with the gas burden produced by the ion source, result in a background pressure which is too high by several orders of magnitude to perform in situ surface analysis by conventional means. Similarly, diamond is normally grown in the presence of a hydrogen atmosphere to inhibit the formation of the graphitic phase.

  16. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    Science.gov (United States)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  17. An adaptive laser beam shaping technique based on a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Yuan Liu; Wei Yang; Minwu Ao; Shijie Hu; Bing Xu; Wenhan Jiang

    2007-01-01

    @@ A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.

  18. Fabrication of single TiO2 nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition

    Science.gov (United States)

    Lee, Mingun; Cha, Dongkyu; Huang, Jie; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    Device fabrication using nanostructured materials, such as nanotubes, requires appropriate metal interconnections between nanotubes and electrical probing pads. Here, electron-beam-assisted deposition (EBAD) and ion-beam-assisted deposition (IBAD) techniques for fabrication of Pt interconnections for single TiO2 nanotube devices are investigated. IBAD conditions were optimized to reduce the leakage current as a result of Pt spreading. The resistivity of the IBAD-Pt was about three orders of magnitude less than that of the EBAD-Pt, due to low carbon concentration and Ga doping, as indicated by X-ray photoelectron spectroscopy analysis. The total resistances of single TiO2 nanotube devices with EBAD- or IBAD-Pt interconnections were 3.82 × 1010 and 4.76 × 108 Ω, respectively. When the resistivity of a single nanotube is low, the high series resistance of EBAD-Pt cannot be ignored. IBAD is a suitable method for nanotechnology applications, such as photocatalysis and biosensors.

  19. AMORPHIZATION IN Nb-M (M=Fe, Co, Ni) BINARY METAL SYSTEMS INDUCED BY ION BEAM ASSISTED DEPOSITION (IBAD)

    Institute of Scientific and Technical Information of China (English)

    F. Pan; F. Zeng; B. Zhao

    2002-01-01

    Ion beam assisted deposition technique (IBAD) was utilized to systematically studyamorphization in binary metal systems of Nb-magnetic element, i.e., Nb-M (M=Fe,Co or Ni). The glass forming range terned as Nb fraction of Nb-Fe system was about34at.% to 56at.%, that of Nb-Co system was about 32at.% to 72at.% and that of Nb-Ni about 20at.% to 80at.%. Similar percolation patterns were found in amorphousalloy films. The fractal dimensions of the percolation patterns approach to 2, whichindicates 2-D layer growth for amorphous phases. It is regarded that the assistedAr+ ion beam duringthe deposition process plays important role for the 2-D layergrowth. Some metastable crystalline phases were obtained in these three systems byIBAD, e.g., bcc supersaturated solid solutions in Nb-Fe and Nb-Co systems, fcc andhcp phases in Nb-Co and Nb-Ni systems. The formation and competing between theamorphous and the metastable crystalline phases were determined by both the phases'thermodynamic states in binary metal systems and kinetics during IBAD process.

  20. Mechanical Properties and Thermal Stability of TiN/Ta Multilayer Film Deposited by Ion Beam Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hongfei Shang

    2014-01-01

    Full Text Available TiN/Ta multilayer film with a modulation period of 5.6 nm and modulation ratio of 1 : 1 was produced by ion beam assisted deposition. Microstructure of the as-deposited TiN/Ta multilayer film was observed by transmission electron microscopy and mechanical properties were investigated. Residual stress in the TiN/Ta multilayer film was about 72% of that of a TiN monolayer film with equivalent thickness deposited under the same conditions. Partial residual stress was released in the Ta sublayers during deposition, which led to the decrease of the residual stress of the TiN/Ta multilayer film. Nanohardness (H of the TiN/Ta multilayer film was 24 GPa, 14% higher than that of the TiN monolayer film. It is suggested that the increase of the nanohardness is due to the introduction of the Ta layers which restrained the growth of TiN crystal and led to the decrease of the grain size. A significant increase (3.5 times of the H3/E2 (E elastic modulus value indicated that the TiN/Ta multilayer film has higher elasticity than the TiN monolayer film. The Lc (critical load in nano-scratch test value of the TiN monolayer film was 45 mN, which was far lower than that of the TiN/Ta multilayer film (around 75 mN. Results of the indentation test showed a higher fracture toughness of the TiN/Ta multilayer film than that of the TiN monolayer film. Results of differential scanning calorimetric (DSC and thermo gravimetric analysis (TGA indicate that the TiN/Ta multilayer film has better thermal stability than the TiN monolayer film.

  1. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  2. Density behaviors of Ge nanodots self-assembled by ion beam sputtering deposition

    Institute of Scientific and Technical Information of China (English)

    Xiong Fei; Yang Tao; Song Zhao-Ning; Yang Pei-Zhi

    2013-01-01

    Self-assembled Ge nanodots with areal number density up to 2.33 × 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition.The dot density,a function of deposition rate and Ge coverage,is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands,and to be associated with the adatom behaviors of attachment and detachment from the islands.An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition,and is shown to be related to the breaking down of the superstrained wetting layer.This result is attributed to the interaction between energetic atoms and the growth surface,which mediates the island nucleation.

  3. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography

    Science.gov (United States)

    Liu, Zhengjun; Shah, Ali; Alasaarela, Tapani; Chekurov, Nikolai; Savin, Hele; Tittonen, Ilkka

    2017-02-01

    In this work, focused ion beam (FIB) lithography was developed for plasma enhanced atomic layer deposited (PEALD) silicon dioxide SiO2 hard mask. The PEALD process greatly decreases the deposition temperature of the SiO2 hard mask. FIB Ga+ ion implantation on the deposited SiO2 layer increases the wet etch resistivity of the irradiated region. A programmed exposure in FIB followed by development in a wet etchant enables the precisely defined nanoscale patterning. The combination of FIB exposure parameters and the development time provides greater freedom for optimization. The developed process provides high pattern dimension accuracy over the tested range of 90–210 nm. Utilizing the SiO2 mask developed in this work, silicon nanopillars with 40 nm diameter were successfully fabricated with cryogenic deep reactive ion etching and the aspect ratio reached 16:1. The fabricated mask is suitable for sub-100 nm high aspect ratio silicon structure fabrication.

  4. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    Energy Technology Data Exchange (ETDEWEB)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  5. Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Bellini, M. [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Bosia, F. [Physics Department and “Nanostructured Interfaces and Surfaces” Inter-departmental Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); INFN Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Calusi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Corsi, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Czelusniak, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2015-04-01

    Micro-fabrication in diamond is applicable in a wide set of emerging technologies, exploiting the exceptional characteristics of diamond for application in bio-physics, photonics and radiation detection. Micro ion-beam irradiation and pulsed laser irradiation are complementary techniques, which permit the implementation of complex geometries, by modification and functionalization of surface and/or bulk material, modifying the optical, electrical and mechanical characteristics of the material. In this article we summarize the work done in Florence (Italy), concerning ion beam and pulsed laser beam micro-fabrication in diamond.

  6. A feasibility study of H{sup -} beam extraction technique using YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Hasegawa, Kazuo; Ikeda, Yujiro; Oigawa, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aoki, Nobutada [Toshiba Power System Co., Ltd. (Japan); Nakagawa, Satoshi [Toshiba Co., Tokyo (Japan)

    2002-12-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small portion of the beam precisely from the high intensity beam by using a laser beam. By a laser beam, H{sup -} in the beam from LINAC is partially changed to H{sup 0} beam so that a low current H{sup 0} beam can be obtained. As the cross section of the charge exchange reaction for H{sup -} ions has a peak around at a wave length of 1 {mu}m for photons, YAG laser is suitable for this charge exchange because of its 1.06 {mu}m wave length. It is derived that 10 W beam for 600-MeV proton can be extracted by the YAG laser with power of 2 J for each pulse of 25 Hz. By this technique, the pulse width for the extracted beam can be controlled by changing the time width of laser irradiation. When a charge exchanger having the beam collide point existing in straight section, a background beam current of projectile, however, will be increased due to the interaction with the residual gas in the beam duct. Thus, a charge exchanger is devised having the beam collide point in a

  7. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  8. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  9. Achieving Thin Films with Micro/Nano-Scale Controllable Morphology by Glancing Angle Deposition Technique

    Institute of Scientific and Technical Information of China (English)

    JIANG Shao-Ji; WANG Chao-Yi; TANG Ji-Jia; HU Lin-Xin

    2008-01-01

    @@ We demonstrate that thin films with micro/nanometre controllable morphology can be fabricated by the glancing angle deposition (GLAD) technique which is a physical vapour deposition technique.In this technique, there are parameters which determine the morphology of the thin films: the incident angle, ratio of the deposition rate with respect to the substrate rotation rate, nature of the material being deposited, etc.We fabricate the morphology of column, pillar, helices, zigzag and study the parameters which determine morphology by given some examples of SEM.

  10. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  11. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  12. Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Robert; Geier, Barbara [Graz Centre for Electron Microscopy, Graz (Austria); Plank, Harald [Graz Centre for Electron Microscopy, Graz (Austria); Graz University of Technology, Institute for Electron Microscopy and Nanoanalysis, Graz (Austria)

    2014-12-15

    The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications. (orig.)

  13. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Ying-Bing; Abbas, Khawar; Ghasemi Baboly, Mohammadhosein; Anjum, D. H.; Chaieb, S.; Leseman, Zayd C.

    2015-02-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  14. Energy distribution of secondary particles in ion beam deposition process of Ag: experiment, calculation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C.; Feder, R.; Lautenschlaeger, T.; Neumann, H. [Leibniz-Institute of Surface Modification, Leipzig (Germany)

    2015-12-15

    Ion beam sputter deposition allows tailoring the properties of the film-forming, secondary particles (sputtered target particles and backscattered primary particles) and, hence, thin film properties by changing ion beam (ion energy, ion species) and geometrical parameters (ion incidence angle, polar emission angle). In particular, the energy distribution of secondary particles and their influence on the ion beam deposition process of Ag was studied in dependence on process parameters. Energy-selective mass spectrometry was used to measure the energy distribution of sputtered and backscattered ions. The energy distribution of the sputtered particles shows, in accordance with theory, a maximum at low energy and an E{sup -2} decay for energies above the maximum. If the sum of incidence angle and polar emission angle is larger than 90 , additional contributions due to direct sputtering events occur. The energy distribution of the backscattered primary particles can show contributions by scattering at target particles and at implanted primary particles. The occurrence of these contributions depends again strongly on the scattering geometry but also on the primary ion species. The energy of directly sputtered and backscattered particles was calculated using equations based on simple two-particle-interaction whereas the energy distribution was simulated using the well-known Monte Carlo code TRIM.SP. In principal, the calculation and simulation data agree well with the experimental findings. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, A., E-mail: alessio.perrone@unisalento.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Gontad, F. [INFN-Istituto Nazionale di Fisica Nucleare e Università del Salento, 73100 Lecce (Italy); Lorusso, A.; Di Giulio, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Ferrario, M. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2013-11-21

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ–2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10{sup −5}) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler–Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed. -- Highlights: •Comparison of Pb thin films deposited on Nb substrate by thermal evaporation and pulsed laser deposition (PLD). •Photoelectron performances of Pb thin films. •Good quality of adhesion strength of Pb films deposited by PLD.

  16. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  17. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    Science.gov (United States)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  18. Development of plant mutation techniques using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Park, In Sook; Song, Hi Sup; Kim, Dong Sub; Kim, Soo Yeon

    2006-06-15

    It has been reported that ion beam with high liner energy transfer (LET) show relative high biological effectiveness (RBE) and more effective for induced plant mutation than low LET radiation i.e., X-rays, gamma rays and electrons. This study was conducted to induce mutation of in vitro cultured orchid and Chrysanthemum using proton beam of the MC-50 cyclotron (50 MeV) at the Korea Institute of Radiological and Medical Science. In vitro cultured stems of chrysanthemum(cv. Migok) and protocom-like bodies(PLBs) of Dendrobium orchid (cv. Kingianum) placed in the plastic petridish (5.5cm in diameter) with agar medium were irradiated by the proton beam with various dose ranges of 10, 25, 50, 100 Gy under the condition of 5nA beam current. Those irradiated plants were transferred to subculture media and then investigated growth characteristics. Shoot growth of chrysanthemum and orchid was decreased by increase of irradiation dose. In particular, new shoot formation was hardly founded over 50Gy in chrysanthemum and 100 Gy in orchid. Some leaf mutants were observed at the 25 Gy and 50 Gy irradiated PLBs of the orchid. The dry seeds of hot pepper, rapeseed, rice and perilla also were irradiated with proton beam of MC-50 cyclotron and then measured germination rate and early growth of M1 plants compared with gamma ray irradiation.

  19. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    Science.gov (United States)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  20. Beaconless adaptive-optics technique for HEL beam control

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-05-01

    Effective performance of forthcoming laser systems capable of power delivery on a distant target requires an adaptive optics system to correct atmospheric perturbations on the laser beam. The turbulence-induced effects are responsible for beam wobbling, wandering, and intensity scintillation, resulting in degradation of the beam quality and power density on the target. Adaptive optics methods are used to compensate for these negative effects. In its turn, operation of the AOS system requires a reference wave that can be generated by the beacon on the target. This report discusses a beaconless approach for wavefront correction with its performance based on the detection of the target-scattered light. Postprocessing of the beacon-generated light field enables retrieval and detailed characterization of the turbulence-perturbed wavefront -data that is essential to control the adaptive optics module of a high-power laser system.

  1. A Novel Microwave Beam Steering Technique Using Plasma

    Science.gov (United States)

    Linardakis, Peter; Borg, Gerard G.; Harris, Jeffrey H.; Martin, Noel M.

    2002-10-01

    At frequencies above the plasma frequency, electromagnetic waves propagate through plasma with a wavelength longer than the free space wavelength. As a result, a plasma with a centrally peaked density profile can deflect rather than focus electromagnetic waves. We present a plasma device designed specifically to deflect a microwave beam as an alternative to conventional beam deflectors based on antenna arrays. A 22^rc deflection of Ka band microwave has been achieved using a laboratory plasma, with no detrimental effect on the beamwidth or side-lode level and structure. The use of a simple WKB model shows agreement and that the deflection can be increased with appropriate design. Results indicate the potential for increases in dynamic range, in power handling (for example from a gyrotron) and for the reduction of insertion losses over current beam steering systems. A ``plasma lens'' demonstrator device has also been designed to test practical performance aspects such as phase noise and to test optimization parameters.

  2. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    Science.gov (United States)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  3. Ion beam assisted deposition of organic molecules: a physical way to realize OLED structures

    Science.gov (United States)

    Moliton, André; Antony, Rémi; Troadec, David; Ratier, Bernard

    2000-05-01

    We demonstrate how the quantum efficiency of an organic light-emitting diode can be improved by a physical way based on the ion beam assisted deposition: the recombination current can be increased by an enhancement of the minority carrier injection while the total current can be decreased by generation of electron traps which reduced the majority current. The quantum efficiency of fluorescence can be also improved by a layer densification with a limitation of the nonradiative centers. As a result, the quantum efficiency of the structure ITO/Helium assisted Alq3/unassisted Alq3/Ca/Al is improved (by around a factor 10) in relation with a virgin structure.

  4. Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Jordan, E.H.; Barber, B.; Gell, M. [Univ. of Connecticut, Storrs, CT (United States)

    1998-10-09

    Elastic-plastic finite element models are used to define the thermal/residual stress state responsible for the observed failure behavior of an electron beam physical vapor deposited yttria stabilized zirconia thermal barrier coating on a Pt-Al bond coat. The failures were observed to start at grain boundary ridges, some of which evolved into oxide filled cavities. Finite element models are made of the actual interface geometries through the use of metallographic sectioning and imaging processing. There is a one to one correspondence of calculated tension in the oxide layer and the observed localized damage. Purely elastic analysis failed to show some important tensile regions associated with the observed failure.

  5. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  6. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Wei; MA Zhong-Quan; WANG Ye; WANG De-Ming

    2006-01-01

    The deposited energy during film growth with ion bombardment, correlated to the atomic displacement on the surface monolayer and the underlying bulk, has been calculated by a simplified ion-solid interaction model under binary collision approximation. The separated damage energies caused by Ar ion, different for the surface and the bulk, have been determined under the standard collision cross section and a well-defined surface and bulk atom displacement threshold energy of titanium nitride (TiN). The optimum energy scope shows that the incident energy of Ar+ around 110eV for TiN (111) and 80eV for TiN (200) effectively enhances the mobility of adatom on surface but excludes the damage in underlying bulk. The theoretical prediction and the experimental result are in good agreement in low energy ion beam-assisted deposition.

  7. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition

    Science.gov (United States)

    Pablo-Navarro, Javier; Magén, César; María de Teresa, José

    2016-07-01

    Functional nanostructured materials often rely on the combination of more than one material to confer the desired functionality or an enhanced performance of the device. Here we report the procedure to create nanoscale heterostructured materials in the form of core-shell nanowires by focused electron beam induced deposition (FEBID) technologies. In our case, three-dimensional (3D) nanowires (nanostructures to demonstrate that the morphology of the shell is conserved during Pt coating, the surface oxidation is suppressed or confined to the Pt layer, and the average magnetization of the core is strengthened up to 30%. The proposed approach paves the way to the fabrication of 3D FEBID nanostructures based on the smart alternate deposition of two or more materials combining different physical properties or added functionalities.

  8. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  9. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  10. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  11. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Ran; Meng Lingguo; Zhang Xijian; Hyung-Suk Jung; Cheol Seong Hwang

    2012-01-01

    Atomic layer deposition ofan Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates.Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3.Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite.This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

  12. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    Science.gov (United States)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  13. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  14. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  15. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  16. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    Science.gov (United States)

    Batra, Nitin M.; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L.; Costa, Pedro M. F. J.

    2015-11-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  17. Synthesis of photocatalytic TiO{sub 2} nano-coatings by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fraters, Bindikt D. [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Cavaliere, Emanuele [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy); Mul, Guido [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gavioli, Luca, E-mail: luca.gavioli@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Synthesis of well-defined TiO{sub 2} coatings by supersonic cluster beam deposition. • Morphology is studied for samples annealed at 500, 650 and 800 °C by HR-SEM. • Anatase (500, 650 °C) and Rutile (800 °C) are observed by Raman spectroscopy. • Quartz support improved the coating activity by factor 4–6 compared to Si-wafer. • Silicon is detrimental for photocatalytic activity promoting charge recombination. - Abstract: In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO{sub 2} nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Raman spectroscopy, and the morphology by High Resolution-Scanning Electron Microscopy. SCBD deposition in the presence of oxygen enables the in situ synthesis of TiO{sub 2} layers of amorphous NP at room temperature. Adapting the deposition temperature to 500 °C or 650 °C leads to Anatase crystals of variable size ranges, and layers showing significant porosity. At 800 °C mainly Rutile is formed. Post annealing by wafer heating of the amorphous NP prepared at room temperature results in comparable temperature dependent phases and morphologies. Photocatalytic activity in propane oxidation was dependent on the morphology of the samples: the activity decreases as a function of increasing particle size. The presence of water vapor in the propane feed generally increased the activity of the wafer-heated samples, suggesting OH groups are not profoundly present on SCBD synthesized layers. In addition, a remarkable effect of the substrate (Si or Quartz) was observed: strong interaction between Si and TiO{sub 2} is largely detrimental for photocatalytic activity. The consequences of these findings for the application of SCBD to synthesize samples for fundamental (spectroscopic) study of photocatalysis are

  18. Superconductivity and metallic behavior in Pb{sub x}C{sub y}O{sub δ} structures prepared by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Winhold, M., E-mail: winhold@Physik.uni-frankfurt.de; Weirich, P. M.; Schwalb, C. H.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-10-20

    Focused electron beam induced deposition as a direct-write approach possesses great potential to meet the demands for superconducting nanostructure fabrication especially regarding its 3D patterning capabilities combined with the high resolution in the nanometer regime. So far, however, it was not possible to fabricate superconducting structures with this technique. In this work, we present a lead-based superconductor prepared by focused electron beam induced deposition by dissociation of the precursor tetraethyllead. The as-grown structures exhibit metallic behavior and a minimum resistivity in the normal state of ρ = 16 μΩcm at T = 9 K followed by a superconducting transition at T{sub c} = 7.2 K.

  19. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  20. Bismuth coatings deposited by the pulsed dc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. F.; Olaya, J. J.; Alfonso, J. E., E-mail: jealfonsoo@unal.edu.co [Universidad Nacional de Colombia, Departamento de Fisica, Grupo de Ciencia de Materiales y Superficies, Carrera 45 No. 26-85, Edif. Uriel Gutierrez, Bogota D. C. (Colombia)

    2013-08-01

    In this work we present the results obtained from the deposition of nano-structured bismuth coatings through Dc pulsed unbalanced magnetron sputtering. The coatings were grown on two substrates: silicon and AISI steel 316 L. The microstructure of the Bi coatings grown on silicon and the corrosion resistance of the Bi coatings grown on AISI steel were evaluated. The microstructure was evaluated by X-ray diffraction and the corrosion resistance was characterized by means of polarization potentiodynamic and electrochemical impedance spectroscopy. Finally the morphology of the coatings was evaluated through scanning electronic microscopy. The X-ray diffraction analysis indicates that the coatings are polycrystalline; the corrosion resistance tests indicate that the films with better corrosion resistance were deposited at 40 khz. Scanning electron microscopy micrographs show that the coatings are grown as granular form. (Author)

  1. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.

    Science.gov (United States)

    Wu, H M; Stern, L A; Chen, J H; Huth, M; Schwalb, C H; Winhold, M; Porrati, F; Gonzalez, C M; Timilsina, R; Rack, P D

    2013-05-03

    The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) μΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) μΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

  2. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  3. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

    Science.gov (United States)

    Qi, Huan

    Direct metal deposition (DMD), a laser-cladding based solid freeform fabrication technique, is capable of depositing multiple materials at desired composition which makes this technique a flexible method to fabricate heterogeneous components or functionally-graded structures. The inherently rapid cooling rate associated with the laser cladding process enables extended solid solubility in nonequilibrium phases, offering the possibility of tailoring new materials with advanced properties. This technical advantage opens the area of synthesizing a new class of materials designed by topology optimization method which have performance-based material properties. For better understanding of the fundamental phenomena occurring in multi-material laser cladding with coaxial powder injection, a self-consistent 3-D transient model was developed. Physical phenomena including laser-powder interaction, heat transfer, melting, solidification, mass addition, liquid metal flow, and species transportation were modeled and solved with a controlled-volume finite difference method. Level-set method was used to track the evolution of liquid free surface. The distribution of species concentration in cladding layer was obtained using a nonequilibrium partition coefficient model. Simulation results were compared with experimental observations and found to be reasonably matched. Multi-phase material microstructures which have negative coefficients of thermal expansion were studied for their DMD manufacturability. The pixel-based topology-optimal designs are boundary-smoothed by Bezier functions to facilitate toolpath design. It is found that the inevitable diffusion interface between different material-phases degrades the negative thermal expansion property of the whole microstructure. A new design method is proposed for DMD manufacturing. Experimental approaches include identification of laser beam characteristics during different laser-powder-substrate interaction conditions, an

  4. SU-E-T-75: A Simple Technique for Proton Beam Range Verification

    Energy Technology Data Exchange (ETDEWEB)

    Burgdorf, B; Kassaee, A; Garver, E [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a measurement-based technique to verify the range of proton beams for quality assurance (QA). Methods: We developed a simple technique to verify the proton beam range with in-house fabricated devices. Two separate devices were fabricated; a clear acrylic rectangular cuboid and a solid polyvinyl chloride (PVC) step wedge. For efficiency in our clinic, we used the rectangular cuboid for double scattering (DS) beams and the step wedge for pencil beam scanning (PBS) beams. These devices were added to our QA phantom to measure dose points along the distal fall-off region (between 80% and 20%) in addition to dose at mid-SOBP (spread out Bragg peak) using a two-dimensional parallel plate chamber array (MatriXX™, IBA Dosimetry, Schwarzenbruck, Germany). This method relies on the fact that the slope of the distal fall-off is linear and does not vary with small changes in energy. Using a multi-layer ionization chamber (Zebra™, IBA Dosimetry), percent depth dose (PDD) curves were measured for our standard daily QA beams. The range (energy) for each beam was then varied (i.e. ±2mm and ±5mm) and additional PDD curves were measured. The distal fall-off of all PDD curves was fit to a linear equation. The distal fall-off measured dose for a particular beam was used in our linear equation to determine the beam range. Results: The linear fit of the fall-off region for the PDD curves, when varying the range by a few millimeters for a specific QA beam, yielded identical slopes. The calculated range based on measured point dose(s) in the fall-off region using the slope resulted in agreement of ±1mm of the expected beam range. Conclusion: We developed a simple technique for accurately verifying the beam range for proton therapy QA programs.

  5. Electron postgrowth irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4

    NARCIS (Netherlands)

    Botman, A.; Hagen, C.W.; Li, J.; Thiel, B.L.; Dunn, K.A.; Mulders, J.J.L.; Randolph, S.; Toth, M.

    2009-01-01

    The material grown in a scanning electron microscope by electron beam-induced deposition (EBID) using Pt(PF3)4 precursor is shown to be electron beam sensitive. The effects of deposition time and postgrowth electron irradiation on the microstructure and resistivity of the deposits were assessed by t

  6. Properties of high k gate dielectric gadolinium oxide deposited on Si (1 0 0) by dual ion beam deposition (DIBD)

    Science.gov (United States)

    Zhou, Jian-Ping; Chai, Chun-Lin; Yang, Shao-Yan; Liu, Zhi-Kai; Song, Shu-Lin; Li, Yan-Li; Chen, Nuo-Fu

    2004-09-01

    Gadolinium oxide thin films have been prepared on silicon (1 0 0) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation (4 bar 0 2) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (2 0 2), and finally, the cubic structure appeared at the substrate temperature of 700 °C, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented.

  7. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology

    Science.gov (United States)

    Shi, Tuo; Lu, Bingheng; Shi, Shihong; Meng, Weidong; Fu, Geyan

    2017-02-01

    In this study, a hollow-laser beam with internal powder feeding (HLB-IPF) head is applied to achieve non-horizontal cladding and deposition of overhanging structure. With the features of this head such as uniform scan energy distribution, thin and straight spraying of the powder beam, the deposition in spatial variable orientation is conducted using a 6-axis robot. During the deposition process the head keeps tangential to the growth direction of the part. In the experiment, a "vase" shaped metal part with overhanging structure is successfully deposited, and the largest overhanging angle achieves 80° to the vertical direction. The "step effect" between cladding layers is completely eliminated with the best surface roughness of Ra=3.864 μm. Cross section of cladding layers with unequal height are deposited for angle change. Test results indicate that the formed part has uniform wall thickness, fine microstructure and high microhardness.

  8. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  9. A technique to sharpen the beam penumbra for Gamma Knife radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, M; Li, X Allen; Ma Lijun [Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States)

    2003-06-21

    In stereotactic radiosurgery, a narrow beam penumbra is often desired for producing steep dose fall-off between the target volume and adjacent critical structures. Due to limited source sizes and the scattering effects, the physical penumbra of the Gamma Knife (GK) is often restricted to a width of 1-2 mm. In this work, we developed a technique to further reduce the beam penumbra and improve the dose profile for the Gamma Knife delivery. Under this technique, a conic filter is inserted into an individual plug collimator of a GK helmet to flatten the beam profile. Monte Carlo calculations were carried out to simulate the GK geometry of the individual plug collimator and to optimize the physical shapes of the filters. The calculations were performed for a series of filter shapes with different collimator sizes. Our results show that a proper filter significantly reduces the single GK beam penumbra width (defined as the distance from the 90% to 50% isodose lines) by 30-60%. The beam intensity is reduced by about 20-50% when the filter is used. A treatment plan was developed for a trigeminal neuralgia case by commissioning the filtered beam profile for Leksell Gamma Plan (version 5.31). Compared with the conventional treatment plan, a significant improvement was found on the critical structure sparing and on the target dose uniformity. In conclusion, the proposed technique is feasible and effective in sharpening the beam penumbra for Gamma Knife beam profiles.

  10. An evaluation testing technique of single event effect using Beam Blanking SEM

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, J.; Hada, T.; Pesce, A.; Akutsu, T.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Igarashi, T.; Baba, S.

    1997-03-01

    Beam Blanking SEM (Scanning Electron Microscope) testing technique has been applied to CMOS SRAM devices to evaluate the occurence of soft errors on memory cells. Cross-section versus beam current and LET curves derived from BBSEM and heavy ion testing technique, respectively, have been compared. A linear relation between BBSEM current and heavy ion LET has been found. The purpose of this study was to demonstrate that the application of focused pulsed electron beam could be a reliable, convenient and inexpensive tool to investigate the effects of heavy ions and high energy particles on memory devices for space application. (author)

  11. Ion beams application to modification of surface layer of solids with particular regard to IBAD method - ion beam assisted deposition realized in the INP; Zastosowanie wiazek jonowych do modyfikowania warstwy wierzchniej cial stalych, ze szczegolnym uwzglednieniem metody IBAD - Ion Beam Assisted Deposition, realizowanej w IFJ

    Energy Technology Data Exchange (ETDEWEB)

    Drwiega, M.; Lipinska, E.

    1992-12-31

    The different trends in ion engineering such as: dynamic ion mixing, ionized cluster beam deposition and ion beam assisted deposition are described. Some examples of properties of surface coatings are given and their applications are presented. The future of ion engineering is described. 48 refs, 12 figs, 4 tabs.

  12. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  13. Chemical reactions on solid surfaces using molecular beam techniques

    Science.gov (United States)

    Palmer, R. L.

    1980-07-01

    Thermal energy molecular beams have been used to study chemical interactions with metal surfaces. Chemisorption of simple molecules such as H2, O2, CH4, C2Hx and CO was investigated on single and polycrystalline surfaces of Pt, Ni, Co, and Ag. Kinetic parameters and reaction mechanisms were determined for model catalytic reactions including CO and C2Hx oxidation and methanation from H2/CO mixtures. Chemical reactions of NOx with CO and D2 on Pt(111) and other surfaces have been surveyed and the kinetics of NO and O2 chemisorption have been measured. The theory of adsorption/desorption kinetics is reviewed and certain deficiencies identified.

  14. A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction

    CERN Document Server

    Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S

    2004-01-01

    The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.

  15. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  16. The Development of a Differential Deposition Technique for Figure Correction in Grazing Incidence Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a physical-vapor-deposition coating technique to correct residual figure errors in grazing-incidence optics. The process involves...

  17. Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

    Directory of Open Access Journals (Sweden)

    Gian Carlo Gazzadi

    2015-06-01

    Full Text Available Suspended nanowires (SNWs have been deposited from Co–carbonyl precursor (Co2(CO8 by focused electron beam induced deposition (FEBID. The SNWs dimensions are about 30–50 nm in diameter and 600–850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC and hexagonal close-packed (HCP Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM analysis and by energy-dispersive X-ray (EDX spectroscopy, respectively. Current (I–voltage (V measurements with current densities up to 107 A/cm2 determine different structural transitions in the SNWs, depending on the I–V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 107 A/cm2. The role played by resistive heating and electromigration in these transitions is discussed.

  18. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    Science.gov (United States)

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  19. Nanophotonic Fabrication Self-Assembly and Deposition Techniques

    CERN Document Server

    Yatsui, Takashi

    2012-01-01

    Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.

  20. Characterization of ITO/CdO/glass thin films evaporated by electron beam technique

    Directory of Open Access Journals (Sweden)

    Hussein Abdel-Hafez Mohamed and Hazem Mahmoud Ali

    2008-01-01

    Full Text Available A thin buffer layer of cadmium oxide (CdO was used to enhance the optical and electrical properties of indium tin oxide (ITO films prepared by an electron-beam evaporation technique. The effects of the thickness and heat treatment of the CdO layer on the structural, optical and electrical properties of ITO films were carried out. It was found that the CdO layer with a thickness of 25 nm results in an optimum transmittance of 70% in the visible region and an optimum resistivity of 5.1×10−3 Ω cm at room temperature. The effect of heat treatment on the CdO buffer layer with a thickness of 25 nm was considered to improve the optoelectronic properties of the formed ITO films. With increasing annealing temperature, the crystallinity of ITO films seemed to improve, enhancing some physical properties, such as film transmittance and conductivity. ITO films deposited onto a CdO buffer layer heated at 450 °C showed a maximum transmittance of 91% in the visible and near-infrared regions of the spectrum associated with the highest optical energy gap of 3.61 eV and electrical resistivity of 4.45×10−4 Ω cm at room temperature. Other optical parameters, such as refractive index, extinction coefficient, dielectric constant, dispersion energy, single effective oscillator energy, packing density and free carrier concentration, were also studied.

  1. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  2. Note: Large area deposition of Rh single and Rh/W/Cu multilayer thin films on stainless steel substrate by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A. T. T.; Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2014-04-15

    Mirror like thin films of single layer Rh and multilayer Rh/W/Cu are deposited on highly polished 50 mm diameter stainless steel substrate by Pulsed Laser Deposition (PLD) technique for first mirror application in fusion reactors. For this, the conventional PLD technique has been modified by incorporating substrate rastering stage for large area deposition via PLD. Process optimization to achieve uniformity of deposition as estimated from fringe visibility and thickness is also discussed.

  3. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  4. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  5. Elemental analysis of limestone samples from Obajana and Mfamosing limestone deposits, Nigeria, using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Akpan, I.O. [Department of Physics, University of Calabar, Calabar, Cross River State (Nigeria); Amodu, A.E. [Science Laboratory Technology Department, Federal Polytechnic, Idah, Kogi State (Nigeria); Akpan, A.E., E-mail: anthonyakpan@yahoo.com [Department of Physics, University of Calabar, Calabar, Cross River State (Nigeria)

    2011-10-15

    Six limestone samples were picked from three different points at the Obajana and Mfamosing limestone deposits. The limestone samples were subjected to elemental analysis by Proton-Induced X-Ray Emission (PIXE) analysis. The samples were irradiated by a 4 mm diameter beam of protons with energy of 2.5 MeV and beam current of 0.2 nA for 0.9 ms. The analysis was carried out with the 1.7 MV Tandem accelerator at the Centre for Energy Research and Development (CERD), Ile-Ife, Osun State, Nigeria. The NIST geology standard NIST 278 was analysed for quality assurance. The elemental composition and concentration of 14 elements were determined in the two locations. Ten elements were found at the Obajana deposit while 13 elements were found at the Mfamosing deposits. The elements: Mg, Al, Ca and Mn do not differ much at both deposits while others differ. The major elements (Ca, Fe, Al, Si and K) present in the limestones were also found in airborne particulate matter studied by earlier researchers. These observations suggest that all particulate emissions and wastes from the Limestone deposit should be closely monitored to reduce their cumulative effects on both health and the environment

  6. Elemental analysis of limestone samples from Obajana and Mfamosing limestone deposits, Nigeria, using nuclear techniques.

    Science.gov (United States)

    Akpan, I O; Amodu, A E; Akpan, A E

    2011-10-01

    Six limestone samples were picked from three different points at the Obajana and Mfamosing limestone deposits. The limestone samples were subjected to elemental analysis by Proton-Induced X-Ray Emission (PIXE) analysis. The samples were irradiated by a 4mm diameter beam of protons with energy of 2.5 MeV and beam current of 0.2nA for 0.9 ms. The analysis was carried out with the 1.7MV Tandem accelerator at the Centre for Energy Research and Development (CERD), Ile-Ife, Osun State, Nigeria. The NIST geology standard NIST 278 was analysed for quality assurance. The elemental composition and concentration of 14 elements were determined in the two locations. Ten elements were found at the Obajana deposit while 13 elements were found at the Mfamosing deposits. The elements: Mg, Al, Ca and Mn do not differ much at both deposits while others differ. The major elements (Ca, Fe, Al, Si and K) present in the limestones were also found in airborne particulate matter studied by earlier researchers. These observations suggest that all particulate emissions and wastes from the Limestone deposit should be closely monitored to reduce their cumulative effects on both health and the environment.

  7. Electro-optic techniques in electron beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  8. Characterization of a radioactive {sup 11}C beam by means of the associated particle technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, A.; Policroniades, R.; Murillo, G.; Moreno, E. [ININ, Laboratorio del Acelerador Tandem, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Huerta, A.; Chavez, E.; Ortiz, M. E.; Barron, L.; Curiel, Q. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Aguilar, C.; Coello, E. A.; Juarez, M. A.; Martinez, J. N. [UNAM, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    This paper describes the results obtained for the production and characterization of a radioactive {sup 11}C beam, by means of the in flight technique and the tandem laboratory of the National Institute of Nuclear Research, Mexico. The {sup 11}C production technique described here, uses the well known associated particle technique with the reaction {sup 2}H({sup 10}B, {sup 11}C)n, in order to obtain a bi univocal correspondence between the radioactive {sup 11}C particles and the associated neutrons. A discussion concerning the possible use of this {sup 11}C beam in the study of the elastic scattering of protons is introduced. (Author)

  9. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhan, E-mail: yw9ep@virginia.edu; Kittiwatanakul, Salinporn; Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Comes, Ryan B. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wolf, Stuart A. [Department of Materials Science and Engineering and Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2015-03-15

    Epitaxial NbO{sub 2} thin films were synthesized on Al{sub 2}O{sub 3} (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO{sub 2}. Through XPS, it was found that there was a ∼1.3 nm thick Nb{sub 2}O{sub 5} layer on the surface and the bulk of the thin film was NbO{sub 2}. The epitaxial relationship between the NbO{sub 2} film and the substrate was determined. Electrical transport measurement was measured up to 400 K, and the conduction mechanism was discussed.

  10. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  11. Towards a single step process to create high purity gold structures by electron beam induced deposition at room temperature

    Science.gov (United States)

    Mansilla, C.; Mehendale, S.; Mulders, J. J. L.; Trompenaars, P. H. F.

    2016-10-01

    Highly pure metallic structures can be deposited by electron beam induced deposition and they have many important applications in different fields. The organo-metallic precursor is decomposed and deposited under the electron beam, and typically it is purified with post-irradiation in presence of O2. However, this approach limits the purification to the surface of the deposit. Therefore, ‘in situ’ purification during deposition using simultaneous flows of both O2 and precursor in parallel with two gas injector needles has been tested and verified. To simplify the practical arrangements, a special concentric nozzle has been designed allowing deposition and purification performed together in a single step. With this new device metallic structures with high purity can be obtained more easily, while there is no limit on the height of the structures within a practical time frame. In this work, we summarize the first results obtained for ‘in situ’ Au purification using this concentric nozzle, which is described in more detail, including flow simulations. The operational parameter space is explored in order to optimize the shape as well as the purity of the deposits, which are evaluated through scanning electron microscope and energy dispersive x-ray spectroscopy measurements, respectively. The observed variations are interpreted in relation to other variables, such as the deposition yield. The resistivity of purified lines is also measured, and the influence of additional post treatments as a last purification step is studied.

  12. Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams.

    Science.gov (United States)

    Grosjean, Thierry; Saleh, Said Sadat; Suarez, Miguel Angel; Ibrahim, Idriss Abdoulkader; Piquerey, Vincent; Charraut, Daniel; Sandoz, Patrick

    2007-11-20

    We report a simple method for generating microaxicons at the extremity of commercial optical fibers. The proposed solution, based on a polishing technique, can readily produce any desired microaxicon cone angle and is independent of the nature of the fiber. An optical study of microaxicon performance, in terms of confinement ability and length of the generated Bessel-like beams, is presented as a function of the microaxicon angle. This study, made possible by the experimental acquisition of the 3D light distribution of the Bessel-like beams, reveals the relationship between the Bessel-like beam confinement zone and the beam length. Finally, the effect of diffraction of the Bessel-like beams, induced by the limited lateral extent of the incident fiber mode, is studied and discussed.

  13. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  14. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  15. Design and Simulation of Symmetric Nanostructures Using Two-beam Modulated Interference Lithography Technique

    CERN Document Server

    Raj, A Alfred Kiruba; Devaprakasam, D

    2013-01-01

    Interferometry lithography is a maturing technology for patterning sub-micron structures in arrays covering large areas. This paper presents a method for the measurement of nanoscale surface patterns produced by two-beam laser interference lithography (LIL). The objective in this study is to simulate and design periodic and quasi-periodic 1D, 2D and 3D nanostructures using two-beam interference technique. We designed and simulated periodic and quasi-periodic structures by two-beam interference patterning using a MATLAB program by varying angle of incidence, wavelength and geometry. The simulated patterns show that the symmetries of the interference maxima depend mostly on the angles of incidence and perturbations of incidents beams. Using this technique, we can achieve potentially high-volume of uniformity, throughput, process control, and repeatability. By varying different input parameters, we have optimized simulated patterns with controlled periodicity, density and aspect ratio also it can be programmed t...

  16. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  17. Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1999-02-01

    The spallation failure of a commercial thermal barrier coating (TBC), consisting of a single-crystal RENE N5 superalloy, a platinum aluminide (Pt-Al) bond coat, and an electron beam-deposited 7 wt pct yttria-stabilized zirconia ceramic layer (7YSZ), was studied following cyclic furnace testing. In the uncycled state and prior to deposition of the ceramic, the Pt-Al bond-coat surface contains a cellular network of ridges corresponding to the underlying bond-coat grain-boundary structure. With thermal cycling, the ridges and associated grain boundaries are the sites of preferential oxidation and cracking, which results in the formation of cavities that are partially filled with oxide. Using a fluorescent penetrant dye in conjunction with a direct-pull test, it is shown that, when specimens are cycled to about 80 pct of life, these grain-boundary regions show extensive debonding. The roles of oxidation and cyclic stress in localized grain boundary region spallation are discussed. The additional factors leading to large-scale TBC spallation are described.

  18. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    Science.gov (United States)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  19. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    Science.gov (United States)

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  20. Flexible core masking technique for beam halo measurements with high dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, J [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Welsch, C P, E-mail: Carsten.Welsch@quasar-group.co [Cockcroft Institute, Daresbury Science and Innovation Campus, WA4 4AD Warrington (United Kingdom)

    2010-04-15

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the beam pipe, and activate this, as well as accelerator and experimental components in close proximity, which makes work on the accelerator costly and time consuming. Well established techniques for transverse beam profile measurements of electron or high energy hadron beams are the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core.

  1. A feasibility study of H sup - beam extraction technique using YAG laser

    CERN Document Server

    Meigo, S I; Hasegawa, K; Ikeda, Y; Nakagawa, S; Oigawa, H

    2002-01-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small...

  2. Transverse superresolution technique involving rectified Laguerre-Gaussian LG(p)⁰ beams.

    Science.gov (United States)

    Cagniot, Emmanuel; Fromager, Michael; Godin, Thomas; Passilly, Nicolas; Aït-Ameur, Kamel

    2011-08-01

    A promising technique has been proposed recently [Opt. Commun. 284, 1331 (2011), Opt. Commun. 284, 4107 (2011)] for breaking the diffraction limit of light. This technique consists of transforming a symmetrical Laguerre-Gaussian LG(p)⁰ beam into a near-Gaussian beam at the focal plane of a thin converging lens thanks to a binary diffractive optical element (DOE) having a transmittance alternatively equal to -1 or +1, transversely. The effect of the DOE is to convert the alternately out-of-phase rings of the LG(p)⁰ beam into a unified phase front. The benefits of the rectified beam at the lens focal plane are a short Rayleigh range, which is very useful for many laser applications, and a focal volume much smaller than that obtained with a Gaussian beam. In this paper, we demonstrate numerically that the central lobe's radius of the rectified beam at the lens focal plane depends exclusively on the dimensionless radial intensity vanishing factor of the incident beam. Consequently, this value can be easily predicted.

  3. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    OpenAIRE

    M. Rigana Begam; N. Madhusudhana Rao; S. Kaleemulla; M. Shobana; N. Sai Krishna; M. Kuppan

    2013-01-01

    Nanocrystalline Cadmium Telluride (CdTe) thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111) preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decre...

  4. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-07-01

    Full Text Available Nanocrystalline Cadmium Telluride (CdTe thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111 preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decreased from 2.87 eV to 2.05 eV with the increase of the crystallite size.

  5. Ion beam and complementary SEM and XRD characterization of YBa{sub 2}Cu{sub 3}O{sub 7-x} films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Branescu, Maria [National Institute for R and D of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)]. E-mail: maria_branescu@yahoo.com; Thome, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, 91406 Orsay Cedex (France); Pantelica, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania); Ward, I. [CEA, 810 Kifer Road, Sunnyvale, CA 94086 (United States); Vailionis, A. [Stanford University, Stanford, CA 94305 (United States); Ionescu, P. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania)

    2006-08-15

    We report two ion beam analysis techniques, elastic recoil detection analysis (ERDA) and Rutherford backscattering (RBS), to characterize YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films, obtained in situ by pulsed laser deposition (PLD). Initially, ERDA measurements were performed on a thin film to evaluate the PLD rate. RBS measurements correlated with complementary scanning electron microscopy and X-ray diffraction measurements were performed afterwards on a good quality thick YBCO film to determine its stoichiometry, thickness, crystalline structure and surface morphology.

  6. Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, K.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy; Jordan, E. [Dept. Mechanical Engineering, University of Connecticut, CT-06269, Storrs (United States)

    2000-11-01

    Grain boundary ridges, that form on the surface of platinum aluminide [(Ni,Pt)Al] bond coats prior to the deposition of the yttria stabilized zirconia ceramic layer by the electron beam physical vapor deposition (EB-PVD) process, were shown to be the sites for spallation damage initiation in (Ni,Pt)Al/EB-PVD thermal barrier coatings. When these ridges are removed prior to deposition of the ceramic layer, a 3 x life improvement is achieved. This study compares the spallation mechanisms in specimens with and without bond coat ridges, in order to explain the improvement in spallation life. (orig.)

  7. Deposition of TiN Films by Novel Filter Cathodic Arc Technique

    Institute of Scientific and Technical Information of China (English)

    NIU Er-Wu; FAN Song-Hua; LI Li; L(U) Guo-Hua; FENG Wen-Ran; ZHANG Gu-Ling; YANG Si-Ze

    2006-01-01

    A straight magnetic filtering arc source is used to deposit thin films of titanium nitride.The properties of thefilms depend strongly on the deposition process.TiN films can be deposited directly onto heated substrates in anitrogen atmosphere or onto unbiased substrates by condensing the Ti+ ion beam in about 300 eV N2+ nitrogen ionbombardment.In the latter case.the film stoichiometry is varied from an N:Ti ratio of 0.6-1.1 by controlling thearrival rates of Ti and nitrogen ions.Meanwhile,simple models are used to describe the evolution of compressivestress as function of the arrival ratio and the composition of the ion-assisted TiN films.

  8. Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams

    CERN Document Server

    Blaum, Klaus; Nörtershäuser, Wilfried

    2012-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results a...

  9. A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    INSPIRE-00433248; Abdallah, J.M.; Addy, T.N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T.P.A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O.K.; Banfi, D.; Baron, S.; Barr, A.J.; Beccherle, R.; Beck, H.P.; Belhorma, B.; Bell, P.J.; Benchekroun, D.; Benjamin, D.P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V.G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeans Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M.V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S.A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H.O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P.O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B.A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W.L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T.F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A.I.; Fabich, A.; Facius, K.; Fakhr-Edine, A.I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O.L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B.C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B.J.; Gameiro, S.; Gan, K.K.; Garcia, R.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Gottfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M.D.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J.D.; Hansen, P.H.; Hara, K.; Harvey, A., Jr; Hawkings, R.J.; Heinemann, F.E.W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J.C.; Hoffman, J.; Hostachy, J.Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P.D.C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P.T.; Kekelidze, G.D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T.H.; Klingenberg, R.; Klinkby, E.B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S.P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T.Z.; Kruger, K.; Kramarenko, V.; Kudin, L.G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C.G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K.F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V.P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Marti i Garcia, S.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K.W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V.A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S.V.; Mosidze, M.; Mouraviev, S.V.; Moyse, E.W.J.; Munar, A.; Myagkov, A.; Nadtochi, A.V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S.Y.; Newcomer, F.M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S.H.; Oleshko, S.B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S.M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V.D.; Petersen, J.; Petersen, T.C.; Petti, R.; Phillips, P.W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M.J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; Rohne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P.A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y.F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J.G.; Sarri, F.; Sauvage, G.; Says, L.P.; Schaefer, M.; Schegelsky, V.A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J.M.; Seliverstov, D.M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J.E.; Smirnov, S.Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V.V.; Spano, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S.I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V.O.; Timmermans, C.J.W.P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J.A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V.I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J.B.; Volpi, M.; Vu Anh, T.; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wells, P.S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H.H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by 11% to 25% compared to the response at the electromagnetic scale.

  10. Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application

    OpenAIRE

    Lorusso, Antonella; Gontad, F.; Broitman, Esteban; Chiadroni, E.; Perrone, Walter

    2015-01-01

    Pb thin films were prepared by the nanosecond pulsed laser deposition technique on Si (100) and polycrystalline Nb substrates for photocathode application. As the photoemission performances of a cathode are strongly affected by its surface characteristics, the Pb films were grown at different substrate temperatures with the aim of modifying the morphology and structure of thin films. An evident morphological modification in the deposited films with the formation of spherical grains at higher ...

  11. Scintillation reduction using multi-beam propagating technique in atmospheric WOCDMA system

    Institute of Scientific and Technical Information of China (English)

    Yaqin Zhao; Danli Xu; Xin Zhong

    2011-01-01

    Wireless optical code division multiple access (WOCDMA) combines code division multiple access (CDMA) with wireless-optic communications.It can not only reserve the advantage of CDMA technology in radio frequency (RF) communication,but also use huge bandwidth and have simple network protocol,random access,and other characteristics.%We propose employing multi-beam propagating technology to mitigate the influence of atmospheric scintillation to the wireless optical code division multiple access (WOCDMA) system and then deduce the bit error rate (BER) formulas of systems in weak and strong scintillations, respectively. According to simulation experiment results, multi-beam propagation can improve the system performance very well compared with single-beam propagating technique. Moreover, the more beams we use, the better the performance we get. When the received optical power is -30 dBm, the BER of the system employing four beams is 5 and 1 dB lower than that of using single-beam propagating technique in weak and strong scintillations, respectively.

  12. The edge transient-current technique (E-TCT) with high energy hadron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor [J. Stefan Institute, Ljubljana (Slovenia); Mikuž, Marko [J. Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Muškinja, Miha; Zavrtanik, Marko [J. Stefan Institute, Ljubljana (Slovenia)

    2016-09-21

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  13. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaorong [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Bincheng [Institute of Optics and Electronics, Chinese Academy of Sciences and Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209 (China)

    2015-02-15

    Surface thermal lens is a highly sensitive photothermal technique to measure low absorption losses of various solid materials. In such applications, the sensitivity of surface thermal lens is a key parameter for measuring extremely low absorption. In this paper, we experimentally investigated the influence of probe beam wavelength on the sensitivity of surface thermal lens for measuring the low absorptance of optical laser components. Three probe lasers with wavelength 375 nm, 633 nm, and 1570 nm were used, respectively, to detect the surface thermal lens amplitude of a highly reflective coating sample excited by a cw modulated Gaussian beam at 1064 nm. The experimental results showed that the maximum amplitude of surface thermal lens signal obtained at corresponding optimized detection distance was inversely proportional to the wavelength of the probe beam, as predicted by previous theoretical model. The sensitivity of surface thermal lens could, therefore, be improved by detecting surface thermal lens signal with a short-wavelength probe beam.

  14. The edge transient-current technique (E-TCT) with high energy hadron beam

    Science.gov (United States)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  15. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    Science.gov (United States)

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  16. NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Science.gov (United States)

    Martínez-Pérez, M. J.; Müller, B.; Schwebius, D.; Korinski, D.; Kleiner, R.; Sesé, J.; Koelle, D.

    2017-02-01

    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2Cu3O7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows us to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with a typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T \\lt {μ }0H\\lt 1 T) and temperature (0.3 K \\lt T\\lt 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1-30) × {10}6 {μ }{{B}}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets.

  17. PZT thin film deposition techniques, properties and its application in ultrasonic MEMS sensors: a review

    Science.gov (United States)

    Shilpa, G. D.; Sreelakshmi, K.; Ananthaprasad, M. G.

    2016-09-01

    This paper describes an overview of the state of art in PbZrxTi1-xO3 (PZT)ferroelectric thin films and its applications in Micro Electro Mechanical Systems (MEMS). First, the deposition techniques and then the important properties of PZT films such as surface morphology polarization and ferroelectric properties are reviewed. Two major deposition techniques such as sol-gel and Magnetron sputtering are given and compared for the film surface morphology and ferroelectric properties. Finally, the application of PZT thin film in MEMS ultrasonic sensors is discussed.

  18. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    Science.gov (United States)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  19. Development of ion beam techniques for the study of special nuclear materials related problems

    Energy Technology Data Exchange (ETDEWEB)

    Maggiore, C.J.; Tesmer, J.R.; Martz, J.C. [and others

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The scientific objective of this project was to develop the ion beam techniques for the characterization of actinides and their effects on other materials. It was designed to enhance their ability to quantitatively understand the oxidation, corrosion, diffusion, stability, and radiation damage of actinides and the materials with which they are in contact. The authors developed and applied several low-energy nuclear techniques (resonant and nonresonant backscattering, nuclear reaction analysis, and particle-induced x-ray emission) to the quantitative study of the near surfaces of actinide and tritide materials, and determined the absolute accuracy and precision of ion beam measurements on these materials. They also demonstrated the use of variable-energy alpha beams for the study of accelerated aging of polymeric materials in contact with actinide materials.

  20. Application of real-time digitization techniques in beam measurement for accelerators

    Science.gov (United States)

    Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi

    2016-04-01

    Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).

  1. Structure and electrical properties of quaternary Cr–Si–Ni–W films prepared by ion beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Shao, J.Q. [BDS Electronics Co., Ltd., Bengbu 233010 (China)

    2014-08-01

    Highlights: • Quaternary Cr–Si–Ni–W thin film was prepared by IBSD. • As-deposited Cr–Si–Ni–W films show nanocrystalline state in XRD analysis. • Big massive particles in Cr–Si–Ni–W films are mainly formed in deposition process. • Conduction mechanism was discussed based on microscopic analysis. - Abstract: Si-rich Cr–Si–Ni–W films were deposited by ion beam sputter deposition (IBSD) using a mother alloy target on polished Al{sub 2}O{sub 3} substrates. Effects of ion beam voltage, annealing temperature and deposition time on sheet resistance and TCR of Cr–Si–Ni–W films were studied. Experimental results reveal that the as-deposited Cr–Si–Ni–W films obtained by IBSD show a crystalline state because of a high mobility of deposition atoms and molecules with more energy obtained from high energy ions. XRD and AFM analysis show that the big massive particles mainly composed of Si and CrSi{sub 2} in Cr–Si–Ni–W films are formed in the process of IBSD rather than in post-annealing stage. Long deposition time is significantly important to a decrease of the number and size of gaps between big particles in Cr–Si–Ni–W films and to an improvement of the continuity and compactness of film structure, influencing resistivity and TCR of deposition film. The conduction mechanism was discussed based on microscopic analysis and the conductive model proposed for Cr–Si–Ni–W films mainly composed of big particles.

  2. A Technique for Temperature and Ultimate Load Calculations of Thin Targets in a Pulsed Electron Beam

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Lundsager, Per

    1979-01-01

    A technique is presented for the calculation of transient temperature distributions and ultimate load of rotationally symmetric thin membranes with uniform lateral load and exposed to a pulsed electron beam from a linear accelerator. Heat transfer by conduction is considered the only transfer...

  3. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    Science.gov (United States)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  4. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  5. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  6. Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.

    Science.gov (United States)

    Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun

    2012-02-28

    While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

  7. STRUCTURAL PROPERTIES INVESTIGATION ON MICROCRYSTALLINE SILICON FILMS DEPOSITED WITH VHF-PECVD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    H.D. Yang

    2005-01-01

    Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microcrystalline silicon(μc-Si:H) films deposited at different VHF plasma power and different working gas pressure by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. Raman spectra measurements show that both crystalline volume fraction Xc and average grain size d of μc-Si: H films are strongly affected by the two deposition conditions and are more sensitive to working gas pressure than VHF plasma power. SEM characterizations have further confirmed that VHF plasma power and working gas pressure could clearly enhance the surface roughness of μc-Si: H films ascribing to polymerization reactions, which is also more sensitive to working gas pressure than VHF plasma power.

  8. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973 (United States of America); Goldberg, D.A. [Lawrence Berkeley Laboratory, Berkeley, California (United States of America)

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. {copyright} {ital 1997 American Institute of Physics.}

  9. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    identifying and analyzing the betatron oscillation sourced from the kick based on its mixing and temporal patterns. The accelerator magnets can generate unwanted spurious linear and non-linear fields due to fabrication errors or aging. These error fields in the magnets can excite undesired resonances leading together with the space charge tune spread to long term beam losses and reducing dynamic aperture. Therefore, the knowledge of the linear and non-linear magnets errors in circular accelerator optics is very crucial for controlling and compensating resonances and their consequent beam losses and beam quality deterioration. This is indispensable, especially for high beam intensity machines. Fortunately, the relationship between the beam offset oscillation signals recorded at the BPMs is a manifestation of the accelerator optics, and can therefore be exploited in the determination of the optics linear and non-linear components. Thus, beam transversal oscillations can be excited deliberately for purposes of diagnostics operation of particle accelerators. In this thesis, we propose a novel method for detecting and estimating the optics lattice non-linear components located in-between the locations of two BPMs by analyzing the beam offset oscillation signals of a BPMs-triple containing these two BPMs. Depending on the non-linear components in-between the locations of the BPMs-triple, the relationship between the beam offsets follows a multivariate polynomial accordingly. After calculating the covariance matrix of the polynomial terms, the Generalized Total Least Squares method is used to find the model parameters, and thus the non-linear components. A bootstrap technique is used to detect the existing polynomial model orders by means of multiple hypothesis testing, and determine confidence intervals for the model parameters.

  10. RF photo-injector beam energy distribution studies by slicing technique

    Energy Technology Data Exchange (ETDEWEB)

    Filippetto, D. [INFN-LNF, Via E. Fermi 40, Frascati, Rome (Italy); INFN-LNF, Via E. Fermi 40, Frascati, Rome (Italy)], E-mail: Daniele.Filippetto@lnf.infn.it; Bellaveglia, M. [INFN-LNF, Via E. Fermi 40, Frascati, Rome (Italy); Musumeci, P. [UCLA-Department of Physics and Astronomy, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Ronsivalle, C. [ENEA, Via E. Fermi, 00044 Frascati, Rome (Italy)

    2009-07-01

    The SPARC photo-injector is an R and D facility dedicated to the production of high brightness electron beams for radiation generation via FEL or Thomson scattering processes. It is the prototype injector for the recently approved SPARX project, aiming at the construction in the Frascati/University of Rome Tor Vergata area of a new high brightness electron linac for the generation of SASE-FEL radiation in the 1-10 nm wavelength range. The first phase of the SPARC project has been dedicated to the e-beam source characterization; the beam transverse and longitudinal parameters at the exit of the gun have been measured, and the photo-injector settings optimized to achieve best performance. Several beam dynamics topics have been experimentally studied in this first phase of operation, as, for example, the effect of photocathode driver laser beam shaping and the evolution of the beam transverse emittance. These studies have been made possible by the use of a novel diagnostic tool, the 'emittance-meter' which enables the measurement of the transverse beam parameters at different positions along the propagation axis in the very interesting region at the exit of the RF gun. The new idea of extending the e-meter capabilities came out more recently. Information on the beam longitudinal phase space and correlations with the transverse planes can be retrieved by the slicing technique. In this paper, we illustrate the basic concept of the measurement together with simulations that theoretically validate the methodology. Some preliminary results are discussed and explained with the aid of code simulations.

  11. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  12. The Post—deposition Anneal Effects on the Electrical Properties of HfO2 Gate Dielectric Deposited by Ion Beam Sputtering at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    KANGJinfeng; LIUXiaoyan; TIANDayu; WANGWei; LIANGuijun; XIONGGuangcheng; HANRuqi

    2003-01-01

    HfO2 high K gate dielectric films were fab-ricated on p-Si(100) substrates by ion beam sputtering at room temperature followed by a post-deposition anneal-ing (PDA). The PDA effects on the electrical properties of HfO2 gate dielectric films were studied. High quality HfO2 gate dielectric with small equivalent oxide thickness (EOT = 2.3nm), small hystereis (△VFB<50mV), and lowleakage current (< 1× 10-4A/cm2@lV) was fabricated.The studies of PDA effects on the electrical properties in-dicate that the PDA process in nitrogen ambient will be necessary for the HfO2 gate dielectric films deposited by ion beam sputtering the sintered target at room temper-ature in order to obtain small equivalent oxide thickness and low leakage currents, whereas a PDA in oxygen ambi-ent will be not required. The results also means that there is less oxygen vacancy defect produced in the HfO2 gate dielectric films during the deposition at room temperature.

  13. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    Science.gov (United States)

    2007-11-02

    the ion beam. Immersed in the beam is a heated tungsten filament which emits electrons to neutralize the positive charge of the beam. The sources...inadequate, indicating a temperature far below actual, and was replaced by a fine-gauge thermocouple inserted into a bronze shoe riding in contact with the...filaments lasted only about an hour when the source was operated at high power due to erosion of the tungsten wire. New filaments draw about 6 A at high beam

  14. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Boniardi, Mattia; Redaelli, Andrea [Micron Semiconductor Italia S.r.l., Via C. Olivetti, 2, 20864, Agrate Brianza, MB (Italy)

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  15. A comparative study of CdS thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Hernández, G., E-mail: german.perez@ujat.mx [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Pantoja-Enríquez, J. [Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, UNICACH, Libramiento Norte No 1150, Tuxtla Gutiérrez, Chiapas 29039 (Mexico); Escobar-Morales, B. [Instituto Tecnológico de Cancún, Avenida Kábah Km 3, Cancún, Quintana Roo 77500 (Mexico); Martinez-Hernández, D.; Díaz-Flores, L.L.; Ricardez-Jiménez, C. [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Mathews, N.R.; Mathew, X. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico)

    2013-05-01

    Cadmium sulfide thin-films were deposited on glass slides and SnO{sub 2}:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te.

  16. Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A., E-mail: antonella.lorusso@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Gontad, F. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati 00044 (Italy); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy)

    2015-03-31

    Pb thin films were prepared by the nanosecond pulsed laser deposition technique on Si (100) and polycrystalline Nb substrates for photocathode application. As the photoemission performances of a cathode are strongly affected by its surface characteristics, the Pb films were grown at different substrate temperatures with the aim of modifying the morphology and structure of thin films. An evident morphological modification in the deposited films with the formation of spherical grains at higher temperatures has been observed. X-ray diffraction measurements showed that a preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C while the Pb (200) plane became strongly pronounced with the increase in the substrate temperature. Finally, a Pb thin film deposited on Nb substrate at 30 °C and tested as the photocathode showed interesting results for the application of such a device in superconducting radio frequency guns. - Highlights: • Pb thin films obtained by the nanosecond pulsed laser deposition technique at different substrate temperature. • The substrate temperature modifies the morphology and structure of Pb films. • Pb thin film was deposited at room temperature for photocathode application. • The Pb thin film photocathode was tested and the quantum efficiency of the device improved after laser cleaning treatment of the film surface.

  17. ZnO films deposited by optimized PLD technique with bias voltages

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroyuki; Shitara, Tamae; Komiyama, Takao; Chonan, Yasunori; Aoyama, Takashi [Department of Electronics and Information Systems, Akita Prefectural University, 84-4 Tsuchiya Ebinokuchi, 015-0055 Yuri-Honjo (Japan)

    2010-02-15

    The pulsed laser deposition (PLD) technique with bias voltage application for formation of high quality ZnO films was investigated. Oxygen ambient in the PLD chamber significantly decreased the photoluminescence (PL) intensity of near band edge (NBE) emission. Then, instead of using oxygen ambient, the PLD technique with bias voltage application was optimized to attain the stoichiometric composition of the ZnO films. As the deposition temperature was increased, the X-ray spectrum width diffracted from the (0002) planes was decreased and it showed a minimum value at 700 C. The PL intensity of the NBE emission also had its maximum value for the film deposited at 700 C. For the ZnO films deposited at 700 C, the X-ray spectrum width showed the minimum value under a bias voltage of -50 V. The PL intensity of the NBE emission also had a maximum value under the same bias voltage. Thus, ZnO films deposited under a bias voltage of -50 V at 700 C had strong NBE emission intensities. These results could be explained not only by attaining the stoichiometric composition of the ZnO film but also by decreasing the number of high energy O{sup 2-} ions which caused non-radiative recombination centers in the film. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Differential deposition technique for figure corrections in grazing-incidence x-ray optics

    Science.gov (United States)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.; Gregory, Don A.

    2011-10-01

    A differential deposition technique was investigated as a way to minimize axial figure errors in full-shell, grazing-incidence, reflective x-ray optics. These types of optics use a combination of off-axis conic segments--hyperbolic, parabolic, and/or elliptical, to reflect and image x-rays. Several such mirrors or ``shells'' of decreasing diameter are typically concentrically nested to form a single focusing unit. Individual mirrors are currently produced at Marshall Space Flight Center using an electroforming technique, in which the shells are replicated off figured and superpolished mandrels. Several factors in this fabrication process lead to low- and mid-spatial frequency deviations in the surface profile of the shell that degrade the imaging quality of the optics. A differential deposition technique, discussed in this paper, seeks to improve the achievable resolution of the optics by correcting the surface profile deviations of the shells after fabrication. As a proof of concept, the technique was implemented on small-animal radionuclide-imaging x-ray optics being considered for medical applications. This paper discusses the deposition technique, its implementation, and the experimental results obtained to date.

  19. SUBSTRATE EFFECT ON HYDROGENATED MICROCRYSTALLINE SILICON FILMS DEPOSITED WITH VHF-PECVD TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    H.D. Yang

    2006-01-01

    Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrystalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition ( VHF-PECVD )technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer,corning 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Corning 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or little lattice mismatch. But for general optical glass, the surface of the μc-Si:H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material, and then the deposition rates, optical and electrical properties are also strongly influenced, hence,deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.

  20. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    Science.gov (United States)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance 75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  1. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  2. Investigation of Ni-Cr-Si-Fe-B coatings produced by the electron beam cladding technique

    Science.gov (United States)

    Zimogliadova, T. A.; Drobyaz, E. A.; Golkovskii, M. G.; Bataev, V. A.; Durakov, V. G.; Cherkasova, N. Yu

    2016-11-01

    This paper presents the results of structural investigations and results of tribological and microhardness tests of the coating obtained by electron beam cladding of a Ni-Cr-Si-Fe-B self-fluxing alloy on low-carbon steel. After electron beam treatment high-quality dense layer with a thickness of 1.2-1.8 mm was obtained. The structure of the coating consisted of dendrite crystals based on y-Ni-solid solution and eutectic with complex composition. Microhardness of the coating achieves 370 HV. Wear-resistance of the coating obtained by electron-beam cladding technique was 1.6-fold higher than that of low-carbon carburized steel.

  3. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-05

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  4. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  5. DualBeam metrology: a new technique for optimizing 0.13-um photo processes

    Science.gov (United States)

    Berger, Steven D.; Desloge, Denis; Virgalla, Robert J.; Davis, Todd; Paxton, Ted A.; Witko, David

    2001-08-01

    A DualBeam Metrology system was investigated for the application of obtaining 3-dimensional (3D) characterization of a 130 nm ground rule KrF photolithography process. Integrated circuit devices are 3-dimensional in structure and, hence, should be best characterized using 3-dimensional techniques to ensure adherence to the design architecture and the desired process window for manufacturing. The need for 3D metrology is further required for the characterization and monitoring of critical layer processes and equipment performance. The metrology used in this investigation is a novel technique for critical feature cross sectioning. The process for DualBeam metrology uses a focused ion beam (FIB) for milling or cutting the cross section through the photoresist or process film. An integrated scanning electron microscope (SEM) provides high-resolution imaging of the features, and a flexible automated metrology package collects and analyzes the data. To demonstrate the feasibility of the technique, critical dimension (CD) data and sidewall angle (SWA) measurements were captured from 130 nm lines and 150 nm contacts at 1:1 densities. The critical criteria for the characterization of the photolithography process window are CD control, depth of focus (DOF), exposure latitude, and feature sidewall angle or profile. Using the DualBeam technique, 2D and 3D data are captured on a single machine platform using a cut, look, and measure routine. A further benefit is the availability of high-resolution cross-sectional SEM images that can be used qualitatively to validate the quantitative data. The results presented here show the performance of this 130 nm ground rule process and the benefits of utilizing this efficient characterization technique.

  6. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    Energy Technology Data Exchange (ETDEWEB)

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S [McLaren Cancer Institute, Flint, MI (United States)

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  7. Thin Film Formation of Gallium Nitride Using Plasma-Sputter Deposition Technique

    Directory of Open Access Journals (Sweden)

    R. Flauta

    2003-06-01

    Full Text Available The formation of gallium nitride (GaN thin film using plasma-sputter deposition technique has beenconfirmed. The GaN film deposited on a glass substrate at an optimum plasma condition has shown x-raydiffraction (XRD peaks at angles corresponding to that of (002 and (101 reflections of GaN. The remainingmaterial on the sputtering target exhibited XRD reflections corresponding to that of bulk GaN powder. Toimprove the system’s base pressure, a new UHV compatible system is being developed to minimize theimpurities in residual gases during deposition. The sputtering target configuration was altered to allow themonitoring of target temperature using a molybdenum (Mo holder, which is more stable against Gaamalgam formation than stainless steel.

  8. Rectifying properties of ZnO thin films deposited on FTO by electrodeposition technique

    Science.gov (United States)

    Lv, Jianguo; Sun, Yue; Zhao, Min; Cao, Li; Xu, Jiayuan; He, Gang; Zhang, Miao; Sun, Zhaoqi

    2016-03-01

    ZnO thin films were successfully grown on fluorine-doped tin oxide glass by electrodeposition technique. The crystal structure, surface morphology and optical properties of the thin films were investigated. The average crystallite size and intensity of A1(LO) mode increase with improving the absolute value of deposition potential. The best preferential orientation along c-axis and the richest oxygen interstitial defects have been observed in the sample deposited at -0.8 V. A heterojunction device consisting of ZnO thin film and n-type fluorine-doped tin oxide was fabricated. The current-voltage (I-V) characteristic of the p-n heterojunction device deposited at -0.8 V shows the best rectifying diode behavior. The p-type conductivity of the ZnO thin film could be attributed to complex defect of unintentional impurity and interstitial oxygen.

  9. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    LI ShuaiHui; SHU YongHua; FAN Jing

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present wor0k employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  10. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  11. Superconductivity in the system Mo{sub x}C{sub y}Ga{sub z}O{sub δ} prepared by focused ion beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, P. M., E-mail: p.weirich@Physik.uni-frankfurt.de; Schwalb, C. H.; Winhold, M.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-05-07

    We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By an in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.

  12. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Directory of Open Access Journals (Sweden)

    Ms. Deepika Harwani

    2014-12-01

    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  13. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    Energy Technology Data Exchange (ETDEWEB)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D [Department of Particle Physics, Weizmann Institute of Science, Rehovot, 76100 (Israel)], E-mail: jtoker@weizmann.ac.il

    2009-09-15

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  14. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  15. High-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    章宁琳; 万青; 宋志棠; 沈勤我; 祝向荣; 林成鲁

    2002-01-01

    Zirconium oxide films were deposited on p-type Si(l00) substrates using high vacuum electron beam evaporation (HVEBE) at room temperature. X-ray photoelectric spectroscopy shows that the dominant chemical state of zirconia thin films is in the fully oxidized state of Zr4+, no matter whether annealed in oxygen. The structural information from x-ray diffraction shows that zirconia thin films deposited at room temperature by HVEBEwere completely amorphous before and after the annealing. The spreading resistance profile indicates that ZrO2 thin films have excellent insulation property (with a resistance of more than 10s Ω) and the thickness is 800A.After thermal treatment at 600°C in O2 ambient, the root-mean-square roughness changed from 8.09 A of the as-deposited film to 13.8A across an area of i × 1μm2.

  16. Thin films and coatings deposited by vacuum techniques; Capas delgadas y recubrimientos obtenidos mediante tecnicas de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J. M.; Endrino, J. L.

    2010-07-01

    This paper gives an overview of the various aspects associated with the development of coatings and thin films in all its aspects, from the preparation techniques to the technological applications. It addresses such important issues, such as the comparison of some techniques with others, or the choice of a deposition method to achieve certain characteristics in the deposited layer. (Author) 8 refs.

  17. Lipase immobilization for catalytic applications obtained using fumed silica deposited with MAPLE technique

    Science.gov (United States)

    Bloisi, Francesco; Califano, Valeria; Perretta, Giuseppe; Nasti, Libera; Aronne, Antonio; Di Girolamo, Rocco; Auriemma, Finizia; De Rosa, Claudio; Vicari, Luciano R. M.

    2016-06-01

    Lipases are enzymes used for catalyzing reactions of acylglycerides in biodiesel production from lipids, where enzyme immobilization on a substrate is required. Silica nanoparticles in different morphologies and configurations are currently used in conjunction with biological molecules for drug delivery and catalysis applications, but up to date their use for triglycerides has been limited by the large size of long-chain lipid molecules. Matrix assisted pulsed laser evaporation (MAPLE), a laser deposition technique using a frozen solution/suspension as a target, is widely used for deposition of biomaterials and other delicate molecules. We have carried out a MAPLE deposition starting from a frozen mixture containing fumed silica and lipase in water. Deposition parameters were chosen in order to increase surface roughness and to promote the formation of complex structures. Both the target (a frozen thickened mixture of nanoparticles/catalyst in water) and the deposition configuration (a small target to substrate distance) are unusual and have been adopted in order to increase surface contact of catalyst and to facilitate access to long-chain molecules. The resulting innovative film morphology (fumed silica/lipase cluster level aggregation) and the lipase functionality (for catalytic biodiesel production) have been studied by FESEM, FTIR and transesterification tests.

  18. Influence of CdS deposition technique for CdS/CdTe solar cells applications

    Science.gov (United States)

    Rubio, Sandra; Plaza, José Luis; Diéguez, Ernesto

    2014-09-01

    The manufacturing of an optimal window layer is essential for a high efficiency solar cell. CdS thin films were deposited on FTO commercial substrates by two different techniques: Chemical Bath Deposition (CBD), and Closed Space Sublimation (CSS) using SiC rods as electrical heating elements. The composition, morphology, and crystalline structure of the CdS thin films were analyzed by Energy Dispersive X-ray spectroscopy (EDX), Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). CdS layers obtained by CSS have shown good stoichiometries of 51.07(Cd at %), and 48.93(S at %), with the presence of disordered microrods of hexagonal shape. The CdS films obtained by CBD exhibited certain contamination from the bath chemical components and a poor defined structure. In conclusion, the layers deposited by electric heating based CSS present a better morphology and crystal structure than the layers deposited by CBD. The CdTe absorber layer deposited by CSS electric heating also shows good cubic structure and morphology.

  19. Damage Detection Technique for Cold-Formed Steel Beam Structure Based on NSGA-II

    Directory of Open Access Journals (Sweden)

    Byung Kwan Oh

    2015-01-01

    Full Text Available Cold-formed steel is uniform in quality, suitable for mass production, and light in weight. It is widely used for both structural and nonstructural members in buildings. When it is used in a bending structural member, damage such as local buckling is considered to be more important than general steel members in terms of failure mode. However, preceding studies on damage detection did not consider the failure characteristics of cold-formed beam members. Hence, this paper proposes a damage detection technique that considers the failure mode of local buckling for a cold-formed beam member. The differences between the dynamic characteristics from vibration-based measurements and those from finite element model are set to error functions. The error functions are minimized by the optimization technique NSGA-II. In the damage detection, the location of local damage and the severity of damage are considered variables. The proposed technique was validated through a simulation of damage detection for a cold-formed steel beam structure example.

  20. Status of Plasma Physics Techniques for the Deposition of Tribological Coatings

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    The plasma physics deposition techniques of sputtering and ion-plating are reviewed. Their characteristics and potentials are discussed in terms of synthesis or deposition of tribological coatings. Since the glow discharge or plasma generated in the conventional sputtering and ion-plating techniques has a low ionization efficiency, rapid advances have been made in equipment design to further increase the ionization efficiency. The enhanced ionization favorably affects the nucleation and growth sequence of the coating. This leads to improved adherence and coherence, higher density, favorable morphological growth, and reduced internal stresses in the coatings. As a result, desirable coating characteristics can be precision tailored. Tribological coating characteristics of sputtered solid film lubricants such as MoS2, ion-plated soft gold and lead metallic films, and sputtered and ion-plated wear-resistant refractory compound films such as nitrides and carbides are discussed.

  1. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  2. The Study of New Signal Processing Technique in Photon Beam Position Monitors

    CERN Document Server

    Lin, Shunfu; Lu, Ping; Sun Bao Gen; Wang, Jigang

    2005-01-01

    A log-ratio signal processing technique in photon beam position monitors (PBPM) was presented in this paper. The main performances (e.g. sensitivity, position offset and linearity range) of split PBPM and a pair of wires PBPM were analyzed , and the result of the measurement fit well with the theory. An inexpensive logarithmic amplifier chip which can measure photon currents from 0.1nA to 3.5mA was used in electronic circuits. The logarithmic ratio of the signal amplitudes from the PBPM provides a real-time analog signal that has wider linearity range and higher bandwidth than signal processing technique.

  3. Synthesis of nanocrystalline silicon thin films using the increase of the deposition pressure in the hot-wire chemical vapour deposition technique

    Directory of Open Access Journals (Sweden)

    J.K. Rath

    2010-01-01

    Full Text Available Nanostructured thin silicon-based films have been deposited using the hot-wire chemical vapour deposition (HWCVD technique at the University of the Western Cape. A variety of techniques including optical and infrared spectroscopy, Raman scattering spectroscopy, X-rays diffraction (XRD and transmission electron microscopy (TEM have been used for characterisation of the films. The electrical measurements show that the films have good values of photoresponse, and the photocurrent remains stable after several hours of light soaking. This contribution will discuss the characteristics of the hydrogenated nanocrystalline silicon thin films deposited using increased process chamber pressure at a fixed hydrogen dilution ratio in monosilane gas.

  4. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    Science.gov (United States)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview

  5. Studies on non-oxide coating on carbon fibers using plasma enhanced chemical vapor deposition technique

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Prajapati, K. K.; Vyas, M. M.; Batra, N. M.

    2016-05-01

    A new way of improving the oxidative behavior of carbon fibers coated with SiC through Plasma Enhanced Chemical Vapor Deposition technique. The complete study includes coating of SiC on glass slab and Stainless steel specimen as a starting test subjects but the major focus was to increase the oxidation temperature of carbon fibers by PECVD technique. This method uses relatively lower substrate temperature and guarantees better stoichiometry than other coating methods and hence the substrate shows higher resistance towards mechanical and thermal stresses along with increase in oxidation temperature.

  6. Nano-yttria dispersed stainless steel composites composed by the 3 dimensional fiber deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Verhiest, K., E-mail: Katelijne.Verhiest@ArcelorMittal.com [ArcelorMittal Gent, Hot Strip Mill Department, J. Kennedylaan 51, 9042 Ghent (Belgium); Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium); Mullens, S. [Flemish Institute for Technological Research, VITO, Materials Technology, Boeretang 200, 2400 Mol (Belgium); De Wispelaere, N.; Claessens, S. [ArcelorMittal Research Industry Gent, OCAS, J. Kennedylaan 3, 9060 Zelzate (Belgium); DeBremaecker, A. [Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Verbeken, K. [Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium)

    2012-09-15

    In this study, oxide dispersion strengthened (ODS) 316L steel samples were manufactured by the 3 dimensional fiber deposition (3DFD) technique. The performance of 3DFD as colloidal consolidation technique to obtain porous green bodies based on yttria (Y{sub 2}O{sub 3}) nano-slurries or paste, is discussed within this experimental work. The influence of the sintering temperature and time on sample densification and grain growth was investigated in this study. Hot consolidation was performed to obtain final product quality in terms of residual porosity reduction and final dispersion homogeneity.

  7. HiPIMS: a New Generation of Film Deposition Techniques for SRF Applications

    Energy Technology Data Exchange (ETDEWEB)

    Valente-Feliciano, Anne-Marie [JLAB

    2013-09-01

    Over the years, Nb/Cu technology, despite its shortcomings due to the commonly used magnetron sputtering, has positioned itself as an alternative route for the future of accelerator superconducting structures. Avenues for the production of thin films tailored for Superconducting RF (SRF) applications are showing promise with recent developments in ionized PVD coating techniques, i.e. vacuum deposition techniques using energetic ions. Among these techniques, High power impulse magnetron sputtering (HiPIMS) is a promising emerging technique which combines magnetron sputtering with a pulsed power approach. This contribution describes the benefits of energetic condensation for SRF films and the characteristics of the HiPIMS technology. It describes the on-going efforts pursued in different institutions to exploit the potential of this technology to produce bulk-like Nb films and go beyond Nb performance with the development of film systems, based on other superconducting materials and multilayer structures.

  8. Dual beam light profile microscopy: a new technique for optical absorption depth profilometry.

    Science.gov (United States)

    Power, J F; Fu, S W

    2004-02-01

    Light profile microscopy (LPM) is a recently developed technique of optical inspection that is used to record micrometer-scale images of thin-film cross-sections on a direct basis. In single beam mode, LPM provides image contrast based on luminescence, elastic, and/or inelastic scatter. However, LPM may also be used to depth profile the optical absorption coefficient of a thin film based on a method of dual beam irradiation presented in this work. The method uses a pair of collimated laser beams to consecutively irradiate a film from two opposing directions along the depth axis. An average profile of the beam's light intensity variation through the material is recovered for each direction and used to compute a depth-dependent differential absorbance profile. This latter quantity is shown from theory to be related to the film's depth-dependent optical absorption coefficient through a simple linear model that may be inverted by standard methods of numerical linear algebra. The inverse problem is relatively well posed, showing good immunity to data errors. This profilometry method is experimentally applied to a set of well-characterized materials with known absorption properties over a scale of tens of micrometers, and the reconstructed absorption profiles were found to be highly consistent with the reference data.

  9. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  10. The Utility of Droplet Elimination by Thermal Annealing Technique for Fabrication of GaN/AlGaN Terahertz Quantum Cascade Structure by Radio Frequency Molecular Beam Epitaxy

    Science.gov (United States)

    Terashima, Wataru; Hirayama, Hideki

    2010-12-01

    We investigated the utility of a droplet elimination by thermal annealing (DETA) technique during the radio-frequency molecular beam epitaxy growth of a quantum cascade laser (QCL) structure. DETA is a method in which droplets deposited on the surface are eliminated by temporarily increasing the substrate temperature. DETA is a useful method which makes it possible not only to increase the number of periods in the QC structure, but also to improve the surface and structural properties of the QC structure. We could successfully increase the radiant intensity from a QCL sample by increasing the number of periods in the stacked QC structure with the DETA method.

  11. Dielectric thin-films by ion-beam sputtering deposition for III-V based infrared optoelectronic imaging

    Science.gov (United States)

    Nguyen, Jean

    The growing technological industry is demanding the development of powerful and smaller devices. Dielectric thin-films can play an important role to help push towards achieving these goals. However, their advantage of high-quality material and low material costs compared to bulk can only be achieved with consideration of the technique, conditions, and parameters. The sensitivity makes every step in the process extremely important, beginning from substrate preparation to the first initial layers of growth and ending with the testing/modeling of the devices. Further, not all applications want bulk-like properties, so the ability to adjust and fine tune the material characteristics opens up a wide range of opportunities with the advancements and can drive the power of the devices to an ultimate level. This work provides the motivation, theoretical basis, and experimental results for performance enhancement of optoelectronic devices through the use of high-quality dielectric thin-films by ion-beam sputtering deposition (IBSD). The advantages and disadvantages to this technique are demonstrated and compared to others. The optimization processes, relationships, and motivation of using seven different thin-film materials have been detailed and provided. Using IBSD, the performance improvements were demonstrated on infrared lasers and detectors. For lasers, a 170% increase in maximum output power was achieved using near-0% percent anti-reflection coatings (AR) and near-100% high-reflection (HR) coatings. Following, wide tunability was achieved by using the structures in an external cavity laser system, showing nearly a three-fold improvement in tuning range. Also, structurally robust lasers were achieved with a custom-tailored HR structure designed for damage resistance to high output power density operation, showing over 14W of peak output power for MOCVD lasers. For infrared photodetectors, over a 4 orders of magnitude decrease in current density and zero-bias resistance

  12. A comprehensive EPID-based 3D validation technique for TrueBeam-delivered VMAT plans

    Science.gov (United States)

    Ansbacher, W.; Gagne, I. M.; Swift, C.-L.

    2014-03-01

    Purpose: To develop and validate a pre-treatment EPI dosimetry method on Varian TrueBeam linacs using continuous imaging, with reconstruction in a 3D cylindrical phantom geometry. Methods: Delivery of VMAT plans with continuous imaging is currently possible only in Research Mode on TrueBeam linacs, with images acquired in a proprietary format. An earlier technique was adapted to take advantage of technical improvements in EPID delivery, and was tested under various acquisition conditions. The dosimetry of VMAT plans was evaluated at isocentre and within patient volumes that had been transferred to the virtual phantom. Results: Approximately 60 portal image projections per arc were found to be adequate for 3D reconstruction in phantom volumes of 28cm diameter. Twelve prostate, CNS and Head & Neck deliveries were evaluated in Research mode relative to the corresponding Eclipse (v.10) treatment plans, and to measurements on an ArcCheck device in Treatment mode. Mean dose differences at isocentre were within 2% for the three-way comparison, and in PTV volumes were within 1% (s.d. 1%). However, some discrepancies were observed in ArcCheck results that may be related to the small dimensions of certain VMAT apertures. Conclusions: EPI dosimetry with 3D dose reconstruction is an accurate, comprehensive and efficient pre-treatment validation technique for VMAT delivery. Although currently limited to a research mode on TrueBeam, it has the potential to be implemented for clinical use.

  13. Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2015-06-01

    We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV-5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1-1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the

  14. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  15. High Performance Photocathodes based on Molecular Beam Epitaxy Deposition for Next Generation Photo Detectors and Light Sources

    CERN Document Server

    Xie, Junqi; Wagner, Robert

    2013-01-01

    The development of high-performance photocathodes is a key challenge for future accelerator and particle physics applications. In this paper photocathode growth through molecular beam epitaxy is introduced as a promising technique to obtain robust, highly efficient alkali-antimonide based photocathodes. Recent research shows that the quantum efficiency of photocathodes can be significantly enhanced through control of the photocathode crystallinity. Molecular beam epitaxy allows for cost-effective growth of large-area photocathodes with excellent control of the stoichiometry and crystallinity, making photocathodes with peak quantum efficiencies exceeding 35% routine.

  16. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis.

  17. An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs

    NARCIS (Netherlands)

    Zachiu, C.; Papadakis, N.; Ries, M.; Moonen, C.; de Senneville, B. Denis

    2015-01-01

    Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these

  18. Study of laser-induced plasma shock waves by the probe beam deflection technique

    Institute of Scientific and Technical Information of China (English)

    Yan Qian; Jian Lu; Xiaowu Ni

    2009-01-01

    Laser probe beam deflection technique is used for the analysis of laser-induced plasma shock waves in air and distilled water.The temporal and spatial variations of the parameters on shock fronts are studied as funotions of focal lens position and laser energy.The influences of the characteristics of media are investigated on the well-designed experimental setup.It is found that the shock wave in distilled water attenuates to an acoustic wave faster than in air under the same laser energy.Good agreement is obtained between our experimental results and those attained with other techniques.This technique is versatile,economic,and simple to implement,being a pronmising diagnostic tool for pulsed laser processing.

  19. Implementation of ion-beam techniques in microsystems manufacturing: opportunities in cell biology

    Science.gov (United States)

    Campo, E. M.; Lopez-Martinez, M. J.; Fernández, E.; Esteve, J..; Plaza, J. A.

    2009-05-01

    Micromachining techniques are proposed to mass-manufacture innovative silicon oxide micropipettes and conventional boron-silicate pipettes with highly customized tips to address increasingly demanding cell handling procedures. Cell handling has become a crucial procedure in cell biology, especially in nuclear transfer, DNA injection, and in assisted reproductive techniques. Most pipette manufacturing procedures involve tedious artisanal methods prone to failure and with limited functionality. We expect high tip customization to have a large impact in current and future cell manipulation, paving the way for augmented functionality. Although proper biocompatibility assessments remain to be explored, initial pierced embryos are seen to continue their division procedure up to at least 24 hours. The continued cellular division is a good sign of biocompatibility. These results suggest that residual chemical agents or gallium ions injected during milling could be harmless to life development. We conclude that we have produced a novel technique combining microfabrication and Focus Ion Beam processes with great potential for industrial applications.

  20. Pre-stressed anchoring beam technique applicable in the reinforcement of high-steep slopes

    Institute of Scientific and Technical Information of China (English)

    Zhifa YANG; Luqing ZHANG; Jiewang ZHU

    2006-01-01

    During the construction of some large-scale rock engineering, high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered. For the reinforcement of these slopes, some techniques (including conventional pre-stressed anchoring cable and unconventional anchoring hole) are usually utilized, however, having several obvious defects. Thus, it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes. For this reason, the authors develop the pre-stressed anchoring beam technique, in which tensile capacity of pre-stressed structures are fully utilized. It is analyzed that the new technique is characterized by multi-functions, including engineering investigation, efficient reinforcement, drainage, monitoring and urgent strength supplement, and hoped to be extensively applicable in the reinforcement of high-steep slopes.

  1. Atomic radical abatement of organic impurities from electron beam deposited metallic structures

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.

    2010-01-01

    Focused electron beam induced processing (FEBIP) of volatile organometallic precursors has become an effective and versatile method of fabricating metal-containing nanostructures. However, the electron stimulated decomposition process responsible for the growth of these nanostructures traps much of

  2. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  3. Molecular beam deposition of high-permittivity polydimethylsiloxane for nanometer-thin elastomer films in dielectric actuators

    DEFF Research Database (Denmark)

    M. Weiss, Florian; Madsen, Frederikke Bahrt; Töpper, Tino;

    2016-01-01

    To realize low-voltage dielectric elastomer actuators (DEAs) for artificial muscles, a high-permittivity elastomer and a related thin-film deposition technique must be selected. For polydimethylsiloxane, fillers or functionalized crosslinkers have been incorporated into the elastomer to improve...

  4. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  5. Multifunctional thin films of lactoferrin for biochemical use deposited by MAPLE technique

    Science.gov (United States)

    Constantinescu, Catalin; Palla-Papavlu, Alexandra; Rotaru, Andrei; Florian, Paula; Chelu, Florica; Icriverzi, Madalina; Nedelcea, Anca; Dinca, Valentina; Roseanu, Anca; Dinescu, Maria

    2009-03-01

    Lactoferrin (Lf) is an iron-binding glycoprotein present in almost all mammalian secretions which plays an important role in host defense against microbial and viral infections. The protein has been reported to also have anti-inflammatory activity and antitumoral effects in vitro and in vivo. Thin films of Lf were deposited on silicon, quartz and Thermanox plastic coverslip substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique, using a Nd:YAG laser working at 266 nm, at different laser fluences (0.1-0.8 J cm -2). The deposited layers have been characterized by Fourier Transformed Infra-Red spectroscopy (FTIR), and the morphology of the various substrates was investigated by Atomic Force Microscopy (AFM). The biocompatibility of lactoferrin thin films was evaluated for each substrate, by in vitro biochemical tests.

  6. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  7. Analysis on Residual Stress in Electron Beam-Physical Vapor Deposited Thermal Barrier Coating using Hard Synchrotron X-Rays

    OpenAIRE

    鈴木, 賢治; 松本, 一秀; 久保, 貴博; 町屋, 修太郎; 田中, 啓介; 秋庭, 義明; SUZUKI, Kenji; MATSUMOTO, Kazuhide; Kubo, Takahiro; Machiya, Syutaro; Tanaka, Keisuke; Akiniwa, Yoshiaki

    2005-01-01

    The distribution of the residual stress in the thermal barrier coating, which was made by an electron beam-physical vapor deposition (EB-PVD) method, was determined using X-ray stress measurements. As the bond coating, NiCoCrAlY was low-pressure plasma sprayed on the substrate of austenitic stainless steel. The 8 mass% Y_2O_3-ZrO_2 was coated on the bond coating using the EB-PVD method as the top coating. The top coating had the preferred orientation with the axis direction perpendicular to ...

  8. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  9. Factors affecting the superconductivity in the process of depositing Nd1.85Ce0.15CuO4-δ by the pulsed electron deposition technique

    Institute of Scientific and Technical Information of China (English)

    GUO; YanFeng

    2007-01-01

    On SrTiO3 single crystal substrate, by using the pulsed electron deposition technique, the high-quality electron doped Nd1.85Ce0.15CuO4-δsuperconducting film was successfully fabricated. After careful study on the R-T curves of the obtained samples deposited with different substrate temperatures, thicknesses, annealing methods and pulse frequencies, the effects of them on the superconductivity of the films were found, and the reasons were also analyzed. Additionally, by using the same model of the pulsed laser deposition technique, the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.  ……

  10. Microstructural characterization of electron beam-physical vapor deposition thermal barrier coatings through high-resolution computed microtomography

    Science.gov (United States)

    Kulkarni, Anand; Herman, Herbert; Decarlo, Francesco; Subramanian, Ramesh

    2004-07-01

    Thermal barrier coatings (TBCs), deposited using the electron beam-physical vapor deposition (EB-PVD) process, comprise a unique architecture of porosity capable of bridging the technological gap between insulation/life extension and prime reliance. The TBC microstructures consist of columnar structure, nucleated via vapor condensation, along with a high degree of intercolumnar porosity, thus providing enhanced stress relief on thermomechanical loading and also accommodating misfit stresses resulting from CTE mismatch. In this article, we report the characterization of these coatings using high-resolution synchrotron-based X-ray computed microtomography (XMT) at 1.3- µm resolution. Experiments focused on quantitative characterization/visualization of imperfections in these coatings and on the relative changes in microstructural features upon isothermal annealing. The influence of time/temperature of exposure was investigated and the results were correlated with elastic modulus.

  11. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  12. Analysis of telescopic beam structure using couple of DOF technique and its application

    Institute of Scientific and Technical Information of China (English)

    GUO Feng; ZHAO Wei-min; LI Gui-xian

    2009-01-01

    Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of multifunction drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.

  13. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Bourhaleb, F; Givehchi, N; Iliescu, S; Rosa, A La; Pecka, A; Peroni, C [Dipartimento di Fisica Sperimentale, Universita' di Torino, Via P. Giuria 1, Torino 10125 (Italy); Attili, A; Cirio, R; Marchetto, F; Donetti, M; Garella, M A; Giordanengo, S; Pardo, J [INFN, Sezione di Torino, Via P. Giuria 1, Torino 10125 (Italy); Cirrone, P [INFN, Laboratori Nazionali del Sud, Via S.Sofia 62, Catania 95125 (Italy)], E-mail: bourhaleb@to.infn.it

    2008-02-01

    Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam have to be quite close to each other or the longitudinal peak shape needs to be broaden at least few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall irradiation times. We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP region by means of Monte Carlo simulations, implemented using the package Geant4. We simulated the beam delivery line supporting both proton and carbon ion beams using different energies of the beams. We compared the effect of different kind of ripple filters and their advantages.

  14. High T(sub c) superconductors fabricated by plasma aerosol mist deposition technique

    Science.gov (United States)

    Wang, X. W.; Vuong, K. D.; Leone, A.; Shen, C. Q.; Williams, J.; Coy, M.

    1995-01-01

    We report new results on high T(sub c) superconductors fabricated by a plasma aerosol mist deposition technique, in atmospheric environment. Materials fabricated are YBaCuO, BiPbSrCaCuO, BaCaCuO precursor films for TlBaCaCuO, and other buffers such as YSZ. Depending on processing conditions, sizes of crystallites and/or particles are between dozens of nano-meters and several micrometers. Superconductive properties and other material characteristics can also be tailored.

  15. The "Hoover" (vacuum cleaner) technique for calcifying tendonitis deposits excision and removal of the calcific debris.

    Science.gov (United States)

    Ehud, Atoun; Ehud, Rath; Alexander, Van Tongel; Ali, Narvani; Giusseppe, Sforza; Ofer, Levy

    2012-07-01

    A new technical tip for the improvement of the arthroscopic treatment of symptomatic calcifying tendinitis is described. Arthroscopic excision of calcifying tendonitis may result with multiple minute calcific debris in the subacromial bursa, causing severe post operative pain due to chemical irritation of the bursa. We suggest the use of a bladeless shaver barrel as a "Hoover" (vacuum cleaner) for arthroscopic clearance of these miniature calcific debris from the subacromial space after resection of the major deposits. The use of this technique resulted in good clinical outcome with improved post operative pain.

  16. The "Hoover" (vacuum cleaner technique for calcifying tendonitis deposits excision and removal of the calcific debris

    Directory of Open Access Journals (Sweden)

    Atoun Ehud

    2012-01-01

    Full Text Available A new technical tip for the improvement of the arthroscopic treatment of symptomatic calcifying tendinitis is described. Arthroscopic excision of calcifying tendonitis may result with multiple minute calcific debris in the subacromial bursa, causing severe post operative pain due to chemical irritation of the bursa. We suggest the use of a bladeless shaver barrel as a "Hoover" (vacuum cleaner for arthroscopic clearance of these miniature calcific debris from the subacromial space after resection of the major deposits. The use of this technique resulted in good clinical outcome with improved post operative pain.

  17. Interface controlled growth of nanostructures in discontinuous Ag and Au thin films fabricated by ion beam sputter deposition for plasmonic applications

    Indian Academy of Sciences (India)

    R Brahma; M Ghanashyam Krishna

    2012-08-01

    The growth of discontinuous thin films of Ag and Au by low energy ion beam sputter deposition is reported. The study focuses on the role of the film–substrate in determining the shape and size of nanostructures achieved in such films. Ag films were deposited using Ar ion energy of 150 eV while the Au films were deposited with Ar ion energies of 250–450 eV. Three types of interfaces were investigated in this study. The first set of film–substrate interfaces consisted of Ag and Au films grown on borosilicate glass and carbon coated Cu grids used as substrates. The second set of films was metallic bilayers in which one of the metals (Ag or Au) was grown on a continuous film of the other metal (Au or Ag). The third set of interfaces comprised of discontinuous Ag and Au films deposited on different dielectrics such as SiO2, TiO2 and ZrO2. In each case, a rich variety of nanostructures including self organized arrays of nanoparticles, nanoclusters and nanoneedles have been achieved. The role of the film–substrate interface is discussed within the framework of existing theories of thin film nucleation and growth. Interfacial nanostructuring of thin films is demonstrated to be a viable technique to realize a variety of nanostructures. The use of interfacial nanostructuring for plasmonic applications is demonstrated. It is shown that the surface Plasmon resonance of the metal nanostructures can be tuned over a wide range of wavelengths from 400 to 700 nm by controlling the film–substrate interface.

  18. Optical phase distortion due to turbulent-fluid density fields - Quantification using the small-aperture beam technique

    Science.gov (United States)

    Jumper, E. J.; Hugo, R. J.

    1992-07-01

    This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.

  19. PREFACE: 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)

    Science.gov (United States)

    2014-04-01

    These proceedings originate from the 13th International Workshop on Slow Positron Beam Techniques and Applications SLOPOS13 which was held at the campus of the Technische Universität München in Garching between 15th-20th September, 2013. This event is part of a series of triennial SLOPOS conferences. In total 123 delegates from 21 countries participated in the SLOPOS13. The excellent scientific program comprised 50 talks and 58 posters presented during two poster sessions. It was very impressive to learn about novel technical developments on positron beam facilities and the wide range of their applications all over the world. The workshop reflected the large variety of positron beam experiments covering fundamental studies, e.g., for efficient production of anti-hydrogen as well as applied research on defects in bulk materials, thin films, surfaces, and interfaces. The topics comprised: . Positron transport and beam technology . Pulsed beams and positron traps . Defect profiling in bulk and layered structures . Nanostructures, porous materials, thin films . Surfaces and interfaces . Positronium formation and emission . Positron interactions with atoms and molecules . Many positrons and anti-hydrogen . Novel experimental techniques The international advisory committee of SLOPOS awarded student prizes for the best presented scientific contributions to a team of students from Finland, France, and the NEPOMUC team at TUM. The conference was overshadowed by the sudden death of Professor Klaus Schreckenbach immediately before the workshop. In commemoration of him as a spiritus rectus of the neutron induced positron source a minutes' silence was hold. We are most grateful for the hard work of the Local Organising Committee, the help of the International Advisory Committee, and all the students for their friendly and efficient support during the meeting. The workshop could not have occurred without the generous support of the Heinz Maier-Leibnitz Zentrum (MLZ), Deutsche

  20. All-optical optoacoustic microscopy system based on probe beam deflection technique

    Science.gov (United States)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  1. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique

    Science.gov (United States)

    Potočnik, J.; Nenadović, M.; Bundaleski, N.; Popović, M.; Rakočević, Z.

    2016-12-01

    Nickel (Ni) thin films of different thicknesses (25 nm to 150 nm) were deposited on glass substrates using Glancing Angle Deposition technique. Characterization of obtained Ni films was performed by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and by four-point probe method. Variations in optical parameters with thickness correlated with structural, chemical and electrical properties of nanostructured nickel thin films were studied. The results showed that deposit is porous and consists of nano-scaled columns, which grow perpendicular to the substrate. It was found that the size of the columns and the surface roughness change with film thickness. Spectroscopic ellipsometry revealed that the refractive index and extinction coefficient varied with thickness, which can be correlated with changes in microstructure of Ni films. Additionally, the relationship between the film microstructure and its resistivity was also analyzed. It was found that the variations in Ni films resistivity could be attributed to the changes in the width of the columns. The increasing of layer thickness leads to overall decrease of optical resistivity of nickel thin films.

  2. Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat

    Science.gov (United States)

    Cao Dao, Tran; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Kieu, Ngoc Minh; Le, Van Vu

    2016-03-01

    In order to detect trace concentrations of organic or biological molecules by surface-enhanced Raman scattering (SERS) technique, the SERS-active substrates with high enhancement factor are required. The silver nanodendrites (AgNDs) are a growing class of such SERS-active substrates. This report presents the preliminary results of the trace detection of paraquat (PQ), a commonly used herbicide, with the use of SERS-active substrates, which have been made from AgNDs deposited on silicon. The AgNDs were produced either by electroless deposition, or by electrodeposition onto a silicon wafer, using aqueous solution of HF and AgNO3. It was observed that the silver dendrites are formed only when AgNO3 concentration is high enough. Next, it was found that with the additional assistance of an electric potential in the electrodeposition, the dendrites have grown up with the more perfect ramification. The AgNDs with more perfect branching gave the Raman spectrum of PQ with higher enhancement factor. More specifically, while the SERS-active substrates prepared from electrodeposited AgNDs were able to detect PQ with concentration as low as 0.01 ppm, the ones made from electroless deposited AgNDs could only detect PQ at concentration of hundreds times higher.

  3. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Science.gov (United States)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  4. Detecting salt deposition on a wind turbine blade using laser induced breakdown spectroscopy technique

    Science.gov (United States)

    Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.

    2013-07-01

    The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.

  5. Analysis and modification of blue sapphires from Rwanda by ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science - Gems & Jewelry, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Chaiwai, C.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanthanachaisaeng, B. [Gems Enhancement Research Unit, Faculty of Gems, Burapha University, Chanthaburi Campus, Chanthaburi 22170 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-12-15

    Highlights: • Ion beam analysis is an effective method for detecting trace elements. • Ion beam treatment is able to improve optical and color appearances of the blue sapphire from Rwanda. • These alternative methods can be extended to jewelry industry for large scale application. - Abstract: Blue sapphire is categorised in a corundum (Al{sub 2}O{sub 3}) group. The gems of this group are always amazed by their beauties and thus having high value. In this study, blue sapphires from Rwanda, recently came to Thai gemstone industry, are chosen for investigations. On one hand, we have applied Particle Induced X-ray Emission (PIXE), which is a highly sensitive and precise analytical technique that can be used to identify and quantify trace elements, for chemical analysis of the sapphires. Here we have found that the major element of blue sapphires from Rwanda is Al with trace elements such as Fe, Ti, Cr, Ga and Mg as are commonly found in normal blue sapphire. On the other hand, we have applied low and medium ion implantations for color improvement of the sapphire. It seems that a high amount of energy transferring during cascade collisions have altered the gems properties. We have clearly seen that the blue color of the sapphires have been intensified after nitrogen ion bombardment. In addition, the gems were also having more transparent and luster. The UV–Vis–NIR measurement detected the modification of their absorption properties, implying of the blue color increasing. Here the mechanism of these modifications is postulated and reported. In any point of view, the bombardment by using nitrogen ion beam is a promising technique for quality improvement of the blue sapphire from Rwanda.

  6. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  7. Positronium formation in NaY-zeolites studied by lifetime, positron beam Doppler broadening and 3-gamma detection techniques

    CERN Document Server

    Schut, H; Kolar, Z I; Veen, A V; Clet, G

    2000-01-01

    Results of positron annihilation measurements on NaY pressed powders and deposited thin films using slow positron beam and conventional fast positron techniques are presented. In lifetime experiments using an external sup sup 2 sup sup 2 Na source an averaged long lifetime of 1.8 ns with a sum intensity of 27% was observed in pressed powders in the presence of air at room temperature (RT). In literature this lifetime is ascribed to positrons annihilating in water filled alpha or beta cages Habrowska, A.M., Popiel, E.S., 1987. Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 2419. By means of isotopic exchange some of the Na was replaced by sup sup 2 sup sup 2 Na. These powders showed a long lifetime component of 7-8 ns with an intensity increasing from 1 to 12% when heated under normal atmosphere from RT to 200 deg. C. No significant increase of the shorter (1.5 ns) lifetime was observed, while its intensity dropped from 13.4 to 6.6%. Both effects are ascribed to the loss of water from alpha cages onl...

  8. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    Science.gov (United States)

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  9. Application of different techniques to obtain spatial estimates of debris flows erosion and deposition depths

    Science.gov (United States)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    In Alpine regions, debris flows endanger settlements and human life. Danger mitigation strategies based on the preparation of hazard maps are necessary tools for the current land planning. To date, hazard maps are obtained by using one- or two-dimensional numerical models that are able to forecast the potential inundated areas, after careful calibration of those input parameters that directly affect the flow motion and its interaction with the ground surface (sediments entrainment or deposition). In principle, the reliability of these numerical models can be tested by flume experiments in laboratory using, for example, particles and water mixtures. However, for more realistic materials including coarse particles, the scaling effects are still difficult to account for. In some cases, where there are enough data (for example, point measures of flow depths and velocities or spatial estimation of erosion and deposition depths), these models can be tested against field observations. As it regards the spatial estimates of debris flows erosion and deposition depths, different approaches can be followed to obtain them, mainly depending on both the type and accuracy of the available initial data. In this work, we explain the methods that have been employed to obtain the maps of erosion and deposition depths for three occurred debris flows in the Dolomites area (North-Eastern Italian Alps). The three events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006 and at Rio Val Molinara (Trento) on the 15th of August 2010. For each case study, we present the available initial data and the related problems, the techniques that have been used to overcome them and finally the results obtained.

  10. Designed nanostructured pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques.

    Science.gov (United States)

    Huang, Minghua; Jin, Yongdong; Jiang, Heqing; Sun, Xuping; Chen, Hongjun; Liu, Baifeng; Wang, Erkang; Dong, Shaojun

    2005-08-18

    Multiple-deposited Pt overlayer modified Pt nanoparticle (MD-Pt overlayer/PtNPs) films were deliberately constructed on glassy carbon electrodes through alternately multiple underpotential deposition (UPD) of Ag followed redox replacement reaction by Pt (II) cations. The linear and regular growth of the films characterized by cyclic voltammetry was observed. Atomic force spectroscopy (AFM) provides the surface morphology of the nanostructured Pt films. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry demonstrate that the MD-Pt overlayer/PtNPs films can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated 0.1 M H(2)SO(4). Thus-prepared Pt films behave as novel nanostructured electrocatalysts for dioxygen reduction and hydrogen evolution reaction (HER) with enhanced electrocatalytic activities, in terms of both reduction peak potential and peak current, when compared to that of the bulk polycrystalline Pt electrode. Additionally, it is noted that after multiple replacement cycles, the electrocatalytic activities improved remarkably, although the increased amount of Pt is very low in comparison to that of pre-modified PtNPs due to the intrinsic feature of the UPD-redox replacement technique. In other words, the electrocatalytic activities could be improved markedly without using very much Pt by the technique of tailoring the catalytic surface. These features may provide an interesting way to produce Pt catalysts with a reliable catalytic performance as well as a reduction in cost.

  11. Evaluation of Beam Losses and Energy Depositions for a Possible Phase II Design for LHC Collimation

    CERN Document Server

    Lari, L; Bracco, C; Brugger, M; Cerutti, F; Doyle, E; Ferrari, A; Keller, L; Lundgren, S; Keller, L; Mauri, M; Redaelli, S; Sarchiapone, L; Smith, J; Vlachoudis, V; Weiler, T

    2008-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can ...

  12. AN IMPEDANCE ANALYSIS FOR CRACK DETECTION IN THE TIMOSHENKO BEAM BASED ON THE ANTI-RESONANCE TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper. Unlike the natural frequency, the anti-resonant frequency is a local parameter rather than a global parameter of structures, thus the proposed technique can be used to locate the structural defects. An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated. In order to characterize the local discontinuity due to cracks, a rotational spring model based on fracture mechanics is proposed to model the crack. Subsequently, the proposed method is verified by a numerical example of a simply-supported beam with a crack. The effect of the crack size on the anti-resonant frequency is investigated. The position of the crack of the simply-supported beam is also determined by the anti-resonance technique. The proposed technique is further applied to the "contaminated" anti-resonant frequency to detect crack damage, which is obtained by adding 1-3% noise to the calculated data. It is found that the proposed technique is effective and free from the environment noise. Finally, an experimental study is performed, which further verifies the validity of the proposed crack identification technique.

  13. Experimental techniques to determine salt formation and deposition in supercritical water oxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.P.C.; LaJeunesse, C.A.; Rice, S.F.

    1994-08-01

    Supercritical Water Oxidation (SCWO) is an emerging technology for destroying aqueous organic waste. Feed material, containing organic waste at concentrations typically less than 10 wt % in water, is pressurized and heated to conditions above water`s critical point where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. An oxidizer, is then added to the feed. Given adequate residence time and reaction temperature, the SCWO process rapidly produces innocuous combustion products. Organic carbon and nitrogen in the feed emerge as CO{sub 2} and N{sub 2}; metals, heteroatoms, and halides appear in the effluent as inorganic salts and acids. The oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms acid anions. In the presence of metal ions, salts are formed and precipitate out of the supercritical fluid. In a tubular configured reactor, these salts agglomerate, adhere to the reactor wall, and eventually interfere by causing a flow restriction in the reactor leading to an increase in pressure. This rapid precipitation is due to an extreme drop in salt solubility that occurs as the feed stream becomes supercritical. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. A phenomenological model is developed in this paper to predict the time that reactor pressure begins to rise as a function of the fluid axial temperature profile and effective solubility curve. The experimental techniques used to generate effective solubility curves for one salt of interest, Na{sub 2}SO{sub 4}, are described, and data is generated for comparison. Good correlation between the model and experiment is shown. An operational technique is also discussed that allows the deposited salt to be redissolved in a single phase and removed from the affected portion of the reactor. This technique is demonstrated experimentally.

  14. Low-energy ion beam-based deposition of gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  15. Low-energy ion beam-based deposition of gallium nitride.

    Science.gov (United States)

    Vasquez, M R; Wada, M

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  16. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    Science.gov (United States)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  17. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  18. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Michela, E-mail: michela.fratini@gmail.com [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Roma (Italy); Dipartimento di Scienze, Università di Roma Tre, 00144 Roma (Italy); Campi, Gaetano [Institute of Crystallography, CNR, 00015 Monterotondo, Roma (Italy); Bukreeva, Inna [CNR NANOTEC-Institute of Nanotechnology, 00195 Roma (Italy); P.N. Lebedev Physical Institute RAS, 119991 Moscow (Russian Federation); Pelliccia, Daniele [School of Physics, Monash University, Victoria 3800 (Australia); Burghammer, Manfred [ESRF-The European Synchrotron, 3800 Grenoble (France); Tromba, Giuliana [Sincrotrone Trieste SCpA, 34149 Basovizza, Trieste (Italy); Cancedda, Ranieri; Mastrogiacomo, Maddalena [Dipartimento di Medicina Sperimentale dell’Università di Genova & AUO San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genova (Italy); Cedola, Alessia [CNR NANOTEC-Institute of Nanotechnology, 00195 Roma (Italy)

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic–mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  19. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    Science.gov (United States)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  20. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    Science.gov (United States)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing

  1. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-08-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 {times} 10{sup {minus}9} m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of {approximately}2 {pi} mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces.

  2. Estimation of bending wave intensity in beams using the frequency response technique

    Science.gov (United States)

    Linjama, J.; Lahti, T.

    1992-02-01

    The frequency response approach is applied to the measurement of bending wave intensity, with two or four accelerometers being used. Based on the known structural intensity equations, a comprehensive set of frequency domain expressions is derived for power measurements in a beam. A practical procedure is developed for the general four-transducer method, which allows a usual dual channel FFT analyzer to be employed in multi-channel measurements. The procedure uses the sequential frequency response technique, and is applicable if the situation remains stationary during the data acquisition. In addition, expressions are derived for the determination of the force- and moment-related bending wave power components separately. In a laboratory experiment, the power carried by bending waves was measured in a simple beam, and the methods developed were tested and compared. The frequency response approach was shown to work well in detecting the total power. The estimation of the two bending wave power components, both in the near and the far field, was also demonstrated.

  3. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  4. Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    Science.gov (United States)

    Deasy, Joseph O.

    2000-07-01

    The Monte Carlo (MC) method has long been viewed as the ultimate dose distribution computational technique. The inherent stochastic dose fluctuations (i.e. noise), however, have several important disadvantages: noise will affect estimates of all the relevant dosimetric and radiobiological indices, and noise will degrade the resulting dose contour visualizations. We suggest the use of a post-processing denoising step to reduce statistical fluctuations and also improve dose contour visualization. We report the results of applying four different two-dimensional digital smoothing filters to two-dimensional dose images. The Integrated Tiger Series MC code was used to generate 10 MeV electron beam dose distributions at various depths in two different phantoms. The observed qualitative effects of filtering include: (a) the suppression of voxel-to-voxel (high-frequency) noise and (b) the resulting contour plots are visually more comprehensible. Drawbacks include, in some cases, slight blurring of penumbra near the surface and slight blurring of other very sharp real dosimetric features. Of the four digital filters considered here, one, a filter based on a local least-squares principle, appears to suppress noise with negligible degradation of real dosimetric features. We conclude that denoising of electron beam MC dose distributions is feasible and will yield improved dosimetric reliability and improved visualization of dose distributions.

  5. Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, Joseph O. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 So. Kingshighway Blvd, St Louis, MO 63110 (United States). E-mail: deasy at radonc.wustl.edu

    2000-07-01

    The Monte Carlo (MC) method has long been viewed as the ultimate dose distribution computational technique. The inherent stochastic dose fluctuations (i.e. noise), however, have several important disadvantages: noise will affect estimates of all the relevant dosimetric and radiobiological indices, and noise will degrade the resulting dose contour visualizations. We suggest the use of a post-processing denoising step to reduce statistical fluctuations and also improve dose contour visualization. We report the results of applying four different two-dimensional digital smoothing filters to two-dimensional dose images. The Integrated Tiger Series MC code was used to generate 10 MeV electron beam dose distributions at various depths in two different phantoms. The observed qualitative effects of filtering include: (a) the suppression of voxel-to-voxel (high-frequency) noise and (b) the resulting contour plots are visually more comprehensible. Drawbacks include, in some cases, slight blurring of penumbra near the surface and slight blurring of other very sharp real dosimetric features. Of the four digital filters considered here, one, a filter based on a local least-squares principle, appears to suppress noise with negligible degradation of real dosimetric features. We conclude that denoising of electron beam MC dose distributions is feasible and will yield improved dosimetric reliability and improved visualization of dose distributions. (author)

  6. Using 137Cs Tracer Technique to Evaluate Erosion and Deposition of Black Soil in Northeast China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Soil and water losses through erosion have been serious in the black soil region of Northeast China. Therefore, a sloping cultivated land in Songnen Plain was selected as a case study to: 1) determine the 137Cs reference inventory in the study area; 2) calculate erosion and deposition rates of black soil on different slope locations; 3) conduct a sensitivity analysis of some model parameters; and 4) compare overall outputs using four different models. Three transects were set in the field with five slope locations for each transect, including summit, shoulder-slope, back-slope, foot-slope, and toe-slope. Field measurements and model simulation were used to estimate a bomb-derived 137Cs reference inventory in the study area.Soil erosion and deposition rates were estimated using four 137Cs models and percentage of 137Cs loss/gain. The 137Cs reference value in the study area was 2 232.8 Bq m-2 with 137Cs showing a clear topographic pattern, decreasing from the summit to shoulder-slope, then increasing again at the foot-slope and reaching a maximum at the toe-slope. Predicted soil redistribution rates for different slope locations varied. Among models, the Yang Model (YANG-M) overestimated erosion loss but underestimated deposition. However, the standard mass balance model (MBM1) gave predictions similar to a mass balance model incorporating soil movement by tillage (MBM2). Sensitivity analysis of the proportion factor γand distribution pattern of 137Cs in the surface layer demonstrated the impact of 137Cs enrichment on calculation of the soil erosion rate. Factors influencing the redistribution of fallout 137Cs in landscape should be fully considered as calculating soil redistribution rate using 137Cs technique.

  7. Hyperthermal Pulsed-Laser Ablation Beams for Film Deposition and Surface Microstructural Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D.H.

    1999-11-08

    This paper presents an overview of pulsed-laser ablation for film deposition and surface microstructure formation. By changing the ambient gas pressure from high vacuum to several Torr (several hundred Pa) and by selecting the pulsed-laser wavelength, the kinetic energy of ablated atoms/ions can be varied from several hundred eV down to {approximately}0.1 eV and films ranging from superhard to nanocrystalline may be deposited. Furthermore, cumulative (multi-pulse) irradiation of a semiconductor surface (e.g. silicon) in an oxidizing gas (0{sub 2}, SF{sub 6}) et atmospheric pressure can produce dense, self-organized arrays of high-aspect-ratio microcolumns or microcones. Thus, a wide range of materials synthesis and processing opportunities result from the hyperthermal flux and reactive growth conditions provided by pulsed-laser ablation.

  8. Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam

    Science.gov (United States)

    Radek, Norbert; Bartkowiak, Konrad

    The work presented in this paper determines the influence of the laser treatment process on the properties of electrospark coatings. The properties after laser treatment were examined by microstructure analysis, microhardness, roughness and adhesion tests. The studies were conducted using WC-Co-Al2O3 electrodes produced by sintering nanostructural powders. The anti-wear coatings were first deposited by an EIL-8A apparatus on C45 carbon steel and then laser melted within various process parameters. In this case Nd:YAG laser (BLS 720 model) was applied. The electro-spark deposited coatings are very promising to improve abrasive wear resistance of tools and machine parts, which was indicated by tribological tests.

  9. Adherence of ion beam sputter deposited metal films on H-13 steel

    Science.gov (United States)

    Mirtich, M. J.

    1980-01-01

    An electron bombardment argon ion source sputter deposited 17 metals and metal oxides on H-13 steel. The films ranged 1 to 8 micrometers in thickness and their adherence was generally greater than the capacity of the measuring device; adherence quality depended on proper precleaning of the substrate before deposition. N2 or air was introduced for correct stoichiometry in metallic compounds. Au, Ag, MgO, and Ta5Si3 films 8 microns thick have bond strength equal to 1 micron coatings; the bond strength of pure metallic films up to 5 microns thick was greater than the epoxy to film bond (8000 psi). The results of exposures of coated material to temperatures up to 700 C are presented.

  10. Kinetics of niobium carbide coating produced on AISI 1040 steel by thermo-reactive deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ugur

    2004-07-15

    There are a lot of technologically interesting characteristics of niobium carbide coating deposited by pack method which is the production of hard, wear-resistant, oxidation and corrosion resistant coating layer on the steel substrates. In the present study, the growth kinetics of niobium carbide layer deposited by thermo-reactive diffusion techniques in a solid medium on steel samples was reported. Niobium carbide coating treatment was performed on AISI 1040 steels in the powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 1073, 1173 and 1273 K for 1-4 h. The presence of NbC and Nb{sub 2}C phases formed on the surface of the steel substrates was confirmed by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction analyses. Niobium carbide layer thickness ranges from 3.42{+-}0.52 to 11.78{+-}2.29 {mu}m depending upon the treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of niobium carbide layer as a function of time and temperature. The kinetics of niobium carbide coating by pack method shows a parabolic relationship between carbide layer thickness and treatment time, and the activation energy for the process is estimated to be 91.257 kJ mol{sup -1}. Moreover, an attempt was made to investigate the possibility of predicting the contour diagram of niobium carbide layer variation and to establish some empirical relationships between process parameters and niobium carbide layer thickness.

  11. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  12. [An investigation of HAP/organic polymer composite coatings prepared by electrochemical co-deposition technique].

    Science.gov (United States)

    Hu, Haobing; Lin, Changjian; Leng, Yang

    2003-03-01

    An electrochemical co-deposition technique has been developed to prepare a hydroxyapatite (HAP)/organic polymer composite coatings on Ti surface as new biomaterial of hard tissue. The composite coating of organic polymer and calcium phosphate is formed by adding a water soluble polymer of the ethylene series to NH4H2PO4-Ca (NO3)2 solution when conducting an appropriate electrochemical co-deposition experiment. The XRD, SEM, XPS, SIMS and nano indent measurements were performed to characterize the morphology, composition, structure and surface stiffness of the composite coating. It was found that the morphology and surface hardness of the coatings showed a remarkable modification when introducing a minor polymer to HAP coating, and the bonding force between the coating and metal substrate was distinctly increased. The incorporation of minor organic polymer into the HAP compound at molecular level will improve the mechanical properties and morphology of the composite coatings, and this may be helpful to raising its bio-activity.

  13. Characterization of Inx Ga1-x As-GaAs heterostructures via electron beam techniques

    Science.gov (United States)

    Gomez-Barojas, Estela; Silva-Gonzalez, Rutilo; Serrano-Rojas, Rosa Maria; Vidal-Borbolla, Miguel Angel

    2005-03-01

    In the case of strained superlattices abrupt heterointerfaces are required because compositional fluctuations at heterointerfaces results in uncertainty in both composition and lattice constant. The aim of this work is to study exsitu the surface morphology, the periodicity and elemental composition of a set of 3 InGaAs-GaAs heterostructures grown on GaAs (100) substrates by a molecular beam epitaxy system. The heterostructures are formed by 10 periods of InGaAs-GaAs epitaxially grown on GaAs substrates with nominal thickness of 500 and 1000 å, respectively. The techniques used for this purpose are the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). The In content in the heterostructures is determined from corresponding Auger depth profiles. This work has been supported by VIEP-BUAP, Project No. II53G02.

  14. Characterization of natural and modified zeolites using ion beam analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)], E-mail: andrade@fisica.unam.mx; Solis, C. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Aceves, J.M.; Miranda, R. [Facultad de Estudios Superiores Cuautitlan Itzcalli, Departamento de Quimica, Universidad Nacional Autonoma de Mexico, 1 de Mayo S/N, Cuatitlan Itzcalli, Edo. de Mexico, C.P. 74540 (Mexico); Cruz, J. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Rocha, M.F. [Escuela Superior de Ingenieria Mecanica y Electrica, Instituto Politecnico Nacional, U.P. ' Adolfo Lopez Mateos' , Zacatenco, Del. Gustavo A. Madero, Mexico D.F. 07738 (Mexico); Zavala, E.P. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)

    2008-05-15

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. {sup 3}He{sup +} and {sup 2}H{sup +} beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure.

  15. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Science.gov (United States)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  16. Optical characteristics of transparent samarium oxide thin films deposited by the radio-frequency sputtering technique

    Indian Academy of Sciences (India)

    A A ATTA; M M EL-NAHASS; KHALED M ELSABAWY; M M ABD EL-RAHEEM; A M HASSANIEN; A ALHUTHALI; ALI BADAWI; AMAR MERAZGA

    2016-11-01

    Transparent metal oxide thin films of samarium oxide (Sm$_2$O$_3$) were prepared on pre-cleaned fused optically flat quartz substrates by radio-frequency (RF) sputtering technique. The as-deposited thin films were annealed at different temperatures (873, 973 and 1073 K) for 4 h in air under normal atmospheric pressure. The topological morphology of the film surface was characterized by using atomic force microscopy (AFM). The optical properties of the as-prepared and annealed thin films were studied using their reflectance and transmittance spectra at nearly normal incident light. The estimated direct optical band gap energy (E$^{d}_{g}$ ) values were found to increase by increasing the annealing temperatures. The dispersion curves of the refractive index of Sm$_2$O$_3$ thin films were found to obey the single oscillator model.

  17. Carbon nanotubes for supercapacitors: Consideration of cost and chemical vapor deposition techniques

    Institute of Scientific and Technical Information of China (English)

    Chao Zheng; Weizhong Qian; Chaojie Cui; Guanghui Xu; Mengqiang Zhao; Guili Tian; Fei Wei

    2012-01-01

    In this topic,we first discussed the requirement and performance of supercapacitors using carbon nanotubes (CNTs) as the electrode,including specific surface area,purity and cost.Then we reviewed the preparation technique of single walled CNTs (SWNTs) in relatively large scale by chemical vapor deposition method.Its catalysis on the decomposition of methane and other carbon source,the reactor type and the process control strategies were discussed.Special focus was concentrated on how to increase the yield,selectivity,and purity of SWNTs and how to inhibit the formation of impurities,including amorphous carbon,multiwalled CNTs and the carbon encapsulated metal particles,since these impurities seriously influenced the performance of SWNTs in supercapacitors.Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.

  18. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G. Anil, E-mail: anilhcu@gmail.com; Reddy, M. V. Ramana, E-mail: anilhcu@gmail.com [Department of Physics, Osmania University, Hyderabad-500007 (India); Reddy, Katta Narasimha, E-mail: anilhcu@gmail.com [Department of Physics, Mahatma Gandhi University, Nalgonda-508003 (India)

    2014-04-24

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 2×10{sup −2} mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  19. CORROSION BEHAVIOR OF Cu-Nb AND Ni-Nb AMORPHOUS FILMS PREPARED BY ION BEAM ASSISTED DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    B. Zhao; F. Zeng; D.M. Li; F. Pan

    2003-01-01

    The Cu25Nb75 and Ni45Nb55 amorphous films with about 500nm thickness were prepared by ion beam assisted deposition (IBAD). Potentiodynamic polarization measurement was adopted to investigate the corrosion resistance of samples and the tests were carried out respectively in 1mol/L H2SO4 and NaOH aquatic solution. The corrosion performance of the amorphous films was compared with that of multilayered and pure Nb films. Experimental results indicated that the corrosion resistance of amorphous films was better than that of the corresponding multilayers and pure Nb films for both Ni-Nb system with negative heat of formation and Cu-Nb system with positive heat of formation.

  20. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    Science.gov (United States)

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  1. Total skin electron beam therapy in mycosis fungoides. Evaluation of a technique for deceleration of electron beam energy and clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Hiromi; Yamashita, Shigeru; Ishino, Yohichi; Suenaga, Yoshinori

    1988-08-01

    The studies using phantoms confirmed that the reduction of electron beam energy and minimization of X-ray contamination could be achieved when electron beam was interposed by an acrylic plate placed 20 cm anterior to a patient. Four patients of mycosis fungoides were treated with 8 MeV electron beam of a linear accelerator at UOEH Hospital from October 1981 to December 1986. Two of them were treated with this technique by placing 2 cm thick acrylic plate anterior to the patients and satisfactory results were obtained. Cutaneous lesions subsided remarkably with the dosage of 2000 cGy given in 2 months. Leucopenia due to bone marrow suppression was mild and the patients tolerated the treatment well.

  2. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  3. Thermally induced formation of metastable nanocomposites in amorphous Cr-Zr-O thin films deposited using reactive ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Rafaja, David, E-mail: rafaja@ww.tu-freiberg.de [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Wüstefeld, Christina [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Braeunig, Stefan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Baehtz, Carsten [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Hanzig, Florian; Dopita, Milan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Gemming, Sibylle [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Institute of Physics, Technische Universität Chemnitz, D-09126 Chemnitz (Germany)

    2016-08-01

    Successive crystallization of amorphous Cr-Zr-O thin films, formation of the (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites and the thermally induced changes in the hexagonal crystal structure of metastable (Cr,Zr){sub 2}O{sub 3} were investigated by means of in situ high-temperature synchrotron diffraction experiments up to 1100 °C. The thin films were deposited at room temperature by using reactive ion beam sputtering, and contained 3–15 at.% Zr. At low Zr concentrations, chromium-rich (Cr,Zr){sub 2}O{sub 3} crystallized first, while the crystallization of zirconium-rich (Zr,Cr)O{sub 2} was retarded. Increasing amount of zirconium shifted the onset of crystallization in both phases to higher temperatures. For 3 at.% of zirconium in amorphous Cr-Zr-O, (Cr,Zr){sub 2}O{sub 3} crystallized at 600 °C. At 8 at.% Zr in the films, the crystallization of (Cr,Zr){sub 2}O{sub 3} started at 700 °C. At 15 at.% Zr, the Cr-Zr-O films remained amorphous up to the annealing temperature of 1000 °C. Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodated up to ~ 3 at.% Zr. Excess of zirconium formed tetragonal zirconia, which was stabilized by chromium. - Highlights: • Amorphous Cr-Zr-O thin films were deposited using reactive ion beam sputtering. • After annealing in vacuum, metastable (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites form. • The crystallization temperature depends strongly on the Zr concentration. • Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodates up to 3.2 at.% of zirconium. • Zirconium oxide crystallizes in tetragonal form, as it is stabilized by chromium.

  4. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    Science.gov (United States)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  5. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  6. Regular growth combined with lateral etching in diamond deposited over silicon substrate by using hot filament chemical vapor deposition technique

    Science.gov (United States)

    Ali, M.; Ürgen, M.

    2013-05-01

    Hot filament chemical vapor deposition has proved to be an attractive method for growing diamond films with good quality and higher growth rate. Diamond films were produced at deposition parameters under which, it is possible to have regular growth combined with lateral etching (RGCLE). Fracture cross-section SEM images showed that RGCLE initiated over polycrystalline diamond film and proceeded by the growth of consecutive steps in each crystallite, which terminated with square/rectangle shaped facets. All the diamond films exhibit RGCLE but with different type of growth behavior. Present work discusses the cyclic formation of the steps in diamond crystallites and RGCLE modes. RGCLE in diamond film may find important applications where heat absorption and dissipation are key issues.

  7. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    Science.gov (United States)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  8. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  9. Classical simulation of atomic beam focusing and deposition for atom lithography

    Institute of Scientific and Technical Information of China (English)

    Xianzhong Chen(陈献忠); Hanmin Yao(姚汉民); Xunan Chen(陈旭南)

    2004-01-01

    We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion. The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method. Simulation results have shown that source imperfection, especially beam spread, plays an important role in broadening the feature width, and the focus depth of atom lens for real atomic source is longer than that for perfect source. The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.

  10. Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique

    Science.gov (United States)

    Portesi, C.; Borini, S.; Amato, G.; Monticone, E.

    2006-03-01

    In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.

  11. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  12. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  13. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  14. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Hassan, M A; Ghani, S A C; Buyong, Z

    2016-04-01

    New promising techniques for depositing biocompatible hydroxyapatite-based coatings on biocompatible metal substrates for biomedical applications have continuously been exploited for more than two decades. Currently, various experimental deposition processes have been employed. In this review, the two most frequently used deposition processes will be discussed: a sol-gel dip coating and an electrochemical deposition. This study deliberates the surface morphologies and chemical composition, mechanical performance and biological responses of sol-gel dip coating as well as the electrochemical deposition for two different sample conditions, with and without coating. The review shows that sol-gel dip coatings and electrochemical deposition were able to obtain the uniform and homogeneous coating thickness and high adherent biocompatible coatings even in complex shapes. It has been accepted that both coating techniques improve bone strength and initial osseointegration rate. The main advantages and limitations of those techniques of hydroxyapatite-based coatings are presented. Furthermore, the most significant challenges and critical issues are also highlighted.

  15. Comparison of the dose deposited between the OBI system and the Varian TrueBeam Imaging system; Comparacion de la dosis depositada entre el sistem OBI y el truebeam Imaging system de Varian

    Energy Technology Data Exchange (ETDEWEB)

    Pino, F.; Navarro, D.; Sancho, I.; Lizuain, M. C.

    2011-07-01

    The use of imaging systems for positioning kilovoltage radiotherapy treatments has experienced a peak in recent years. Techniques such as IMRT, these systems are applied to a large number of sessions to ensure accurate positioning. This makes it increased the interest to know the dose deposited in the patient. Companies involved in developing new designs focus their efforts on reducing the dose due to these positioning systems. The aim of this study is to compare the dose delivered by the OBI image guidance system with the new system image TrueBeam, both of Varian, both planar imaging as CT (CBCT).

  16. Nanopatterning on fragile or 3D surfaces with sterol-based vapor-deposited electron beam resist

    Science.gov (United States)

    Legario, Ron R.; Kelkar, Prasad S.; Beauvais, Jacques; Lavallee, Eric; Drouin, Dominique; Cloutier, Melanie; Turcotte, David; Yang, Pan; Mun, Lau K.; Awad, Yousef; Lafrance, Pierre J.

    2004-05-01

    A novel and effective approach to nano-fabrication lithography is the vapour deposition of the negative tone electron beam resists QSR-5 and QSR-15 (Quantiscript"s sterol based resist) onto a substrate. Vapour deposition is especially conducive for patterning thin delicate membranes (e.g. advanced masks for X-ray lithography - XRL, and Low Energy Electron Proximity Projection Lithography - LEEPL), that are susceptible to breakage during the spin coating process. With the capability for depositing highly uniform thin layers (optical fibre with the goal of improving the coupling of diode laser emission into the fiber. This application clearly shows the capabilities of this process for producing nano-scale patterns on very small area surfaces that are completely unsuitable for spin-coating of the resist. A second demonstration of the resist's capabilities is the patterning of optical diffractive elements directly on the facet of a semiconductor laser. This opens the way to direct patterning on laser diode facets in order to control the emission profile from the device. It has also proven capabilities in the manufacture of delicate photo masks. In their natural state, QSR-5 and QSR-15 are solids at room temperature and are sterol based heterocyclic compounds, with unsaturated bonding capable of cross linking. On their own merit, QSR-5 and QSR-15 are capable of cross linking under electron beam exposure and are comparable in certain properties to conventional spin-coated resists such as PMMA. When cross linked, their heterocyclic structure gives it excellent selective resistance to solvent based developers (such as alcohols and ketones) for pattern formation. They have also been shown to be highly resistant to etching solutions, even when working with thin high resolution layers on the order of 30 nm. They are highly stable and have a relatively long shelf life, greater than one year. Compared to conventional resists utilizing complex, toxic, and expensive resin systems

  17. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  18. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  19. Introduction to analytical techniques of beam-target interactions and resolutions; Introduction aux techniques d`analyse interactions rayonnement-matiere et resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Ruste, J.

    1995-08-01

    For several years, new analysis and observation techniques have been developed, which have considerably improved material research. Almost all these techniques are based on the interaction of a beam of `primary particles` (electrons, photons, ions, particles, etc) with target. Correct and appropriate use of these techniques requires a good knowledge of these interactions and their consequences (emissions of `secondary particles`, modifications of the primary beam and target, etc). The first part of this report deals with the radiation/material interactions according to the nature of the radiation and its energy. The nature and consequences of the interaction of an electromagnetic wave, a beam of electrons, ions and neutrons are examined over an extended range of energy from MeV to MeV. Certain notions such as the analysis area, spatial resolutions or limits of detection can also be defined. In the second part, some of the most important and widespread techniques of analysis and observation are compared in terms of properties and performance. In particular, there is a brief principle of the technique, nature of the data obtained, spatial resolution, and the limits of detection with today`s methods permit. (author). 5 refs., 23 figs., 9 tabs.

  20. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A Coordinated Focused Ion Beam/Ultramicrotomy Technique for Serial Sectioning of Hayabusa Particles and Other Returned Samples

    Science.gov (United States)

    Berger, E. L.; Keller, L. P.

    2014-01-01

    Recent sample return missions, such as NASA's Stardust mission to comet 81P/Wild 2 and JAXA's Hayabusa mission to asteroid 25143 Itokawa, have returned particulate samples (typically 5-50 µm) that pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on how the samples are prepared for analysis. This also holds true for other extraterrestrial materials, including interplanetary dust particles, micrometeorites and lunar regolith grains. Traditionally, particulate samples have been prepared using microtomy techniques (e.g., [1]). However, for hard mineral particles ?20 µm, microtome thin sections are compromised by severe chatter and sample loss. For these difficult samples, we have developed a hybrid technique that combines traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for the in situ investigation of grain surfaces and interiors. Using this method, we have increased the number of FIB-SEM prepared sections that can be recovered from a particle with dimensions on the order of tens of µms. These sections can be subsequently analyzed using a variety of electron beam techniques. Here, we demonstrate this sample preparation technique on individual lunar regolith grains in order to study their space-weathered surfaces. We plan to extend these efforts to analyses of individual Hayabusa samples.

  2. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Science.gov (United States)

    Khan, M. I.; Bhatti, K. A.; Qindeel, Rabia; Alonizan, Norah; Althobaiti, Hayat Saeed

    In this work, zinc oxide (ZnO) multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD) confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM) showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV-Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications.

  3. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Science.gov (United States)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  4. Preparation and properties of ZnO thin films deposited by sol-gel technique

    Institute of Scientific and Technical Information of China (English)

    LAN Wei; PENG Xingping; LIU Xueqin; HE Zhiwei; WANG Yinyue

    2007-01-01

    Zinc oxide (ZnO) thin films were deposited on (100) Si substrates by sol-gel technique.Zinc acetate was used as the precursor material.The effect of different anneal-ing atmospheres and annealing temperatures on composition, structural and optical properties of ZnO thin films was inves-tigated by using Fourier transform infrared spectroscopy, X-ray diffraction,atomic force microscopy and photolumi-nescence (PL),respectively.At an annealing temperature of 400℃ in N2 for 2 h,dried gel films were propitious to undergo structural relaxation and grow ZnO grains.ZnO thin film annealed at 400℃ in N2 for 2 h exhibited the optimal structure and PL property,and the grain size and the lattice constants of the film were calculated (41.6 nm,a = 3.253 A and c=5.210A).Moreover,a green emission around 495 nm was observed in the PL spectra owing to the oxygen vacancies located at the surface of ZnO grains.With increas- ing annealing temperature,both the amount of the grown ZnO and the specific surface area of the grains decrease,which jointly weaken the green emission.

  5. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  6. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  7. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  8. Cure and mechanical behaviors of cycloaliphatic/DGEBA epoxy blend system using electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Heo, G.Y.; Park, S.J. [Korea Research Institute of Chemical Technology, Taejeon (Korea)

    2002-05-01

    4-Vinyl-1- cyclohexene diepoxide (VCE)/ diglycidyl ether of bisphenol -A(DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. the effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system varied within 100:0, 80:20, 60:40. 40:60 20:80, and 0:100wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor (K{sub 1C}) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chide structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T{sub max}), and decomposition activation energy (E{sub d}) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum K{sub 1C} value showed at mixing ratio of 40:60 wt% in this blend system. (author). 22 refs., 2 tabs., 6 figs.

  9. Fault Diagnosis of Beam-Like Structure Using Modified Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Dhirendranath Thatoi

    2014-01-01

    Full Text Available This paper presents a novel hybrid fuzzy logic based artificial intelligence (AI technique applicable to diagnosis of the crack parameters in a fixed-fixed beam by using the vibration signatures as input. The presence of damage in engineering structures leads to changes in vibration signatures like natural frequency and mode shapes. In the first part of this work, a structure with a failure crack has been analyzed using finite element method (FEM and retrospective changes in the vibration signatures have been recorded. In the second part of the research work, these deviations in the vibration signatures for the first three mode shapes have been taken as input parameters for a fuzzy logic based controller for calculation of crack location and its severity as output parameters. In the proposed fuzzy controller, hybrid membership functions have been taken. Several fuzzy rules have been identified for prediction of crack depth and location and the results have been compared with finite element analysis. A database of experimental results has also been considered to check the robustness of the fuzzy controller. The results show that predictions for the nondimensional crack location, α, deviate ~2.4% from experimental values and for the nondimensional crack depth, δ, are less than ~−2%.

  10. Flux pinning properties of MgB{sub 2} thin films on Al tape substrates deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K., E-mail: kenji@st.cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T.; Sueyoshi, T. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Doi, T.; Nishikawa, T. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan)

    2011-11-15

    MgB{sub 2} thin films were deposited on Al tape substrates by EBE. The MgB{sub 2} thin films on Al tapes show much higher J{sub c} values compared to those of MgB{sub 2} wires fabricated by PIT method. The MgB{sub 2} thin films on Al tapes have c-axis correlated pinning centers. The scaling analysis of macroscopic pinning force indicates that a main pinning center is grain boundary. Flux pinning properties have been investigated in two kinds of MgB{sub 2} thin films deposited on Al tapes by electron beam evaporation: One is a stoichiometric composition and the other is a slightly B-rich composition. The values of critical current density J{sub c} in both MgB{sub 2} thin films on Al tape substrates at 10 K in the magnetic field parallel to the c-axis are higher than those in MgB{sub 2} thin films on Si and Al{sub 2}O{sub 3} substrates prepared by the same method. Both the MgB{sub 2} thin films on Al tapes show the large peaks for a magnetic field, B//c in the field-angular dependence of J{sub c}. This result indicates that the MgB{sub 2} thin films have the c-axis correlated pinning centers. Scaling analysis in the reduced macroscopic pinning force density versus the reduced magnetic field at 20 K implies that a main pinning center in both the MgB{sub 2} thin films is grain boundaries. In addition, it was suggested that a nonstoichiometric MgB{sub 2} thin film has additional pinning centers which act effectively in a high magnetic field.

  11. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, Aliaksei [NICADD, DeKalb; Edstrom, Dean [Fermilab; Gai, Wei [Argonne, HEP; Ha, Gwanghui [Argonne, HEP; Piot, Philippe [NICADD, DeKalb; Power, John [Argonne, HEP; Qiang, Gao [Unlisted, CN; Ruan, Jinhao [Fermilab; Santucci, James [Fermilab; Wisniewski, Eric [Argonne, HEP

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  12. Progress in the development of deposition prevention and cleaning techniques of in-vessel optics in ITER

    Science.gov (United States)

    Mukhin, E.; Vukolov, K.; Semenov, V.; Tolstyakov, S.; Kochergin, M.; Kurskiev, G.; Podushnikova, K.; Razdobarin, A.; Gorodetsky, A.; Zalavutdinov, R.; Bukhovets, V.; Zakharov, A.; Bulovich, S.; Veiko, V.; Shakshno, E.

    2009-08-01

    The lifetime of front optical components unprotected from reactor grade plasmas may be very short due to intensive contamination with carbon and beryllium-based materials eroded by the plasma from beryllium walls and carbon tiles. Deposits result in a significant reduction and spectral alterations of optical transmission. In addition, even rather thin and transparent deposits can dramatically change the shape of reflectance spectra, especially for mirrors with rather low reflectivity, such as W or Mo. The distortion of data obtained with various optical diagnostics may affect the safe operation of ITER. Therefore, the development of optics-cleaning and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The problem is of particular concern for optical elements positioned in the divertor region. The latest achievements in protection of in-vessel optics are presented using the example of deposition prevention/cleaning techniques for in-machine components of the Thomson scattering system in the divertor. Careful consideration of well-known and novel protection approaches shows that neither of them alone provides guaranteed survivability of the first in-vessel optics in the divertor. Only a set of complementary prevention/cleaning techniques, which include special materials for mirrors and inhibition additives for plasma, is able to manage the challenging task. The essential issue, which needs to be addressed in the immediate future, is an extensive development of techniques tested under experimental conditions (exposure time and contamination fluxes) similar to those expected in ITER.

  13. Development of the Technique for Fabricating Submicron Moiré Gratings on Metal Materials Using Focused Ion Beam Milling

    Institute of Scientific and Technical Information of China (English)

    DU Hua; XIE Hui-Min; GUO Zhi-Qiang; LUO Qiang; GU Chang-Zhi; QIANG Hai-Chang; RONG Li-Jian

    2007-01-01

    A focused gallium ion (Ga+) beam is used to fabricate micro/submicron spacing gratings on the surface of porous NiTi shape memory alloy (SMA). The crossing type of gratings with double-frequency (25001/mm and 50001/mm)using the focused ion beam (FIB) milling are successfully produced in a combination mode or superposition are obtained to study the micro-scale deformation of porous NiTi SMA. The grating fabrication technique is discussed in detail. The experimental results verify the feasibility of fabricating high frequency grating on metal surface using FIB milling.

  14. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    Transversal coherent beam oscillations can occur in synchrotrons directly after injection due to errors in position and angle, which stem from inaccurate injection kicker reactions. Furthermore, the demand for higher beam intensities is always increasing in particle accelerators. The wake fields generated by the traveling particles will be increased by increasing the beam intensity. This leads to a stronger interaction between the beam and the different accelerator components, which increases the potential of coherent instabilities. Thus, undesired beam oscillations will occur when the natural damping is not enough to attenuate the oscillations generated by the coherent beam-accelerator interactions. The instabilities and oscillations can be either in transversal or longitudinal direction. In this work we are concerned with transversal beam oscillations only. In normal operation, transversal beam oscillations are undesired since they lead to beam quality deterioration and emittance blow up caused by the decoherence of the oscillating beam. This decoherence is caused by the tune spread of the beam particles. The emittance blow up reduces the luminosity of the beam, and thus the collision quality. Therefore, beam oscillations must be suppressed in order to maintain high beam quality during acceleration. A powerful way to mitigate coherent instabilities is to employ a feedback system. A Transversal Feedback System (TFS) senses instabilities of the beam by means of Pickups (PUs), and acts back on the beam through actuators, called kickers. In this thesis, a novel concept to use multiple PUs for estimating the beam displacement at the position with 90 phase advance before the kicker is proposed. The estimated values should be the driving feedback signal. The signals from the different PUs are delayed such that they correspond to the same bunch. Subsequently, a weighted sum of the delayed signals is suggested as an estimator of the feedback correction signal. The

  15. A New Technique for Vernier Pointing of a Beam-Waveguide Antenna

    Science.gov (United States)

    Veruttipong, Watt; Bathker, Dan A.

    1994-01-01

    This paper presents a new and simple approach for the Ka-band vernier pointing of a 34m beam-waveguide (BWG) antenna (also applicable to a 70m antenna. In this study, rotation of a BWG flat mirror, located at the elevation axis, is used to scan the beam instead of using the very large tipping structure of the antenna.

  16. Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties

    Science.gov (United States)

    Bundesmann, C.; Lautenschläger, T.; Thelander, E.; Spemann, D.

    2017-03-01

    Several sets of TiO2 films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  17. Fabrication and Properties of Organic-Inorganic Nanolaminates Using Molecular and Atomic Layer Deposition Techniques

    Science.gov (United States)

    2012-02-01

    55, 1030-1039 (2009).* 2. B.B. Burton, D.N. Goldstein and S.M. George, "Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl) magnesium ...Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide , J. Phys. Chem. C 114, 17597-17603 (2010).* 28. L.A. Riley, A.S

  18. A lidar technique to quantify surface deposition from atmospheric releases of bulk liquids

    Science.gov (United States)

    Post, Madison J.; Glaes, Thomas; Matta, Joseph; Sommerville, Douglas; Einfeld, Wayne

    We show that a scanning, pulsed lidar can be used to quantify the time history and areal concentration of mass deposited on the ground from an elevated release of bulk liquid. Aircraft measurements, witness car depositions and evaporative modelling crudely support results from analysed lidar data.

  19. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: pkuhjf@bit.edu.cn [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Jaegermann, Wolfram [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Besland, M.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-05-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface.

  20. Comparison of TiO2 and ZrO2 Films Deposited by Electron-Beam Evaporation and by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-Ke; LI Hai-Yuan; FAN Zheng-Xiu; TANG Yong-Xing; JIN Yun-Xia; ZHAO Yuan-An; HE Hong-Bo; SHAO Jian-Da

    2007-01-01

    TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel films have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the film, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.

  1. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  2. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  3. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  4. Thermal stability and thermal expansion behaviour of ZrO{sub 2}/Y{sub 2}O{sub 3} multilayers deposited by pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Maneesha, E-mail: pkigcar@gmail.com [Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kuppusami, P. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, 600119 Tamil Nadu (India); Murugesan, S.; Ghosh, Chanchal; Divakar, R.; Singh, Akash; Mohandas, E. [Materials Synthesis and Structural Characterisation Division, Physical Metallurgy Group, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    Multilayers of ZrO{sub 2}/Y{sub 2}O{sub 3} were prepared by pulsed laser deposition technique with variation in the ZrO{sub 2} layer thickness from 5 to 30 nm keeping the Y{sub 2}O{sub 3} layer thickness constant (∼10 nm). The stability, phase evolution and thermal expansion behaviour of the multilayers were analyzed by high temperature x-ray diffraction technique, in the temperature range of 300–1373 K. Unlike the single layer of ZrO{sub 2} film, which shows a mixture of tetragonal and monoclinic phase, the ZrO{sub 2} layers in multilayers show tetragonal phase in case of all the multilayers investigated in the present work. The values of coefficient of thermal expansion (CTE) decrease with increase in the ZrO{sub 2} layer thickness. The CTE of both ZrO{sub 2} and Y{sub 2}O{sub 3} are found to be influenced by their mutual solubility as well as due to interdiffusion of these oxides taking place along the interfaces of the multilayers, especially during high temperature heat-treatment. - Highlights: • ZrO{sub 2}/Y{sub 2}O{sub 3} multilayers were deposited by pulsed laser deposition technique. • Formation of tetragonal phase of ZrO{sub 2} and cubic phase of Y{sub 2}O{sub 3} were observed. • The multilayers films show good thermal stability upto temperature 1373 K. • The coefficient of thermal expansion (CTE) of t-ZrO{sub 2} decreases with increase in ZrO{sub 2} layer thickness.

  5. Hg1-xCdxTe vapor deposition on CdZnTe substrates by Closed Space Sublimation technique

    Science.gov (United States)

    Rubio, Sandra; Sochinskii, Nikolai V.; Repiso, Eva; Tsybrii, Zinoviia; Sizov, Fiodor; Plaza, Jose Luis; Diéguez, Ernesto

    2017-01-01

    Closed Space Sublimation (CSS) technique has been studied to deposit Hg1-xCdxTe polycrystalline films on CdZnTe substrates at the improved pressure-temperature conditions. The experimental results on film characterization suggest that the CSS optimal conditions are the argon atmospheric pressure (1013 mbar) and the deposition temperature in the range of 500-550 °C. These conditions provide macro-defect free Hg1-xCdxTe films with the uniform size and surface distribution of polycrystals.

  6. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    Science.gov (United States)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  7. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitati...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  8. Invited Article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier

    Science.gov (United States)

    Turner, Daniel B.; Stone, Katherine W.; Gundogdu, Kenan; Nelson, Keith A.

    2011-08-01

    We have developed an efficient spectrometer capable of performing a wide variety of coherent multidimensional measurements at optical wavelengths. The two major components of the largely automated device are a spatial beam shaper which controls the beam geometry and a spatiotemporal pulse shaper which controls the temporal waveform of the femtosecond pulse in each beam. We describe how to construct, calibrate, and operate the device, and we discuss its limitations. We use the exciton states of a semiconductor nanostructure as a working example. A series of complex multidimensional spectra—displayed in amplitude and real parts—reveals increasingly intricate correlations among the excitons.

  9. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    Science.gov (United States)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  10. Computer simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation.

    Science.gov (United States)

    Ling, C; Connor, K A; Demers, D R; Radke, R J; Schoch, P M

    2007-11-01

    A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This paper describes the computational tools created to model camera images of the light emitted from a simulated ion beam, reconstruct a three-dimensional trajectory, and estimate the accuracy of the reconstruction. First, a computer model is used to create images of the torus interior from any candidate camera location. It is used to explore the visual field of the camera and thus to guide camera parameters and placement. Second, it is shown that a three-dimensional ion beam trajectory can be recovered from a pair of perspectively projected trajectory images. The reconstruction considers effects due to finite beam size, nonuniform beam current density, and image background noise. Third, it is demonstrated that the trajectory reconstructed from camera images can help compute magnetic field profiles, and might be used as an additional constraint to an equilibrium reconstruction code, such as MSTFit.

  11. Combined total body X-ray irradiation and total skin electron beam radiotherapy with an improved technique for mycosis fungoides

    Energy Technology Data Exchange (ETDEWEB)

    Halberg, F.E.; Fu, K.K.; Weaver, K.A.; Zackheim, H.S.; Epstein, E.H. Jr.; Wintroub, B.U.

    1989-08-01

    Twelve consecutive patients with advanced stage mycosis fungoides (MF) were treated with combined total body X ray irradiation (TBI) and total skin electron beam radiotherapy (EBRT). Six had generalized plaque disease and dermatopathic nodes, three had tumor stage disease and node biopsy positive for mycosis fungoides, and three had erythroderma/Sezary syndrome. The treatment regimen consisted of split course total body X ray irradiation, given in twice weekly 15 cGy fractions to 75 cGy, then total skin electron beam radiation therapy given in once weekly 400 cGy fractions to a total dose of 2400 cGy. Underdosed areas and areas of greatest initial involvement were boosted 400 cGy twice weekly for an additional 1200 cGy. This was followed by a second course of total body X ray irradiation, to a total dose of 150 cGy. The total skin electron beam radiotherapy technique is a modification of an established six position EBRT technique for mycosis fungoides. Measurements to characterize the beam with and without a lexan scattering plate, demonstrated that the combination of no-plate beams produced better dose uniformity with a much higher dose rate. This improved technique is particularly advantageous for elderly and/or frail patients. Nine (75%) of the 12 patients achieved complete response (CR). The other three had significant improvement with greater than 80% clearing of their disease and resolution of symptoms. All six patients with generalized plaque disease achieved complete response and remained free of disease from 2 to 16 months. Two of three node positive patients also achieved complete response; one, with massive biopsy-documented mycosis fungoides nodal disease and deep open tumors, remained relapse-free over 2 years. Only one of the three patients with erythroderma/Sezary syndrome achieved a complete response, which was short lived.

  12. Molecular beam epitaxy growth of GaN/AlGaN quantum cascade structure using droplet elimination by thermal annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Wataru; Hirayama, Hideki [Terahertz Quantum Device Laboratory, RIKEN, 519-1399 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)

    2011-05-15

    We studied on the radio-frequency molecular beam epitaxial (RF-MBE) growth of GaN/AlGaN quantum cascade (QC) structure grown on a metal organic chemical vapor deposition (MOCVD)-GaN template by employing the droplet elimination by thermal annealing (DETA) technique, in order to realize the successful fabrication of a QC structure with a large number of periods and to increase the radiant intensity from terahertz-quantum cascade lasers (THz-QCL) sample. DETA is a technique in which the metal droplets that form on the surface are evaporated and eliminated by temporarily increasing the substrate temperature, utilizing the property whereby the equilibrium vapor pressures of the metal components (Ga, Al) are larger than those of the resulting nitrides (GaN, AlN). DETA is a useful method which not only makes it possible to increase the number of periods in the QC structure, but also to improve the surface and structural properties of the QC structure. We could successfully increase the radiant intensity from a THz-QCL sample by increasing the number of periods in the stacked QC structure by using the DETA technique. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    OpenAIRE

    Pinheiro,Wagner Anacleto; Falcão, Vivienne Denise; Cruz,Leila Rosa de Oliveira; Ferreira,Carlos Luiz

    2006-01-01

    Unlike other thin film deposition techniques, close spaced sublimation (CSS) requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate) and a sintered C...

  14. Effect of Annealing Temperature on the Optical Spectra of CdS Thin Films Deposited at Low Solution Concentrations by Chemical Bath Deposition (CBD Technique

    Directory of Open Access Journals (Sweden)

    Zahid Rizwan

    2011-02-01

    Full Text Available Two different concentrations of CdCl2 and (NH22CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD technique. CdCl2 (0.000312 M and 0.000625 M was employed as a source of Cd2+ while (NH22CS (0.00125 M and 0.000625 M for S2− at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl2 (0.000312 M. Optical energy band gap (Eg, Urbach energy (Eu and absorption coefficient (α have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97% was obtained for the air-annealed films at higher temperature at CdCl2 (0.000312 M.

  15. The LUPIN detector supporting least intrusive beam monitoring technique through neutron detection

    CERN Document Server

    Manessi, G P; Welsch, C; Caresana, M; Ferrarini, M

    2013-01-01

    The Long interval, Ultra-wide dynamic Pile-up free Neutron rem counter (LUPIN) is a novel detector initially developed for radiation protection purposes, specifically conceived for applications in pulsed neutron fields. The detector has a measurement capability varying over many orders of neutron burst intensity, from a single neutron up to thousands of interactions for each burst, without showing any saturation effect. Whilst LUPIN has been developed for applications in the radiation protection fields, its unique properties make it also well suited to support other beam instrumentation. In this contribution, the design of LUPIN is presented in detail and results from measurements carried out in different facilities summarize its main characteristics. Its potential use as beam loss monitor (BLM) and complementary detector for non-invasive beam monitoring purposes (e.g. to complement a monitor based on proton beam “halo” detection) in medical accelerators is then examined. In the context of its application...

  16. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    Science.gov (United States)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  17. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    CERN Document Server

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  18. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J L; Anders, A; Albella, J M; Horton, J A; Horton, T H; Ayyalasomayajula, P R; Allen, M, E-mail: jlendrino@icmm.csic.es

    2010-11-01

    Amorphous carbon (a-C) also referred as diamond-like carbon (DLC) films are well known to be a biocompatible material with good chemical in ertness; this makes it a strong candidate to be used as a matrix that embeds metallic elements with an antimicrobial effect. We have deposited as et of a-C:Ag films using a dual-cathode pulsed filtered cathodic arc source, the arc pulse frequency of the silver and graphite cathodes was controlled in order to obtain samples with various silver contents. In this study, we show the deposition of silver and carbon ions using this technique and analyze the advantages of incorporating silver into a-C by studying the antimicrobial properties against staphylococcus of samples deposited on Ti{sub 6}Al{sub 4}V coupons and evaluated using 24-well tissue culture plates.

  19. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique

    Science.gov (United States)

    Hugo, Ronald J.; Jumper, Eric J.

    1996-08-01

    We discuss the use of time series of the jitter angle of multiple, small-aperture probe beams (the small-aperture beam technique, or SABT) as they emerge from a turbulent, optically active flow-field to quantify the time-varying optical path difference (OPD). The flow field studied is that for the transitionally turbulent region of a two-dimensional heated jet. Techniques to construct a complete time series of instantaneous realizations of the OPD are first applied to a numerically generated flow field and then to an experimental flow field. The SABT sensor's measurement accuracy is assessed, and its application to flow fields that differ from the numerical heated jet is discussed.

  20. Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Hydrogen profiling, i.e., decreasing the H2 dilution during deposition, is a well-known technique to maintain a proper crystalline ratio of the nanocrystalline (nc-Si:H) absorber layers of plasma-enhanced chemical vapor-deposited (PECVD) thin film solar cells. With this technique a large increase in

  1. Dielectric spectroscopy of electron beam deposited yttrium oxide films examined in metal–insulator–metal sandwich type structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorczyk, Tadeusz, E-mail: Tadeusz.Wiktorczyk@pwr.wroc.pl; Biegański, Piotr

    2014-01-31

    This report describes the dielectric properties of electron-beam deposited Y{sub 2}O{sub 3} thin films examined in metal–insulator–metal-type structures fabricated onto quartz substrates. The dielectric measurements have been carried out in the frequency domain from 10 mHz to 10 MHz, with a frequency response analyser. Frequency characteristics of the complex capacitance, as well as Cole–Cole and Nyquist graphs, have been presented and discussed for the temperature range 398–523 K. The results have been analyzed in terms of equivalent circuit models containing resistance–capacitance and constant phase elements (CPE). We have determined the values of the resistance, capacitance and CPE, which characterize the Y{sub 2}O{sub 3} film and near-electrode regions. It has been shown that for high frequencies/low temperatures the dielectric properties are connected with Y{sub 2}O{sub 3} film, while for low frequencies/high temperatures the dielectric response is dominated by the near-electrode regions. In the frequency range 0.1–10 MHz the important contribution of series resistance of electrodes and leads has been observed. - Highlights: • We examine the Al/Y{sub 2}O{sub 3}/Al thin film capacitors for frequency range 10 mHz–10 MHz. • The dielectric data are assigned to Y{sub 2}O{sub 3} and to metal/insulator interfaces. • The capacitance, resistance and constant phase elements describe their properties. • The values of these elements are estimated for temperatures from 398 K to 523 K.

  2. Effect of technique parameters on characteristics of hydrogen-free DLC films deposited by surface wave-sustained plasma

    Science.gov (United States)

    Xu, Junqi; Kousaka, Hiroyuki; Umehara, Noritsugu; Diao, Dongfeng

    2006-01-01

    Hydrogen-free diamond-like carbon (DLC) films were deposited by a new-type surface wave-sustained plasma physical vapor deposition (SWP-PVD) system under various technique conditions. Electron density was measured by a Langmuir probe, while the film thickness and hardness were characterized using a surface profilometer and a nanoindenter, respectively. Surface morphology was investigated by an atomic force microscope (AFM). It was found that the electron density and deposition rate increased following the increase in microwave power, target voltage, or gas pressure. The typical electron density and deposition rate were about 1.87-2.04×10 11 cm -3 and 1.61-14.32 nm/min respectively. AFM images indicated that the grains of films changes as the technique parameters vary. The optical constants, refractive index n and extinction coefficient k, were obtained using an optical ellipsometry. With the increase in microwave power from 150 to 270 W, the extinction coefficient of DLC films increased from 0.05 to 0.27 while the refractive index decreased from 2.31 to 2.18.

  3. Simulation of crystalline beams in storage rings using molecular dynamics technique

    Science.gov (United States)

    Meshkov, I.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.

    2006-03-01

    Achieving very low temperatures in the beam rest frame can present new possibilities in accelerator physics. Increasing luminosity in the collider and in experiments with targets is a very important asset for investigating rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M [Budker, et al., in: Proceedings of the 4th All-Union Conference on Charged-Particle Accelerators [in Russian], vol. 2, Nauka, Moscow, 1975, p. 309; Budker et al., Part. Accel. 7 (1976) 197; Budker et al., At. Energ. 40 (1976) 49. E. Dementev, N. Dykansky, A. Medvedko et al., Prep. CERN/PS/AA 79-41, Geneva, 1979] (Novosibirsk), ESR [M. Steck et al., Phys. Rev. Lett. 77 (1996) 3803] and SIS [Hasse and Steck, Ordered ion beams, in: Proceeding of EPAC '2000] (Darmstadt), CRYRING [Danared et al., Observation of ordered ion beams in CRYRING, in: Proceeding of PAC '2001] (Stockholm) and PALLAS [Schramm et al., in: J.L. Duggan (Eds.), Proceedings of the Conference on Appl. of Acc. in Research and Industry AIP Conference Proceedings, p. 576 (to be published)] (Munich). In this report, the simulation of 1D crystalline beams with BETACOOL code is presented. The sudden reduction of momentum spread in the ESR experiment is described with this code. Simulation shows good agreement with experimental results and also with the intrabeam scattering (IBS) theory [Martini, Intrabeam scattering in the ACOOL-AA machines, CERN PS/84-9 AA, Geneva, 1984]. The code was used to calculate characteristics of the ordered state of ion beams for the TARN-II [Katayama, TARN II project, in: Proceedings of the IUCF workshop on nuclear physics with stored cooled beams, Spencer, IN, USA, 1984].

  4. A comparison of TPS and different measurement techniques in small-field electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  5. Meso-scale characterization of lithium distribution in lithium-ion batteries using ion beam analysis techniques

    Science.gov (United States)

    Gonzalez-Arrabal, R.; Panizo-Laiz, M.; Fujita, K.; Mima, K.; Yamazaki, A.; Kamiya, T.; Orikasa, Y.; Uchimoto, Y.; Sawada, H.; Okuda, C.; Kato, Y.; Perlado, J. M.

    2015-12-01

    The performance of a Li-ion battery (LIB) is mainly governed by the diffusion capabilities of lithium in the electrodes. Thus, for LIB improvement it is essential to characterize the lithium distribution. Most of the traditionally used techniques for lithium characterization give information about the local scale or in the macroscopic scale. However, the lithium behavior at the local scale is not mirrored at the macroscopic scale. Therefore, the lithium characterization in the mesoscopic scale would be of help to understand and to connect the mechanisms taking place in the two spatial scales. In this paper, we show a general description of the capabilities and limitations of ion beam analysis techniques to study the distributions of lithium and other elements present in the electrodes in the mesoscopic scale. The potential of the 7Li(p,α0)4He nuclear reaction to non-invasively examine the lithium distribution as a function of depth is illustrated. The lithium spatial distribution is characterized using particle induced γ-ray (μ-PIGE) spectroscopy. This technique allows estimating the density of the active particles in the electrode effectively contributing to the Li intercalation and/or de-intercalation. The advantages of the use of ion beam analysis techniques in comparison to more traditional techniques for electrode characterization are discussed.

  6. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  7. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology

    Science.gov (United States)

    Razza, Stefano; Castro-Hermosa, Sergio; Di Carlo, Aldo; Brown, Thomas M.

    2016-09-01

    To bring perovskite solar cells to the industrial world, performance must be maintained at the photovoltaic module scale. Here we present large-area manufacturing and processing options applicable to large-area cells and modules. Printing and coating techniques, such as blade coating, slot-die coating, spray coating, screen printing, inkjet printing, and gravure printing (as alternatives to spin coating), as well as vacuum or vapor based deposition and laser patterning techniques are being developed for an effective scale-up of the technology. The latter also enables the manufacture of solar modules on flexible substrates, an option beneficial for many applications and for roll-to-roll production.

  8. Structural and electrical characterizations of BiFeO{sub 3} capacitors deposited by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, Ali Osman, E-mail: cetinkayaaliosman@gmail.com [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Kaya, Senol; Aktag, Aliekber [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey); Budak, Erhan [Chemistry Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Yilmaz, Ercan [Physics Department, Abant Izzet Baysal University, 14280 Bolu (Turkey); Center for Nuclear Radiation Detector Research and Applications, 14280 Bolu (Turkey)

    2015-09-01

    Bismuth ferrite (BiFeO{sub 3}) thin films were deposited by sol–gel dip coating (SGDC) technique on Si-P(100) and glass substrates to investigate the structural and electrical characteristics. The aluminum (Al) metal contacts were formed on the samples deposited on the Si-P(100) to fabricate metal-oxide-semiconductor (MOS) capacitors. The fabricated MOS structures were characterized electrically by capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. The structural characterizations were performed by X-ray diffraction technique and scanning electron microscopy. The compositions of the films were investigated by energy-dispersive X-ray spectroscopy. The results exhibit that pure rhombohedral perovskite phase films were fabricated without any elemental contamination. Average grain sizes of the BiFeO{sub 3} deposited on silicon and glass wafers were found to be about 34,50 and 30,00 nm, respectively. In addition, while the thin films deposited on glass substrate exhibit porous surface, those deposited on Si-P(100) wafers exhibit dense microstructure with a homogenous surface. Moreover, the C–V and G/ω–V characteristics are sensitive to applied voltage frequency due to frequency dependent charges (N{sub ss}) and series resistance (R{sub s}). The peak values of R{sub s} have been decreased from 2,6 kΩ to 40 Ω, while N{sub ss} is varied from 6,57 × 10{sup 12} to 3,68 × 10{sup 12} eV{sup −1} cm{sup −2} with increasing in frequency. Consequently, pure phase polycrystalline BiFeO{sub 3} thin films were fabricated successfully by SGDC technique and BiFeO{sub 3} dielectric layer exhibits stable insulation characteristics. - Highlights: • Bismuth ferrite thin films were deposited onto silicon and glass substrates by sol–gel. • Structural and electrical properties of fabricated films have been investigated. • Pure rhombohedral perovskite phase films without any contamination were deposited. • Series resistance and interface

  9. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    Science.gov (United States)

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.

  10. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Science.gov (United States)

    Mohd Zaheruddin, K.; Rahmat, A.; Shamsul, J. B.; Mohd Nazree, B. D.; Aimi Noorliyana, H.

    2016-07-01

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  11. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  12. Feasibility of the Spin-Light Polarimetry Technique for Longitudinally Polarized Electron Beams

    CERN Document Server

    Mohanmurthy, Prajwal

    2013-01-01

    A novel polarimeter based on the asymmetry in the spacial distribution of synchrotron radiation will make for a fine addition to the existing M{\\o}ller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spacial distribution of synchrotron radiation will be measured by ionization chambers. The up-down (below and above the wiggle) spacial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, effects of a realistic wiggler magnetic field and an extended beam size were studied. The perturbation introduced by these effects was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber.

  13. Feasibility of the Spin-Light Polarimetry Technique for Longitudinally Polarized Electron Beams

    Directory of Open Access Journals (Sweden)

    Mohanmurthy Prajwal

    2014-03-01

    Full Text Available A novel polarimeter based on the asymmetry in the spatial distribution of synchrotron radiation (SR will make for a fine addition to the existing Møller and Compton polarimeters. The spin light polarimeter consists of a set of wiggler magnet along the beam that generate synchrotron radiation. The spatial distribution of synchrotron radiation will be measured by ionization chambers. The up-down (below and above the wiggle spatial asymmetry in the transverse plain is used to quantify the polarization of the beam. As a part of the design process, effects of a realistic wiggler magnetic field and an extended beam size were studied. The perturbation introduced by these effects was found to be negligible. Lastly, a full fledged GEANT-4 simulation was built to study the response of the ionization chamber (IC.

  14. Structural and optical properties of ZnO fabricated by reactive e-beam and rf magnetron sputtering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Al Asmar, R.; Ferblantier, G.; Mailly, F.; Foucaran, A. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, Unite mixte de Recherche du CNRS n 5507, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier (France)

    2005-03-01

    Zinc oxide thin films have been grown on (100)-oriented silicon substrate by reactive e-beam evaporation and rf magnetron sputtering techniques and a comparative study is discussed in this paper. Structural, electrical and optical characteristics have been studied before and after annealing in air by measurements of X-ray diffraction, real parts of the dielectric coefficient, and electrical resistivity. X-ray diffraction measurements have shown that ZnO films are highly c-axis-oriented with a full width at half maximum (FWMH) lower than 0.5 . The electrical resistivity is about 10{sup 11} {omega}.cm for magnetron sputtered films and it increases from 10{sup -2} {omega}.cm to about 10{sup 9} {omega}.cm after annealing at 750 C for electron beam evaporated films. Ellipsometry measurements have shown some improvement of the real dielectric coefficient after annealing treatment at 750 C of the ZnO evaporated by electron beam. The AFM images show that the surfaces of the e-beam evaporated ZnO and of the sputtered ZnO are relatively smooth. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique

    Science.gov (United States)

    2010-01-01

    23 (9) (2008) 2443–2457. [32] G.G. Stoney, The tension ofmetallic films deposited by electrolysis , Proc. R. Soc. A82 (553) (1909) 172–175. [33] M...Springer-Verlag, New York, 2006. [37] R.M. Keller, S.P. Baker, E. Arzt, Stress–temperature behavior of unpassivated thin copper films, Acta Mater. 47 (2

  16. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  17. Adaptive Filter Techniques for Optical Beam Jitter Control and Target Tracking

    Science.gov (United States)

    2008-12-01

    Analysis ......................................................51 5. Standard Deviation of Beam Position Error ...................................51 6...Organization of Analysis ...................................................................51 B. FEEDFORWARD ADAPTIVE FILTERS USING MULTIPLE...actuator (loud speaker or CFSM) before its effect reaches the error sensor. In ANC lingo , y(t) must first pass through the secondary plant dynamics of the

  18. Effect of annealing temperature on the optical spectra of CdS thin films deposited at low solution concentrations by Chemical Bath Deposition (CBD) Technique.

    Science.gov (United States)

    Rizwan, Zahid; Zakaria, Azmi; Mohd Ghazali, Mohd Sabri; Jafari, Atefeh; Din, Fasih Ud; Zamiri, Reza

    2011-02-22

    Two different concentrations of CdCl(2) and (NH(2))(2)CS were used to prepare CdS thin films, to be deposited on glass substrate by chemical bath deposition (CBD) technique. CdCl(2) (0.000312 M and 0.000625 M) was employed as a source of Cd(2+) while (NH(2))(2)CS (0.00125 M and 0.000625 M) for S(2-) at a constant bath temperature of 70 °C. Adhesion of the deposited films was found to be very good for all the solution concentrations of both reagents. The films were air-annealed at a temperature between 200 °C to 360 °C for one hour. The minimum thickness was observed to be 33.6 nm for film annealed at 320 °C. XRD analyses reveal that the films were cubic along with peaks of hexagonal phase for all film samples. The crystallite size of the films decreased from 41.4 nm to 7.4 nm with the increase of annealing temperature for the CdCl(2) (0.000312 M). Optical energy band gap (E(g)), Urbach energy (E(u)) and absorption coefficient (α) have been calculated from the transmission spectral data. These parameters have been discussed as a function of annealing temperature and solution concentration. The best transmission (about 97%) was obtained for the air-annealed films at higher temperature at CdCl(2) (0.000312 M).

  19. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  20. Application of the Ta liner technique to produce Ca beams at INFN-Legnaro National Laboratories (INFN-LNL).

    Science.gov (United States)

    Galatà, A; Sattin, M; Manzolaro, M; Martini, D; Facco, A; Tinschert, K; Spaedtke, P; Lang, R; Kulevoy, T

    2014-02-01

    The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

  1. Modeling the response of a fast ion loss detector using orbit tracing techniques in a neutral beam prompt-loss study on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B. [University of California-Irvine, Irvine, California 92697 (United States); Fisher, R. K.; Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Garcia-Munoz, M. [Max-Planck-Institut fuer Plasmaphysik, Garching D-85748 (Germany); Darrow, D. S.; Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2010-10-15

    A numerical model describing the expected measurements of neutral beam prompt-losses by a newly commissioned fast ion loss detector (FILD) in DIII-D is presented. This model incorporates the well understood neutral beam deposition profiles from all eight DIII-D beamlines to construct a prompt-loss source distribution. The full range of detectable ion orbit phase space available to the FILD is used to calculate ion trajectories that overlap with neutral beam injection footprints. Weight functions are applied to account for the level of overlap between these detectable orbits and the spatial and velocity (pitch) properties of ionized beam neutrals. An experimental comparison is performed by firing each neutral beam individually in the presence of a ramping plasma current. Fast ion losses determined from the model are in agreement with measured losses.

  2. Q-factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Calleja, E. [Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rossbach, G.; Butté, R.; Glauser, M.; Levrat, J.; Cosendey, G.; Carlin, J.-F.; Grandjean, N. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Réveret, F. [Institut Pascal, UMR 6602 UBP/CNRS, Clermont Université, 24 Avenue des Landais, F-63177 Aubière Cedex (France)

    2013-12-21

    A 3λ/2 (In,Ga)N/GaN resonant cavity, designed for ∼415 nm operation, is grown by molecular beam epitaxy and is sandwiched between a 39.5-period (In,Al)N/GaN distributed Bragg reflector (DBR), grown on c-plane GaN-on-sapphire pseudo-substrate by metal-organic vapor phase epitaxy and an 8-period SiO{sub 2}/ZrO{sub 2} DBR, deposited by electron beam evaporation. Optical characterization reveals an improvement in the cavity emission spectral purity of approximately one order of magnitude due to resonance effects. The combination of spectrophotometric and micro-reflectivity measurements confirms the strong quality (Q)-factor dependence on the excitation spot size. We derive simple analytical formulas to estimate leak and residual absorption losses and propose a simple approach to model the Q-factor and to give a quantitative estimation of the weight of cavity disorder. The model is in good agreement with both transfer-matrix simulation and the experimental findings. We point out that the realization of high Q-factor (In,Ga)N containing microcavities on GaN pseudo-substrates is likely to be limited by the cavity disorder.

  3. Higher lung deposition with Respimat® Soft Mist™ Inhaler than HFA-MDI in COPD patients with poor technique

    Directory of Open Access Journals (Sweden)

    Peter Brand

    2008-08-01

    Full Text Available Peter Brand1, Bettina Hederer2, George Austen3, Helen Dewberry3, Thomas Meyer41RWTH, Aachen, Germany; 2Boehringer Ingelheim, Ingelheim, Germany; 3Boehringer Ingelheim, Bracknell, UK; 4Inamed Research, Gauting, GermanyAbstract: Aerosols delivered by Respimat® Soft Mist™ Inhaler (SMI are slower-moving and longer-lasting than those from pressurized metered-dose inhalers (pMDIs, improving the efficiency of pulmonary drug delivery to patients. In this four-way cross-over study, adults with chronic obstructive pulmonary disease (COPD and with poor pMDI technique received radiolabelled Berodual® (fenoterol hydrobromide 50 µg/ipratropium bromide 20 µg via Respimat® SMI or hydrofluoroalkane (HFA-MDI (randomized order on test days 1 and 2, with no inhaler technique training. The procedure was repeated on test days 3 and 4 after training. Deposition was measured by gamma scintigraphy. All 13 patients entered (9 males, mean age 62 years; FEV1 46% of predicted inhaled too fast at screening (peak inspiratory flow rate [IF]: 69–161 L/min. Whole lung deposition was higher with Respimat® SMI than with pMDI for untrained (37% of delivered dose vs 21% of metered dose and trained patients (53% of delivered vs 21% of metered dose (pSign-Test = 0.15; pANOVA< 0.05. Training also improved inhalation profiles (slower average and peak IF as well as longer breath-hold time. Drug delivery to the lungs with Respimat® SMI is more efficient than with pMDI, even with poor inhaler technique. Teaching patients to hold their breath as well as to inhale slowly and deeply increased further lung deposition using Respimat® SMI.Keywords: chronic obstructive pulmonary disease, drug delivery, inhalation, metered-dose inhaler, poor inhalation technique, training

  4. An economic CVD technique for pure SnO2 thin films deposition: Temperature effects

    Indian Academy of Sciences (India)

    M Maleki; S M Rozati

    2013-04-01

    A modified new method of CVD for formation of pure layers of tin oxide films was developed. This method is very simple and inexpensive and produces films with good electrical properties. The effect of substrate temperature on the sheet resistance, resistivity, mobility, carrier concentration and transparency of the films has been studied. The best sheet resistance obtained at substrate temperature of 500 ◦C was about 27 /cm2. X-ray diffraction showed that the structure of deposited films was polycrystalline with a grain size between 150–300 Å. The preferred orientation was (211) for films deposited at substrate temperature of about 500 °C. FESEM micrographs revealed that substrate temperature is an important factor for increasing grain size and modifies electrical parameters. UV-visible measurement showed reduction of transparency and bandgap of the layers with increasing substrate temperature.

  5. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    Science.gov (United States)

    2010-06-01

    she was extremely busy running our household of five, homeschooling our son and volunteering. She amazes me every single day. I know that her... benefit to using solutions in excess of 80 mmol of PAA. However, at concentrations less than 80 mmol for the other standard parameter values it is...maximum film thickness. These results demonstrate that faster film deposition time is not the only benefit of Spray-LbL’s shorter polyelectrolyte to

  6. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  7. Adhesion improvement of carbon-based coatings through a high ionization deposition technique

    Science.gov (United States)

    Broitman, E.; Hultman, L.

    2012-06-01

    The deposition of highly adherent carbon nitride (CNx) films using a pretreatment with two high power impulse magnetron sputtering (HIPIMS) power supplies in a master-slave configuration is reviewed. SKF3 (AISI 52100) steel substrates were pretreated in the environment of a high ionized Cr+Ar plasma in order to sputter clean the surface and implant Cr metal ions. CNx films were subsequently deposited at room temperature by DC magnetron sputtering from a high purity C target in a N2/Ar plasma discharge. All processing was done in an industrial-scale CemeCon CC800 coating system. A series of depositions were obtained with samples pretreated at different bias voltages (DC and pulsed). The adhesion of CNx films, evaluated by the Daimler-Benz Rockwell-C test, reaches strength quality HF1. Adhesion results are correlated to high resolution transmission electron microscopy observations confirming the formation of an optimal interfacial mixing layer of Cr and steel. The throwing power increase for HIPIMS coatings is associated to the higher ionization in the plasma discharge.

  8. The study of multilayers Fe/Hf and Ni/Hf by slow positron beam technique

    Science.gov (United States)

    Tashiro, Mutsumi; Nakajyo, Terunobu; Murashige, Yusuke; Koizumi, Tomoya; Kanazawa, Ikuzo; Komori, Fumio; Soe, We-Hyo; Yamamoto, Ryoichi; Ito, Yasuo

    1997-05-01

    The S-parameters versus the incident positron energy are measured in the Ni/Hf multilayer, thin Hf film, thin Fe film and the bilayer Fe/Hf. We have analyzed the change in vacancy-type defects in these multilayers and thin films with the deposition temperature in the MBE system.

  9. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  10. Development of the techniques for food processing with low-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Todoroki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-02-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of {gamma}-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of {gamma}-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  11. Characterization of acoustic effects on flame structures by beam deflection technique

    Energy Technology Data Exchange (ETDEWEB)

    Bedat, B.; Kostiuk, L.W.; Cheng, R.K.

    1993-10-01

    This work shows that the acoustic effects are the causes of the small amplitude flame wrinkling and movements seen in all the different gravitational conditions. The comparison between the acoustic velocity and beam deflection spectra for the two conditions studied (glass beads and fiber glass) demonstrates clearly this flame/acoustic coupling. This acoustic study shows that the burner behaves like a Helmholtz resonator. The estimated resonance frequency corresponds well to the experimental measurements. The fiber glass damps the level of the resonance frequency and the flame motion. The changes shown in normalized beam deflection spectra give further support of this damping. This work demonstrates that the acoustics has a direct influence on flame structure in the laminar case and the preliminary results in turbulent case also show a strong coupling. The nature of this flame/acoustic coupling are still not well understood. Further investigation should include determining the frequency limits and the sensitivity of the flame to acoustic perturbations.

  12. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Hiroshi; Kishimoto, Masashi; Hayashi, Daisuke; Saito, Motohiro; Yoshida, Hideo [Department of Aeronautics and Astronautics, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Shikazono, Naoki; Teshima, Hisanori; Matsuzaki, Katsuhisa; Kanno, Daisuke; Kasagi, Nobuhide [Department of Mechanical Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsui, Toshiaki; Kishida, Ryo; Muroyama, Hiroki; Eguchi, Koichi [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2010-02-15

    The three-dimensional microstructure of an SOFC anode is quantified using a dual beam focused ion beam scanning electron microscopy (FIB-SEM) system equipped with an energy dispersive X-ray spectroscopy (EDX) unit. The microstructure of the Ni-YSZ anode is virtually reconstructed in a computational field using a series of acquired two-dimensional SEM images. The three-phase boundary (TPB) density and tortuosity factors are carefully evaluated by applying two different evaluation methods to each parameter. The TPB density is estimated by a volume expansion method and a centroid method, while the tortuosity factors are evaluated by a random walk calculation and a lattice Boltzmann method (LBM). Estimates of each parameter obtained by the two methods are in good agreement with each other, thereby validating the reliability of the analysis methods proposed in this study. (author)

  13. CdS thin films obtained by thermal treatment of cadmium(II) complex precursor deposited by MAPLE technique

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, Andrei [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Mietlarek-Kropidlowska, Anna [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Constantinescu, Catalin, E-mail: catalin.constantinescu@inflpr.ro [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Scarisoreanu, Nicu; Dumitru, Marius [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Strankowski, Michal [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Rotaru, Petre [University of Craiova, Faculty of Physics, 13 A.I. Cuza St., Craiova RO-200585, Dolj (Romania); Ion, Valentin [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Vasiliu, Cristina [INOE 2000 - National Institute for Optoelectronics, 1 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania); Becker, Barbara [Gdansk University of Technology, Chemistry Faculty, 11/12 G. Narutowicza Str., PL-90-233 Gdansk (Poland); Dinescu, Maria [INFLPR - National Institute for Laser, Plasma and Radiation Physics, PPAM - Lasers Department, 409 Atomistilor Bvd., Magurele RO-077125, Bucharest (Romania)

    2009-05-15

    Thin films of [Cd{l_brace}SSi(O-Bu{sup t}){sub 3}{r_brace}(S{sub 2}CNEt{sub 2})]{sub 2}, precursor for semiconducting CdS layers, were deposited on silicon substrates by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Structural analysis of the obtained films by Fourier transform infrared spectroscopy (FTIR) confirmed the viability of the procedure. After the deposition of the coordination complex, the layers are manufactured by appropriate thermal treatment of the system (thin film and substrate), according to the thermal analysis of the compound. Surface morphology of the thin films was investigated by atomic force microscopy (AFM) and spectroscopic-ellipsometry (SE) measurements.

  14. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature.

    Science.gov (United States)

    Cure, Jérémy; Piettre, Kilian; Coppel, Yannick; Beche, Eric; Esvan, Jérôme; Collière, Vincent; Chaudret, Bruno; Fau, Pierre

    2016-02-24

    With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal-organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal-organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state (29) Si MAS NMR, XPS, SIMS, and HRTEM.

  15. N-doped ZnO films grown from hybrid target by the pulsed laser deposition technique

    Science.gov (United States)

    Martín-Tovar, E. A.; Chan y Díaz, E.; Acosta, M.; Castro-Rodríguez, R.; Iribarren, A.

    2016-10-01

    ZnO thin films were grown by the pulsed laser deposition technique on glass substrate using a hybrid target composed of ZnO powder embedded into a poly(ethyl cyanoacrylate) matrix. The resulting thin film presented ZnO wurtzite structure with very low stress and diffractogram very similar to that of the powder pattern. From comparing with ZnO thin films grown from traditional sintered target, it is suggested that the use of this hybrid target with a soft matrix led to ejection of ZnO clusters that conveniently disposed and adhered to substrate and previous deposited layers. Chemical measurements showed the presence of Zn-N bonds, besides Zn-O ones. Optical absorption profile confirmed the presence of low-polymerized zinc oxynitride molecular subunits, besides ZnO.

  16. Application of the Time of Flight Technique for Lifetime Measurements with Relativistic Beams of Heavy Nuclei

    CERN Document Server

    Chester, A; Bazin, D; Becerril, A; Campbell, C M; Cook, J M; Dewald, A; Dinca, D C; Miller, D; Moeller, V; Müller, W F; Norris, R P; Portillo, M; Starosta, K; Stolz, A; Terry, J R; Vaman, C; Zwahlen, H

    2006-01-01

    A novel method for picosecond lifetime measurements of excited gamma-ray emitting nuclear states has been developed for fast beams from fragmentation reactions. A test measurement was carried out with a beam of 124Xe at an energy of ~55 MeV/u. The beam ions were Coulomb excited to the first 2+ state on a movable target. Excited nuclei emerged from the target and decayed in flight after a distance related to the lifetime. A stationary degrader positioned downstream with respect to the target was used to further reduce the velocity of the excited nuclei. As a consequence, the gamma-ray decays from the 2+ excited state that occurred before or after traversing the degrader were measured at a different Doppler shift. The gamma-ray spectra were analyzed from the forward ring of the Segmented Germanium Array; this ring positioned at 37 deg. simultaneously provides the largest sensitivity to changes in velocity and the best energy resolution. The ratio of intensities in the peaks at different Doppler shifts gives inf...

  17. Application of beam deconvolution technique to power spectrum estimation for CMB measurements

    CERN Document Server

    Keihänen, Elina; Kurki-Suonio, Hannu; Reinecke, Martin

    2016-01-01

    We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from earlier ones in that the power spectrum is estimated directly from time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (DQML) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate, and minimizes its variance. We successfully apply it to multipoles up to $\\ell$=200. The second method is derived as an weak-signal approximation from the first one. It yields an unbiased es...

  18. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  19. Research on the Adsorption of Methylene Blue with Rice Husk Ash Aided by Ion Beam Etching Technique

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main ...

  20. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.