WorldWideScience

Sample records for beam deposition techniques

  1. Growth of cluster assembled ZnO film by nanocluster beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Nilanjan [Department of Physics, Manipal University Jaipur, Jaipur-303007 (India)

    2015-06-24

    ZnO is considered as one of the most promising material for optoelectronic devices. The present work emphasizes production of cluster assembled ZnO films by a UHV nanocluster beam deposition technique where the nanoclusters were produced in a laser vaporization cluster source. The microstructural and the optical properties of the ZnO nanocluster film deposited were investigated. As the wet chemical processes are not compatible with current solid state methods of device fabrication, therefore alternative UHV technique described in the paper is the need of the hour.

  2. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  3. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  5. Thickness dependence of optical parameters for ZnTe thin films deposited by electron beam gun evaporation technique

    International Nuclear Information System (INIS)

    Salem, A.M.; Dahy, T.M.; El-Gendy, Y.A.

    2008-01-01

    Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented

  6. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  7. Study of Sb/SnO2 bi-layer films prepared by ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Huang, Jow-Lay

    2014-01-01

    In the present work, bi-layer thin films of Sb/SnO 2 were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO 2 layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO 2 bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10 −3 Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO 2 structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases

  8. Laser beam shaping techniques

    Energy Technology Data Exchange (ETDEWEB)

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  9. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  10. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay

    2016-05-01

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]x4. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases on increasing the W thicknesses in W/Si multilayers.

  11. Characterization of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films deposited by electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H; Parlak, M [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Kaleli, M, E-mail: parlak@metu.edu.t [Department of Physics, Sueleyman Demirel University, 32260 Isparta (Turkey)

    2009-08-21

    AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were deposited onto a quartz substrate by the electron-beam technique. For the investigation of the annealing effect on structural, optical and electrical properties of deposited films, samples were annealed in the temperature range 300-775 {sup 0}C. The composition analyses of the deposited films carried out by energy dispersive x-ray analysis measurements have shown that the deposited AgGa{sub 0.5}In{sub 0.5}Se{sub 2} films were indium- and gallium-rich but selenium- and slightly silver-deficient and there was a remarkable change in composition with annealing. As a result of x-ray diffraction measurements, the as-deposited films were found to have an amorphous structure and after annealing at 300 {sup 0}C a polycrystalline structure with different phases was observed. However, subsequent annealing resulted in the formation of single phase AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin film at about 775 {sup 0}C. The absorption coefficient of the films was determined from the transmission spectra and the band gap values were calculated and found to vary between 1.57 and 2.43 eV following annealing in the temperature range 300-775 {sup 0}C. The refractive index (n) and extinction coefficient (k) of the films were evaluated by applying the envelope method to the transmission spectra. The spectral distributions of these quantities for both as-deposited and annealed films were determined in detail and it was observed that there has been a remarkable influence of annealing on these quantities. The electrical properties of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were also investigated by means of temperature dependent conductivity measurements in the temperature range 100-460 K. The resistivity of the samples depending on the annealing temperature varied between 6.5 x 10{sup 5} and 16 {Omega} cm. As a result of the hot-probe method it was observed that the as-deposited films have indicated an n-type behaviour, while all the

  12. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  13. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm

  14. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  15. Solid gold nanostructures fabricated by electron beam deposition

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Rasmussen, A.M.

    2003-01-01

    and bridges. Transmission electron microscopy was used to study how the composition of these structures was affected when the background gas in the ESEM chamber and the electron beam parameters were varied. The nanostructures were layered composites of up to three different materials each characterized...... by a certain range of gold/carbon ratios. Above a certain threshold of ESEM chamber water vapor pressure and a certain threshold of electron beam current, the deposited tips contained a solid polycrystalline gold core. The deposition technique was used to fabricate free-standing nanowires and to solder free...

  16. Comparison of beam deposition for three neutral beam injection codes

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.; Mense, A.T.

    1979-03-01

    The three neutral beam injection codes BEAM (Houlberg, ORNL), HOFR (Howe, ORNL), and FREYA (Post, PPPL) are compared with respect to the calculation of the fast ion deposition profile H(r). Only plasmas of circular cross section are considered, with injection confined to the mid-plane of the torus. The approximations inherent in each code are pointed out, and a series of comparisons varying several parameters (beam energy and radius, machine size, and injection angle) shows excellent agreement among all the codes. A cost comparison (execution time and memory requirements) is made which points out the relative merits of each code within the context of incorporation into a plasma transport simulation code

  17. Multilayer Optical Coating Fabrication By Ion Beam Sputter Deposition

    Science.gov (United States)

    Becker, Juergen; Scheuer, Volker

    1989-02-01

    Ion Beam Sputter Deposition (IBSD) was proven to be a useful technique for producing high performance optical coatings. However, compared to other deposition techniques, several problems remain to be solved, such as low deposition rates, small areas with homogeneous deposition rate and the problem of contamination. In the work described here, a cubic vacuum chamber has been equipped with a commercially available ion beam source, a triple stage target holder and a rotating substrate holder. The primary interest was to get a reasonable deposition rate over a sufficiently large area. Single layers of SiO2, Ta205 and TiO2 and multilayers of Si02/Ta205 were produced. Contaminants in the films were analyzed by various techniques mainly by Total-Reflection X-ray Fluorescence (TXRF). Optical properties of the coatings were investigated to study the influence of the contaminants on the performance of the optical coatings. The optical properties were characterized by the refractive index, the absorption coefficient and the scattering behaviour. Scattering losses were measured by means of Total Integrated Scattering (TIS) and Angle Resolved Scattering (ARS). The damage threshold against high-power laser pulses of 1.06 pm was determined.

  18. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  19. Effect of discharge current and deposition temperature on roughness and density of NbC films fabricated by ion beam sputtering technique

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay; Lodha, G. S.

    2014-04-01

    NbC films were prepared using Ion beam sputtering system at various discharges current from 0.4 amps to 1.2 amps at room temperature. Effect of temperature on NbC films were also studied by depositing NbC films at various temperatures from room temperature to 200,300,400 and 600°C. X-ray reflectivity (XRR) study shows that surface roughness of the film decreases with decrease in discharge current. The optimum lowest roughness 3.2´̊A having density 92% of bulk was achieved at discharge current 0.6 amps at 3.0 cm3/min Ar gas flow. X-ray study also shows that film roughness decreases with increase in temperature of the film and after a certain temperature it increases with increase in temperature. The lowest surface roughness 2.1´̊A was achieved at 300°C with density 83% of bulk NbC at constant discharge current 0.6 amps.

  20. Plasma diagnostic techniques using particle beam probes

    International Nuclear Information System (INIS)

    Jennings, W.C.

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques

  1. Plasma diagnostic techniques using particle beam probes

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  2. An optimized nanoparticle separator enabled by electron beam induced deposition

    International Nuclear Information System (INIS)

    Fowlkes, J D; Rack, P D; Doktycz, M J

    2010-01-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  3. Techniques to sort Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-09-01

    Full Text Available properties such as their ability to propagate diffraction-free over a finite distance [12-21] and reconstruct after encountering an obstacle [22]. Exploiting these properties of Bessel beams will make them very useful in the field of long-range, broad.... Fig. 1. Case 1, column A: Annular rings (Fourier transform of Bessel beams) of the same radius but different azimuthal components (l = -5 and l = +5) are mapped to transverse momentum modes represented by the linear phase variations in column B. A...

  4. Molecular beam deposition of nanoscale ionic liquids in ultrahigh vacuum.

    Science.gov (United States)

    Maruyama, Shingo; Takeyama, Yoko; Taniguchi, Hiroki; Fukumoto, Hiroki; Itoh, Mitsuru; Kumigashira, Hiroshi; Oshima, Masaharu; Yamamoto, Takakazu; Matsumoto, Yuji

    2010-10-26

    We propose a new approach to nanoscience and technology for ionic liquids (ILs): molecular beam deposition of IL in ultrahigh vacuum by using a continuous wave infrared (CW-IR) laser deposition technique. This approach has made it possible to prepare a variety of "nano-IL" with the given composition on the substrate: a nanodroplet, on one hand, the volume of which goes down to 1 aL and, on the other hand, an ultrathin film with a thickness to several 100 nm or less. The result of fractional distillation of a binary mixture of ILs, investigated by nuclear magnetic resonance as well as electrospray ionization time-of-flight mass spectrometry, indicates that this deposition process is based on the thermal evaporation of ILs, and thus this process also can be used as a new purification method of ILs in vacuum. Furthermore, the fabrication of binary mixture droplets of two ILs on the substrate by alternating deposition of two ILs was demonstrated; the homogeneity of the composition was confirmed even for one single droplet by high-spatial-resolution Raman spectroscopy.

  5. Sequential deposition etch techniques for the selective deposition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, J.G.; Omstead, T.R.; Dominguez, F.

    1991-01-01

    We report on the use of a deposition/etch approach to the loss of selectivity problem, using high activity fluorine chemistries in the etch step. Proof-of-concept experiments were initially performed in a hot wall system, the excellent results obtained lead us to prove out the concept in a commercially available cold wall Genus reactor. We observed that WF{sub 6} is ineffective as an etchant of W. The technique has been able to produce perfectly selective depositions 1 micron thick in both hot wall, and cold wall, systems. Sheet resistivity values and film morphology are good. 9 refs., 4 figs., 1 tab.

  6. Magnetic filtered plasma deposition and implantation technique

    CERN Document Server

    Zhang Hui Xing; Wu Xian Ying

    2002-01-01

    A high dense metal plasma can be produced by using cathodic vacuum arc discharge technique. The microparticles emitted from the cathode in the metal plasma can be removed when the metal plasma passes through the magnetic filter. It is a new technique for making high quality, fine and close thin films which have very widespread applications. The authors describe the applications of cathodic vacuum arc technique, and then a filtered plasma deposition and ion implantation system as well as its applications

  7. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Science.gov (United States)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  8. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  9. Sputtering. [as deposition technique in mechanical engineering

    Science.gov (United States)

    Spalvins, T.

    1976-01-01

    This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.

  10. Development of ion beam sputtering techniques for actinide target preparation

    International Nuclear Information System (INIS)

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.

    1985-01-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed. (orig.)

  11. Use of beam deflection to control an electron beam wire deposition process

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  12. Silicon nitride films deposited with an electron beam created plasma

    Science.gov (United States)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  13. Techniques for beam impedance measurements above cutoff

    International Nuclear Information System (INIS)

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz

  14. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  15. Multialkali photocathodes grown by molecular beam epitaxy technique

    Science.gov (United States)

    Dubovoi, I. A.; Chernikov, A. S.; Prokhorov, Alexander M.; Schelev, Mikhail Y.; Ushakov, Victor N.

    1991-04-01

    A new technique of bialkali photocathodes growth by molecular beam epitaxy (MI3E) has been developed. The photocathode film was deposited onto the substrate from molecular beams produced by simultaneously operating molecular sources of Sb, Na and K. Thus suggested procedure is noticeably differed from the classical one. Growth rate was about 1 A/sec and complete cycle of photocathode fabrication was 15-20 minutes. A special ultra high vacuum (UHV) chamber for MBE of multialkali photocathodes has been designed. The chamber is a part of UHV system consisting of an analysis vessel supplied with Auger and ESCA electron spectrometer and low energy electron diffractometer (LEED), the MBE chamber itself and a chamber for cold sealing of photocathodes with device body through indium ring. The system gives a possibility to carry out investigations of multialkali photocathode physics and to produce commercial devices. Developed technique can be used for fabrication of vacuum devices including streak tubes.

  16. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  17. Compensation techniques in NIRS proton beam radiotherapy

    International Nuclear Information System (INIS)

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-01-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods

  18. Compensation techniques in NIRS proton beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Akanuma, A. (Univ. of Tokyo, Japan); Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  19. Real-time beam tracing for control of the deposition location of electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M., E-mail: matthias.reich@ipp.mpg.de; Bilato, R.; Mszanowski, U.; Poli, E.; Rapson, C.; Stober, J.; Volpe, F.; Zille, R.

    2015-11-15

    Highlights: • We successfully integrated a real-time EC beam tracing code at ASDEX Upgrade. • The calculation of EC beam deposition location is fast enough for control purposes. • The accuracy of the deposition location calculation exceeds equivalent measurements. • The implementation method is by design portable to larger fusion devices. - Abstract: Plasma control techniques that use electron cyclotron (EC) resonance heating and current drive such as control of neoclassical tearing modes require accurate control of the deposition location of EC beams. ASDEX Upgrade has successfully implemented a real-time version of the beam-tracing code TORBEAM into its real-time diagnostic system to act as a globally available module that calculates current deposition location and its sensitivity from other real-time diagnostic measurements for all its moveable EC wave launchers. Based on a highly (100×) accelerated version of TORBEAM, the software implementation as a diagnostic process uses parallelization and achieves cycle times of 15–20 ms for determining the radial deposition location of 12 beams in the plasma. This cycle time includes data input–output overhead arising from the use of available real-time signals. The system is by design portable to other machines such as ITER.

  20. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  1. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  2. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  3. Techniques for freeing deposited canisters. Final report

    International Nuclear Information System (INIS)

    Kalbantner, P.; Sjoeblom, R.

    2000-06-01

    Four different techniques for removal of the bentonite buffer around a deposited canister have been identified, studied and evaluated: mechanical, hydrodynamical, thermal, and electrical techniques. Different techniques to determine the position of the canister in the buffer have also been studied: mechanical, electromagnetic, thermal and acoustic techniques. The mechanical techniques studied are full-face boring, milling and core-drilling. It is expected that the bentonite can be machined relatively easily. It is assessed that cooling by means of flushing water over the outer surfaces of the tools is not feasible in view of the tendency of bentonite to form a gel. The mechanical techniques are characterized by the potential of damaging the canister, a high degree of complexity, and high requirements of energy/power input. The generated byproduct is solid and cannot be removed by means of flushing. Removal is assessed to be simplest in conjunction with full-face boring and most difficult when coredrilling is applied. The hydrodynamical techniques comprise high-pressure hydrodynamic techniques, where pressures above and below 100 bar, and low pressure hydrodynamical techniques (< 10 bar) are separated. At pressures above 100 bar, a water jet with a diameter of approximately a millimetre cuts through the material. If desired, sand can be added to the jet. At pressures below 100 bar the jet has a diameter of one or a few centimetres. The liquid contains a few percent of salt, which is essential for the efficiency of the process. The flushing is important not only because it removes the modified bentonite but also because it frees previously unaffected bentonite and thereby makes it accessible to chemical modification. All of the hydrodynamical techniques are applicable for freeing the end surface as well as the mantle surface. The degree of complexity and the requirement on energy/power decrease with a decrease in pressure. A significant potential for damaging the

  4. Focused-ion-beam deposition for 3-D nanostructure fabrication

    Science.gov (United States)

    Matsui, Shinji

    2007-04-01

    Three-dimensional nanostructure fabrication has been demonstrated by 30 keV Ga+ focused-ion-beam chemical-vapor-deposition (FIB-CVD) using a phenanthrene (C14H10) source as a precursor. Microstructure plastic arts is advocated as a new field using micro-beam technology, presenting one example of micro-wine-glass with 2.75 μm external diameter and 12 μm height. The deposition film is a diamond like amorphous carbon. A large Young's modulus that exceeds 600 GPa seems to present great possibilities for various applications. Producing of three-dimensional nanostructure is discussed. Micro-coil, nanoelectrostatic actuator and nano-space-wiring with 0.1 μm dimension are demonstrated as parts of nanomechanical system. Furthermore, filtering tool is also fabricated as a novel nano-tool for the manipulation and analysis of subcellular organelles.

  5. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  6. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  7. Development of ion beam sputtering techniques for actinide target preparation

    Science.gov (United States)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  8. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  9. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  10. Facile electron-beam lithography technique for irregular and fragile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiyoung; Zhou, Qin; Zettl, Alex, E-mail: azettl@berkeley.edu [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at the University of California, Berkeley, California 94720 (United States)

    2014-10-27

    A facile technique is presented which enables high-resolution electron beam lithography on irregularly-shaped, non-planar or fragile substrates such as the edges of a silicon chip, thin and narrow suspended beams and bridges, or small cylindrical wires. The method involves a spin-free dry-transfer of pre-formed uniform-thickness polymethyl methacrylate, followed by conventional electron beam writing, metal deposition, and lift-off. High-resolution patterning is demonstrated for challenging target substrates. The technique should find broad application in micro- and nano-technology research arenas.

  11. Parallel electron-beam-induced deposition using a multi-beam scanning electron microscope

    NARCIS (Netherlands)

    Post, P.C.; Mohammadi-Gheidari, A.; Hagen, C.W.; Kruit, P.

    2011-01-01

    Lithography techniques based on electron-beam-induced processes are inherently slow compared to light lithography techniques. The authors demonstrate here that the throughput can be enhanced by a factor of 196 by using a scanning electron microscope equipped with a multibeam electron source. Using

  12. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  13. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  14. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  15. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  16. ZnS thin films fabricated by electron beam evaporation with glancing angle deposition

    Science.gov (United States)

    Wang, Sumei; Xia, Guodong; Shao, Jianda; Fan, Zhengxiu

    2006-02-01

    GLAD ZnS films prepared by electron beam evaporation method with glancing angle deposition technique are reported. The influence of different oblique angle on the structure and optical properties is investigated using atomic force microscopy and transmittance spectra. The GLAD ZnS films exhibit a porous structure with isolated island and columnar formed. The surface roughness increases with the increase of oblique angle. The refractive indexes of GLAD ZnS films are lower than that of corresponding bulk materials. The maximal birefringence is obtained at oblique angle α=80 °, which is ascribed to the orientated growth and anistropic structure of GLAD films. Therefore, the glancing angle deposition technique is a promising technique to obtain enhanced birefringence property.

  17. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  18. Selected immobilization of individual nanoparticles by spot-exposure electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Burbridge, Daniel J; Crampin, Simon; Gordeev, Sergey N [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Viau, Guillaume [Departement de Genie Physique, INSA de Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4 (France)

    2010-01-29

    The use of spot-exposure electron-beam-induced deposition (EBID) to immobilize targeted nanoparticles on a substrate is demonstrated, and investigated using experiment and simulation. Nanoparticles are secured in place through the build-up of carbonaceous material that forms in the region between a particle and substrate when an energetic electron beam is focused onto the particle and projected through to the substrate. Material build-up directly affects the strength of adhesion to the surface, and can be controlled through electron dosage and beam energy. By selectively immobilizing specific particles within surface agglomerations and removing the excess, we illustrate the potential for spot-exposure EBID as a new technique for nanofabrication.

  19. Handbook of thin film deposition processes and techniques principles, methods, equipment and applications

    CERN Document Server

    Seshan, Krishna

    2002-01-01

    New second edition of the popular book on deposition (first edition by Klaus Schruegraf) for engineers, technicians, and plant personnel in the semiconductor and related industries. This book traces the technology behind the spectacular growth in the silicon semiconductor industry and the continued trend in miniaturization over the last 20 years. This growth has been fueled in large part by improved thin film deposition techniques and the development of highly specialized equipment to enable this deposition. The book includes much cutting-edge material. Entirely new chapters on contamination and contamination control describe the basics and the issues-as feature sizes shrink to sub-micron dimensions, cleanliness and particle elimination has to keep pace. A new chapter on metrology explains the growth of sophisticated, automatic tools capable of measuring thickness and spacing of sub-micron dimensions. The book also covers PVD, laser and e-beam assisted deposition, MBE, and ion beam methods to bring together a...

  20. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  1. Parallel deposition of size-selected clusters: a novel technique for studying size-selectivity on the atomic scale.

    Science.gov (United States)

    Luo, Yuan; Seo, Hyun Ook; Beck, Martin; Proch, Sebastian; Kim, Young Dok; Ganteför, Gerd

    2014-05-28

    A new size-selected cluster deposition technique referred to as "parallel-deposition" is presented. An ion beam of multi-sized Aun clusters was spatially separated into individual cluster sizes by utilizing a Wien filter and the clusters spatially separated based on their atomic sizes were simultaneously deposited on a SiO2/Si(100) substrate. Parallel-deposited Aun clusters (n = 6, 7, and 8) on the SiO2/Si(100) substrate showed even-odd oxidation behaviour upon exposure to an atomic oxygen atmosphere, demonstrating the potential of this new technique to study the size-dependent properties of deposited clusters in various research fields.

  2. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  3. Ion-beam assisted deposition of C-, Ti-, Zr-, Mo-based thin films on silicon substrate

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Vesh, V.; Vendler, Eh.

    2004-01-01

    With the help pf RBS/channeling method and scattering spectrum computer simulation C-, Ti-, Zr- and Mo-based coatings deposited by ion beam assisted deposition technique on Si substrate have been investigated. Si, O, C, and H atoms were found to be incorporated into the coatings composition. Radiation damage of silicon near the coating-substrate interface region does not depend on the mass of bombarding ions [ru

  4. Ion mass and energy selective hyperthermal ion-beam assisted deposition setup

    Science.gov (United States)

    Gerlach, J. W.; Schumacher, P.; Mensing, M.; Rauschenbach, S.; Cermak, I.; Rauschenbach, B.

    2017-06-01

    For the synthesis of high-quality thin films, ion-beam assisted deposition (IBAD) is a frequently used technique providing precise control over several substantial film properties. IBAD typically relies on the use of a broad-beam ion source. Such ion sources suffer from the limitation that they deliver a blend of ions with different ion masses, each of them possessing a certain distribution of kinetic energy. In this paper, a compact experimental setup is presented that enables the separate control of ion mass and ion kinetic energy in the region of hyperthermal energies (few 1 eV - few 100 eV). This ion energy region is of increasing interest not only for ion-assisted film growth but also for the wide field of preparative mass spectrometry. The setup consists of a constricted glow-discharge plasma beam source and a tailor-made, compact quadrupole system equipped with entry and exit ion optics. It is demonstrated that the separation of monoatomic and polyatomic nitrogen ions (N+ and N2+) is accomplished. For both ion species, the kinetic energy is shown to be selectable in the region of hyperthermal energies. At the sample position, ion current densities are found to be in the order of 1 μA/cm2 and the full width at half maximum of the ion beam profile is in the order of 10 mm. Thus, the requirements for homogeneous deposition processes in sufficiently short periods of time are fulfilled. Finally, employing the described setup, for the first time in practice epitaxial GaN films were deposited. This opens up the opportunity to fundamentally study the influence of the simultaneous irradiation with hyperthermal ions on the thin film growth in IBAD processes and to increase the flexibility of the technique.

  5. Deposition profiles from electron-beam-heated evaporation sources

    International Nuclear Information System (INIS)

    Reiley, T.C.

    1976-01-01

    The thickness of physically vapor deposited copper and chromium specimens was measured as a function of position on a flat substrate situated above an electron-beam-heated evaporation source. The resulting profiles deviated from analytically predicted profiles based on the integrated mass flux from a flat surface of infinitesimal, directed surface sources. This deviation has been noted in the past and has been attributed to molecular interaction above the source. However, it is shown that the calculated molecular mean free path is much too long to allow any appreciable interaction of the evaporating molecules. Further, curvature of the molten source, arising from the surface recoil from evaporating molecules, is likely to be responsible for the difference between the observed and predicted profiles

  6. Systematic investigation of the reactive ion beam sputter deposition process of SiO2

    Science.gov (United States)

    Mateev, Maria; Lautenschläger, Thomas; Spemann, Daniel; Finzel, Annemarie; Gerlach, Jürgen W.; Frost, Frank; Bundesmann, Carsten

    2018-02-01

    Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.

  7. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  8. Comparison of different experimental techniques used for wax deposition testing

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    Crude oils consist of various fractions of hydrocarbons, including n-paraffins. The paraffins precipitate out of oil below the temperature called WAT (wax appearance temperature) and accumulate in flow lines and pipelines causing major transport problems. Prediction of paraffin deposition is, therefore, a key element of flow assurance programs. The purpose of this study was to develop a general and reliable approach to prediction of wax deposition based on a critical comparison of several practical lab techniques. Wax deposition study was conducted on five separate crude oils by using a varying protocols and equipment. One experimental technique was a cold stress test of wax deposition combined with ketone precipitation of waxy paraffin crystals. Another set of experiments were carried out for wax deposits formed on the surface of U-tubes and cold fingers of different designs. A comparison of the effectiveness of several wax inhibitors was conducted for these crude oils by using the selected deposition techniques. In each test method the amount of precipitated wax was recorded and compared. The deposits were characterized by melting point, qualitative and quantitative analysis of the wax components using DSC, SARA and HTGC analyses. Efficiency of paraffin inhibitors was correlated with a profile of n-paraffins distribution in the deposits. The limitations and advantages of different deposition techniques were analyzed and discussed. (author)

  9. Characterization of wax deposition by different experimental techniques - a comparison

    Energy Technology Data Exchange (ETDEWEB)

    Lindeman, Olga; Allenson, Steve

    2006-03-15

    Crude oils consist of various fractions of hydrocarbons, including n-paraffins. The paraffins precipitate out of oil below the temperature called WAT (wax appearance temperature) and accumulate in flow lines causing major transport problems. Prediction of paraffin deposition is, therefore, a key element of flow assurance programs. The purpose of this study was to develop a general and reliable approach to prediction of wax deposition based on a critical comparison of several practical lab techniques. Wax deposition study was conducted on multiple crude oils using various testing protocols and equipment. One experimental technique was a cold stress test of wax deposition combined with ketone precipitation of waxy paraffin crystals. Another set of experiments was carried out for wax deposits formed on the surface of U-tubes and cold fingers of different designs. A comparison of the effectiveness of several wax inhibitors was conducted for these crude oils by using the selected deposition techniques. In each test method the amount of precipitated wax was recorded and compared. The deposits were characterized by melting point, qualitative and quantitative analysis of the wax components using DSC, SARA and HTGC analyses. Efficiency of paraffin inhibitors was correlated with a profile of n-paraffins distribution in the deposits. The limitations and advantages of different deposition techniques were analyzed and discussed. A new test design designated ''cold tube'' is proposed. (Author) (tk)

  10. Plasma characterization of cross-beam pulsed-laser ablation used for carbon thin film deposition

    International Nuclear Information System (INIS)

    Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    The dynamics of the interaction between two delayed plasmas induced by cross-beam pulsed-laser ablation was analyzed by fast photography using narrow interference filters. In this configuration, two perpendicular rotating carbon targets were ablated by two synchronized laser beams generating two interacting plasma plumes. A Nd: yttrium-aluminum-garnet (1064 nm) laser beam is focused onto a target generating a highly directed plume; subsequently an excimer laser (248 nm) produces a second perpendicular plasma, which expands through the plume region generated by the first laser. In the cross-beam configuration, collision processes cause a reduction in the C II ion kinetic energy from ∼ 110 to 35 eV; moreover, the species of the second plasma which travel on the normal direction to the target surface (toward the substrate) are mainly C II. Interaction between plasmas has been compared with laser-induced plume propagation through a background gas in terms to the drag model. Carbon thin films were deposited by the cross-beam technique for different delays between lasers. Raman spectroscopy was employed to study the changes in the bonding carbon films as a function of the kinetic energy of ablated C ions

  11. SERS analysis of Ag nanostructures produced by ion-beam deposition

    Science.gov (United States)

    Atanasov, P. A.; Nedyalkov, N. N.; Nikov, Ru G.; Grüner, Ch; Rauschenbach, B.; Fukata, N.

    2018-03-01

    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).

  12. Nanosecond and femtosecond mass spectroscopic analysis of a molecular beam produced by the spray-jet technique

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Kamikado, Toshiya; Okuno, Yoshishige; Suzuki, Hitoshi; Mashiko, Shinro; Yokoyama, Shiyoshi

    2008-01-01

    The spray-jet molecular beam apparatus enabled us to produce a molecular beam of non-volatile molecules under high vacuum from a sprayed mist of sample solutions. The apparatus has been used in spectroscopic studies and as a means of molecular beam deposition. We analyzed the molecular beam, consisting of non-volatile, solvent, and carrier-gas molecules, by using femtosecond- and nanosecond- laser mass spectroscopy. The information thus obtained provided insight into the molecular beam produced by the spray-jet technique

  13. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  14. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  15. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  16. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Auciello, O. (Microelectronics Center of North Carolina, Research Triangle Park, NC (USA) North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Materials Science and Engineering); Krauss, A.R. (Argonne National Lab., IL (USA))

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  17. Efficient electron beam deposition for repetitively pulsed krypton fluoride lasers

    International Nuclear Information System (INIS)

    Hegeler, F.; Myers, M.C.; Friedman, M.; Sethian, J.D.; Swanekamp, S.B.; Rose, D.V.; Welch, D.R.

    2002-01-01

    We have demonstrated that we can significantly increase the electron beam transmission efficiency through a pressure foil structure (hibachi) by segmenting the beam into strips to miss the hibachi support ribs. In order to increase the electron beam transmission, the cathode strips are adjusted to compensate for beam rotation and pinching. The beam propagation through the hibachi has been both measured and simulated with 1-D and 3-D codes

  18. Applying field mapping refractive beam shapers to improve holographic techniques

    Science.gov (United States)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  19. Dosimetry study of split beam technique using megavoltage beams and its clinical implications. I

    International Nuclear Information System (INIS)

    Datta, R.; Mira, J.G.; Pomeroy, T.C.

    1979-01-01

    The problem of beam divergence and overlapping of adjacent fields in the treatment planning is well known. The use of split beam technique has been suggested as one way of addressing this problem. The present work reports a detailed dosimetry of this technique 60 Co beam (Theratron 780). The dose distributions at and near the junction plane between two adjacent fields were measured; they were compared with those for diverging fields (with and without gap on the skin). As an illustration, different treatment planning techniques for head and neck tumors and subsequent dose distributions are discussed. Our findings clearly indicate that the extension of penumbra near the geometrical edge of a split beam is considerably less than that of an open beam of the same field size. Consequently when two adjacent fields are used, the overdose at and near the junction plane is reduced greatly by the split beam. For head and neck tumors the split beam technique gives a much better dose distribution than any other conventional treatment techniques

  20. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  1. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    Science.gov (United States)

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  2. Characteristics of selective deposition of metal organic films using focused ion beams

    International Nuclear Information System (INIS)

    Gamo, Kenji; Takakura, Nobuyuki; Takehara, Daisuke; Namba, Susumu

    1984-01-01

    50 keV Ar + or 35 keV focused Ga + beam were irradiated in a trimethyl aluminum atmosphere to provide a detailed characterization of maskless deposition. It was found from Auger electron spectroscopy that deposited films contain oxygen, carbon, aluminum and fluorine. The film thickness increased linearly with increasing a dose and the deposition rate was 10-20 nm/(10 16 ions/cm 2 ). A 0.5μm wide fine pattern which reflects a beam profile was formed by using focused Ga + beam. (author)

  3. Improved beam-energy calibration technique for heavy ion accelerators

    International Nuclear Information System (INIS)

    Ferrero, A.M.J.; Garcia, A.; Gil, Salvador

    1989-01-01

    A simple technique for beam energy calibration of heavy-ion accelerators is presented. A thin hydrogenous target was bombarded with 12 C and 19 F, and the energies of the protons knocked out, elastically were measured at several angles using two detectors placed at equal angles on opposite sides of the beam. The use of these two detectors cancels the largest errors due to uncertainties in the angle and position at which the beam hits the target. An application of this energy calibration method to an electrostatic accelerator is described and the calibration constant of the analyzing magnet was obtained with an estimated error of 0.4 (Author) [es

  4. Micro structural evaluation technique of steel using neutron beam

    International Nuclear Information System (INIS)

    Nakamichi, Haruo; Sato, Kaoru; Sueyoshi, Hitoshi

    2016-01-01

    Structural analysis using Neutrons is a very unique technique for its strong penetration ability through steels. Numerous evaluation techniques are available at present, and JFE Steel has been adapting the technique through participating in research activities such as in the Iron and Steel Institute of Japan. This paper introduces some results including precipitation evaluation using a small angle scattering, residual strain estimation through diffractions, and in-situ transformation observation by time-of-flight methods of neutron beams diffraction. (author)

  5. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    National Research Council Canada - National Science Library

    Bolster, Robert

    1992-01-01

    .... The apparatus used and some of the techniques involved are described. Ion source operating parameters were optimized and the assist beam ion flux was quantified and found to follow a power-law relationship with beam power...

  6. Effect of ion beam energy on density, roughness & uniformity of Co film deposited using ion beam sputtering system

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay; Lodha, G. S.

    2012-06-01

    Cobalt (Co) films were prepared, using ion beam sputtering technique. Films were prepared by varying beam voltage from 700 to 1100 V at room temperature. The influence of ion beam energy on the density, surface roughness and thickness uniformity of Co film was investigated. X-ray reflectivity study shows that surface roughness of film decreases with increasing beam energy and lowest surface roughness of 1.3 Å was achieved for 1000 V beam voltage at 4 cm3/min Ar gas flow. The density of the film was 93% of bulk density of Co. These ultra low roughness films are very promising for studying the magnetic properties of Co films.

  7. Energy Deposition Simulations and Measurements in an LHC Collimator and Beam Loss Monitors

    CERN Document Server

    Böhlen, Till; Bracco, C; Dehning, B; Redaelli, S; Weiler, T; Zamantzas, C

    2010-01-01

    The LHC collimators are protected against beam-caused damages by measuring the secondary particle showers with beam loss monitors. Downstream of every collimator an ionisation chamber and a secondary emission monitor are installed to determine the energy deposition in the collimator. The relation between the energy deposition in the beam loss monitor and the collimator jaw is based on secondary shower simulations. To verify the FLUKA simulations, the prototype LHC collimator installed in the SPS was equipped with beam loss monitors. The results of the measurements of the direct impact of a 26 GeV proton beam injected in the SPS onto the collimator are compared with the predictions by FLUKA simulations. In addition, simulation results from parameter scans for mean and peak energy deposition with its dependencies are shown.

  8. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  9. Fluid Surface Damping: A Technique for Vibration Suppression of Beams

    Directory of Open Access Journals (Sweden)

    Hany Ghoneim

    1997-01-01

    Full Text Available A fluid surface damping (FSD technique for vibration suppression of beamlikestructures is proposed. The technique is a modification of the surface layer damping method. Two viscoelastic surface layers containing fluid-filled cavities are attached symmetrically to the opposite surfaces of the beam. The cavities on one side are attached to the corresponding cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped back and forth through the connecting passages. Therefore, in addition to the viscoelastic damping provided by the surface layers, the technique offers viscous damping due to the fluid flow through the passage. A mathematical model for the proposed technique is developed, normalized, and solved in the frequency domain to investigate the effect of various parameters on the vibration suppression of a cantilever beam. The steady-state frequency response for a base white-noise excitation is calculated at the beam's free tip and over a frequency range containing the first five resonant frequencies. The parameters investigated are the flow-through passage viscous resistance, the length and location of the layers, the hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic inertance. Results indicate that the proposed technique has promising potential in the field of vibration suppression of beamlike structures. With two FSD elements, all peak vibration amplitudes can be well suppressed over the entire frequency spectrum studied.

  10. Electrical performance of phase change memory cells with Ge3Sb2Te6 deposited by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella; Boniardi, Mattia; Redaelli, Andrea

    2015-01-01

    Here, we report on the electrical characterization of phase change memory cells containing a Ge 3 Sb 2 Te 6 (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles

  11. Characterisation of molecular thin films grown by organic molecular beam deposition

    CERN Document Server

    Bayliss, S M

    2000-01-01

    This work concerns the growth and characterisation of molecular thin films in an ultra high vacuum regime by organic molecular beam deposition (OMBD). Films of three different molecular materials are grown, namely free base phthalocyanine (H sub 2 Pc), perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) and aluminium tris-8-hydroxyquinoline (Alq sub 3). The relationship between the growth parameters such as film thickness, growth rate, and substrate temperature during and after growth, and the structural, optical and morphological properties of the film are investigated. These investigations are carried out using various ex-situ techniques. X-ray diffraction, Raman spectroscopy and electronic absorption spectroscopy are used to probe the bulk film characteristics, whilst Nomarski microscopy and atomic force microscopy are used to study the surface morphology. Three different levels of influence of the growth parameters on the film properties are observed. In the case of H sub 2 Pc, two crystal phases are fo...

  12. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  13. Exploring a new strategy for nanofabrication: deposition by scattered Ga ions using focused ion beam.

    Science.gov (United States)

    Tripathi, Sarvesh K; Shukla, Neeraj; Kulkarni, Vishwas N

    2009-02-18

    We report a new strategy of nanofabrication using the focused ion beam (FIB)-based chemical vapor deposition method. It utilizes scattered Ga ions to decompose organometallic molecules of the precursor gas for depositing the metallic element on a surface with the advantage of producing uniform metallic coats on those surfaces of nanostructures which are not directly accessible to the primary beam. The method can be used to provide electrical contacts on inaccessible regions of prototype nanodevices, such as ion batteries, electrophoresis cells, cantilevers, etc, which have been demonstrated and explained by depositing Pt and W on different surfaces of 3D nanostructures.

  14. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  15. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  16. Study of ion beam induced depolymerization using positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F

    2001-04-01

    Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.

  17. 3D magnetic nanostructures grown by focused electron and ion beam induced deposition

    Science.gov (United States)

    Fernandez-Pacheco, Amalio

    Three-dimensional nanomagnetism is an emerging research area, where magnetic nanostructures extend along the whole space, presenting novel functionalities not limited to the substrate plane. The development of this field could have a revolutionary impact in fields such as electronics, the Internet of Things or bio-applications. In this contribution, I will show our recent work on 3D magnetic nanostructures grown by focused electron and ion beam induced deposition. This 3D nano-printing techniques, based on the local chemical vapor deposition of a gas via the interaction with electrons and ions, makes the fabrication of complex 3D magnetic nanostructures possible. First, I will show how by exploiting different growth regimes, suspended Cobalt nanowires with modulated diameter can be patterned, with potential as domain wall devices. Afterwards, I will show recent results where the synthesis of Iron-Gallium alloys can be exploited in the field of artificial multiferroics. Moreover, we are developing novel methodologies combining physical vapor deposition and 3D nano-printing, creating Permalloy 3D nanostrips with controllable widths and lengths up to a few microns. This approach has been extended to more complex geometries by exploiting advanced simulation growth techniques combining Monte Carlo and continuum model methods. Throughout the talk, I will show the methodology we are following to characterize 3D magnetic nanostructures, by combining magneto-optical Kerr effect, scanning probe microscopy and electron and X-R magnetic imaging, and I will highlight some of the challenges and opportunities when studying these structures. I acknowledge funding from EPSRC and the Winton Foundation.

  18. Source reconstruction using phase space beam summation technique

    International Nuclear Information System (INIS)

    Graubart, Gideon.

    1990-10-01

    In this work, the phase-space beam summation technique (PSBS), is applied to back propagation and inverse source problems. The PSBS expresses the field as a superposition of shifted and tilted beams. This phase space spectrum of beams is matched to the source distribution via an amplitude function which expresses the local spectrum of the source function in terms of a local Fourier transform. In this work, the emphasis is on the phase space processing of the data, on the information content of this data and on the back propagation scheme. More work is still required to combine this back propagation approach in a full, multi experiment inverse scattering scheme. It is shown that the phase space distribution of the data, computed via the local spectrum transform, is localized along lines that define the local arrival direction of the wave data. We explore how the choice of the beam width affects the compactification of this distribution, and derive criteria for choosing a window that optimizes this distribution. It should be emphasized that compact distribution implies fewer beams in the back propagation scheme and therefore higher numerical efficiency and better physical insight. Furthermore it is shown how the local information property of the phase space representation can be used to improve the performance of this simple back propagation problem, in particular with regard to axial resolution; the distance to the source can be determined by back propagating only the large angle phase space beams that focus on the source. The information concerning transverse distribution of the source, on the other hand, is contained in the axial phase space region and can therefore be determined by the corresponding back propagating beams. Because of the global nature of the plane waves propagators the conventional plane wave back propagation scheme does not have the same 'focusing' property, and therefore suffers from lack of information localization and axial resolution. The

  19. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  20. A Large Aperture Superconducting Dipole for Beta Beams to Minimize Heat Deposition in the Coil

    CERN Document Server

    Wildner, E

    The aim of beta beams in a decay ring is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from b-decay of 18Ne10+ and 6He2+ ion beams. The decay products, having different magnetic rigidities than the ion beam, are deviated inside the dipole. The aperture and the length of the magnet have to be optimized to avoid that the decay products hit the coil. The decay products are intercepted by absorber blocks inside the beam pipe between the dipoles to protect the following dipole. A first design of a 6T arc dipole using a cosine theta layout of the coil with an aperture of 80 mm fulfils the optics requirements. Heat deposition in the coil has been calculated using different absorber materials to find a solution to efficiently protect the coil. Aspects of impedance minimization for the case of having the absorbers inside the beam pipe have also been addressed.

  1. A Large Aperture Superconducting Dipole for Beta Beams to Minimize Heat Deposition in the Coil

    CERN Document Server

    Wildner, E

    2007-01-01

    The aim of beta beams in a decay ring is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from b-decay of 18Ne10+ and 6He2+ ion beams. The decay products, having different magnetic rigidities than the main ion beam, are deviated inside the dipole. The aperture and the length of the magnet have to be optimized to avoid that the decay products hit the coil. The decay products are intercepted by absorber blocks inside the beam pipe between the dipoles to protect the following dipole. A first design of a 6T arc dipole using a cosine theta layout of the coil with an aperture of 80 mm fulfils the optics requirements. Heat deposition in the coil has been calculated using different absorber materials to find a solution to efficiently protect the coil. Aspects of impedance minimization for the case of having the absorbers inside the beam pipe have also been addressed.

  2. Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.

    1982-02-01

    A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Deposition profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10 13 - 2 x 10 14 cm -3 , and beam orientation ranging from perpendicular to tangential to the inside wall

  3. Chemical tuning of PtC nanostructures fabricated via focused electron beam induced deposition

    International Nuclear Information System (INIS)

    Plank, Harald; Gspan, Christian; Kothleitner, Gerald; Hofer, Ferdinand; Haber, Thomas

    2013-01-01

    The fundamental dependence between process parameters during focused electron beam induced deposition and the chemistry of functional PtC nanostructures have been studied via a multi-technique approach using SEM, (S)TEM, EELS, AFM, and EFM. The study reveals that the highest Pt contents can only be achieved by an ideal balance between potentially dissociating electrons and available precursor molecules on the surface. For precursor regimes apart from this situation, an unwanted increase of carbon is observed which originates from completely different mechanisms: (1) an excess of electrons leads to polymerization of precursor fragments whereas (2) a lack of electrons leads to incompletely dissociated precursor molecules incorporated into the nanostructures. While the former represents an unwanted class of carbon, the latter condition maximizes the volume growth rates and allows for post-growth curing strategies which can strongly increase the functionality. Furthermore, the study gives an explanation of why growing deposits can dynamically change their chemistry and provides a straightforward guide towards more controlled fabrication conditions. (paper)

  4. Homogeneity analysis of sculptured thin films deposited in symmetric style through glancing angle deposition technique

    International Nuclear Information System (INIS)

    Wang Bin; Qi Hong-Ji; Sun Wei; He Jun; Zhao Jiao-Ling; Wang Hu; Hou Yong-Qiang

    2014-01-01

    The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles ±β are analyzed theoretically, based on the characteristic matrix method for extraordinary waves. Then, the transmittances of uniformity monolayer and bilayer STF in symmetrical style are calculated to show the effect of the bilayer structure on the optical properties of STF. The inhomogeneity of STF is involved in analyzing the differences in transmittance and phase retardation between monolayer and bilayer STF deposited in symmetric style. The results show that optical homogeneity of STF can be improved by depositing in symmetric style at the normal incidence, but it is not the same case as the oblique incidence. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  6. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  7. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  8. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  9. Production of radical species by electron beam deposition in an ArF* lasing medium

    Science.gov (United States)

    Petrov, G. M.; Wolford, M. F.; Petrova, Tz. B.; Giuliani, J. L.; Obenschain, S. P.

    2017-10-01

    The electron-beam-pumped ArF laser is a laser technology capable of providing very high lasing energies at the shortest wavelength (λ = 193 nm) among the rare gas halide lasers and therefore has the potential to be a superior driver for inertial fusion. The electron kinetics are rigorously treated by numerically solving the steady-state, spatially averaged electron Boltzmann equation in Ar-F2 gas. The e-beam energy deposition and collisional reaction rates with electrons are calculated from the electron energy distribution function for a wide range of e-beam deposition powers (Pbeam = 10 kW/cm3-3 MW/cm3) and fluorine concentrations ( xF2 = 0.01 - 10%). The rates are reduced to a set of coefficients that are fitted with analytical formulas as a function of two universal parameters: Pbeam/p and xF2 , where p is the gas pressure. It is found that in the regime of high e-beam power deposition, the fluorine molecules are rapidly destroyed through dissociative attachment and neutral dissociation. The loss of F2 over the duration of the beam is proportional to the e-beam energy deposition per unit volume, ɛbeam, and follows ΔnF2(c m-3)≅4 ×1017ɛbeam(J/cm 3) , in agreement with experimental data. The fluorine molecule conversion to other fluorine species, including atomic fluorine, is shown to have a very small effect on the index of refraction even at percent level concentrations.

  10. Dual self-image technique for beam collimation

    Science.gov (United States)

    Herrera-Fernandez, Jose Maria; Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas; Bernabeu, Eusebio

    2016-07-01

    We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of δ φ =+/- 1.57 μ {rad}.

  11. The Storing Matter technique applied to PVC: Effect of the primary ion fluence on the sputter-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N., E-mail: nbecker@lippmann.l [Department of Science and Analysis of Materials (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 Rue du Brill, L-4422 Belvaux (Luxembourg); Mansilla, C.; Wirtz, T.; Migeon, H.-N. [Department of Science and Analysis of Materials (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 Rue du Brill, L-4422 Belvaux (Luxembourg)

    2011-05-01

    The Storing Matter technique is derived from SIMS (Secondary Ion Mass Spectrometry) and consists in decoupling the sputtering of the specimen from the subsequent analysis step. PVC samples were sputtered by an Ar{sup +} beam with different fluences, and the emitted particles were deposited on a dedicated Ag collector. In a second step, the matter deposited on the collector was analyzed by static SIMS. For each deposit, several analysis points were chosen across a diameter of the collector in order to show the changes in the mass spectra as the deposit coverage changes. It was shown that the Storing Matter technique is sensitive enough to observe some well-known consequences of increasing the primary ion fluence, namely an increasing contribution of aromatic fragments and a decrease in sputtering yield.

  12. Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers.

    Science.gov (United States)

    Diercks, David R; Gorman, Brian P; Mulders, Johannes J L

    2017-04-01

    Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.

  13. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  14. An x-ray technique for precision laser beam synchronization

    International Nuclear Information System (INIS)

    Landen, O.L.; Lerche, R.A.; Hay, R.G.; Hammel, B.A.; Kalantar, D.; Cable, M.D.

    1994-01-01

    A new x-ray technique for recording the relative arrival times of multiple laser beams at a common target with better than ± 10 ps accuracy has been implemented at the Nova laser facility. 100 ps, 3ω Nova beam are focused to separate locations on a gold ribbon target viewed from the side. The measurement consists of using well characterized re-entrant x-ray streak cameras for 1-dimensional streaked imaging of the > 3 keV x-rays emanating from these isolated laser plasmas. After making the necessary correction for the differential laser, x-ray and electron transit times involved, timing offsets as low as ± 7 ps are resolved, and on subsequent shots, corrected for, verified and independently checked. This level of synchronization proved critical in meeting the power balance requirements for indirectly-driven pulse-shaped Nova implosions

  15. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  16. A Layer Correlation Technique for ATLAS Calorimetry Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Carli, T; Spanò, F; Speckmayer, P

    2008-01-01

    A method for calibrating the response of a segmented calorimeter to hadrons is developed. The ansatz is that information on longitudinal shower fluctuations gained from a principal component analysis of the layer energy depositions can improve energy resolution by correcting for hadronic invisible energy and dead material losses: projections along the eigenvectors of the correlation matrix are used as input for the calibration. The technique is used to reconstruct the energy of pions impinging on the ATLAS calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. Simulated Monte Carlo events are used to derive corrections for invisible energy lost in nuclear reactions and in dead material in front and in between the calorimeters. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the resolution is improved by about 20%.

  17. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  18. Computer simulation of scattered ion and sputtered species effects in ion beam sputter-deposition of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Krauss, A.R.; Auciello, O.

    1992-01-01

    Ion beam sputter-deposition is a technique currently used by many groups to produce single and multicomponent thin films. This technique provides several advantages over other deposition methods, which include the capability for yielding higher film density, accurate stoichiometry control, and smooth surfaces. However, the relatively high kinetic energies associated with ion beam sputtering also lead to difficulties if the process is not properly controlled. Computer simulations have been performed to determine net deposition rates, as well as the secondary erosion, lattice damage, and gas implantation in the films, associated with primary ions scattered from elemental Y, Ba and Cu targets used to produce high temperature superconducting Y-Ba-Cu-O films. The simulations were performed using the TRIM code for different ion masses and kinetic energies, and different deposition geometries. Results are presented for primary beams of Ar + , Kr + and Xe + incident on Ba and Cu targets at 0 degrees and 45 degrees with respect to the surface normal, with the substrate positioned at 0 degrees and 45 degrees. The calculations indicate that the target composition, mass and kinetic energy of the primary beam, angle of incidence on the target, and position and orientation of the substrate affect the film damage and trapped primary beam gas by up to 5 orders of magnitude

  19. Introduction to focused ion beams instrumentation, theory, techniques and practice

    CERN Document Server

    Giannuzzi, Lucille A

    2005-01-01

    The focused ion beam (FIB) instrument has experienced an intensive period of maturation since its inception. Numerous new techniques and applications have been brought to fruition, and over the past few years, the FIB has gained acceptance as more than just an expensive sample preparation tool. It has taken its place among the suite of other instruments commonly available in analytical and forensic laboratories, universities, geological, medical and biological research institutions, and manufacturing plants. Although the utility of the FIB is not limited to the preparation of specimens for subsequent analysis by other analytical techniques, it has revolutionized the area of TEM specimen preparation. The FIB has also been used to prepare samples for numerous other analytical techniques, and offers a wide range of other capabilities. While the mainstream of FIB usage remains within the semiconductor industry, FIB usage has expanded to applications in metallurgy, ceramics, composites, polymers, geology, art, bio...

  20. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument

    International Nuclear Information System (INIS)

    Lekstrom, M; McLachlan, M A; Husain, S; McComb, D W; Shollock, B A

    2008-01-01

    Transmission electron microscope (TEM) specimens are today routinely prepared using focussed ion beam (FIB) instruments. Specifically, the lift-out method has become an increasingly popular technique and involves removing thin cross-sections from site-specific locations and transferring them to a TEM grid. This lift-out process can either be performed ex situ or in situ. The latter is mainly carried out on combined dual-beam FIB and scanning electron microscope (SEM) systems whereas conventional single-beam instruments often are limited to the traditional ex situ method. It is nevertheless desirable to enhance the capabilities of existing single-beam instruments to allow for in situ lift-out preparation to be performed since this technique offers a number of advantages over the older ex situ method. A single-beam FIB instrument was therefore modified to incorporate an in situ micromanipulator fitted with a tungsten needle, which can be attached to a cut-out FIB section using ion beam induced platinum deposition. This article addresses the issues of using an ion beam to monitor the in situ manipulation process as well as approaches that can be used to create stronger platinum welds between two objects, and finally, views on how to limit the extent of ion beam damage to the specimen surface.

  1. BIRTH: a beam deposition code for non-circular tokamak plasmas

    International Nuclear Information System (INIS)

    Otsuka, Michio; Nagami, Masayuki; Matsuda, Toshiaki

    1982-09-01

    A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)

  2. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E......-SEM) in the presence of a source of gold-organic precursor gas. Bridges deposited between suspended microelectrodes show resistivities down to 10-4 Ωcm and Transmission Electron Microscopy (TEM) of the deposits reveals a dense core of gold particles surrounded by a crust of small gold nanoparticles embedded...

  3. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map

  4. Large flexibility of high aspect ratio carbon nanostructures fabricated by electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-11-26

    The mechanical properties of free-standing electron beam deposited amorphous carbon structures have been studied using atomic force microscopy. The fabricated carbon blades are found to be extraordinarily flexible, capable of undergoing vertical deflection up to {approx} 75% of their total length without inelastic deformation. The elastic bending modulus of these structures was calculated to be 28 {+-} 10 GPa.

  5. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is

  6. New approaches for investigating paintings by ion beam techniques

    International Nuclear Information System (INIS)

    Beck, L.; Viguerie, L. de; Walter, Ph.; Pichon, L.; Gutierrez, P.C.; Salomon, J.; Menu, M.; Sorieul, S.

    2010-01-01

    Up to now, among the IBA techniques, only PIXE has been used for analyzing paintings. However, quantitative PIXE analysis is sometimes difficult to interpret due to the layered structure, the presence of varnish and organic binder and, in some cases, discoloration of the pigments has been observed due to the interaction of the ion beam with the compounds. In order to improve the characterization of paintings, we propose some alternative experimental procedures. First of all, backscattering spectrometry (BS) and PIXE are simultaneously combined in order to collect complementary information such as layer thickness and organic compound quantification. The simultaneous PIXE and BS experiments also have the advantage of being able to analyze the same area in one experiment. This combination, implemented with an external beam, was directly applied on paintings and on painting cross-sections for the study of Italian Renaissance masterpieces. We have obtained valuable results not only on the pigment itself but also, for the first time, on the binder to pigment proportion which is not well documented in the ancient recipes. Moreover, in order to restrain beam damages due to the ion stopping power, we propose to analyze very thin painting cross-sections by a combination of PIXE-RBS and Scanning Transmission Ion Microscopy (STIM).

  7. New approaches for investigating paintings by ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: Lucile.beck@cea.f [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Viguerie, L. de; Walter, Ph.; Pichon, L. [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Gutierrez, P.C. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, E-28049 Madrid (Spain); Salomon, J.; Menu, M. [Centre de Recherche et de Restauration des Musees de France (C2RMF), CNRS-UMR 171, Palais du Louvre - Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Sorieul, S. [Centre d' Etudes Nucleaires de Bordeaux-Gradignan, IN2P3, UMR 5797, Universite de Bordeaux 1, Chemin du Solarium BP120, 33175 Gradignan Cedex (France)

    2010-06-15

    Up to now, among the IBA techniques, only PIXE has been used for analyzing paintings. However, quantitative PIXE analysis is sometimes difficult to interpret due to the layered structure, the presence of varnish and organic binder and, in some cases, discoloration of the pigments has been observed due to the interaction of the ion beam with the compounds. In order to improve the characterization of paintings, we propose some alternative experimental procedures. First of all, backscattering spectrometry (BS) and PIXE are simultaneously combined in order to collect complementary information such as layer thickness and organic compound quantification. The simultaneous PIXE and BS experiments also have the advantage of being able to analyze the same area in one experiment. This combination, implemented with an external beam, was directly applied on paintings and on painting cross-sections for the study of Italian Renaissance masterpieces. We have obtained valuable results not only on the pigment itself but also, for the first time, on the binder to pigment proportion which is not well documented in the ancient recipes. Moreover, in order to restrain beam damages due to the ion stopping power, we propose to analyze very thin painting cross-sections by a combination of PIXE-RBS and Scanning Transmission Ion Microscopy (STIM).

  8. HfO2 as gate dielectric on Ge: Interfaces and deposition techniques

    International Nuclear Information System (INIS)

    Caymax, M.; Van Elshocht, S.; Houssa, M.; Delabie, A.; Conard, T.; Meuris, M.; Heyns, M.M.; Dimoulas, A.; Spiga, S.; Fanciulli, M.; Seo, J.W.; Goncharova, L.V.

    2006-01-01

    To fabricate MOS gate stacks on Ge, one can choose from a multitude of metal oxides as dielectric material which can be deposited by many chemical or physical vapor deposition techniques. As a few typical examples, we will discuss here the results from atomic layer deposition (ALD), metal organic CVD (MOCVD) and molecular beam deposition (MBD) using HfO 2 /Ge as materials model system. It appears that a completely interface layer free HfO 2 /Ge combination can be made in MBD, but this results in very bad capacitors. The same bad result we find if HfGe y (Hf germanides) are formed like in the case of MOCVD on HF-dipped Ge. A GeO x interfacial layer appears to be indispensable (if no other passivating materials are applied), but the composition of this interfacial layer (as determined by XPS, TOFSIMS and MEIS) is determining for the C/V quality. On the other hand, the presence of Ge in the HfO 2 layer is not the most important factor that can be responsible for poor C/V, although it can still induce bumps in C/V curves, especially in the form of germanates (Hf-O-Ge). We find that most of these interfacial GeO x layers are in fact sub-oxides, and that this could be (part of) the explanation for the high interfacial state densities. In conclusion, we find that the Ge surface preparation is determining for the gate stack quality, but it needs to be adapted to the specific deposition technique

  9. Neutral atom beam technique enhances bioactivity of PEEK

    International Nuclear Information System (INIS)

    Khoury, Joseph; Kirkpatrick, Sean R.; Maxwell, Melissa; Cherian, Raymond E.; Kirkpatrick, Allen; Svrluga, Richard C.

    2013-01-01

    Polyetheretherketone (PEEK) is currently gaining popularity in orthopedic and spinal applications but has potential drawbacks in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent; however, it has been shown to be inert and does not integrate well with bone. Recent efforts have focused on increasing the bioactivity of PEEK by modifying the surface to improve the bone-implant interface. We have employed a novel Accelerated Neutral Atom Beam technique (ANAB) to enhance the bioactivity of PEEK. ANAB employs an intense beam of cluster-like packets of accelerated unbonded neutral argon (Ar) gas atoms. These beams are created by first producing a highly energetic Gas Cluster Ion Beam (GCIB) comprised of van der Waals bonded Ar atoms, then transferring energy to the clusters so as to cause release of most of the interatomic bonds, and finally deflecting away the remaining electrically charged cluster cores of still bonded atoms. We identified that ANAB treatment of PEEK results in nanometer scale surface modifications as well as increased surface hydrophilicity. Human osteoblasts seeded onto the surface of ANAB-treated PEEK exhibited enhanced growth as compared to control PEEK as evidenced by cell proliferation assays and microscopy. This increase in bioactivity resulted in cell proliferation levels comparable to native titanium. An in vivo study using a rat calvarial critical size defect model revealed enhanced osseointegration where bone tissue formation was evident only on the ANAB treated PEEK. Taken together, these data suggest that ANAB treatment of PEEK has the potential to enhance its bioactivity, resulting in bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants

  10. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot

    Science.gov (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao

    2018-01-01

    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  11. Visible light active TiO 2 films prepared by electron beam deposition of noble metals

    Science.gov (United States)

    Hou, Xing-Gang; Ma, Jun; Liu, An-Dong; Li, De-Jun; Huang, Mei-Dong; Deng, Xiang-Yun

    2010-03-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  12. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  13. Multi-channel Andreev reflection in Co-W nanocontacts fabricated using focused electron/ion beam induced deposition.

    Science.gov (United States)

    Sharma, N; Vugts, P; Daniels, C; Keuning, W; Kohlhepp, J T; Kurnosikov, O; Koopmans, B

    2014-12-12

    We report multi-channel electron transport in nano-contacts fabricated using focused electron beam induced deposited (FEBID) cobalt and focused ion beam induced deposited (FIBID) tungsten. Anomalous Andreev reflection (AR) effect is observed to which the conventional Blonder-Tinkham-Klapwijk (BTK) fit cannot be applied. In specific, we have observed multiple number of shoulders near the AR peak, whose origin is unknown in literature. We explain this effect based on a simple model that takes into account the material properties of the FIBID grown W superconductor, as well as the specific interface properties that are an outcome of using FEBID/FIBID as a fabrication technique. We show that numerical calculations using the BTK approximation based on the consideration of multiple channels generate similar shoulders as we observed in the AR experiments. Electrical measurements and x-ray photoemission spectroscopy carried out on FIBID W deposits puts additional evidence towards multi-channel current transport occuring at the interface of the nanocontacts.

  14. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties.

    Science.gov (United States)

    Han, Cheol-Min; Lee, Eun-Jung; Kim, Hyoun-Ee; Koh, Young-Hag; Kim, Keung N; Ha, Yoon; Kuh, Sung-Uk

    2010-05-01

    The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. A lithium depth-marker technique for rapid erosion and deposition measurements

    International Nuclear Information System (INIS)

    Sullivan, R.M.; Pang, A.; Martinez-Sanchez, M.; Whyte, D.G.

    2014-01-01

    Highlights: • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. • Rutherford backscattering spectrometry (RBS) to determine the change in depth. -- Abstract: A novel, high-resolution technique has been developed for the measurement of erosion and deposition in solid material surfaces. The technique uses a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) to determine the change in depth of a previously implanted marker layer consisting of 7 Li. A scoping study shows that 7 Li is an ideal marker candidate due to a high Q (∼18 MeV) nuclear reaction, 7 Li(p,α) 4 He. Net erosion or deposition is measured by NRA of modified alpha energy passing through the bulk material. The reaction’s high cross-section provides for the fast time resolution needed to measure erosion from high flux plasmas, and a highly penetrating proton beam provides for a large range of erosion/deposition measurements. Additionally, the implantation of low-Z Li leads to relatively low vacancy concentrations in the solid material due to implantation. This technique thus provides greater assurance that the measured erosion rate is indicative of the solid material: due to both the low vacancy production and the fact that no films or deposits are involved. Validation was performed by comparing the measured and predicted amount of erosion based on previously measured sputtering yields; the two were found to agree, within the uncertainty of the experiment. The depth resolution of the techniques is ∼60 nm at a net erosion depth of about 1 μm. The benefits of this technique are summarized as: short time scales (minutes) to obtain results, the marker layer can be used in any solid material, greater assurance that the measured erosion is indicative of the unperturbed solid material, and the continuous monitoring of the surface composition for

  16. Comparative Study on Flexural Strengthening of RC Beams using CFRP Laminate by Different Techniques

    Science.gov (United States)

    Jeevan, N.; Jagannatha Reddy, H. N.

    2017-08-01

    This paper presents a detailed study on flexural behaviour of RC beams strengthened using Carbon Fiber Reinforced Polymer (CFRP) laminate. A detailed study was made on strengthened beam using Externally Bonded Laminate (EBL) and Internally Bonded Laminate (IBL) techniques. In IBL technique the laminate is sandwiched between the layers of epoxy mounted on the cover portion by the groove. The beams were designed as under-reinforced section. Totally six beams were casted, out of this two beams were control beams. Strengthened beams were divided into two sets (IBL and EBL) of two beams each. The main aim of this work is to delay the debonding failure in order to enhance the ultimate load carrying capacity for strengthened beams. Four-point bending flexural tests were conducted on specimens up to failure. The experimental results illustrate that, the strengthened beams significantly increases the cracking, working and ultimate load when compared with control beams. IBL technique shows the significant increase in the debonding strain by delaying the beam from debonding failure which in turn enhances the ultimate load by almost 73% compared with control beam and 39% with EBL technique. All the deflection values from the experiments are within the limit of codal provisions. The IBL technique was emerged as the better strengthening technique, which increases almost 41% of working load (Pw) compared with strengthening codes.

  17. Modification of PMMA/graphite nanocomposites through ion beam technique

    Science.gov (United States)

    Singhal, Prachi; Rattan, Sunita; Avasthi, Devesh Kumar; Tripathi, Ambuj

    2013-08-01

    Swift heavy ion (SHI) irradiation is a special technique for inducing physical and chemical modifications in bulk materials. In the present work, the SHI hs been used to prepare nanocomposites with homogeneously dispersed nanoparticles. The nanographite was synthesized from graphite using the intercalation-exfoliation method. PMMA Poly(methyl methacrylate)/graphite nanocomposites have been synthesized by in situ polymerization. The prepared PMMA/graphite nanocomposite films were irradiated with SHI irradiation (Ni ion beam, 80 MeV and C ion beam, 50 MeV) at a fluence of 1×1010 to 3×1012 ions/cm2. The nanocomposite films were characterized by scanning electron microscope (SEM) and were evaluated for their electrical and sensor properties. After irradiation, significant changes in surface morphology of nanocomposites were observed as evident from the SEM images, which show the presence of well-distributed nanographite platelets. The irradiated nanocomposites exhibit better electrical and sensor properties for the detection of nitroaromatics with marked improvement in sensitivity as compared with unirradiated nanocomposites.

  18. Multi-beam backscatter image data processing techniques employed to EM 1002 system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.

    to compensate outer-beam backscatter strength data in such a way that the effect of angular backscatter strength is removed. In this work we have developed backscatter data processing techniques for EM1002 multi-beam system...

  19. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  20. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  1. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Groves, James R [Los Alamos National Laboratory; Matias, Vladimir [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; De Paula, Raymond F [Los Alamos National Laboratory; Hammond, Robert H [STANFORD UNIV.; Clemens, Bruce M [STANFOED UNIV.

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  2. Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering

    International Nuclear Information System (INIS)

    Prater, W.L.; Allen, E.L.; Lee, W.-Y.; Toney, M.F.; Kellock, A.; Daniels, J.S.; Hedstrom, J.A.; Harrell, T.

    2005-01-01

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen-containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses of 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6%-10% for ion-beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron-deposited films are smoother. The dc-magnetron-produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films

  3. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    International Nuclear Information System (INIS)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-01-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar + ion beam, we cleaned the polymer residue without damaging the graphene network. HfO 2 grown by atomic layer deposition on graphene cleaned using an Ar + ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar + ion cleaning) showed a non-uniform structure. A graphene–HfO 2 –metal capacitor fabricated by growing 20-nm thick HfO 2 on graphene exhibited a very low leakage current (<10 −11 A/cm 2 ) for Ar + ion-cleaned graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  4. Ion beam analysis and spectrometry techniques for Cultural Heritage studies

    International Nuclear Information System (INIS)

    Beck, L.

    2013-01-01

    The implementation of experimental techniques for the characterisation of Cultural heritage materials has to take into account some requirements. The complexity of these past materials requires the development of new techniques of examination and analysis, or the transfer of technologies developed for the study of advanced materials. In addition, due to precious aspect of artwork it is also necessary to use the non-destructive methods, respecting the integrity of objects. It is for this reason that the methods using radiations and/or particles play a important role in the scientific study of art history and archaeology since their discovery. X-ray and γ-ray spectrometry as well as ion beam analysis (IBA) are analytical tools at the service of Cultural heritage. This report mainly presents experimental developments for IBA: PIXE, RBS/EBS and NRA. These developments were applied to the study of archaeological composite materials: layered materials or mixtures composed of organic and non-organic phases. Three examples are shown: evolution of silvering techniques for the production of counterfeit coinage during the Roman Empire and in the 16. century, the characterization of composites or mixed mineral/organic compounds such as bone and paint. In these last two cases, the combination of techniques gave original results on the proportion of both phases: apatite/collagen in bone, pigment/binder in paintings. Another part of this report is then dedicated to the non-invasive/non-destructive characterization of prehistoric pigments, in situ, for rock art studies in caves and in the laboratory. Finally, the perspectives of this work are presented. (author) [fr

  5. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  6. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  7. Height Control and Deposition Measurement for the Electron Beam Free Form Fabrication (EBF3) Process

    Science.gov (United States)

    Seufzer, William J. (Inventor); Hafley, Robert A. (Inventor)

    2017-01-01

    A method of controlling a height of an electron beam gun and wire feeder during an electron freeform fabrication process includes utilizing a camera to generate an image of the molten pool of material. The image generated by the camera is utilized to determine a measured height of the electron beam gun relative to the surface of the molten pool. The method further includes ensuring that the measured height is within the range of acceptable heights of the electron beam gun relative to the surface of the molten pool. The present invention also provides for measuring a height of a solid metal deposit formed upon cooling of a molten pool. The height of a single point can be measured, or a plurality of points can be measured to provide 2D or 3D surface height measurements.

  8. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  9. New control techniques for extraction of bevalac beams

    International Nuclear Information System (INIS)

    Nyman, M.; Chu, W.; Mehlman, B.; Mirer, W.; Oakley, H.; Renner, T.; Stover, G.; Tekawa, M.

    1985-05-01

    Beams of accelerated heavy ions can now be delivered as one-second-long dc pulses with minimal fluctuations in instantaneous flux. Pulse duration can be held constant to within 1% while keeping a high non-varying extraction efficiency which minimizes pulse-to-pulse position shift in the extracted beam. In addition, differing beam intensities over several orders of magnitude can be delivered. Computer adjustment of all measurement and control devices results in linear operation over three orders of magnitude of beam intensity. Control of beam structure is accomplished by a unique combination of dual slope integrators and phase forward ''predictive'' circuits in the feedback loop

  10. Observation of whispering gallery modes through electron beam-induced deposition.

    Science.gov (United States)

    Timmermans, F J; Chang, L; van Wolferen, H A G M; Lenferink, A T M; Otto, C

    2017-04-01

    Surprisingly intense spectra of whispering gallery modes were observed in polymer microbeads after illumination with electrons in a scanning electron microscope and subsequent laser illumination and spectral analysis. It will be proposed that whispering gallery mode resonances became visible after local deposition of hydrocarbon material through electron beam-induced deposition. The illumination of deposited material with a near infrared laser generates a broad light spectrum, acting as a local "white light" source that couples, for favorable wavelengths, with the WGM sustained by the sphere. This facilitates a spectroscopic analysis of the WGM and provides the Q-factor and free spectral range for all investigated particles. The analysis by an integrated SEM and Raman micro-spectrometer offers a direct approach to the analysis of WGM resonators as they are, for instance, used in sensing.

  11. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  12. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    International Nuclear Information System (INIS)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M.I. Ahymah; Suganthi, R.V.; Asokan, K.; Kalkura, S. Narayana

    2013-01-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  13. Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Elayaraja, K.; Chandra, V. Sarath; Joshy, M.I. Ahymah; Suganthi, R.V. [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India); Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kalkura, S. Narayana, E-mail: kalkura@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu (India)

    2013-06-01

    Biphasic calcium phosphate (BCP) thin film having resorbable β-tricalcium phosphate (β-TCP) and non-resorbable hydroxyapatite (HAp) phases having enhanced bioactivity was synthesized by electron beam evaporation technique. Nanosized BCP was deposited as a layer (500 nm) on (0 0 1) silicon substrate by electron beam evaporation and crystalline phase of samples were found to improve on annealing at 700 °C. Uniform deposition of calcium phosphate on silicon substrate was verified from elemental mapping using scanning electron microscope (SEM-EDX). Annealing of the samples led to a decrease in surface roughness, hydrophobicity and dissolution of the coating layer. Amoxicillin loaded thin films exhibited significant bacterial resistance. In addition, BCP thin films did not exhibit any cytotoxicity. Antibiotics incorporated BCP coated implants might prevent the post-surgical infections and could promote bone-bonding of orthopedic devices.

  14. Application of a transverse phase-space measurement technique for high-brightness, H- beams to the GTA H- beam

    International Nuclear Information System (INIS)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-01-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations

  15. Metallization on FDM Parts Using the Chemical Deposition Technique

    OpenAIRE

    Azhar Equbal; Anoop kumar Sood

    2014-01-01

    Metallization of ABS (acrylonitrile-butadiene-styrene) parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine) using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxid...

  16. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013) ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  17. Optical thin film formation by gas-cluster ion beam assisted deposition

    International Nuclear Information System (INIS)

    Katsumata, H.; Matsuo, J.; Nishihara, T.; Minami, E.; Yamada, I.; Tachibana, T.; Yamada, K.; Adachi, M.

    1999-01-01

    We have developed a gas cluster ion beam assisted deposition system for high-quality optical thin film formation (SiO 2 and TiO 2 etc.) with high packing density. Cluster ions can transport thousands of atoms per ion with very low energy per constituent atoms. Consequently, densification of films, which is commonly required for optical coatings, can be achieved without the introduction of increased surface roughness and irradiation-induced defects, which are critical issues for conventional ion assisted deposition processes. In this work maximizing the intensity of gas-cluster ion beam current is discussed based upon a few experiments increasing the neutral cluster beam intensity and designing an ionizer for achieving an efficient transportation of the cluster ion beam. As a result, we successfully obtained a high intensity gas-cluster ion current up to ∼30 μA, which is one order of magnitude larger than that obtained so far. TiO 2 films were grown on Si substrates by electron beam evaporation of TiO 2 at ambient temperature under O 2 -cluster ion bombardment with acceleration energies (V acc ) up to 12 keV. Refractive index, n of the films was increased steeply to n=∼2.30 above V acc =4 keV. Water-soaking tests for 12 hrs of the samples revealed that an increase in n values due to moisture absorption becomes smaller with increasing V acc , which suggests that the films become more dense with increasing V acc from optical point of view

  18. ZnTe-ZnO core-shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition.

    Science.gov (United States)

    Janik, E; Wachnicka, A; Guziewicz, E; Godlewski, M; Kret, S; Zaleszczyk, W; Dynowska, E; Presz, A; Karczewski, G; Wojtowicz, T

    2010-01-08

    ZnTe-ZnO core-shell radial heterostructures were grown using a new method of combining molecular beam epitaxy (MBE) and atomic layer deposition (ALD). Zinc telluride nanowires (core) were grown on a GaAs substrate using gold catalyzed vapor-liquid-solid mechanism. An atomic layer deposition technique using diethyl zinc and deionized water as precursors was applied for zinc oxide shell formation. The core-shell ZnTe-ZnO heterostructures thus obtained were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and photoluminescence measurements.

  19. The effect of CFRP on retrofitting of damaged HSRC beams using AE technique

    Science.gov (United States)

    Soffian Noor, M. S.; Noorsuhada, M. N.

    2017-12-01

    This paper presents the effect of carbon fibre reinforced polymer (CFRP) on retrofitted high strength reinforced concrete (HSRC) beams using acoustic emission (AE) technique. Two RC beam parameters were prepared. The first was the control beam which was undamaged HSRC beam. The second was the damaged HSRC beam retrofitted with CFRP on the soffit. The main objective of this study is to assess the crack modes of HSRC beams using AE signal strength. The relationship between signal strength, load and time were analysed and discussed. The crack pattern observed from the visual observation was also investigated. HSRC beam retrofitted with CFRP produced high signal strength compared to control beam. It demonstrates the effect of the AE signal strength for interpretation and prediction of failure modes that might occur in the beam specimens.

  20. New Insights in the Ion Beam Sputtering Deposition of ZnO-Fluoropolymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Maria Chiara Sportelli

    2018-01-01

    Full Text Available Surface modification treatments able to confer antistain/antibacterial properties to natural or synthetic materials are receiving increasing attention among scientists. Ion beam co-sputtering (IBS of zinc oxide (ZnO and poly-tetrafluoroethylene (PTFE targets allows for the preparation of novel multifunctional coatings composed of antimicrobial ZnO nanoparticles (NPs finely dispersed in an antistain PTFE polymeric matrix. Remarkably, IBS has been proved to be successful in the controlled deposition of thin nanocoatings as an alternative to wet methods. Moreover, tuning IBS deposition parameters allows for the control of ZnONP loadings, thus modulating the antibacterial/antistain coating’s final properties. All the deposited coatings were fully characterized by X-ray photoelectron spectroscopy (XPS, atomic force microscopy (AFM, and transmission electron microscopy (TEM in order to obtain information on the materials’ surface composition, with deep insight into the nanocoatings’ morphology as a function of the ZnONP loadings. An analysis of high-resolution XP spectra evidenced a high degree of polymer defluorination along with the formation of inorganic fluorides at increasing ZnO volume ratios. Hence, post-deposition treatments for fluorides removal, performed directly in the deposition chamber, were successfully developed and optimized. In this way, a complete stoichiometry for inorganic nanophases was obtained, allowing for the conversion of fluorides into ZnO.

  1. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  2. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Ying-Bing; Abbas, Khawar; Ghasemi Baboly, Mohammadhosein; Anjum, D. H.; Chaieb, S.; Leseman, Zayd C.

    2015-02-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  3. Electron-beam-assisted oxygen purification at low temperatures for electron-beam-induced pt deposits: towards pure and high-fidelity nanostructures.

    Science.gov (United States)

    Plank, Harald; Noh, Joo Hyon; Fowlkes, Jason D; Lester, Kevin; Lewis, Brett B; Rack, Philip D

    2014-01-22

    Nanoscale metal deposits written directly by electron-beam-induced deposition, or EBID, are typically contaminated because of the incomplete removal of the original organometallic precursor. This has greatly limited the applicability of EBID materials synthesis, constraining the otherwise powerful direct-write synthesis paradigm. We demonstrate a low-temperature purification method in which platinum-carbon nanostructures deposited from MeCpPtIVMe3 are purified by the presence of oxygen gas during a post-electron exposure treatment. Deposit thickness, oxygen pressure, and oxygen temperature studies suggest that the dominant mechanism is the electron-stimulated reaction of oxygen molecules adsorbed at the defective deposit surface. Notably, pure platinum deposits with low resistivity and retain the original deposit fidelity were accomplished at an oxygen temperature of only 50 °C.

  4. Development of a computerized tomographic system based on the FAN-BEAM technique

    International Nuclear Information System (INIS)

    Junqueira, M.M.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory, at COPPE/UFRJ, concentrates its researches in the development of computerized tomographic systems, looking for applications in industrial and medical non destructive analysing techniques. In this work we have projected and constructed a tomographic prototype, based on the FAN-BEAM technique for irradiating the object under analysis. An algorithm previously developed to analyse parallel beams, was modified and adapted to the FAN-BEAM geometry. (Author) [pt

  5. The status and new trends of ion beam induced charge technique

    International Nuclear Information System (INIS)

    Lu Rongrong; Qiu Huiyuan; Zhu Dezhang

    2002-01-01

    Ion beam induced charge technique (IBIC) with low beam current (fA level) and high efficiency is a new development of nuclear microscopy. It has been widely applied to the fields of semiconductor and microelectronic materials. The principle and the experimental method of the IBIC technique were described and reviewed its status and new trends were reviewed

  6. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  7. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa

    2012-01-01

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO 2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm 2 ) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  8. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growth...... experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....

  9. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  10. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-01-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO 2 ) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility

  11. Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2008-01-01

    Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter

  12. Compositional tuning of yttrium iron garnet film properties by multi-beam pulsed laser deposition

    International Nuclear Information System (INIS)

    Sposito, Alberto; Stenning, Gavin B.G.; Gregory, Simon A.; Groot, Peter A.J. de; Eason, Robert W.

    2014-01-01

    We report an investigation of the effects of variation of composition on the properties of yttrium iron garnet films grown on yttrium aluminium garnet substrates by multi-beam pulsed laser deposition. The ferromagnetic resonance linewidth is used as a quality factor: a significant variation is noticed from changing composition, with an experimentally observed optimum at Y 3.5 Fe 4.5 O 12 . - Highlights: • Compositional tuning of materials is demonstrated via multi-pulsed laser deposition. • YIG (yttrium iron garnet) films with variable composition are prepared. • Variation of YIG properties with changing composition is investigated. • Growth dynamics of YIG is investigated to optimise FMR (ferromagnetic resonance). • FMR linewidth is minimised approximately at Y 3.5 Fe 4.5 O 12

  13. Compositional tuning of yttrium iron garnet film properties by multi-beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sposito, Alberto, E-mail: as11g10@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton SO171BJ (United Kingdom); Stenning, Gavin B.G.; Gregory, Simon A.; Groot, Peter A.J. de [Physics and Astronomy, University of Southampton, Southampton SO171BJ (United Kingdom); Eason, Robert W. [Optoelectronics Research Centre, University of Southampton, Southampton SO171BJ (United Kingdom)

    2014-10-01

    We report an investigation of the effects of variation of composition on the properties of yttrium iron garnet films grown on yttrium aluminium garnet substrates by multi-beam pulsed laser deposition. The ferromagnetic resonance linewidth is used as a quality factor: a significant variation is noticed from changing composition, with an experimentally observed optimum at Y{sub 3.5}Fe{sub 4.5}O{sub 12}. - Highlights: • Compositional tuning of materials is demonstrated via multi-pulsed laser deposition. • YIG (yttrium iron garnet) films with variable composition are prepared. • Variation of YIG properties with changing composition is investigated. • Growth dynamics of YIG is investigated to optimise FMR (ferromagnetic resonance). • FMR linewidth is minimised approximately at Y{sub 3.5}Fe{sub 4.5}O{sub 12}.

  14. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    Science.gov (United States)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  15. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  16. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  17. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  18. Corrosion-resistant titanium nitride coatings formed on stainless steel by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    1994-01-01

    Titanium films 70nm thick were deposited on austenitic type 316L stainless steel substrates, and these specimens were irradiated with titanium ions of energy 70kV at a fluence of 1x10 17 ioncm -2 , using a metal vapor vacuum arc (MEVVA) IV metallic ion source at room temperature. After irradiation, titanium nitride (TiN) films were deposited by titanium evaporation and simultaneous irradiation by a nitrogen ion beam, with transport ratios of Ti to N atoms from 0.5 to 10.0 and an ion acceleration voltage of 2kV. The preferred orientation of the TiN films varied from left angle 200 right angle to left angle 111 right angle normal to the surface when the transport ratio was increased. With the help of Auger electron spectroscopy, interfacial mixing was verified. Nitrogen atoms were present in the state of titanium nitride for all transport ratios from 0.5 up to 10.0. However, the chemical bonding state of titanium changed from titanium nitride to the metallic state with increasing transport ratio Ti/N. The corrosion behavior was evaluated in an aqueous solution of sulfuric acid saturated with oxygen, using multisweep cyclic voltammetry measurements. Thin film deposition of pure titanium and titanium implantation prior to TiN deposition have beneficial effects on the suppression of transpassive chromium dissolution. ((orig.))

  19. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  20. Electron postgrowth irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4

    NARCIS (Netherlands)

    Botman, A.; Hagen, C.W.; Li, J.; Thiel, B.L.; Dunn, K.A.; Mulders, J.J.L.; Randolph, S.; Toth, M.

    2009-01-01

    The material grown in a scanning electron microscope by electron beam-induced deposition (EBID) using Pt(PF3)4 precursor is shown to be electron beam sensitive. The effects of deposition time and postgrowth electron irradiation on the microstructure and resistivity of the deposits were assessed by

  1. Smooth silk fibroin nanofilm deposited by 1064-nm pulsed laser beam from an opaque target

    International Nuclear Information System (INIS)

    Nozaki, R.; Nakayama, S.; Senna, M.

    2013-01-01

    In an attempt to prepare smooth nanostructured thin films of silk fibroin (SF) by near-infrared (NIR) pulsed laser deposition, an opaque target was prepared from an emulsified aqueous solution of SF. Upon irradiation of 1064-nm pulsed laser beam at its fluence 5 J/cm 2 , a thin film of SF was deposited on the Si(100) substrate with its root-mean-square surface roughness, 0.37 nm, smoother than those obtained from a compressed target of SF powders by approximately an order of magnitude. The attainment of an extra-smooth film from the opaque target was discussed in terms of multiple Mie scattering of the incident NIR beam, leading to an increase in the plasma density, intensified optical breakdown, ablation of better dispersed SF molecular units, and a film with more intensive intermolecular cross-linking. - Highlights: • Thin film of silk fibroin with its RMS surface roughness, R rms , 0.37 nm was obtained. • The use of a target from an emulsified solution of SF was the key issue. • Mechanism involved was elucidated in terms of enhanced Mie scattering

  2. Multi-beam pulsed laser deposition for advanced thin-film optical waveguides

    International Nuclear Information System (INIS)

    Eason, R W; May-Smith, T C; Sloyan, K A; Gazia, R; Darby, M S B; Sposito, A; Parsonage, T L

    2014-01-01

    We discuss our progress in the use of multiple laser beams and multiple targets for the pulsed laser deposition of thin films for waveguide laser and magneto-optic applications. In contrast to the more widely used single-beam/single-target geometries, having more than one laser-produced plume can allow tuning of the material properties and complex engineering of the deposited thin films. For optical applications—the majority of the work reported here—dopants can be selectively introduced, lattice mismatch and residual strain can be compensated, which is an important factor for successful growth of thin films of ∼ tens of microns thickness, and refractive index values can be adjusted for fabrication of sophisticated waveguiding structures. We discuss mixed, layered, superlattice and Bragg reflector growth, which involve out-of-plane engineering of the film structure, and in-plane engineered geometries for designs relevant to thin-film disc lasing devices. Finally we briefly discuss our most recent use of multi-plume growth for magneto-optic thin films, which involves compositional tuning of final magnetic properties. (paper)

  3. Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced haemocompatibility on PTFE

    International Nuclear Information System (INIS)

    Srinivasan, S.; Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A.

    2012-01-01

    Diamond-like carbon (DLC) and N-doped DLC (DLC:N) thin films have been synthesized on polytetrafluroethylene (PTFE) and silicon wafers using ion beam deposition. Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were used to study the structural and morphological properties of the coated surface. The results show that the ion beam deposited DLC thin films exhibit high hardness and Young's modulus, low coefficient of friction and high adhesion to the substrate. Low concentration of nitrogen doping in DLC improves the mechanical properties and reduces the surface roughness. DLC coating decreases the surface energy and improves the wettability of PTFE. The platelet adhesion results show that the haemocompatibility of DLC coated PTFE, especially DLC:N coated PTFE, has been significantly enhanced as compared with uncoated PTFE. SEM observations show that the platelet reaction on the DLC and DLC:N coated PTFE was minimized as the platelets were much less aggregated and activated.

  4. Development of plant mutation techniques using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Park, In Sook; Song, Hi Sup; Kim, Dong Sub; Kim, Soo Yeon

    2006-06-15

    It has been reported that ion beam with high liner energy transfer (LET) show relative high biological effectiveness (RBE) and more effective for induced plant mutation than low LET radiation i.e., X-rays, gamma rays and electrons. This study was conducted to induce mutation of in vitro cultured orchid and Chrysanthemum using proton beam of the MC-50 cyclotron (50 MeV) at the Korea Institute of Radiological and Medical Science. In vitro cultured stems of chrysanthemum(cv. Migok) and protocom-like bodies(PLBs) of Dendrobium orchid (cv. Kingianum) placed in the plastic petridish (5.5cm in diameter) with agar medium were irradiated by the proton beam with various dose ranges of 10, 25, 50, 100 Gy under the condition of 5nA beam current. Those irradiated plants were transferred to subculture media and then investigated growth characteristics. Shoot growth of chrysanthemum and orchid was decreased by increase of irradiation dose. In particular, new shoot formation was hardly founded over 50Gy in chrysanthemum and 100 Gy in orchid. Some leaf mutants were observed at the 25 Gy and 50 Gy irradiated PLBs of the orchid. The dry seeds of hot pepper, rapeseed, rice and perilla also were irradiated with proton beam of MC-50 cyclotron and then measured germination rate and early growth of M1 plants compared with gamma ray irradiation.

  5. Progress on channel spark development and application of pulsed electron beam deposition (PED) in the field of medical coating work

    International Nuclear Information System (INIS)

    Schultheiss, Christoph; Buth, Lothar-H.-O.; Frey, Wolfgang; Bluhm, Hansjoachim; Mayer, Hanns-G.

    2002-01-01

    A promising source for Pulsed Electron Beam Deposition (PED) is the channel spark. Recent improvements helped to reduce beam instabilities which up to now have limited the life time of the system. The beam power could be increased and because of better beam quality the transport length of the beam is increased from 1 to several centimeters (up to 10 cm). Together with other improvements on the triggering system and beam transport in dielectric tubes, the channel spark approaches industrial standards. An overview of actual applications in research and industry will be presented. An attractive feature of the pulsed electron beam thin film deposition is the conservation of stoichiometry even during deposition of multi-component earth-alkali and alkali glasses. Specially developed glasses like BIOGLAS registered have the ability to anchor soft living tissue at the surface. In form of a bulk material bio active glasses are brittle limiting its applications. Contrary to brittle bulk material a thin layers on medical implants exhibits reliable bio-functionality. Coating of implants with this category of materials is subject of the European INCOMED project (Innovative Coating of Medical Implants with Soft Tissue Anchoring Ability) which just has started

  6. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  7. Deposition and characterization of CrN thin films by reactive ion beam sputtering

    Science.gov (United States)

    Dhawan, Rajnish; Rai, Sanjay

    2017-05-01

    In this present work the characteristics of Chromium nitride (CrN) thin films on Silicon substrate were investigated as function of Nitrogen gas flow rate. Chromium nitride (CrN) thin films were fabricated on single crystal silicon substrates by using the reactive ion beam sputtering at room temperature. Effect of N2 gas flow on microstructure, surface roughness and density were investigated by GIXRR and GIXRD by depositing [CrN]x4 films at various N2 gas flow from 1sccm to 4sccm while keeping the Ar flow constant at 2.5 sccm. The effects of N2 gas flows on the deposition rate showed that the deposition rate decreases with the increase of nitrogen gas flow. X-ray study shows that the surface roughness and density of the CrN films increases with the increase of N2 gas flows. It is suggested that the ion and particles bombardment at low gas pressures cause a smoother surface.

  8. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-01-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision

  9. Beam-deflection technique for the measurement of electron density in laser-produced plasmas

    International Nuclear Information System (INIS)

    Faris, G.W.; Bergstrom, H.

    1988-01-01

    Beam-deflection techniques have been shown to perform well for measurements in fluid flows and flames. Because of the growing interest in laser-produced plasmas, the authors have investigated the capability of beam-deflection techniques for plasma measurement. While other techniques including interferometry and schlieren techniques are well established for measuring electron density in laser-produced plasmas, they show that a beam-deflection technique is simple to implement and has advantages over current techniques. They describe a two-wavelength beam-deflection technique for temporally and spatially resolved electron density measurements in a laser-produced plasma. Deflection of a laser beam in a plasma or other system arises from gradients in the index of refraction. Measurement of beam deflections is quantitative in that the deflection angle is proportional to the integrated transverse gradient of the index of refraction. Techniques such as Abel inversion or tomography may be applied to such measurements to reconstruct spatially resolved values of the index of refraction. From measurements of the index of refraction at two wave-lengths, the electron density may be calculated

  10. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  11. Techniques to produce and accelerate radioactive ion beams

    CERN Document Server

    Penescu, Liviu Constantin; Lettry, Jacques; Cata-Danil, Gheorghe

    The production and acceleration of the Radioactive Ion Beams (RIB) continues the long line of nuclear investigations started in the XIXth century by Pierre and Marie Curie, Henri Becquerel and Ernest Rutherford. The contemporary applications of the RIBs span a wide range of physics fields: nuclear and atomic physics, solid-state physics, life sciences and material science. ISOLDE is a world-leading Isotope mass-Separation On-Line (ISOL) facility hosted at CERN in Geneva for more than 40 years, offering the largest variety of radioactive ion beams with, until now, more than 1000 isotopes of more than 72 elements (with Z ranging from 2 to 88), with half-lives down to milliseconds and intensities up to 1011 ions/s. The post acceleration of the full variety of beams allows reaching final energies between 0.8 and 3.0 MeV/u. This thesis describes the development of a new series of FEBIAD (“Forced Electron Beam Induced Arc Discharge”) ion sources at CERN-ISOLDE. The VADIS (“Versatile Arc Discharge Ion Source�...

  12. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  13. Influence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.

    Science.gov (United States)

    Barry, J N; Cowley, A; McNally, P J; Dowling, D P

    2014-03-01

    Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (alloy substrates. This study addresses the suitability of the CoBlast technique for the deposition of HA coatings on a number of alternative metal alloys utilized in the fabrication of orthopedic devices. In addition to titanium grade 5, both cobalt chromium and stainless steel 316 were investigated. In this study, HA coatings were deposited using both the CoBlast and the plasma sprayed techniques, and the resultant HA coating and substrate properties were evaluated and compared. The CoBlast-deposited HA coatings were found to present similar surface morphologies, interfacial properties, and composition irrespective of the substrate alloy type. Coating thickness however displayed some variation with the substrate alloy, ranging from 2.0 to 3.0 μm. This perhaps is associated with the electronegativity of the metal alloys. The APS-treated samples exhibited evidence of both coating, and significantly, substrate phase alterations for two metal alloys; titanium grade 5 and cobalt chrome. Conversely, the CoBlast-processed samples exhibited no phase changes in the substrates after depositions. The APS alterations were attributed to the brief, but high-intensity temperatures experienced during processing. Copyright © 2013 Wiley Periodicals, Inc.

  14. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  15. Improved CVD Techniques for Depositing Passivation Layers of ICs

    Science.gov (United States)

    1975-10-01

    Gases. ... 216 Effects of Substrate Surface . . . . . . eco . yt . . . . . 216 Applicability of Results to Other CVD Reco ytms .. . 216 Post-Deposition...October 11, - eCo .,1,Nolp.4,ardNok, ZE6 1970). 193) 363. D. S. Zoroglu and L. E. Cak EE~rf5 358, Staff Article, "How Phosphorus Abets IC Destruc- Eeto...lmghthroghpt, b sipleIn these reactors, thke substrate wafers are placed and qafv to operate, and easy to maintainl. Tile captal cst o theo lkptlnt

  16. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  17. Uranium solution mining cost estimating technique: means for rapid comparative analysis of deposits

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Twelve graphs provide a technique for determining relative cost ranges for uranium solution mining projects. The use of the technique can provide a consistent framework for rapid comparative analysis of various properties of mining situations. The technique is also useful to determine the sensitivities of cost figures to incremental changes in mining factors or deposit characteristics

  18. The Development of a Differential Deposition Technique for Figure Correction in Grazing Incidence Optics

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a physical-vapor-deposition coating technique to correct residual figure errors in grazing-incidence optics. The process involves...

  19. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    Science.gov (United States)

    2015-01-01

    Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of...ANSI Std. 239.18 1 Integrity  Service  Excellence A Method for Eliminating Beam Steering Error for Modulated Absorption- Emission Thermometry

  20. Electron beam evaporation deposition of cadmium sulphide and cadmium telluride thin films: Solar cell applications

    International Nuclear Information System (INIS)

    Fang Li; Chen Jing; Xu Ling; Xu Jun; Ma Zhong-Yuan; Su Wei-Ning; Yu Yao

    2013-01-01

    Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42–2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300°C show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained. (interdisciplinary physics and related areas of science and technology)

  1. Energy deposition in TEVATRON magnets from beam losses in interaction regions

    International Nuclear Information System (INIS)

    Ginneken, A.V.

    1988-10-01

    In addition to interacting in the detector, particles produced at an interaction region also deposit energy, with less desirable consequences, in magnets and other components of the accelerator. This note briefly assesses the damage potential of these (essentially unavoidable) beam losses from the viewpoint of quenching of superconducting magnets in an upgraded Tevatron, specifically for the 1 TeV p-/ovrreverse arrowstring/p option with a luminosity of 10 31 cm/sup - 2/ sec -1 , through the results carry more generality. Related issues such as radiation damage to detector electronics or other components are not addressed here. These are thought to be less problematic at the Tevatron, as in thus far supported by operational experience. 8 refs., 10 figs

  2. Zirconium and zirconia thin films prepared on NaCl by ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, S.-W.; Hsieh, T.-Y. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Mao, S.-W. [Department of Mechanical Engineering, Chinese Military Academy, Kaohsiung, Taiwan (China); Gan Dershin [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)], E-mail: dgan@mail.nsysu.edu.tw; Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2007-09-15

    Nanocrystalline condensates were deposited on the NaCl (1 0 0) plane at 25-450 deg. C by radio frequency ion beam sputtering from a pure 99.9% Zr disk. The nanocondensates were identified by transmission electron microscopy to be quasi-amorphous {alpha}-Zr, {alpha}-Zr + ZrO and {alpha}-Zr + ZrO + c-ZrO{sub 2} phase assemblages with increasing substrate temperature. At 400 deg. C and under 1-20 sccm oxygen, c- and t-ZrO{sub 2} nanocondensates were assembled on NaCl (1 0 0) and showed strong preferred orientation. The c- and/or t-ZrO{sub 2} were retained by small grain size, low-valence Zr cation and 2D matrix constraint of the film.

  3. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  4. Nanophotonic Fabrication Self-Assembly and Deposition Techniques

    CERN Document Server

    Yatsui, Takashi

    2012-01-01

    Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.

  5. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  6. An evaluation testing technique of single event effect using Beam Blanking SEM

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, J.; Hada, T.; Pesce, A.; Akutsu, T.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Igarashi, T.; Baba, S.

    1997-03-01

    Beam Blanking SEM (Scanning Electron Microscope) testing technique has been applied to CMOS SRAM devices to evaluate the occurence of soft errors on memory cells. Cross-section versus beam current and LET curves derived from BBSEM and heavy ion testing technique, respectively, have been compared. A linear relation between BBSEM current and heavy ion LET has been found. The purpose of this study was to demonstrate that the application of focused pulsed electron beam could be a reliable, convenient and inexpensive tool to investigate the effects of heavy ions and high energy particles on memory devices for space application. (author)

  7. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  8. Silicon doping techniques using chemical vapor dopant deposition

    NARCIS (Netherlands)

    Popadic, M.

    2009-01-01

    Ultrashallow junctions are essential for the achievement of superior transistor performance, both in MOSFET and bipolar transistors. The stringent demands require state-of-the-art fabrication techniques. At the same time, in a different context, the accurate fabrication of various n type doping

  9. The suggestion of droplets generation prevention method of CNx coating by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yagi, Yuji; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Fuwa, Yoshio; Manabe, Kazuyoshi

    2013-01-01

    It has been reported that the carbon nitride (CNx) coating was the super-low friction in which friction coefficient was less than 0.01, and it attracts attention as a high wear resistance and low friction material. When synthesizing a CNx coating with Ion Beam Assisted Deposition (IBAD) method, it was clear that the small asperities called droplets was generated onto the CNx coating surface with increasing thickness, and these droplets generated high friction. Therefore, it is necessary to clarify droplets generation mechanism to reduce droplets. To establish optimal coating conditions for controlling droplets were clarified by paying attention to the energy of an electron beam and the shape of a carbon target. First of all, 300 nm thickness CNx coatings were synthesized with five different filament current densities to clarify the relationship between the filament current density and droplet heights. Secondly, the effect of carbon target shape on droplets generation was confirmed with normal and processed carbon target. Finally, friction coefficient of these surfaces was measured by friction tests under PAO lubrication. (author)

  10. Studies on mass deposition effect and energy effect of biomolecules implanted by N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1994-05-01

    By analyzing some spectrum of tyrosine sample implanted by N + ion beam, it is deduced that the implantation N + could react with the tyrosine molecule and substitute =C 5 H- group of benzene ring to produce a N-heterocyclic compound. This compound would notably affect the residual activity of the sample. Moreover, the percentage of the product molecules to the damaged tyrosine molecules is larger than the reciprocal of the proportion of their extinction coefficients. On the other hand, by comparing the release of inorganic phosphate, it is found that the radiation sensibility for four basic nucleotides is 5'-dTMP>5'-CMP>5'-GMP>5'-AMP. to implanted nucleotides, alkali treatment and heat treatment could increase the amount of inorganic phosphate. The amount of inorganic phosphate in the nucleotide samples directly implanted by ions beam is about 60% of the total amount of inorganic phosphate that could be released from the implanted samples heated at 90 degree C for 1.75 hours. Alkali treatment could damage and split the free bases released from the implanted nucleotides, but heat treatment might repair those damaged bases. Above results prove that ions implantation to biomolecules has the mass deposition effects and energy effects

  11. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  12. An improved Green s function technique for ion beam transport

    Science.gov (United States)

    Tweed, J.; Wilson, J.; Tripathi, R.

    Ion beam transport theory is of importance to space radiation in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In space radiation transport, the energy lost through atomic collisions is treated as averaged processes over the many events which occur over even relatively small dimensions of most materials and is referred to as the continuous slowing down approximation. It is reasoned that the few percent energy fluctuation in energy loss has little meaning for ions of broad energy spectra and especially in comparison to the many nuclear events for which uncertainties are still relatively large. In contrast, the laboratory testing of potential shielding materials uses nearly monoenergetic ion beams in which the interpretation of the interaction with shield materials requires a detailed description of the interaction process for comparison to detector responses. The development of a Green's function approach to ion transport facilitates the modeling of laboratory radiation environments and allows for the direct testing of transport approximations of material transmission properties. Using this approach radiation investigators at the NASA, Langley Research Center have established that simple solutions can be found for the HZE ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift and dispersion associated with nuclear events. Recently, we have found global solutions to energy/range straggling and derived a broader class of HZE ion solutions which with

  13. A study of the deposition process of multilayer coatings on the inner tube surface with the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lozovan, A.A., E-mail: loz-plasma@ya.ru; Alexandrova, S.S.; Mishnev, M.A.; Prishepov, S.V.

    2014-02-15

    Highlights: • Submitted laser bench for coatings, deposited on the inner surfaces of tubes by PLD. • Sprayed multilayered Ti/TiN coatings on the inner surfaces of tubes of small diameter. • We study this of coatings by method RBS and X-ray fluorescence spectroscopy (TXRF). • Shown a significant mixing of the layers thickness of 90 μm. -- Abstract: The multilayer Ti/TiN/Ti coatings (consisting of nano-scale layers) on the inner surface of stainless steel tubes of small diameter were studied. The coatings were deposited by using the pulsed laser deposition (PLD) technique (in the reactive and non-reactive deposition modes). The coatings were analyzed using the X-ray fluorescence analysis with total external reflection (TXRF) and the Rutherford backscattering spectroscopy (RBS). It was found that the deposition of multilayer Ti/TiN/Ti coatings leads to the essential mixing of coating layers due to sputtering of coatings with fast atoms and ions from the laser plume and the evaporation of the coating under the laser radiation reflected from the target surface.

  14. Soft X-ray beam induced current technique

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B; Ade, H [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Queen, D; Hellman, F [Department of Physics, University of California, Berkeley, CA 94720 (United States); Kilcoyne, A L D; Tyliszczak, T, E-mail: benjamin.watts@gmail.co [Advanced Light Source, Lawrence Berkeley Nat. Lab., Berkeley, CA 94720 (United States)

    2009-09-01

    Direct mapping of the charge transport efficiency of polymer solar cell devices using a soft X-ray beam induced current (SoXBIC) method is described. By fabricating a polymer solar cell on an x-ray transparent substrate, we demonstrate the ability to map polymer composition and nanoscale structure within an operating solar cell device and to simultaneously measure the local charge transport efficiency via the short-circuit current. A simple model is calculated and compared to experimental SoXBIC data of a PFB:F8BT bulk-heterojunction device in order to gain greater insight into the device operation and physics.

  15. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

    Science.gov (United States)

    Nishino, Shunsuke; Ekino, Satoshi; Inukai, Manabu; Omprakash, Muthusamy; Adachi, Masahiro; Kiyama, Makoto; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro

    2017-11-01

    Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1-x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K-1 m-1 was found at around 0.2 thermal conductivity was well accounted for by the compositional dependence of the mixing entropy. Some of these values agree exactly with the amorphous limit predicted by theoretical calculations. The smallest lattice thermal conductivity found for the present samples is lower than that of nanostructured Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

  16. Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition

    Science.gov (United States)

    Matsui, Shinji

    In this chapter, we describe three-dimensional nanostructure fabrication using 30 keV Ga+ focused ion beam chemical vapor deposition (FIB-CVD) and a phenanthrene (C14H10) source as a precursor. We also consider microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a "micro wine glass" with an external diameter of 2.75 μm and a height of 12 μm. The film deposited during such processes is diamond-like amorphous carbon, which has a Young's modulus exceeding 600 GPa, appearing to make it highly desirable for various applications. The production of three-dimensional nanostructures is also discussed. The fabrication of microcoils, nanoelectrostatic actuators, and 0.1 μm nanowiring - all potential components of nanomechanical systems - is explained. The chapter ends by describing the realization of nanoinjectors and nanomanipulators, novel nanotools for manipulating and analyzing subcellular organelles.

  17. Characterization of ITO/CdO/glass thin films evaporated by electron beam technique

    Directory of Open Access Journals (Sweden)

    Hussein Abdel-Hafez Mohamed and Hazem Mahmoud Ali

    2008-01-01

    Full Text Available A thin buffer layer of cadmium oxide (CdO was used to enhance the optical and electrical properties of indium tin oxide (ITO films prepared by an electron-beam evaporation technique. The effects of the thickness and heat treatment of the CdO layer on the structural, optical and electrical properties of ITO films were carried out. It was found that the CdO layer with a thickness of 25 nm results in an optimum transmittance of 70% in the visible region and an optimum resistivity of 5.1×10−3 Ω cm at room temperature. The effect of heat treatment on the CdO buffer layer with a thickness of 25 nm was considered to improve the optoelectronic properties of the formed ITO films. With increasing annealing temperature, the crystallinity of ITO films seemed to improve, enhancing some physical properties, such as film transmittance and conductivity. ITO films deposited onto a CdO buffer layer heated at 450 °C showed a maximum transmittance of 91% in the visible and near-infrared regions of the spectrum associated with the highest optical energy gap of 3.61 eV and electrical resistivity of 4.45×10−4 Ω cm at room temperature. Other optical parameters, such as refractive index, extinction coefficient, dielectric constant, dispersion energy, single effective oscillator energy, packing density and free carrier concentration, were also studied.

  18. Techniques for evaluation of E-beam evaporative processes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, T.C.; Nelson, C.M.

    1996-10-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ``rafts`` on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface.

  19. Techniques for evaluation of E-beam evaporative processes

    International Nuclear Information System (INIS)

    Meier, T.C.; Nelson, C.M.

    1996-01-01

    High dynamic range video imaging of the molten pool surface has provided insight regarding process responses at the melt pool liquid-vapor interface. A water-cooled video camera provides continuous high resolution imaging of the pool surface from a low angle position within 20 cm of the liquid-vapor interface. From the vantage point, the e-beam footprint is clearly defined and melt pool free surface shape can be observed. Effects of changes in a beam footprint, power distribution, and sweep frequency on pool surface shape and stability of vaporization are immediately shown. Other events observed and recorded include: formation of the pool and dissipation of ''rafts'' on the pool surface during startup, behavior of feed material as it enters the pool, effects of feed configuration changes on mixing of feed entering the pool volume and behaviors of co-evaporated materials of different vapor pressures at the feed/pool boundary. When used in conjunction with laser vapor monitoring, correlation between pool surface phenomena and vaporizer performance has been identified. This video capability was used in verifying the titanium evaporation model results presented at this conference by confirming the calculated melt pool surface deformations caused by vapor pressure of the departing evaporant at the liquid-vapor interface

  20. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    Science.gov (United States)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  1. Effect of aluminum plasma parameters on the physical properties of Ti-Al-N thin films deposited by reactive crossed beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Alarcón, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Solís-Casados, D.A. [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200 (Mexico); Romero, S. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Fernández, M. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Pérez-Álvarez, J. [Departamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, México DF 11801 (Mexico); Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Unidad San Cayetano, Toluca, Estado de México 50200 (Mexico); Haro-Poniatowski, E. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, México DF (Mexico)

    2013-10-15

    This work reports on the preparation and characterization of Ti-Al-N thin films deposited by reactive crossed beam pulsed laser deposition (RCBPLD). The elemental composition, vibrational properties and hardness of the deposited films were investigated as a function of the plasma parameters, that is, the Al{sup +} mean kinetic energy and plasma density. The composition of the thin films was determined from X-ray photoelectron spectroscopy (XPS) measurements as well as by Rutherford backscattering spectroscopy (RBS). The structural modifications of the deposited materials due to Al incorporation were characterized by Raman spectroscopy. The hardness of the deposited films was determined by nanoindentation. It was found that by using this experimental configuration the aluminum content in the deposited films was incorporated in a controlled way, from 2.2 to 31.7 at.% (XPS measurements), by varying the Al{sup +} mean kinetic energy and the plasma density. Raman results suggest that at low aluminum concentrations a solid solution of Ti(Al, N) is produced, whereas at higher aluminum concentrations a nanocomposite formed of TiAlN and AlN is obtained. Ti-Al-N films with hardnesses up to 28.8 GPa, which are suitable for many mechanical applications, were obtained. These results show that the properties of the deposited material are controlled, at least partially, by the aluminum plasma parameters used for thin film growth.

  2. Dosimetric evaluations and comparisons between different techniques (Fan beam, Cone beam, OPT) in the dental industry and not

    International Nuclear Information System (INIS)

    Rampado, O.

    2014-01-01

    In recent years there has been an impressive evolution and spread of cone beam tomographic equipment, in particular in the dental and maxillofacial surgery. These devices exhibit unique characteristics both from the point of view of the geometric parameters of exposure than the quality of the beams radiating employed. In parallel to this technological development it was dealt with the quantification of the dose to the patient, with a discussion between experts to define what are the variables most appropriate to use and the appropriate ways of measuring. And it is of interest also the discussion on the comparison of the risks associated with the use of this method as an alternative to traditional techniques or other tomographic techniques, both on the criteria of optimization in the realization of the tests.

  3. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1987-07-01

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  4. Electropolymerization of pyrrole on oxidizable metal under high frequency ultrasound irradiation. Application of focused beam to a selective masking technique

    Energy Technology Data Exchange (ETDEWEB)

    Et Taouil, A. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Lallemand, F., E-mail: fabrice.lallemand@univ-fcomte.f [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France); Hallez, L.; Hihn, J-Y. [Institut UTINAM, UMR 6213 CNRS, Universite de Franche-Comte, 30 Avenue de l' observatoire, 25009 Besancon Cedex (France)

    2010-12-01

    A novel masking technique against polymer deposition based on High Intensity Focused Ultrasound (HIFU) irradiation was developed for the first time. With this in mind, a variety of background salts were tested. Sodium salicylate was found to be the most effective electrolytic medium for pyrrole sonoelectropolymerization on copper as it leads to a very efficient passivating oxide layer preventing copper dissolution while enabling polymer formation independently from sonication. In such a medium, high frequency ultrasound greatly refines surface structure, and a slight increase in doping level is observed. Finally, it was proved that focused ultrasound increases copper dissolution in sodium oxalate electrolyte while preventing polypyrrole deposition. A selected zone on the copper substrate was thus irradiated by the focused ultrasound beam to protect it from polymerization. In a second stage, a self-assembled monolayer was deposited on this polymer-free area to create a surface biphased substrate. This type of masking technique can be proposed as an interesting alternative to lithography as it is easier to carry out and allows chemical waste reduction.

  5. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-10-15

    II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  6. A nonlinear OPC technique for laser beam control in turbulent atmosphere

    Science.gov (United States)

    Markov, V.; Khizhnyak, A.; Sprangle, P.; Ting, A.; DeSandre, L.; Hafizi, B.

    2013-05-01

    A viable beam control technique is critical for effective laser beam transmission through turbulent atmosphere. Most of the established approaches require information on the impact of perturbations on wavefront propagated waves. Such information can be acquired by measuring the characteristics of the target-scattered light arriving from a small, preferably diffraction-limited, beacon. This paper discusses an innovative beam control approach that can support formation of a tight laser beacon in deep turbulence conditions. The technique employs Brillouin enhanced fourwave mixing (BEFWM) to generate a localized beacon spot on a remote image-resolved target. Formation of the tight beacon doesn't require a wavefront sensor, AO system, or predictive feedback algorithm. Unlike conventional adaptive optics methods which allow wavefront conjugation, the proposed total field conjugation technique is critical for beam control in the presence of strong turbulence and can be achieved by using this non-linear BEFWM technique. The phase information retrieved from the established beacon beam can then be used in conjunction with an AO system to propagate laser beams in deep turbulence.

  7. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique.

    Science.gov (United States)

    Serbezov, Valery

    2013-01-01

    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  8. Electro-optic techniques in electron beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  9. Optimisation of the electroless metal deposition technique for use in photonics

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2010-01-01

    enhanced chemical vapour deposition (PECVD) technique [5]. Even if the results are promising, the parameter space of such technique is huge thus making it almost impossible to avoid the local optimum points. In this work we present an optimised technique for 3D deposition of metals. Our technique is based...... on the well known Tollen’s test for detecting the presence of aldehyde groups inside a solution [6]. By optimising the concentration and the ratio of the chemicals involved, one can obtain very smooth and thin Ag layers (see figure 1a). In the same time, since the reaction takes place in solution......, it is by definition isotropic and thus suitable for depositing the metal on complex structures (see figure 1b)....

  10. Convergent beam electron diffraction – A novel technique for ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    This, together with the use of cooled CCD cameras, online work stations and figures, brings us to applying this technique to a wide range of problems in materials science, solid state chemistry, mineralogy and condensed matter physics. 3. Basic principles. Conventionally, until the discovery of CBED, electron diffraction from ...

  11. Convergent beam electron diffraction – A novel technique for ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    example in the field of superconductors, semiconductors, nanomaterials, ceramics etc. Hence, it can be said with confidence that these advanced techniques and their development will pave the path for structure analysis problems for newer materials in future. The authors wish to acknowledge the constant support and ...

  12. Detection of surface cracks in cladded pipes by the multiple-beam technique

    International Nuclear Information System (INIS)

    Gruber, G.J.

    1983-01-01

    Standard ultrasonic techniques usually yield reliable inspection results for the steel structures of the nuclear power industry. Stainless-steel cladding of pipes, vessels, and nozzles to reduce the susceptibility of the base material to cracking has, however, led to unexpected inspection difficulties. Some solutions to the ultrasonic inspection problems of cladded pipes were found in multiple-beam transducer design and the application of novel waveform-processing and pattern-recognition methods. The paper is divided into four parts. First, the problems of standard ultrasonic inspection techniques in detecting surface and near-surface cracks are presented. Next, signal-reducing and background-interference-producing mechanisms (beam skewing, defocusing, multiple grain-boundary and clad-base-material-interface scattering, focusing, etc.) are postulated to guide attempts to improve the reliability of crack detection. The two modes of operation of the multiple-beam array featured in the multiple-beam technique (Mode I - Inspection by Threshold Detection, and Mode II - Confirmation by Pattern Recognition) are then described. Finally, the results of a detection reliability evaluation study involving the multiple-beam technique and four other detection techniques and ten cladded plates containing thirty-three thumbnail-shaped notches are cited

  13. Nanocrystalline CuInSSe thin films by chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Shrotriya, Vipin, E-mail: vipinshrotriya@gmail.com; Rajaram, P., E-mail: prajaram@ymail.com [School of Studies in Physics, Jiwaji University, Gwalior (M.P.)-474011 (India)

    2016-05-06

    Crystalline CuInSSe thin films have been deposited on glass substrate by chemical bath deposition technique. The CuCl{sub 2}, InCl{sub 3}, thiourea and SeO{sub 2} were used as source materials for the Cu{sup 2+}, In{sup 3+}, S{sup 2−} and Se{sup 2−} ions and the Cu/In ratio was kept at 1.0. EDC was used as a complexing agent. The XRD, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-Ray (EDAX) and Optical transmission studies were used for structural analysis, surface morphology, elemental analysis and optical band gap, of the grown thin films respectively. The deposition parameters such as pH, deposition temperature and deposition time were optimized.

  14. A feasibility study of H sup - beam extraction technique using YAG laser

    CERN Document Server

    Meigo, S I; Hasegawa, K; Ikeda, Y; Nakagawa, S; Oigawa, H

    2002-01-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small...

  15. Flexible core masking technique for beam halo measurements with high dynamic range

    International Nuclear Information System (INIS)

    Egberts, J; Welsch, C P

    2010-01-01

    A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the beam pipe, and activate this, as well as accelerator and experimental components in close proximity, which makes work on the accelerator costly and time consuming. Well established techniques for transverse beam profile measurements of electron or high energy hadron beams are the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core.

  16. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  17. Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique

    OpenAIRE

    Grönholm, Tiia; Aalto, Pasi P.; Hiltunen, Veijo; Rannik, Üllar; Rinne, Janne; Laakso, Lauri; Hyvönen, Saara; Vesala, Timo; Kulmala, Markku

    2011-01-01

    The continuous measurements of aerosol particle deposition velocity have been performed from January 2004 to January 2005 using a REA technique with dynamic deadband. We measured aerosol particle deposition velocity in the size range of 10–150 nanometer with 5–10 nanometer steps using differential mobility analyser for sizing. We were able to measure two size classes simultaneously. One size class was changed at one month intervals, another we kept constant at 30 nm to investigate the effect ...

  18. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  19. Friction of self-lubricating surfaces by ion beam techniques. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.S.; Rai, A.K.

    1992-05-01

    UES, Inc. conducted a research and development program designed to establish conditions for ion implantation/mixing of suitable additives into the surfaces of bulk ceramics and metals for obtaining self-lubricating low friction and wear characteristics. The substrates considered were ZrO{sub 2}, Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, steel and Ni-base superalloy. The lubricant additives chosen were BaF{sub 2}/CaF{sub 2}Ag, MoS{sub 2}, WS{sub 2}and B{sub 2}O{sub 3}. The initial tasks of the program were to synthesis these lubricant compounds by co-implantation of constituent elements if sufficient beams of desired elements were obtained. The final tasks were to investigate high energy (MeV) ion mixing of deposited coatings as well as to investigate ion beam assisted deposition using low energy ion beams. It was shown that MoS{sub 2} can be synthesized by co-implantation of Mo{sup +} and S{sup +} in ceramic materials with appropriate choice of energies to obtain nearly overlapping depth profiles. The sliding life of DC magnetron sputtered MoS{sub 2} films of thicknesses {approximately}7500{Angstrom} on ceramic materials such as sapphire, Si{sub 3}N{sub 4} and ZrO{sub 3} were improved by ten to thousand fold after 2 Mev Ag{sup +} ion mixing. Ion beam assisted deposition (IBAD) and ion beam mixing were utilized to fabricate self-lubricating coatings of CaF{sub 2}/Ag and BaF/CaF{sub 2}/Ag composites.

  20. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    Science.gov (United States)

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T. P. A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O. K.; Banfi, D.; Baron, S.; Barr, A. J.; Beccherle, R.; Beck, H. P.; Belhorma, B.; Bell, P. J.; Benchekroun, D.; Benjamin, D. P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V. G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeáns Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M. V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S. A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H. O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P. O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B. A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W. L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T. F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A. I.; Fabich, A.; Facius, K.; Fakhr-Edine, A. I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O. L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B. C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B. J.; Gameiro, S.; Gan, K. K.; Garcia, R.; Garcia, C.; Gavrilenko, I. L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Goettfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M. D.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.-J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Harvey, A., Jr.; Hawkings, R. J.; Heinemann, F. E. W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J. C.; Hoffman, J.; Hostachy, J. Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P. D. C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P. T.; Kekelidze, G. D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T. H.; Klingenberg, R.; Klinkby, E. B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S. P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.-C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C. G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K. F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V. P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Garcia, S. Marti i.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K. W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V. A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S. V.; Mosidze, M.; Mouraviev, S. V.; Moyse, E. W. J.; Munar, A.; Myagkov, A.; Nadtochi, A. V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S. Y.; Newcomer, F. M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S. M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V. D.; Petersen, J.; Petersen, T. C.; Petti, R.; Phillips, P. W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M. J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; RØhne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P. A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J. G.; Sarri, F.; Sauvage, G.; Says, L. P.; Schaefer, M.; Schegelsky, V. A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J. M.; Seliverstov, D. M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J. E.; Smirnov, S. Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V. V.; Spanò, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S. I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V. O.; Timmermans, C. J. W. P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J. A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V. I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J. B.; Volpi, M.; Anh, T. Vu; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A. R.; Weingarten, J.; Wells, P. S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H. H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-06-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  1. Annealing induced oxidation and transformation of Zr thin film prepared by ion beam sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, S.-W. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Hsieh, T.-Y. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Huang, H.-L. [Department of Mechanical Engineering, Chinese Military Academy, Kaohsiung, Taiwan (China); Gan Dershin [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)], E-Mail: dgan@mail.nsysu.edu.tw; Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2007-04-15

    Nanocrystalline {alpha}-Zr condensates deposited by ion beam sputtering on the NaCl (1 0 0) surfaces and then annealed at 100-750 deg. C in air. The phases present were identified by transmission electron microscopy to be nanometer-size {alpha}-Zr + ZrO, {alpha}-Zr + ZrO + c-ZrO{sub 2}, c-ZrO{sub 2}, c- + t-ZrO{sub 2}, t-ZrO{sub 2}, and t- + m-ZrO{sub 2} phase assemblages with increasing annealing temperature. The ZrO{sub 2} showed strong {l_brace}1 0 0{r_brace} preferred orientation due to parallel epitaxy with NaCl (1 0 0) when annealed between 150 and 500 deg. C in air. The c- and t-ZrO{sub 2} condensates also showed (1 1 1)-specific coalescence among themselves. The c- and/or t-ZrO{sub 2} formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of the neighboring grains.

  2. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  3. Improvements in technique for determining the surfactant penetration in hair fibres using scanning ion beam analyses

    International Nuclear Information System (INIS)

    Hollands, R.; Clough, A.S.; Meredith, P.

    1999-01-01

    The penetration abilities of surfactants need to be known by companies manufacturing hair-care products. In this work three complementary techniques were used simultaneously - PIXE, NRA and RBS - to measure the penetration of a surfactant, which had been deuterated, into permed hair fibres. Using a scanning micro-beam of 2 MeV 3 He ions 2-dimensional concentration maps were obtained which showed whether the surfactant penetrated the fibre or just stayed on the surface. This is the first report of the use of three simultaneous scattering techniques with a scanning micro-beam. (author)

  4. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  5. Beam shaping to improve holography techniques based on spatial light modulators

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2013-03-01

    Modern holographic techniques based on Spatial Light Modulators get serious benefits from providing uniform intensity distribution of a laser beam: more predictable and reliable operation, higher efficiency of laser energy usage, more simple mathematical description of diffraction transformations, etc. Conversion of Gaussian intensity distribution of TEM00 lasers to flattop one is successfully realized with refractive field mapping beam shapers like piShaper, which operational principle presumes transformation with high flatness of output wavefront, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  6. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  7. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    International Nuclear Information System (INIS)

    Remnev, G.E.; Zakoutaev, A.N.; Grushin, I.I.; Matvenko, V.M.; Potemkin, A.V.; Ryzhkov, V.A.; Chernikov, E.V.

    1996-01-01

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm 2 , pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs

  8. Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process

    International Nuclear Information System (INIS)

    Malobabic, Sina; Jupé, Marco; Ristau, Detlev

    2013-01-01

    Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.

  9. A MECHANISTIC MODEL FOR PARTICLE DEPOSITION IN DIESEL PARTICLUATE FILTERS USING THE LATTICE-BOLTZMANN TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark L.; Rector, David R.; Muntean, George G.; Maupin, Gary D.

    2004-08-01

    Cordierite diesel particulate filters (DPFs) offer one of the most promising aftertreatment technologies to meet the quickly approaching EPA 2007 heavy-duty emissions regulations. A critical, yet poorly understood, component of particulate filter modeling is the representation of soot deposition. The structure and distribution of soot deposits upon and within the ceramic substrate directly influence many of the macroscopic phenomenon of interest, including filtration efficiency, back pressure, and filter regeneration. Intrinsic soot cake properties such as packing density and permeability coefficients remain inadequately characterized. The work reported in this paper involves subgrid modeling techniques which may prove useful in resolving these inadequacies. The technique involves the use of a lattice Boltzmann modeling approach. This approach resolves length scales which are orders of magnitude below those typical of a standard computational fluid dynamics (CFD) representation of an aftertreatment device. Individual soot particles are introduced and tracked as they move through the flow field and are deposited on the filter substrate or previously deposited particles. Electron micrographs of actual soot deposits were taken and compared to the model predictions. Descriptions of the modeling technique and the development of the computational domain are provided. Preliminary results are presented, along with some comparisons with experimental observations.

  10. Improved stability of organic light-emitting diode with aluminum cathodes prepared by ion beam assisted deposition

    Directory of Open Access Journals (Sweden)

    Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song

    2005-01-01

    Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.

  11. Microstructural Comparisons of Ultra-Thin Cu Films Deposited by Ion-Beam and dc-Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Prater, W.

    2004-11-04

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6% to 10% for ion beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron deposited films are smoother. The dc-magnetron produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films.

  12. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  13. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  14. Implementation of intra-cavity beam shaping technique to enhance pump efficiency

    CSIR Research Space (South Africa)

    Litvin, IA

    2012-02-01

    Full Text Available In this work the author proposes an implementation of a new intra-cavity beam shaping technique to vary the intensity distribution of the fundamental mode in a resonator cavity while maintaining a constant intensity distribution at the output...

  15. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  16. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  17. A comparative study of CdS thin films deposited by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Hernández, G., E-mail: german.perez@ujat.mx [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Pantoja-Enríquez, J. [Centro de Investigación y Desarrollo Tecnológico en Energías Renovables, UNICACH, Libramiento Norte No 1150, Tuxtla Gutiérrez, Chiapas 29039 (Mexico); Escobar-Morales, B. [Instituto Tecnológico de Cancún, Avenida Kábah Km 3, Cancún, Quintana Roo 77500 (Mexico); Martinez-Hernández, D.; Díaz-Flores, L.L.; Ricardez-Jiménez, C. [Universidad Juárez Autónoma de Tabasco, Avenida Universidad s/n, Col. Magisterial, Villahermosa, Tabasco 86040 (Mexico); Mathews, N.R.; Mathew, X. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico)

    2013-05-01

    Cadmium sulfide thin-films were deposited on glass slides and SnO{sub 2}:F coated glass substrates by chemical bath deposition, sputtering and close-spaced sublimation techniques. The films were studied for the structural and opto-electronic properties after annealing in an ambient identical to that employed in the fabrication of CdTe/CdS devices. Quantum efficiency of the CdTe/CdS solar cells fabricated with CdS buffer films prepared by the three methods were investigated to understand the role of CdS film preparation method on the blue response of the devices. The higher blue response observed for the devices fabricated with chemical bath deposited CdS film is discussed. - Highlights: ► CdS films were prepared by different techniques. ► Role of CdS on the blue response of device was studied. ► Structural and optical properties of CdS were analyzed. ► Chemically deposited CdS has high blue transmittance. ► CdS deposition method influences diffusion of S and Te.

  18. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    identifying and analyzing the betatron oscillation sourced from the kick based on its mixing and temporal patterns. The accelerator magnets can generate unwanted spurious linear and non-linear fields due to fabrication errors or aging. These error fields in the magnets can excite undesired resonances leading together with the space charge tune spread to long term beam losses and reducing dynamic aperture. Therefore, the knowledge of the linear and non-linear magnets errors in circular accelerator optics is very crucial for controlling and compensating resonances and their consequent beam losses and beam quality deterioration. This is indispensable, especially for high beam intensity machines. Fortunately, the relationship between the beam offset oscillation signals recorded at the BPMs is a manifestation of the accelerator optics, and can therefore be exploited in the determination of the optics linear and non-linear components. Thus, beam transversal oscillations can be excited deliberately for purposes of diagnostics operation of particle accelerators. In this thesis, we propose a novel method for detecting and estimating the optics lattice non-linear components located in-between the locations of two BPMs by analyzing the beam offset oscillation signals of a BPMs-triple containing these two BPMs. Depending on the non-linear components in-between the locations of the BPMs-triple, the relationship between the beam offsets follows a multivariate polynomial accordingly. After calculating the covariance matrix of the polynomial terms, the Generalized Total Least Squares method is used to find the model parameters, and thus the non-linear components. A bootstrap technique is used to detect the existing polynomial model orders by means of multiple hypothesis testing, and determine confidence intervals for the model parameters.

  19. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  20. Microfluidic Genipin Deposition Technique for Extended Culture of Micropatterned Vascular Muscular Thin Films.

    Science.gov (United States)

    Hald, Eric S; Steucke, Kerianne E; Reeves, Jack A; Win, Zaw; Alford, Patrick W

    2015-06-26

    The chronic nature of vascular disease progression requires the development of experimental techniques that simulate physiologic and pathologic vascular behaviors on disease-relevant time scales. Previously, microcontact printing has been used to fabricate two-dimensional functional arterial mimics through patterning of extracellular matrix protein as guidance cues for tissue organization. Vascular muscular thin films utilized these mimics to assess functional contractility. However, the microcontact printing fabrication technique used typically incorporates hydrophobic PDMS substrates. As the tissue turns over the underlying extracellular matrix, new proteins must undergo a conformational change or denaturing in order to expose hydrophobic amino acid residues to the hydrophobic PDMS surfaces for attachment, resulting in altered matrix protein bioactivity, delamination, and death of the tissues. Here, we present a microfluidic deposition technique for patterning of the crosslinker compound genipin. Genipin serves as an intermediary between patterned tissues and PDMS substrates, allowing cells to deposit newly-synthesized extracellular matrix protein onto a more hydrophilic surface and remain attached to the PDMS substrates. We also show that extracellular matrix proteins can be patterned directly onto deposited genipin, allowing dictation of engineered tissue structure. Tissues fabricated with this technique show high fidelity in both structural alignment and contractile function of vascular smooth muscle tissue in a vascular muscular thin film model. This technique can be extended using other cell types and provides the framework for future study of chronic tissue- and organ-level functionality.

  1. Comparison of the columnar-thin-film and vacuum-metal-deposition techniques to develop sebaceous fingermarks on nonporous substrates.

    Science.gov (United States)

    Williams, Stephanie F; Pulsifer, Drew P; Shaler, Robert C; Ramotowski, Robert S; Brazelle, Shelly; Lakhtakia, Akhlesh

    2015-03-01

    Both the columnar-thin-film (CTF) and the vacuum-metal-deposition (VMD) techniques for visualizing sebaceous fingermarks require the deposition of a material thereon in a vacuum chamber. Despite that similarity, there are many differences between the two techniques. The film deposited with the CTF technique has a columnar morphology, but the film deposited with the VMD technique comprises discrete islands. A split-print methodology on a variety of fingermarked substrates was used to determine that the CTF technique is superior for developing fingermarks on clear sandwich bags and partial bloody fingermarks on stainless steel. Both techniques are similar in their ability to develop fingermarks on glass but the CTF technique yields higher contrast. The VMD technique is superior for developing fingermarks on white grocery bags and the smooth side of Gloss Finish Scotch Multitask(™) tape. Neither technique worked well for fingermarks on black garbage bags. © 2014 American Academy of Forensic Sciences.

  2. Comparative study of the radio-frequency magnetron sputter deposited CaP films fabricated onto acid-etched or pulsed electron beam-treated titanium

    International Nuclear Information System (INIS)

    Surmeneva, M.A.; Surmenev, R.A.; Tyurin, A.I.; Mukhametkaliyev, T.M.; Teresov, A.D.; Koval, N.N.; Pirozhkova, T.S.; Shuvarin, I.A.; Oehr, C.

    2014-01-01

    This study investigated the effect of the substrate morphology introduced by various substrate preparation techniques, namely acid etching (AE) and pulsed electron beam (PEB) treatments, on the CaP film morphology and mechanical properties. The morphology, nanohardness, and Young's modulus of the CaP coating deposited via radio-frequency (RF) magnetron sputtering were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), scanning electron microscopy and nanoindentation studies. The Ca/P ratios of the CaP coating deposited via RF magnetron sputtering onto titanium substrates treated using AE and PEB according to XPS were 1.73 ± 0.03 and 1.72 ± 0.04, respectively, which is close to the Ca/P ratio of 1.67 typical for stoichiometric hydroxyapatite (HA). The AFM experiments and nanoindentation studies revealed significant differences in the morphology and mechanical responses of the CaP films deposited onto acid-etched titanium substrates treated with PEB. Deposition of the CaP coating onto the acid-etched surface resulted in a rough surface with the presence of an island-like morphology. The CaP coating onto a smooth titanium substrate treated by PEB exhibited grains with irregular shapes and decreased size. The nanoindentation hardness and the Young's modulus of the HA coating deposited onto titanium treated by the PEB treatment were determined to be 7.0 ± 0.3 and 124 ± 3 GPa, respectively, which are significantly higher than those of the CaP coating on the acid-etched titanium substrates. Moreover, the elastic strain to failure (H/E), the plastic deformation resistance (H 3 /E 2 ), and the percent elastic recovery %R of the HA coating on titanium after surface irradiation with an electron energy density of 15 J·cm −2 were determined to increase by ∼ 23%, ∼ 70% and ∼ 53%, respectively, compared to the CaP coating on acid-etched titanium. - Highlights: • Island-like morphology of calcium phosphate coating on

  3. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    Science.gov (United States)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  4. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Grahn, Karl-Johan

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  5. A novel technique for tuning of co-axial cavity of multi-beam klystron

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sukalyan, E-mail: sstechno18@gmail.com; Bandyopadhyay, Ayan Kumar; Pal, Debashis; Kant, Deepender; Joshi, Lalit Mohan; Kumar, Bijendra; Meena, Rakesh; Rawat, Vikram [Microwave Tubes Division, CSIR-CEERI, Pilani, Rajasthan-333031 (India)

    2016-03-09

    Multi-beam Klystrons (MBKs) have gained wide acceptances in the research sector for its inherent advantages. But developing a robust tuning technique for an MBK cavity of coaxial type has still remained a challenge as these designs are very prone to suffer from asymmetric field distribution with inductive tuning of the cavity. Such asymmetry leads to inhomogeneous beam-wave interaction, an undesirable phenomenon. Described herein is a new type of coaxial cavity that has the ability to suppress the asymmetry, thereby allowing tuning of the cavity with a single tuning post.

  6. Analysis of Adaptive Fuzzy Technique for Multiple Crack Diagnosis of Faulty Beam Using Vibration Signatures

    Directory of Open Access Journals (Sweden)

    Amiya Kumar Dash

    2013-01-01

    Full Text Available This paper discusses the multicrack detection of structure using fuzzy Gaussian technique. The vibration parameters derived from the numerical methods of the cracked cantilever beam are used to set several fuzzy rules for designing the fuzzy controller used to predict the crack location and depth. Relative crack locations and relative crack depths are the output parameters from the fuzzy inference system. The method proposed in the current analysis is used to evaluate the dynamic response of cracked cantilever beam. The results of the proposed method are in good agreement with the results obtained from the developed experimental setup.

  7. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  8. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  9. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation.

    Science.gov (United States)

    Ristau, Detlev; Günster, Stefan; Bosch, Salvador; Duparré, Angela; Masetti, Enrico; Ferré-Borrull, Josep; Kiriakidis, George; Peiró, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  10. Deposition

    International Nuclear Information System (INIS)

    1984-01-01

    Monitoring of radionuclide contents in rainwater is a useful way to keep a check on any change in the external radiation dose caused by the deposited material. Thus analuses of 3 H, 89 Sr and 90 Sr as well as 137 Cs and other gamma radionuclide contents in deposition were continued both nationwide and in the vicinities of the nuclear power stations at Loviisa and Olkiluoto. The deposition of 90 Sr and 137 Cs was lower than in previous years, being only a small fraction of the highest deposition values measured in 1983. The tritium concentrations were also lower than in 1982. The total annual deposition of tritium at different sampling stations varied from 1.7 kBq/m 2 to 2.9 kBq/m 2

  11. Beam profile measurements on the advanced test accelerator using optical techniques

    International Nuclear Information System (INIS)

    Chong, Y.P.; Kalibjian, R.; Cornish, J.P.; Kallman, J.S.; Donnelly, D.

    1986-01-01

    Beam current density profiles of ATA have been measured both spatially and temporally using a number of diagnostics. An extremely important technique involves measuring optical emissions from either a target foil inserted into the beam path or gas atoms and molecules excited by beam electrons. This paper describes the detection of the optical emission. A 2-D gated television camera with a single or dual micro-channel-plate (MCP) detector for high gain provides excellent spatial and temporal resolution. Measurements are routinely made with resolutions of 1 mm and 5 ns respectively. The optical line of sight allows splitting part of the signal to a streak camera or photometer for even higher time resolution

  12. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z. [Argonne National Lab., IL (United States). Materials and Components Technology Div.; Wei, R.; Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 {mu}m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature {approx} 22{plus_minus}1{degrees}C, and humidity, {approx} 30{plus_minus}5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10{sup {minus}5} mm{sup 3}/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.

  13. Friction and wear performance of ion-beam deposited diamondlike carbon films on steel substrates

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Nichols, F.A.; Pan, X.Z. (Argonne National Lab., IL (United States). Materials and Components Technology Div.); Wei, R.; Wilbur, P. (Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering)

    1993-01-01

    In this study, we investigated the friction and wear performance of ion-beam-deposited diamondlike-carbon (DLC) films (1.5 [mu]m thick) on AISI 440C steel substrates. Furthermore, we ran a series of long-duration wear tests under 5, 10, and 20 N load to assess the load-bearing capacity and durability limits of these films under each load. Tests were performed on a ball-on-disk machine in open air at room temperature [approx] 22[plus minus]1[degrees]C, and humidity, [approx] 30[plus minus]5%. For the test conditions explored, we found that (1) the steady-state friction coefficients of pairs without a DLC film were in the range of 0.7 to 0.9 and the average wear rates of 440C balls (9.55 mm diameter) sliding against uncoated 440C disks were on the order of 10[sup [minus]5] mm[sup 3]/N.m, depending on contact load; (2) DLC films reduced the steady-state friction coefficients of test pairs by factors of 6 to 8, and the wear rates of pins by factors of 500 to 2000; (3) The wear of disks coated with a DLC film was virtually unmeasurable while the wear of uncoated disks was quite substantial, (4) these DLC films were able to endure the range of loads, 5 to 20 N, without any delamination and to last over a million cycles before wearing out. During long-duration wear tests, the friction coefficients were initially on the order of 0.15, but decreased to some low values of 0.05 to 0.07 after sliding for 15 to 25 km, depending on the load, and remained low until wearing out. This low-friction regime was correlated with the formation of a carbon-rich transfer film on the wear scar of 440C balls. Micro-laser-Raman spectroscopy and scanning-electron microscopy were used to examine the structure and chemistry of worn surfaces and to elucidate the wear- and friction-reducing mechanisms of the DLC film.

  14. Measurement of the beam energy of a cyclotron using a copper-foils technique

    International Nuclear Information System (INIS)

    Asad, A. H.; Price, Roger I.; Fleming, Adam; Burrage, John W.; Cryer, David; Chan, Sun; Deans, Tom; Saddiqui, Salim A.

    2009-01-01

    Full text: The 1 8 M eV cyclotron at SCGH (Perth) daily produces PET radioisotopes. An external beam line, incorporating an in-house designed target-holder, has been utilised to explore (p,x) solid targetry in the proton energy-range 7 -18 M eY. Some solid targetry techniques require a degrader for reducing beam energy. We investigated a technique to measure the proton-beam energy, with or without a degrader. Stacks of natural-copper (Cu) foils (31 % Cu-65, 69% Cu-63), purity >99.98% and thicknesses (l00, 75, 50 or 25/lm) were proton-bombarded in separate runs. In separate determinations for each run, activities of Zn-63, Zn-65 and (depending on beam energy) Zn-62 in each foil were then measured by HPGe -spectroscopy, and together with stopping-power and reaction-specific cross section data were used to calculate incident beam energy. Materials for a degrader were aluminium and graphite with calculated thicknesses of 0.920 and 1.128 m m, respectively, designed to reduce the energy from 1 8 M eV to I I A MeV, specifically to optimise the reaction Ni-64(p,n)Cu-64, currently under study in our laboratory. Beam energies thus derived from Zn-63 or Zn-65 had (eg; for thickness= I OO / lm) precision (+ 95%CI) of 7 -18 M eV, embracing production of a range of biomedically relevant isotopes such as 1-124, Zr-89 and Cu-64.

  15. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    International Nuclear Information System (INIS)

    Bundesmann, C.; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-01

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles

  16. Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition

    Science.gov (United States)

    Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.

    2018-01-01

    Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.

  17. Lipase immobilization for catalytic applications obtained using fumed silica deposited with MAPLE technique

    Science.gov (United States)

    Bloisi, Francesco; Califano, Valeria; Perretta, Giuseppe; Nasti, Libera; Aronne, Antonio; Di Girolamo, Rocco; Auriemma, Finizia; De Rosa, Claudio; Vicari, Luciano R. M.

    2016-06-01

    Lipases are enzymes used for catalyzing reactions of acylglycerides in biodiesel production from lipids, where enzyme immobilization on a substrate is required. Silica nanoparticles in different morphologies and configurations are currently used in conjunction with biological molecules for drug delivery and catalysis applications, but up to date their use for triglycerides has been limited by the large size of long-chain lipid molecules. Matrix assisted pulsed laser evaporation (MAPLE), a laser deposition technique using a frozen solution/suspension as a target, is widely used for deposition of biomaterials and other delicate molecules. We have carried out a MAPLE deposition starting from a frozen mixture containing fumed silica and lipase in water. Deposition parameters were chosen in order to increase surface roughness and to promote the formation of complex structures. Both the target (a frozen thickened mixture of nanoparticles/catalyst in water) and the deposition configuration (a small target to substrate distance) are unusual and have been adopted in order to increase surface contact of catalyst and to facilitate access to long-chain molecules. The resulting innovative film morphology (fumed silica/lipase cluster level aggregation) and the lipase functionality (for catalytic biodiesel production) have been studied by FESEM, FTIR and transesterification tests.

  18. TOF technique for laser-driven proton beam diagnostics for the ELIMED beamline

    International Nuclear Information System (INIS)

    Milluzzo, G.; Scuderi, V.; Amico, A.G.; Cirrone, G.A.P.; Cuttone, G.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Napoli, M. De; Dostal, J.; Margarone, D.; Schillaci, F.; Velyhan, A.

    2017-01-01

    The Time of Flight (TOF) method for laser-driven ion beam diagnostics has been extensively investigated so far for low energy ion diagnostics and several works, reported in literature [1,2], have shown its efficiency in the measurement of particle beam characteristics such as ion species, energy spectrum and current. Moreover, such technique allows obtaining a shot-to-shot on-line monitoring of optically accelerated particles, necessary to control the reproducibility of the accelerated beam and to deliver a beam suitable for any kind of applications. For this reason, the ELIMED beamline [3,4], which will be entirely developed at INFN-LNS and installed in 2017 within the ion beamline ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) experimental hall at ELI-Beamlines in Prague, will be equipped with an on-line diagnostics system composed by silicon carbide and diamond detectors, using the TOF technique. In this contribution, the procedure developed for TOF signal analysis will be briefly reported.

  19. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Petti, P.L. [Univ. of California, San Francisco, CA (United States)

    1996-07-15

    The purpose of this article is to evaluate a pencil-beam dose calculation algorithm for protons and heavier charged particles in complex patient geometries defined by computed tomography (CT) data and to compare isodose distributions calculated with the new technique to those calculated with conventional algorithms in selected patients with skull-base tumors. Monte Carlo calculations were performed to evaluate the pencil-beam algorithm in patient geometries for a modulated 150-MeV proton beam. A modified version of a Monte Carlo code described in a previous publication (18) was used for these comparisons. Tissue densities were inferred from patient CT data on a voxel-by-voxel basis, and calculations were performed with and without tissue compensators. A dose calculation module using the new algorithm was written, and treatment plans using the new algorithm were compared to plans using standard ray-tracing techniques for 10 patients with clival chordoma and three patients with nasopharyngeal carcinoma were treated with helium ions at Lawrence Berkeley National Laboratory (LBL). Pencil beam calculations agreed well with Monte Carlo calculations in the patient geometries. 23 refs., 5 figs.

  20. The Influence of Various Deposition Techniques on the Photoelectrochemical Properties of the Titanium Dioxide Thin Fil

    Czech Academy of Sciences Publication Activity Database

    Morozová, Magdalena; Klusoň, Petr; Dzik, P.; Veselý, M.; Baudyš, M.; Krýsa, J.; Šolcová, Olga

    2013-01-01

    Roč. 65, č. 3 (2013), s. 452-458 ISSN 0928-0707 R&D Projects: GA TA ČR TA01020804 Grant - others:GA ČR(CZ) GP104/09/P165 Institutional support: RVO:67985858 Keywords : titanium dioxide * photoelectrochemical properties * deposition techniques Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.547, year: 2013

  1. The analysis of composite laminated beams using a 2D interpolating meshless technique

    Science.gov (United States)

    Sadek, S. H. M.; Belinha, J.; Parente, M. P. L.; Natal Jorge, R. M.; de Sá, J. M. A. César; Ferreira, A. J. M.

    2018-02-01

    Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method (RPIM). Here, a 2D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.

  2. The kick-out mass selection technique for ions stored in an Electrostatic Ion Beam Trap

    International Nuclear Information System (INIS)

    Toker, Y; Altstein, N; Aviv, O; Rappaport, M L; Heber, O; Schwalm, D; Strasser, D; Zajfman, D

    2009-01-01

    A simple mass selection technique which allows one to clean a keV ion beam of undesirable masses while stored in an Electrostatic Ion Beam Trap (EIBT) is described. The technique is based on the time-of-flight principle and takes advantage of the long storage times and self-bunching that are possible in this type of traps (self bunching being the effect that keeps ions of the same mass bunched in spite of their finite distributions of velocities and trajectories). As the oscillation period is proportional to the square root of the ion mass, bunches containing ions of different masses will separate in space with increasing storage time and can be kicked out by a pulsed deflector mounted inside the trap. A mass selector of this type has been implemented successfully in an EIBT connected to an Even-Lavie supersonic expansion source and is routinely used in ongoing cluster experiments.

  3. The influence of inhalation technique on Technegas particle deposition and image appearance in normal volunteers

    International Nuclear Information System (INIS)

    Lloyd, J.J.; James, J.M.; Shields, R.A.; Testa, H.J.

    1994-01-01

    The aim of this work was to investigate the influence of inhalation technique on Technegas image quality and on fractional particle deposition. This was investigated in six normal volunteers using three different types of breathing pattern. Fractional deposition was determined by analysis of dynamic gamma camera images acquired during Technegas administration. Static lung images were subsequently acquired and assessed independently by three experienced observers. High-quality images were obtained in all cases although slight differences were noted. The images produced using a slow deep inspiration with a breath hold (i.e. the standard method) were of more uniform texture and also had the least gradient in activity from apex to base. The converse was true for a rapid inhalation technique. The average fractional deposition per breath was 55%, but this varied between individuals and with breathing pattern, being most influenced by the total duration of a breath. We conclude that for patient studies the standard inhalation technique is best, although variation to suit individual patients would be acceptable. (orig./MG)

  4. Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics.

    Science.gov (United States)

    Emam, Hossam E; Saleh, N H; Nagy, Khaled S; Zahran, M K

    2016-03-01

    Nowadays, functional clothes are employed for human body protection in addition to be fashionable clothes. Hence functionalization of clothes increases the attention of scientists and business. In the current study, poly-functional cotton fabric was carried out by instantly deposition of AgNPs using two solventless techniques namely; sorption and padding. Sorption technique was exhibited extremely high efficiency than padding one by ca. 10 times. By using the same concentrations of AgNO3, Ag content was ranged 69.3-6094.8 mg/kg and 33.8-609.3 mg/kg for sorption and padding, respectively. After AgNPs deposition, fabrics color was turned to gray-reddish yellow. By applying 5912.3 mgAg/kg fabric, bacterial reduction and UPF value were reached 99% and 12.59. Bacterial reduction and UPF were lessened to 90% and 10.19 after 20 washings. These findings proved that the direct AgNPs deposition into cotton using solventless/sorption technique is applicable in manufacturing of antibacterial/UV resistant fabrics with acquired decorative color. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Active Vibration damping of Smart composite beams based on system identification technique

    Science.gov (United States)

    Bendine, Kouider; Satla, Zouaoui; Boukhoulda, Farouk Benallel; Nouari, Mohammed

    2018-03-01

    In the present paper, the active vibration control of a composite beam using piezoelectric actuator is investigated. The space state equation is determined using system identification technique based on the structure input output response provided by ANSYS APDL finite element package. The Linear Quadratic (LQG) control law is designed and integrated into ANSYS APDL to perform closed loop simulations. Numerical examples for different types of excitation loads are presented to test the efficiency and the accuracy of the proposed model.

  6. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition

    Science.gov (United States)

    Yu, Ning; Shi, Qing; Nakajima, Masahiro; Wang, Huaping; Yang, Zhan; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-10-01

    Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy.

  7. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  8. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2011-01-01

    We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.

  9. Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning

    Science.gov (United States)

    Lizotte, Todd E.

    2011-10-01

    Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview

  10. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  11. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  12. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  13. Failure mechanisms of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Science.gov (United States)

    Vaidyanathan, Krishnakumar

    Thermal barrier coatings (TBCs) allow operation of structural components, such as turbine blades and vanes in industrial and aircraft gas engines, at temperatures close to the substrate melting temperatures. They consist of four different layers; a high strength creep-resistant nickel-based superalloy substrate, an oxidation resistant bond coat (BC), a low thermal conductivity ceramic topcoat and a thermally grown oxide (TGO), that is predominantly alpha-Al 2O3, that forms between the BC and the TBC. Compressive stresses (3--5 GPa) that are generated in the thin TGO (0.25--8 mum) due to the mismatch in thermal coefficient of expansion between the TGO and BC play a critical role in the failure of these coatings. In this study, the failure mechanisms of a commercial yttria-stabilized zirconia (7YSZ) electron beam-physical vapor deposited (EB-PVD) coating on platinum aluminide (beta-(Ni,Pt)Al) bond coat have been identified. Two distinct mechanisms have been found responsible for the observed damage initiation and progression at the TGO/bond coat interface. The first mechanism leads to localized debonding at TGO/bond coat interface due to increased out-of-plane tensile stress, along bond coat features that manifest themselves as ridges. The second mechanism causes cavity formation at the TGO/bond coat interface, driven by cyclic plasticity of the bond coat. It has been found that the debonding at the TGO/bond coat interface due to the first mechanism is solely life determining. The final failure occurs by crack extension along either the TGO/bond coat interface or the TGO/YSZ interface or a combination of both, leading to large scale buckling. Based on these mechanisms, it is demonstrated that the bond coat grain size and the aspect ratio of the ridges have a profound influence on spallation lives of the coating. The removal of these ridges by fine polishing prior to TBC deposition led to a four-fold improvement in life. The failure mechanism identified for the

  14. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2013-01-01

    Full Text Available ZnO colloidal nanoparticles were synthesized, the average size of these nanoparticles is around 25 nm with hexagonal form. It was noted that stabilization depends directly on the purifying process; in this work we do not change the nature of the solution as a difference from Meulekamp's method, and we do not use any alkanes to remove the byproducts; only a centrifuge to remove those ones was used, thereby the stabilization increases up to 24 days. It is observed from the results that only three times of washing is enough to prevent the rapid aging process. The effect of annealing process on the composition, size, and geometrical shape of ZnO nanoparticles was studied in order to know whether the annealing process affects the crystallization and growth of the nanoparticles. After the synthesis, the colloidal nanoparticles were deposited by spin coating technique showing that the formed nanoparticles have no uniformly deposition pattern. But is possible to deposit those ones in glass substrates. A possible deposition process of the nanoparticles is proposed.

  15. Novel Optical Diagnostic Techniques for Studying Particle Deposition Upon Large Cylinders in a Sheared Suspension

    Science.gov (United States)

    Yoda, M.; Bailey, B. C.

    2000-01-01

    On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.

  16. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    International Nuclear Information System (INIS)

    Wilkens, V; Sonntag, S; Jenderka, K-V

    2011-01-01

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  17. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  18. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    Science.gov (United States)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  19. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    International Nuclear Information System (INIS)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R.; Arrieta, M.L. Pérez; Meza-Rocha, A.N.; Rivera-Álvarez, Z.; Falcony, C.

    2013-01-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min −1 at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min −1 were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s

  20. Synthesis of conductive semi-transparent silver films deposited by a Pneumatically-Assisted Ultrasonic Spray Pyrolysis Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zaleta-Alejandre, E.; Balderas-Xicoténcatl, R. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Arrieta, M.L. Pérez [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, C.P. 98060, Zacatecas, México (Mexico); Meza-Rocha, A.N.; Rivera-Álvarez, Z. [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico); Falcony, C., E-mail: cfalcony@fis.cinvestav.mx [Centro de Investigación y de Estudios Avanzados-IPN, Departamento de Física, , Apdo. Postal 14-470, Del, Gustavo A. Madero, C.P. 07000, México, D.F. (Mexico)

    2013-10-01

    Highlights: • We deposited metallic silver films without post-deposition annealing. • The spray pyrolysis technique is of low cost and scalable for industrial applications. • We obtained deposition rate of 60 nm min{sup −1} at 300 °C. • The average resistivity was 1E−7 Ω m. • Semi-transparent silver films were obtained at 350 °C and deposition time of 45 s. -- Abstract: The synthesis and characterization of nanostructured silver films deposited on corning glass by a deposition technique called Pneumatically-Assisted Ultrasonic Spray Pyrolysis are reported. Silver nitrate and triethanolamine were used as silver precursor and reducer agent, respectively. The substrate temperatures during deposition were in the range of 300–450 °C and the deposition times from 30 to 240 s. The deposited films are polycrystalline with cubic face-centered structure, and crystalline grain size less than 30 nm. Deposition rates up to 600 Å min{sup −1} were obtained at substrate temperature as low as 300 °C. The electrical, optical, and morphological properties of these films are also reported. Semi-transparent conductive silver films were obtained at 350 °C with a deposition time of 45 s.

  1. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique.

    Science.gov (United States)

    Lopez-Diaz, D; Merino, C; Velázquez, M M

    2015-11-11

    Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP) and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  2. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  3. Reactive Ar ion beam sputter deposition of TiO{sub 2} films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Lautenschläger, T.; Thelander, E. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Spemann, D. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany)

    2017-03-15

    Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Thickness, growth rate, structure, mass density, composition, optical properties. • All TiO{sub 2} films are amorphous with systematic variations in mass density. • Considerable amount of inert process gas correlated with scattering angle. • Correlation of mass density and index of refraction. - Abstract: Several sets of TiO{sub 2} films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  4. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    International Nuclear Information System (INIS)

    Gao, Q. D.; Budny, R. V.

    2015-01-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T i,e ) and toroidal velocity (V ϕ ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition

  5. Determination of Redistribution of Erosion/Deposition Rate in Cultivated Area Using 137Cs Technique

    International Nuclear Information System (INIS)

    Nita Suhartini; Syamsul Abbas RAS; Barokah A; Ali Arman L

    2004-01-01

    The aim of the research is to determine the rate of redistribution of erosion/deposition in cultivated area. The application of 137 Cs technique was carried out at cultivated area in Bojong - Ciawi, with slope less than 10 o and slope length of about 2 km. A reference site was selected at the top of the slope, and this site is flat, open and covered with grass. Two sites in the cultivated area were selected as study site namely LU-I ( 15 x 25 ) m with the distance of 1000 m from the top, and LU-II (17.5 x 20) m with the distance of 1300 m from the top. Sampling of soil at reference site was done by using scraper (20 x 50) cm, while sampling at study site by using core sampling (di = 7 cm). Soil samples were brought to the laboratorium for preparation and analysis of 137 Cs content. Preparation are including of drying, weighing the total dry, sieving and crushing. Analysis of 137 Cs content was done using multi channel analyzer (MCA) that connected to high purity germanium (HPGe), at 661 keV, and the minimum counting time of 16 hours. To estimate the erosion/deposit rate, two mathematical model were used, namely Proportional Model (PM) and Mass Balance Model 1 (MBM1). The result for application of 137 Cs technique showed that MBM1 gives somewhat higher value for deposit rate and somewhat lower value for erosion than PM. Land use - I (LU-I) of Bojong - Ciawi was suffering from erosion with the erosion rate from 1 t/(ha.y) to 13 t/(ha.y), and LU-II has deposit rate from 1 t/(ha.y) to 50 t/(ha.y). (author)

  6. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  7. A new analysis technique to measure fusion excitation functions with large beam energy dispersions

    Science.gov (United States)

    Figuera, P.; Di Pietro, A.; Fisichella, M.; Lattuada, M.; Shotter, A. C.; Ruiz, C.; Zadro, M.

    2018-01-01

    Peculiar nuclear structures of two colliding nuclei such has clustering, neutron halo/skin or very low breakup thresholds can affect the reaction dynamics below the Coulomb barrier and this may also have astrophysical consequences. In order to have a better understanding of this topic, in the last decade, several experiments were performed. A typical experimental challenge of such studies is the need to measure excitation functions below the Coulomb barrier, having a strong energy dependence, with rather large beam energy dispersions inside the target. This may easily lead to ambiguities in associating the measured cross section with a proper beam energy. In this paper a discussion on this topic is reported and a new technique to deal with the above problem will be proposed.

  8. Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique

    Science.gov (United States)

    Srinivas, B.; Krishna, N. Murali; Cheepu, Muralimohan; Sivaprasad, K.; Muthupandi, V.

    2018-03-01

    The present study mainly focuses on post weld heat treatment (PWHT) of AA5083 and AA6061 alloys by joining these using laser beam welding at three different laser power and two different beam spot sizes and three different welding speeds. Effects of these parameters on microstructural and mechanical properties like hardness, tensile strength were studied at PWHT condition and significant changes had been observed. The PWHT used was artificial aging technique. The microstructural observations revealed that there was a appreciable changes were taken place in the grain size. The microhardness observations proven that the change in the hardness profile in AA6061 was appreciable than in the AA5083. The tensile strength of 246 MPa was recorded as highest. The fractured surfaces observed are predominantly ductile in nature.

  9. The comparison of Co-60 and 4MV photons matching dosimetry during half-beam technique

    International Nuclear Information System (INIS)

    Cakir, Aydin; Bilge, Hatice; Dadasbilge, Alpar; Kuecuecuek, Halil; Okutan, Murat; Merdan Fayda, Emre

    2005-01-01

    In this phantom study, we tried to compare matching dosimetry differences between half-blocking of Co-60 and asymmetric collimation of the 4MV photons during craniospinal irradiation. The dose distributions are compared and discussed. Firstly, some gaps with different sizes are left between cranial and spinal field borders. Secondly, the fields are overlapped in the same sizes. We irradiate the films located in water-equivalent solid phantoms with Co-60 and 4MV photon beams. This study indicates that the field placement errors in +/- 1mm are acceptable for both Co-60 and 4MV photon energies during craniospinal irradiation with half-beam block technique. Within these limits the dose variations are specified in +/- 5%. However, the setup errors that are more than 1mm are unacceptable for both asymmetric collimation of 4MV photon and half-blocking of Co-60

  10. Accuracy of image-guided radiotherapy of prostate cancer based on the BeamCath urethral catheter technique

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Fokdal, Lars; Petersen, Jørgen B.B.

    2007-01-01

    BACKGROUND AND PURPOSE: To examine the accuracy of the BeamCath urethral catheter technique for prostate localization during radiotherapy. MATERIALS AND METHODS: Sixty-four patients were CT scanned twice with the BeamCath catheter, and once without the catheter. The catheter contains radiopaque...

  11. Development of Plant Mutation Breeding Techniques and Mutants Using by Ion Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Song, Hi Sup; Park, In Sook; Kim, Dong Sub; Lee, Hye Jeong

    2005-06-15

    In recent, Japanese scientists have revealed that high liner energy transfer (LET) heavy-ion beams have relative high biological effectiveness (RBE) and seem to be more effective for induced plant mutation than low LET radiation i.e., X-rays, gamma rays and electrons. This study was conducted to develop basic induced mutation techniques of ion-beam using the MC-50 cyclotron (50MeV) at the Korea Institute of Radiological and Medical Science. For the irradiation of ion-beam, not only dry seeds of Arabidopsis, tabacco, Zosiagrass, radish, rice and perilla were packed with thin plastic film to be a monolayer of seeds for homogenous irradiation, but also calli of Zosiagrass and Chrysanthemum were placed in the plastic petridish (diameter 5.5cm) with agar medium. They were irradiated with a proton beam of MC-50 cyclotron with various dose ranges of 10 to 5000Gy depend on plant materials and then measured germination rate and early growth of M1 plants. Arabidopsis, tabacco, and Zosiagrass showed little inhibition of germination and early growth at doses tested over than 1000 Gy. In particular, Arabidopsis showed less growth inhibition than 50 % even at dose of 5000Gy. On the other hand, radish, perilla and rice were not only sensitively inhibited at the lower doses, but also linearly decreased with accordance with the increasing irradiation dose. The lethal dose 50 (LD50) for two cultivars of perilla was estimated to be at approximately 25-30Gy. All M1 plants of rice did not growth over than 500Gy. These results indicate that the significant difference in sensitivity or in LD50 to irradiation of MC-50 proton beam was observed among plant species and materials.

  12. Evaluation of Temporal Diagnostic Techniques for Two-Bunch Facet Beam

    Energy Technology Data Exchange (ETDEWEB)

    Litos, M.D.; Bionta, M.R.; Dolgashev, V.A.; England, R.J.; Fritz, D.; Gilevich, S.; Hering, Ph.; Hogan, M.J.; /SLAC

    2011-08-19

    Three temporal diagnostic techniques are considered for use in the FACET facility at SLAC, which will incorporate a unique two-bunch beam for plasma wakefield acceleration experiments. The results of these experiments will depend strongly on the the inter-bunch spacing as well as the longitudinal profiles of the two bunches. A reliable, singleshot, high resolution measurement of the beam's temporal profile is necessary to fully quantify the physical mechanisms underlying the beam driven plasma wakefield acceleration. In this study we show that a transverse deflecting cavity is the diagnostic which best meets our criteria. Based on our laboratory testing, numerical calculations, and simulations of the three single-shot temporal diagnostic devices, the X-band TCAV system is the best candidate for resolving FACET's two-bunch beam, with an estimated resolution of 7 {micro}m. Both the S-band TCAV system and the EO system could resolve the peak-to-peak separation of the two bunches in the FACET beam with estimated resolutions of 25 {micro}m and 30 {micro}m, respectively, but would be unable to resolve the temporal profiles of the individual bunches themselves. Because the TCAV signal is more easily interpreted and because the reliability of the EO system is less well known, however, the S-band TCAV system would be the next preferred option after the X-band TCAV system. The Fesca-200 streak camera, though simple, compact, and reliable, is unable to achieve a resolution that would be of use to FACET.

  13. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    Science.gov (United States)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  14. Effect of electron-beam deposition process variables on the film characteristics of the CrOx films

    Science.gov (United States)

    Chiu, Po-kai; Liao, Yi-Ting; Tsai, Hung-Yin; Chiang, Donyau

    2018-02-01

    The film characteristics and optical properties of the chromium oxide films on the glass substrates prepared by electron-beam deposition with different process variables were investigated. The process variables included are the various oxygen flow rates, the different applied substrate temperatures, and the preparation process in Ar or O2 surrounding environment with and without ion-assisted deposition. The optical constants of the deposited films are determined from the reflectance and transmittance measurements obtained using a spectrophotometer with wavelengths ranging from 350 nm to 2000 nm. The microstructures of the films were examined by the XRD, SEM, and XPS. The electrical conductivity was measured by a four-point probe instrument. The resulting microstructures of all the prepared films are amorphous and the features of the films are dense, uniform and no pillar structure is observed. The refractive index of deposited films decrease with oxygen flow rate increase within studied wavelengths and the extinction coefficients have the same trend in wavelengths of UV/Vis ranges. Increasing substrate temperature to 200 oC results in increase of both refractive index and extinction coefficient, but substrate temperatures below 150 oC show negligible effect on optical constants. The optical and electrical properties in the prepared CrOx films are illustrated by the analyzed XPS results, which decompose the enveloped curve of chromium electron energy status into the constituents of metal Cr, oxides CrO2 and Cr2O3. The relative occupied area contributed from metal Cr and area contributed from the other oxides can express the concentration ratio of free electron to covalent bonds in deposited films and the ratio is applied to explain the film characteristics, including the optical constants and sheet resistance.

  15. Deposition of metallic gallium on re-crystallized ceramic material during focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Tabares, J.A., E-mail: j.a.munoz.tabares@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Cd Universitaria, 04510 México DF, México (Mexico); Anglada, M. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, Avda. Diagonal 647 (ETSEIB), 08028 Barcelona (Spain); Reyes-Gasga, J. [Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Cd Universitaria, 04510 México DF, México (Mexico)

    2013-12-15

    We report a new kind of artifact observed in the preparation of a TEM sample of zirconia by FIB, which consists in the deposition of metallic gallium nano-dots on the TEM sample surface. High resolution TEM images showed a microstructure of fine equiaxed grains of ∼ 5 nm, with some of them possessing two particular characteristics: high contrast and well-defined fast Fourier transform. These grains could not be identified as any phase of zirconia but it was possible to identify them as gallium crystals in the zone axis [110]. Based on HRTEM simulations, the possible orientations between zirconia substrate and deposited gallium are discussed in terms of lattice mismatch and oxygen affinity. - Highlights: • We show a new type of artifact induced during preparation of TEM samples by FIB. • Deposition of Ga occurs due to its high affinity for oxygen. • Materials with small grain size (∼ 5 nm) could promote Ga deposition. • Small grain size permits the elastic accommodation of deposited Ga.

  16. Characterization of the Teotihuacan mural painting: application of the external particle beam as non destructive technique

    International Nuclear Information System (INIS)

    Martinez, C.; Manzanilla, L.; Ruvalcaba, J.L.; Ontalba, M.A.

    2005-01-01

    The characterization of technical indicators contained in the painting mural should follow a minim methodology from their discovery in the archaeological excavations until their analysis in the laboratory, with the purpose of rescuing diagnostic elements that mark the stages of socio cultural development in the towns. With this spirit it was carried out the present study analyzing some fragments of the Teotihuacan mural painting. The analysis consisted on applying some of the analytical techniques with particle beams used for archaeometry like the Proton induced X-ray emission (PIXE) and the particle elastic backscattering (RBS), due to it is treated of complementary techniques, very sensitive, of multielemental character, but mainly because its are non destructive analytical techniques. (Author)

  17. Intrinsic efficiency and critical power deposition in the e-beam sustained Ar:Xe laser

    NARCIS (Netherlands)

    Botma, H.; Botma, H.; Peters, P.J.M.; Witteman, W.J.

    1991-01-01

    Experimental investigations on an e-beam sustained near infrared Ar:Xe laser have been carried out to determine the intrinsic efficiency at optimized conditions. A parametric study at different sustainer currents reveals a maximum output energy depending on current density. Up to 8 bar the optimized

  18. Evaluation of Beam Losses and Energy Depositions for a Possible Phase II Design for LHC Collimation

    CERN Document Server

    Lari, L; Bracco, C; Brugger, M; Cerutti, F; Doyle, E; Ferrari, A; Keller, L; Lundgren, S; Keller, L; Mauri, M; Redaelli, S; Sarchiapone, L; Smith, J; Vlachoudis, V; Weiler, T

    2008-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can ...

  19. Beam-foil-gas spectroscopy - A technique for studying steady-state non-equilibrium processes.

    Science.gov (United States)

    Bickel, W. S.; Veje, E.; Carriveau, G.; Anderson, N.

    1971-01-01

    When a thin foil is inserted in the beam of a beam-gas experiment, the beam particle state populations are driven far from their beam-gas equilibrium values. Downstream from the foil, the 'new beam' and gas species interact to produce a new equilibrium, usually different from the beam-gas equilibrium. Experimental results are presented to demonstrate this effect and to show how relative cross-section measurements can be used to study the beam-foil interaction.

  20. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si3N4 nanocomposite coatings deposited by sputtering on AISI 316L

    International Nuclear Information System (INIS)

    García, J.; Canto, C.E.; Flores, M.; Andrade, E.; Rodríguez, E.; Jiménez, O.; Solis, C.; Lucio, O.G. de; Rocha, M.F.

    2014-01-01

    In this work, nanocomposite coatings of nc-TiN/a-Si 3 N 4 , were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an Ar–N 2 plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si 3 N 4 show crystalline (TiN) and amorphous (Si 3 N 4 ) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L

  1. Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Sahu, D.R.; Lin, S.-Y.; Huang, J.-L.

    2007-01-01

    A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes

  2. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  3. Deposition of (ZnO:In) TCO Thin Film on Glass Substrate Using DC Sputtering Technique

    International Nuclear Information System (INIS)

    Wirjoadi; Yunanto

    2009-01-01

    The (ZnO:In) TCO film has been deposited on glass structure using DC sputtering technique. The objective of this research is to study the effect of time deposition, gas pressure, substrate temperature, impurity of In on the resistance, transmittance, micro structure and crystal structure of (ZnO:In) thin film, so that it can be used as a CIS solar cell. The ZnO main target and In pinhole target was bombarded by Ar ion, so that the Zn, O, In atoms were sputtered and form thin film of (ZnO:In) on glass substrate. The resistance were measured using digital ohm meter, the transmittance using UV-Vis, micro structure and thickness using SEM and the crystal structure using XRD. The experiment results, show that the minimum resistance is 0.334 kΩ this obtained at the process parameter on 75 min of time deposition, 5x10 -2 Torr of gas pressure, 225℃ of substrate temperature and 8% of content In. The maximum transmittance is 80% at the wave length in (400-900) nm, while the crystal structure of ZnO and In thin film were oriented at the plane ( 0 0 4 ); ( 2 0 2 ) and ( 3 0 1 ). The surface morphology were distributed homogeneously with the thickness of the thin film was in order of 0.41 µm. (author)

  4. Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat

    Science.gov (United States)

    Cao Dao, Tran; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Kieu, Ngoc Minh; Le, Van Vu

    2016-03-01

    In order to detect trace concentrations of organic or biological molecules by surface-enhanced Raman scattering (SERS) technique, the SERS-active substrates with high enhancement factor are required. The silver nanodendrites (AgNDs) are a growing class of such SERS-active substrates. This report presents the preliminary results of the trace detection of paraquat (PQ), a commonly used herbicide, with the use of SERS-active substrates, which have been made from AgNDs deposited on silicon. The AgNDs were produced either by electroless deposition, or by electrodeposition onto a silicon wafer, using aqueous solution of HF and AgNO3. It was observed that the silver dendrites are formed only when AgNO3 concentration is high enough. Next, it was found that with the additional assistance of an electric potential in the electrodeposition, the dendrites have grown up with the more perfect ramification. The AgNDs with more perfect branching gave the Raman spectrum of PQ with higher enhancement factor. More specifically, while the SERS-active substrates prepared from electrodeposited AgNDs were able to detect PQ with concentration as low as 0.01 ppm, the ones made from electroless deposited AgNDs could only detect PQ at concentration of hundreds times higher.

  5. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  6. Simple Mathematical Models of High Energy Ion Beam Assisted Deposition Concentration Profiles in Binary Thin Films

    Czech Academy of Sciences Publication Activity Database

    Černý, F.; Konvičková, S.; Jech, V.; Hnatowicz, Vladimír

    2011-01-01

    Roč. 11, č. 10 (2011), s. 8936-8942 ISSN 1533-4880 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : SILICON-NITRIDE FILMS * ENHANCED DEPOSITION * IBAD-PROCESS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.563, year: 2011

  7. SU-F-I-73: Surface Dose from KV Diagnostic Beams From An On-Board Imager On a Linac Machine Using Different Imaging Techniques and Filters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Hossain, S; Syzek, E; Ahmad, S [University of Oklahoma Health Sciences Center, Department of Radiation Oncology, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relative surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not affect

  8. Fabrication of nanofluidic devices utilizing proton beam writing and thermal bonding techniques

    International Nuclear Information System (INIS)

    Wang, L.P.; Shao, P.G.; Kan, J.A. van; Ansari, K.; Bettiol, A.A.; Pan, X.T.; Wohland, T.; Watt, F.

    2007-01-01

    The fabrication of polymer lab-on-a-chip systems for applications in Chemistry and Biology is one of the envisaged niche areas for the Proton Beam Writing (PBW) technique developed at the Centre for Ion Beam Applications (CIBA). Utilizing a highly focused beam of MeV protons, well-defined nanostructures with smooth and straight side walls have been directly written in a 500 nm to 10 μm thick PMMA layer spin coated onto a Kapton substrate. By subsequently thermally bonding the fabricated structures to bulk PMMA and carefully peeling off the Kapton, nanostructures can be attached to bulk PMMA. Finally, by bonding a PMMA sheet to the bottom side of the structure, an integrated PMMA device with enclosed multiple high aspect ratio nanochannels can be realized. Preliminary experiments conducted in order to test this polymeric device indicate good fluidic properties. The nanochannels can be easily filled with dye solution using both pressure and capillary action in the case of hydrophilic solutions

  9. Measurement techniques for low emittance tuning and beam dynamics at CESR

    Science.gov (United States)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  10. Applied Focused Ion Beam Techniques for Sample Preparation of Astromaterials for Integrated Nano-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G A; Teslich, N E; Kearsley, A T; Stadermann, F J; Stroud, R M; Dai, Z R; Ishii, H A; Hutcheon, I D; Bajt, S; Snead, C J; Weber, P K; Bradley, J P

    2007-02-20

    Sample preparation is always a critical step in study of micrometer sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle, as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic and spectroscopic information extracted from one individual particle. In addition, focused ion beam techniques have been employed to extract cometary residue preserved on the rims and walls of micro-craters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non-ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.

  11. Three-dimensional reconstruction from cone beam projection by a block iterative technique

    Science.gov (United States)

    Peyrin, Francoise; Goutte, Robert; Amiel, Michel

    1991-07-01

    This work is concerned with truly 3D X-ray tomography. The method consists in the acquisition of an object's radiographs for different positions of an X-ray cone beam source. The image is then obtained by solving a 3D reconstruction problem from cone beam projections. When considering a series expansion approach, the problem is equivalent to the resolution of a linear system, presenting very particular characteristics in size and sparseness. The authors investigate the use of block iterative techniques which allow an efficient implementation of the algorithm on a parallel computer. Three different block iterative reconstruction schemes are developed. They can be used with or without simple constraints on the solution (positivity, amplitude, support...). Results obtained on simulated images allow comparison to the convergence properties of the different methods. Contrary to the conventional case in truly 3D X-ray tomography, different trajectories of the cone beam source are considered and the first results obtained on simulated objects are discussed.

  12. Preparation of multilayered chitosan-based nanofibers by combination of electrospinning and layer-by-layer deposition techniques

    OpenAIRE

    Croisier, Florence; Aqil, Abdelhafid; Detrembleur, Christophe; Jérôme, Christine

    2009-01-01

    By combining electrospinning technique and layer-by-layer deposition, we produced a new material made of multilayered, chitosan-based nanofibers. Layer-by-layer (LBL) is a well known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyions including synthetic and natural materials, with designable layer structure, defined wall thickness and size. Electrospinning (ESP) technique allows the fabrication of polymer fibers ra...

  13. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique

    Directory of Open Access Journals (Sweden)

    Amin Haghbin

    2017-09-01

    Full Text Available In this work, an electrophoretic deposition (EPD technique has been used for deposition of carbon nanotubes (CNTs on the surface of glass fiber textures (GTs to increase the volume conductivity and the interlaminar shear strength (ILSS of CNT/glass fiber-reinforced polymers (GFRPs composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%.

  14. A technique for measuring an electron beam close-quote s longitudinal phase space with sub-picosecond resolution

    International Nuclear Information System (INIS)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.; Smith, T.I.; Swent, R.L.

    1996-01-01

    We have developed a technique for measuring the longitudinal phase space distribution of the Stanford Superconducting Accelerator close-quote s (SCA) electron beam which involves applying tomographic techniques to energy spectra taken as a function of the relative phase between the beam and the accelerating field, and optionally, as a function of the strength of a variable dispersion section in the system. The temporal profile of the beam obtained by projecting the inferred distribution onto the time axis is compared with that obtained from interferometric transition radiation measurements. copyright 1996 American Institute of Physics

  15. Thin pyrite (FeS{sub 2}) films by molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bronold, M.; Kubala, S.; Pettenkofer, C.; Jaegermann, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-07-30

    Polycrystalline pyrite films have been prepared by evaporation of Fe and S from separate molecular beam sources. It is shown by X-ray diffraction and by X-ray and ultraviolet photoelectron spectroscopy that at S pressures of 6-8.10{sup -5}, Pa pyrite is formed at a substrate temperature of 390 K. At higher temperatures, pyrrhotite (Fe{sub 7}S{sub 8}) is present in the films. (orig.)

  16. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    Science.gov (United States)

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field.

  17. A simple method to deposit palladium doped SnO2 thin films using plasma enhanced chemical vapor deposition technique

    International Nuclear Information System (INIS)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik; Ansari, S. G.; Ansari, Z. A.

    2010-01-01

    This work presents a simple method to deposit palladium doped tin oxide (SnO 2 ) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl 4 ) was used as precursor and oxygen (O 2 , 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C 5 HF 6 O 2 ) 2 ) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd 2 Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 mΩ cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  18. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    Science.gov (United States)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing

  19. Future strategy and puzzles of heavy ion beam mediated technique in genetic improvement of biological bodies

    International Nuclear Information System (INIS)

    Huang Qunce

    2007-01-01

    The 7 research puzzles in the genetic improvement of biological bodies made by ion beam mediated technique, are worth noticed. The technical ideas, including one mediated technique in physics, 2 significant subjects, 3 effective changes, the mediated evidences of 4 aspects and 5 biological characteristics, were particularly put forward according to the existing states in the field. The 2 significant subjects consist of the mechanics of the allogenetic materials entering into the acceptor and they being to be recombined. The 3 effective changes include from studying morphology to genetic laws, from researching M1 generation to the next generations, from determining the single character to the synthetic traits. The mediated evidences of 4 aspects come from morphology, physiology and biochemistry, molecule biology. The 5 biological characteristics are mainly reproduction, development, photosynthesis, bad condition-resistant and quality. (authors)

  20. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Directory of Open Access Journals (Sweden)

    Andrea Franchi

    2015-07-01

    Full Text Available With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  1. Novel technique for injecting and extracting beams in a circular hadron accelerator without using septum magnets

    Science.gov (United States)

    Franchi, Andrea; Giovannozzi, Massimo

    2015-07-01

    With a few exceptions, all on-axis injection and extraction schemes implemented in circular particle accelerators, synchrotrons, and storage rings, make use of magnetic and electrostatic septa with systems of slow-pulsing dipoles acting on tens of thousands of turns and fast-pulsing dipoles on just a few. The dipoles create a closed orbit deformation around the septa, usually referred to as an orbit bump. A new approach is presented which obviates the need for the septum deflectors. Fast-pulsing elements are still required, but their strength can be minimized by choosing appropriate local accelerator optics. This technique should increase the beam clearance and reduce the usually high radiation levels found around the septa and also reduce the machine impedance introduced by the fast-pulsing dipoles. The basis of the technique is the creation of stable islands around stable fixed points in horizontal phase space. The trajectories of these islands may then be adjusted to match the position and angle of the incoming or outgoing beam.

  2. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    Directory of Open Access Journals (Sweden)

    Xiaoxing Ke

    2013-02-01

    Full Text Available Focused-electron-beam-induced deposition (FEBID is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.

  3. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    Science.gov (United States)

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  4. Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition

    Science.gov (United States)

    Yu, Zhinong; Leng, Jian; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2012-01-01

    ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer.

  5. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  6. Ferromagnetic resonance of Py deposited on ZnO grown by molecular beam epitaxy

    Science.gov (United States)

    D'Ambrosio, Sophie; Chen, Lin; Nakayama, Hiroyasu; Matsukura, Fumihiro; Dietl, Tomasz; Ohno, Hideo

    2015-09-01

    We report on the growth of a high-quality single crystal ZnO film on an a-plane sapphire substrate by plasma-assisted molecular beam epitaxy and the properties of a sputtered permalloy (Py) film on the ZnO investigated by ferromagnetic resonance. The results show that one can obtain the Py with a reasonable quality on ZnO, which is expected to provide a testbed system for the investigation of the spin current-related phenomena in materials with a weak spin-orbit interaction.

  7. MODELLING THE DELAMINATION FAILURE ALONG THE CFRP-CFST BEAM INTERACTION SURFACE USING DIFFERENT FINITE ELEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    AHMED W. AL-ZAND

    2017-01-01

    Full Text Available Nonlinear finite element (FE models are prepared to investigate the behaviour of concrete-filled steel tube (CFST beams strengthened by carbon fibre reinforced polymer (CFRP sheets. The beams are strengthened from the bottom side only by varied sheet lengths (full and partial beam lengths and then subjected to ultimate flexural loads. Three surface interaction techniques are used to implement the bonding behaviour between the steel tube and the CFRP sheet, namely, full tie interaction (TI, cohesive element (CE and cohesive behaviour (CB techniques using ABAQUS software. Results of the comparison between the FE analysis and existing experimental study confirm that the FE models with the TI technique could be applicable for beams strengthened by CFRP sheets with a full wrapping length; the technique could not accurately implement the CFRP delamination failure, which occurred for beams with a partial wrapping length. Meanwhile, the FE models with the CE and CB techniques are applicable in the implementation of both CFRP failures (rapture and delamination for both full and partial wrapping lengths, respectively. Where, the ultimate loads' ratios achieved by the FE models using TI, CE and CB techniques about 1.122, 1.047 and 1.045, respectively, comparing to the results of existing experimental tests.

  8. Studies of impurity deposition/implantation in JET divertor tiles using SIMS and ion beam techniques

    International Nuclear Information System (INIS)

    Likonen, J.; Lehto, S.; Coad, J.P.; Renvall, T.; Sajavaara, T.; Ahlgren, T.; Hole, D.E.; Matthews, G.F.; Keinonen, J.

    2003-01-01

    At the end of C4 campaign at JET, a 1% SiH 4 /99% D 2 mixture and pure 13 CH 4 were injected into the torus from the outer divertor wall and from the top of the vessel, respectively, in order to study material transport and scrape-off layer (SOL) flows. A set of MkIIGB tiles was removed during the 2001 shutdown for surface analysis. The tiles were analysed with secondary ion mass spectrometry (SIMS) and time-of-flight elastic recoil detection analysis (TOF-ERDA). 13 C was detected in the inner divertor wall tiles implying material transport from the top of the vessel. Silicon was detected mainly at the outer divertor wall tiles and very small amounts were found in the inner divertor wall tiles. Si amounts in the inner divertor wall tiles were so low that rigorous conclusions about material transport from divertor outboard to inboard cannot be made

  9. Thermal diffusivity measurement of focused-ion-beam fabricated sample using photothermal reflectance technique.

    Science.gov (United States)

    Hua, Zilong; Ban, Heng

    2017-05-01

    Focused-Ion-Beam (FIB) can lift-off micrometer-sized samples from bulk materials for structural characterization and property measurement. The ability to determine thermophysical properties of such samples offers unique insight into the local microstructure-property relationship. A photothermal reflectance technique is developed to measure the thermal diffusivity of FIB-fabricated, micrometer-sized samples in this study. An analytic model is established to guide the experimental design and data analysis for the limited sample size and thickness. The thermal diffusivity of the sample can be extracted from a series of spatial-scan measurements at several modulated heating frequencies. To demonstrate the viability of the technique, a FIB-fabricated SiC plate with the size of 42 μm × 31 μm × 8 μm was used to represent high conductivity materials, which pose more challenges for the technique. The result compares favorably with literature values of SiC. The measurement uncertainty is quantified and possible experimental error sources are discussed. This technique is specially promising for thermal property measurements on nuclear fuels and materials.

  10. Investigation on vanadium oxide thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Margoni, Mudaliar Mahesh; Mathuri, S.; Ramamurthi, K., E-mail: krmurthin@yahoo.co.in, E-mail: ramamurthi.k@ktr.srmuniv.ac.in [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Kancheepuram Dt., Tamil Nadu (India); Babu, R. Ramesh [Crystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu (India); Sethuraman, K. [School of Physics, Madurai Kamaraj University, Madurai – 625 021, Tamil Nadu (India)

    2016-05-06

    Vanadium oxide thin films were deposited at 400 °C by spray pyrolysis technique using 0.1 M aqueous precursor solution of ammonium meta vanadate (AMV) with two different pH values. X-ray diffraction results showed that the film prepared using aqueous precursor AMV solution (solution A; pH 7) is amorphous in nature and the film prepared by adding HNO{sub 3} in the AMV aqua solution A (solution B; pH 3) is polycrystalline in nature. Vanadium oxide film prepared from the precursor solution B is in the mixed phases of V{sub 2}O{sub 5} and V{sub 4}O{sub 7}. Crystallinity is improved for the film prepared using solution B when compared to film prepared from solution A. Crystallite size, strain and dislocation density calculated for the film prepared from solution B is respectively 72.1 nm, 0.4554 × 10{sup −3} lin.{sup −2}m{sup −4} and 1.7263 × 10{sup 14} lin.m{sup −2}. Morphology study revealed that the size of the flakes formed on the surface of the films is influenced by the pH of the precursor solution. Average Visible Transmittance and maximum transmittance of the deposited films exceed 70% and the direct optical band gap value calculated for the films deposited from A and B solution is 1.91 eV and 2.08 eV respectively.

  11. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  12. Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method

    International Nuclear Information System (INIS)

    Ramaswamy, N.; Arruda, T.M.; Wen, W.; Hakim, N.; Saha, M.; Gulla, A.; Mukerjee, S.

    2009-01-01

    Ultra low loading noble metal (0.04-0.12 mg Pt /cm 2 ) based electrodes were obtained by direct metallization of non-catalyzed gas diffusion layers via dual ion beam assisted deposition (IBAD) method. Fuel cell performance results reported earlier indicate significant improvements in terms of mass specific power density of 0.297 g Pt /kW with 250 A thick IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V in contrast to the state of the art power density of 1.18 g Pt /kW using 1 mg Pt(MEA) /cm 2 at 0.65 V. In this article we report the peroxide radical initiated attack of the membrane electrode assembly utilizing IBAD electrodes in comparison to commercially available E-TEK (now BASF Fuel Cell GmbH) electrodes and find the pathway of membrane degradation as well. A novel segmented fuel cell is used for this purpose to relate membrane degradation to peroxide generation at the electrode/electrolyte interface by means of systematic pre and post analyses of the membrane are presented. Also, we present the results of in situ X-ray absorption spectroscopy (XAS) experiments to elucidate the structure/property relationships of these electrodes that lead to superior performance in terms of gravimetric power density obtained during fuel cell operation.

  13. Preparation and characterization of VOx nanorods using pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Rama, N.; Senthil Kumar, E.; Ramachandra Rao, M.S.

    2009-01-01

    Full text: Vanadium oxide (VO x ) is one of the most functional oxides of the transition metal oxide family. This versatility comes because of the ability of Vanadium to exist as both monovalent and multivalent in these oxides. These oxides find potential usage in the field of thermochromism electrochromism catalysts, electrochemistry etc. especially in their nano-form because of their increased sensitivity to these applications. These nano-forms are usually prepared using conventional techniques such as solgel techniques, vapour phase transport, hydrothermal synthesis etc. In this work we have used pulsed laser deposition technique to fabricate vanadium oxide nanorods for the first time. The grown nanorods has a predominant VO 2 phase with a secondary phase of V 3 O 7 . The diameters of the rods were around 300 nm with Raman spectra showing all the group vibrations corresponding to VO x phase. The nanorods exhibited photoluminescence in the visible range due to the presence of oxygen defects. These results, including the mechanism of growth of these nanorods, will be discussed in detail. The existence of multivalence in these rods finds potential applications in electrochemistry while the visible photoluminescence in optical applications

  14. Ion Beam Enhanced Deposition as Alternative Pretreatment for Adhesive Bonding of Aircraft Alloys

    National Research Council Canada - National Science Library

    Koch, Gerhardus

    1994-01-01

    .... The objective of the work described in this paper was to demonstrate the feasibility of applying a non-chemical technique to generate an aluminum oxide surface with adhesive bonding properties...

  15. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Science.gov (United States)

    Dhandayuthapani, T.; Girish, M.; Sivakumar, R.; Sanjeeviraja, C.; Gopalakrishnan, R.

    2015-10-01

    In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M-H plot.

  16. Tuning the morphology of metastable MnS films by simple chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhandayuthapani, T. [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Girish, M. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600025 (India)

    2015-10-30

    Graphical abstract: - Highlights: • MnS films with diverse morphological features were prepared without any complexing agent. • The change in morphology of MnS films may be due to the “oriented aggregation”. • The dual role (as sulfur source and structure directing agent) of thiourea was observed. • Sulfur source concentration induced enhancement in the crystallization of films. - Abstract: In the present investigation, we have prepared the spherical particles, almond-like, and cauliflower-like morphological structures of metastable MnS films on glass substrate by chemical bath deposition technique at low temperature without using any complexing or chelating agent. The morphological change of MnS films with molar ratio may be due to the oriented aggregation of adjacent particles. The compositional purity of deposited film was confirmed by the EDAX study. X-ray diffraction and micro-Raman studies confirm the sulfur source concentration induced enhancement in the crystallization of films with metastable MnS phase (zinc-blende β-MnS, and wurtzite γ-MnS). The shift in PL emission peak with molar ratio may be due to the change in optical energy band gap of the MnS, which was further confirmed by the optical absorbance study. The paramagnetic behavior of the sample was confirmed by the M–H plot.

  17. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  18. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  19. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique

    Science.gov (United States)

    Salea, A.; Dasaesamoh, A.; Prathumwan, R.; Kongkaew, T.; Subannajui, K.

    2017-09-01

    CuFeO2 is a metal oxide mineral material which is called delafossite. It can potentially be used as a chemical catalyst, and gas sensing material. There are methods to fabricate CuFeO2 such as chemical synthesis, sintering, sputtering, and chemical vapor deposition. In our work, CuFeO2 is prepared by Fused Deposition Modeling (FDM) 3D printing. The composite filament which composed of Cu and Fe elements is printed in three dimensions, and then sintered and annealed at high temperature to obtain CuFeO2. Suitable polymer blend and maximum percent volume of metal powder are studied. When percent volume of metal powder is increased, melt flow rate of polymer blend is also increased. The most suitable printing condition is reported and the properties of CuFeO2 are observed by Scanning Electron Microscopy, and Dynamic Scanning Calorimeter, X-ray diffraction. As a new method to produce semiconductor, this technique has a potential to allow any scientist or students to design and print a catalyst or sensing material by the most conventional 3D printing machine which is commonly used around the world.

  20. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    Science.gov (United States)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  1. Optimization of the LHC interaction region with respect to beam-induced energy deposition

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Strait, J.B.

    1996-06-01

    Energy deposition in the superconducting magnets by particles from p- p collisions is a significant challenge for the design of the LHC high luminosity insertions. We have studies the dependence of the energy deposition on the apertures and strengths of insertion magnets and on the placement of absorbers in front of and within the quadrupoles. Monte Carlo simulations were made using the code DTUJET to generate 7x7 TeV p-p events and the code MARS to follow hadronic and electromagnetic cascades induced in the insertion components. The 3D geometry and magnetic field descriptions of the LHC-4.1 lattice were used. With a quadrupole coil aperture ≥70 mm, absorbers can be placed within the magnet bore which reduce the peak power density, at full luminosity, below 0.5 mW/g, a level that should allow the magnets to operate at their design field. The total heat load can be removed by a cooling system similar to that used in the main magnets

  2. Controlling field-effect mobility in pentacene-based transistors by supersonic molecular-beam deposition

    International Nuclear Information System (INIS)

    Toccoli, T.; Pallaoro, A.; Coppede, N.; Iannotta, S.; De Angelis, F.; Mariucci, L.; Fortunato, G.

    2006-01-01

    We show that pentacene field-effect transistors, fabricated by supersonic molecular beams, have a performance strongly depending on the precursor's kinetic energy (K E ). The major role played by K E is in achieving highly ordered and flat films. In the range K E ≅3.5-6.5 eV, the organic field effect transistor linear mobility increases of a factor ∼5. The highest value (1.0 cm 2 V -1 s -1 ) corresponds to very uniform and flat films (layer-by-layer type growth). The temperature dependence of mobility for films grown at K E >6 eV recalls that of single crystals (bandlike) and shows an opposite trend for films grown at K E ≤5.5 eV

  3. Zn Thin Film Deposition for Fe Layer Shielding Use the Sputtering Technique on Cylindrical Form

    International Nuclear Information System (INIS)

    Yunanto; Tjipto Sujitno, BA; Suprapto; Simbolon, Sahat

    2002-01-01

    Deposition of thin film on Fe substrate use sputtering technique on cylindrical form was carried out. The purpose of this research is to protect Fe due to the corrosion with Zn thin film. Sputtering method was proposed to protect a component of complex form. Substrate has functioned as anode, meanwhile target in cylindrical form as a cathode. Argon ion from anode bombard Zn with enough energy for releasing Zn. Zn atom would scatter and some of then was focused on the anode. For testing Zn atom on Fe by using XRF and corrosion rate with potentiostat. It was found that corrosion rate was decreased from 0.051 mpy to 0.031 mpy on 0.63 % of Fe substrate. (author)

  4. In-plane anisotropy and stress detection of films deposited by RC technique

    Science.gov (United States)

    Meydan, T.; Kockar, H.

    2001-12-01

    A Novel Rotating Cryostat (RC) vacuum system originally designed to fabricate organic layers has been developed in order to prepare magnetic materials for specific applications such as sensors. The RC sputtering system has a rotating drum (substrate holder) and the possibility of using multi-port deposition sources. The source material sputtered by a dc magnetron, which was positioned one of the ports around the RC, was an iron disk (25 mm diameter, 0.8 mm thick, 99.8% pure). Results show that films have exhibited isotropic and anisotropic magnetisation at various running conditions of the RC using a Magneto-Optic Loop Plotter (MOKE) and a Vibrating Sample Magnetometer (VSM). Estimation of magnetic anisotropy confirms in-plane anisotropy in the films. Moreover, when these films are subjected to a bending stress within the VSM, they show chances in their hysteresis loops. These findings indicate a possible future for this technique to produce sensing devices for stress detection.

  5. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery

    International Nuclear Information System (INIS)

    Boylan, C J; Marchant, T E; Rowbottom, C G; Stratford, J; Rodgers, J; Malik, J; Choudhury, A; Shrimali, R

    2012-01-01

    Kilovoltage cone-beam CT (kV CBCT) can be acquired during the delivery of volumetric modulated arc therapy (VMAT), in order to obtain an image of the patient during treatment. However, the quality of such CBCTs is degraded by megavoltage (MV) scatter from the treatment beam onto the imaging panel. The objective of this paper is to introduce a novel MV scatter correction method for simultaneous CBCT during VMAT, and to investigate its effectiveness when compared to other techniques. The correction requires the acquisition of a separate set of images taken during VMAT delivery, while the kV beam is off. These images—which contain only the MV scatter contribution on the imaging panel—are then used to correct the corresponding kV/MV projections. To test this method, CBCTs were taken of an image quality phantom during VMAT delivery and measurements of contrast to noise ratio were made. Additionally, the correction was applied to the datasets of three VMAT prostate patients, who also received simultaneous CBCTs. The clinical image quality was assessed using a validated scoring system, comparing standard CBCTs to the uncorrected simultaneous CBCTs and a variety of correction methods. Results show that the correction is able to recover some of the low and high-contrast signal to noise ratio lost due to MV scatter. From the patient study, the corrected CBCT scored significantly higher than the uncorrected images in terms of the ability to identify the boundary between the prostate and surrounding soft tissue. In summary, a simple MV scatter correction method has been developed and, using both phantom and patient data, is shown to improve the image quality of simultaneous CBCTs taken during VMAT delivery. (paper)

  6. All-optical optoacoustic microscopy based on probe beam deflection technique

    Directory of Open Access Journals (Sweden)

    Saher M. Maswadi

    2016-09-01

    Full Text Available Optoacoustic (OA microscopy using an all-optical system based on the probe beam deflection technique (PBDT for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii high sensitivity and (iv ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  7. Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques

    International Nuclear Information System (INIS)

    Deasy, Joseph O.

    2000-01-01

    The Monte Carlo (MC) method has long been viewed as the ultimate dose distribution computational technique. The inherent stochastic dose fluctuations (i.e. noise), however, have several important disadvantages: noise will affect estimates of all the relevant dosimetric and radiobiological indices, and noise will degrade the resulting dose contour visualizations. We suggest the use of a post-processing denoising step to reduce statistical fluctuations and also improve dose contour visualization. We report the results of applying four different two-dimensional digital smoothing filters to two-dimensional dose images. The Integrated Tiger Series MC code was used to generate 10 MeV electron beam dose distributions at various depths in two different phantoms. The observed qualitative effects of filtering include: (a) the suppression of voxel-to-voxel (high-frequency) noise and (b) the resulting contour plots are visually more comprehensible. Drawbacks include, in some cases, slight blurring of penumbra near the surface and slight blurring of other very sharp real dosimetric features. Of the four digital filters considered here, one, a filter based on a local least-squares principle, appears to suppress noise with negligible degradation of real dosimetric features. We conclude that denoising of electron beam MC dose distributions is feasible and will yield improved dosimetric reliability and improved visualization of dose distributions. (author)

  8. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    Science.gov (United States)

    Jayamani, J.; Termizi, N. A. S. Mohd; Kamarulzaman, F. N. Mohd; Aziz, M. Z. Abdul

    2017-05-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 107 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 107 to 20 × 107. In this study, 5 MeV electron cut-off with 10 × 107 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy.

  9. Comparison of the NPL water calorimeter with other dosimetric techniques for high energy photon beams

    International Nuclear Information System (INIS)

    Rosser, K.E.; Williams, A.J.

    1999-01-01

    At present, the primary standard of absorbed dose to water at NPL in high energy photon beams is a graphite calorimeter. However the quantity of interest in radiation dosimetry is absorbed dose to water. Therefore, a new absorbed dose to water standard based on water calorimetry is being developed at NPL. The calorimeter operates at 4 deg. C, with temperature control being provided by a combination of liquid and air cooling. The sealed glass inner vessel of the calorimeter has been designed to minimise the effect of non-water materials on the measurement of absorbed dose. Measurements of absorbed dose to water made in 6, 10 and 19 MV photon beams agreed within the measurement uncertainties with those determined using the primary standard graphite calorimeter. Also the absorbed dose to water measured using the water calorimeter agrees with that based on the air kerma standards for 60 Co γ-radiation within the uncertainties. The development of the water calorimeter will lead to a very robust dosimetry system at NPL, where the absorbed dose to water can be determined using three independent techniques. (author)

  10. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  11. Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique

    International Nuclear Information System (INIS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.

    2013-01-01

    High quality Schottky contacts are formed on GaN nanowires (NWs) structures grown by the molecular beam epitaxy technique on Si(111) substrate. The current-voltage characteristics show the rectification ratio of about 10 3 and the leakage current of about 10 −4 A/cm 2 at room temperature. From the capacitance-voltage measurements the free carrier concentration in GaN NWs is determined as about 10 16 cm −3 . Two deep levels (H200 and E280) are found in the structures containing GaN NWs. H200 is attributed to an extended defect located at the interface between the substrate and SiN x or near the sidewalls at the bottom of the NWs whereas E280 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect

  12. Characterization of Inx Ga1-x As-GaAs heterostructures via electron beam techniques

    Science.gov (United States)

    Gomez-Barojas, Estela; Silva-Gonzalez, Rutilo; Serrano-Rojas, Rosa Maria; Vidal-Borbolla, Miguel Angel

    2005-03-01

    In the case of strained superlattices abrupt heterointerfaces are required because compositional fluctuations at heterointerfaces results in uncertainty in both composition and lattice constant. The aim of this work is to study exsitu the surface morphology, the periodicity and elemental composition of a set of 3 InGaAs-GaAs heterostructures grown on GaAs (100) substrates by a molecular beam epitaxy system. The heterostructures are formed by 10 periods of InGaAs-GaAs epitaxially grown on GaAs substrates with nominal thickness of 500 and 1000 å, respectively. The techniques used for this purpose are the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). The In content in the heterostructures is determined from corresponding Auger depth profiles. This work has been supported by VIEP-BUAP, Project No. II53G02.

  13. Characterization of natural and modified zeolites using ion beam analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, E. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)], E-mail: andrade@fisica.unam.mx; Solis, C. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Aceves, J.M.; Miranda, R. [Facultad de Estudios Superiores Cuautitlan Itzcalli, Departamento de Quimica, Universidad Nacional Autonoma de Mexico, 1 de Mayo S/N, Cuatitlan Itzcalli, Edo. de Mexico, C.P. 74540 (Mexico); Cruz, J. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico); Rocha, M.F. [Escuela Superior de Ingenieria Mecanica y Electrica, Instituto Politecnico Nacional, U.P. ' Adolfo Lopez Mateos' , Zacatenco, Del. Gustavo A. Madero, Mexico D.F. 07738 (Mexico); Zavala, E.P. [Instituto de Fisica, Departamento de Fisica Experimental, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 (Mexico)

    2008-05-15

    Zeolites are very important materials in catalytic and industrial processes. Natural, modified and synthetic zeolites have a wide range of uses because of their good adsorption, ion exchange capacity and catalytic properties. Mexico is an import source of natural zeolites, however their utilization in the natural form is limited due to the presence of trace metallic impurities. For example, metals such as vanadium and chromium inhibit the elimination of sulfur in hydrocarbons. Therefore, it is important to know the precise composition of the zeolite material. In this work, we report the elemental characterization of zeolites using various IBA techniques. {sup 3}He{sup +} and {sup 2}H{sup +} beams were used to measure the major element concentrations (Si, Al, O, C) by RBS and NRA. PIXE and SEM-EDS were used to measure the total trace element content (V, Cr, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Pb, etc). Additionally, XRD was used to study the zeolite crystal structure.

  14. Directed vapor deposition

    Science.gov (United States)

    Groves, James Frederick

    This dissertation describes the invention, design, construction, experimental evaluation and modeling of a new physical vapor deposition technique (U.S. Patent #5,534,314) for high rate, efficient deposition of refractory elements, alloys, and compounds onto flat or curved surfaces. The new Directed Vapor Deposition (DVD) technique examined in this dissertation was distinct from previous physical vapor deposition techniques because it used low vacuum electron beam (e-beam) evaporation in combination with a carrier gas stream to transport and vapor spray deposit metals, ceramics, and semiconducting materials. Because of the system's unique approach to vapor phase materials processing, detailed analyses of critical concepts (e.g. the e-beam accelerating voltage and power required for evaporation, the vacuum pumping capacity necessary to generate specific gas flow velocities exiting a nozzle) were used to reduce to practice a functioning materials synthesis tool. After construction, the ability to create low contamination films of pure metals, semi-conducting materials, and compounds via this new method was demonstrated, and oxide deposition using an oxygen-doped gas stream in combination with a pure metal evaporant source was shown to be feasible. DVD vapor transport characteristics were experimentally investigated with deposition chamber pressure, carrier gas type, and e-beam power being identified as major processing parameters which affected vapor atom trajectories. The low vacuum carrier gas streams employed in DVD showed a dramatic ability to focus the vapor stream during transport to the substrate and thereby enhance material deposition rates and efficiencies significantly under certain process conditions. Conditions for maximum deposition efficiency onto flat substrates and continuous fibers were experimentally identified by varying chamber pressure, carrier gas velocity (Mach number), and e-beam power. Deposition efficiencies peaked at about 0.5 Torr when

  15. Plasma processing techniques for deposition of carbonic thin protective coatings on structural nuclear materials

    International Nuclear Information System (INIS)

    Andrei, V.; Oncioiu, G.; Coaca, E.; Rusu, O.; Lungu, C.

    2009-01-01

    Full text of publication follows: The production of nano-structured surface films with controlled properties is crucial for the development of materials necessary for the Advanced Systems for Nuclear Energy. Since the surface of materials is the zone through which materials interact with the environment, the surface science and surface engineering techniques plays an essential role in the understanding and control of the processes involved. Complex surface structures were developed on stainless steels used as structural nuclear materials: austenitic stainless steels based on Fe, austenitic steels with high content of Cr, ferrites resistant to corrosion, by various Plasma Processing methods which include: - Plasma Electrolytic (PE) treatments: the steel substrates were modified by nitriding and nitro-carburizing plasma diffusion treatments; - carbonic films deposition in Thermionic Vacuum Arc Plasma. The results of the characterization of surface structures obtained in various experimental conditions for improvement of the properties (corrosion resistance, hardness, wear properties) are reported: the processes and structures were characterized by correlation of the results of the complementary techniques: XPS, 'depth profiling', SEM, XRD, EIS. An overall description of the processes involved in the surface properties improvement, and some consideration about the new materials development for energy technologies are presented

  16. Heavy Metals and Trace Elements Atmospheric Deposition Studies in Tula Region Using Moss Biomonitors Technique

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitors technique was used in air pollution studies in Tula Region (Central Russia), applying NAA, AAS. Moss samples were collected at 83 sites in accordance with the sampling strategy adopted in European projects on biomonitoring atmospheric deposition. A wide set of trace elements in mosses was determined. The method of epithermal neutron activation at IBR-2 reactor of FLNP JINR has made it possible to identify 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) in the large-scale concentration range - from 10000 ppm for K to 0,001 ppm for Tb and Ta. Cu, Cd and Pb were determined by the flame AAS in the Norwegian Institute of Science and Technology. Using the graphical technique and principal component analysis allowed to separate plant, crustal and general pollution components in the moss. The obtained data will be used for constructing coloured maps of the distribution of elements over t...

  17. Synthesis and corrosion properties of silicon nitride films by ion beam assisted deposition

    Science.gov (United States)

    Baba, K.; Hatada, R.; Emmerich, R.; Enders, B.; Wolf, G. K.

    1995-12-01

    Silicon nitride films SiN x were deposited on 316L austenitic stainless steel substrates by silicon evaporation and simultaneous nitrogen ion irradiation with an acceleration voltage of 2 kV. In order to study the influence of the nitrogen content on changes in stoichiometry, structure, morphology, thermal oxidation behaviour and corrosion behaviour, the atom to ion transport ratio was systematically varied. The changes of binding states and the stoichiometry were evaluated with XPS and AES analysis. A maximum nitrogen content was reached with a {Si}/{N} transport ratio lower than 2. The films are chemically inert when exposed to laboratory atmosphere up to a temperature of more than 1000°C. XRD and SEM measurements show amorphous and featureless films for transport ratios {Si}/{N} from 1 up to 10. The variation of the corrosion behaviour of coated stainless steel substrates in sulphuric acid and hydrochloric acid shows a minimum at medium transport ratios. This goes parallel with changes in porosity and adhesion. Additional investigations showed that titanium implantation as an intermediate step improves the corrosion resistance considerably.

  18. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  19. Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique

    Directory of Open Access Journals (Sweden)

    Jingjin Liu

    2017-10-01

    Full Text Available Problems continue to be encountered concerning the traditional vacuum preloading method in field during the treatment of newly deposited dredger fills. In this paper, an improved multiple-vacuum preloading method was developed to consolidate newly dredger fills that are hydraulically placed in seawater for land reclamation in Lingang Industrial Zone of Tianjin City, China. With this multiple-vacuum preloading method, the newly deposited dredger fills could be treated effectively by adopting a novel moisture separator and a rapid improvement technique without sand cushion. A series of model tests was conducted in the laboratory for comparing the results from the multiple-vacuum preloading method and the traditional one. Ten piezometers and settlement plates were installed to measure the variations in excess pore water pressures and moisture content, and vane shear strength was measured at different positions. The testing results indicate that water discharge–time curves obtained by the traditional vacuum preloading method can be divided into three phases: rapid growth phase, slow growth phase, and steady phase. According to the process of fluid flow concentrated along tiny ripples and building of larger channels inside soils during the whole vacuum loading process, the fluctuations of pore water pressure during each loading step are divided into three phases: steady phase, rapid dissipation phase, and slow dissipation phase. An optimal loading pattern which could have a best treatment effect was proposed for calculating the water discharge and pore water pressure of soil using the improved multiple-vacuum preloading method. For the newly deposited dredger fills at Lingang Industrial Zone of Tianjin City, the best loading step was 20 kPa and the loading of 40–50 kPa produced the highest drainage consolidation. The measured moisture content and vane shear strength were discussed in terms of the effect of reinforcement, both of which indicate

  20. Measurement of g factors of excited states in radioactive beams by the transient field technique: 132Te

    International Nuclear Information System (INIS)

    Benczer-Koller, N.; Kumbartzki, G.; Gurdal, G; Gross, Carl J; Krieger, B; Hatarik, Robert; O'Malley, Patrick; Pain, S. D.; Segen, L.; Baktash, Cyrus; Bingham, C. R.; Danchev, M.; Grzywacz, R.; Mazzocchi, C.

    2008-01-01

    The g factor of the 2 1 + state in 52 132 Te, E(2 1 + ) = 0.9739 MeV, r = 2.6 ps, was measured by the transient field technique applied to a radioactive beam. The development of an experimental approach necessary for work in radioactive beam environments is described. The result g = 0.28(15) agrees with the previous measurement by the recoil-in-vacuum technique, but here the sign of the g factor is measured as well

  1. Networks of ultra-fine Ag nanocrystals in a Teflon AF (registered) matrix by vapour phase e-beam-assisted deposition

    International Nuclear Information System (INIS)

    Biswas, A; Bayer, I S; Marken, B; Pounds, T D; Norton, M G

    2007-01-01

    We have fabricated nanocomposite thin films comprising silver (Ag) nanoparticles dispersed in a Teflon AF (registered) polymer matrix using electron-beam-assisted physical vapour deposition. Four different Ag nanoparticle volume fillings (20%, 35%, 70% and 75%) were achieved by varying the relative metal-polymer evaporation rates with the formation of highly crystalline Ag nanoparticles regardless of the filling ratio. The present fabrication technique allowed full control over dispersion uniformity of nanoparticles in the polymer network. At 20% and 35% metal volume fillings, the nanocomposite film morphology consists of a uniformly dispersed assembly of equiaxed isolated Ag nanoparticles. At higher metal volume fractions the nanocomposite structures displayed two different and unique Ag nanoparticle arrangements within the polymer matrix. In particular, at 70% metal filling, the formation of irregularly shaped clusters of individually assembled nanocrystals was observed. At a slightly higher volume filling (75%), larger irregularly shaped Ag nanocrystals that appeared to be the result of coalescence and grain growth were observed. Finally, a composite theory developed by Tandon and Weng was used to estimate various elastic properties of the nanocomposite films. At high metal filling, the reinforcing effect of the Ag nanoparticles was reflected as approximately a sixfold increase in the elastic modulus compared to the virgin polymer film. Possible applications of such ultra-fine metal nanoparticles networks are discussed

  2. A simple technique for treating age-related macular degeneration with external beam radiotherapy

    International Nuclear Information System (INIS)

    Roos, Daniel E.; Francis, J. Winston; Newnham, W. John

    1999-01-01

    Purpose: To develop a simple external beam photon radiotherapy technique to treat age-related macular degeneration without the need for simulation, planning computed tomography (CT) or computer dosimetry. Methods and Materials: The goal was to enable the treatment to be set up reliably on the treatment machine on Day 1 with the patient supine in a head cast without any prior planning. Using measurements of ocular globe topography from Karlsson et al. (Int J Radiat Oncol Biol Phys 1996; 33: 705-712), we chose a point 1.5 cm behind the anterior surface of the upper eyelid (ASUE) as the isocentre of a half-beam, blocked, 5.0 x 3.0-cm, angled lateral field to treat the involved eye. This would position the isocentre about 0.5 cm behind the posterior surface of the lens, and a little over 1 cm in front of the macula, according to Karlsson et al. The setup requires initial adjustment of the gantry from horizontal (to account for any asymmetry of position of the eyes), then angling 15 deg. posteriorly to avoid the contralateral eye. Finally, the couch is raised to position the isocentre 1.5 cm behind the ASUE. Results: To verify the applicability of the technique, we performed CT and computer dosimetry on the first 11 eyes so treated. Our CT measurements were in good agreement with Karlsson et al. The lens dose was < 5% and the macula was within the 95% isodose curve in each case (6-MV linac). Treatment setup time is approximately 10 min each day. The 11 patients were treated with 5 x 2.00 Gy (2 patients) or 5 x 3.00 Gy (9 patients), and subjective response on follow-up over 1 to 12 months (median 4 months) was comparable to previously reported results, with no significant acute side effects. Conclusion: Our technique is easy to set up and reliably treats the macula, with sparing of the lens and contralateral eye. It enables treatment to commence rapidly and cost-effectively without the need for simulation or CT computer planning

  3. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  4. Signal processing techniques for lithium beam polarimetry on DIII-D

    International Nuclear Information System (INIS)

    Thomas, D. M.; Leonard, A. W.

    2006-01-01

    On the DIII-D tokamak the LIBEAM diagnostic provides precise measurements of the local magnetic field direction by combined polarimetry/ spectroscopy of the Zeeman-split 2S-2P lithium resonance line. Using these measurements we are able to determine the behavior of the edge toroidal current density j φ (r), a parameter of critical interest for edge stability and performance. For a successful measurement, analysis of the polarization state of the spectrally filtered fluorescence must be done with high precision in the presence of nonideal filtering, beam intensity evolution, and dynamically varying background light. This is accomplished by polarization modulation of the collected emission, followed by digital demodulation at various harmonics of the modulation frequency. Either lock-in or fast Fourier transform techniques can be used to determine the various Stokes parameters and reconstruct the field directions based on accurate spatial and polarization efficiency calibrations. Details of the specific techniques used to analyze various DIII-D discharges are described, along with a discussion of the present limitations and some possible avenues towards improving the analysis

  5. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    Science.gov (United States)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  6. Homogeneous and inhomogeneous material effect in gamma index evaluation of IMRT technique based on fan beam and Cone Beam CT patient images

    Science.gov (United States)

    Wibowo, W. E.; Waliyyulhaq, M.; Pawiro, S. A.

    2017-05-01

    Patient-specific Quality Assurance (QA) technique in lung case Intensity-Modulated Radiation Therapy (IMRT) is traditionally limited to homogeneous material, although the fact that the planning is carried out with inhomogeneous material present. Moreover, the chest area has many of inhomogeneous material, such as lung, soft tissue, and bone, which inhomogeneous material requires special attention to avoid inaccuracies in dose calculation in the Treatment Planning System (TPS). Recent preliminary studies shown that the role of Cone Beam CT (CBCT) can be used not only to position the patient at the time prior to irradiation but also to serve as planning modality. Our study presented the influence of a homogeneous and inhomogeneous materials using Fan Beam CT and Cone Beam CT modalities in IMRT technique on the Gamma Index (GI) value. We used a variation of the segment and Calculation Grid Resolution (CGR). The results showed the deviation of averaged GI value to be between CGR 0.2 cm and 0.4 cm with homogeneous material ranging from -0.44% to 1.46%. For inhomogeneous material, the value was range from -1.74% to 0.98%. In performing patient-specific IMRT QA techniques for lung cancer, homogeneous material can be implemented in evaluating the gamma index.

  7. Quantitative seafloor characterization using angular backscatter data of the multi-beam echo-sounding system - Use of models and model free techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    , International Conference on Coastal and Ocean Technology, pp. 293-300 QUANTITATIVE SEAFLOOR CHARACTERIZATION USING ANGULAR BACKSCATTER DATA OF THE MULTI-BEAM ECHO-SOUNDING SYSTEM- USE OF MODELS AND MODEL FREE TECHNIQUES Blshwajit Chakraborty National Institute... of the seafloor features, including textual parameters [1]. Presently available multi-beam echo-sounding techniques can provide bathymetric data with higher coverage, due to the use of faster, high-resolution signal processing techniques employed in the beam...

  8. Magnetic field 3D-reconstruction techniques using images of an ion beam in a toroidal plasma

    Science.gov (United States)

    Ling, C.; Connor, K. A.; Demers, D. R.; Radke, R. J.; Schoch, P. M.

    2004-11-01

    A technique to map the magnetic field of a plasma via spectral imaging of a heavy ion beam is being developed on the Madison Symmetric Torus (MST). This technique will provide both spatial and temporal magnetic field information. A code has been developed to analyze spectral images of the beam. To assess the technique, the code utilizes a trajectory produced with a known magnetic field and simulates two 2D-images of this trajectory. These 2D-images are used to reconstruct a 3D-trajectory and compute the magnetic field in the vicinity of the beam. The magnetic field components that are perpendicular to the beam velocity field can be resolved, but there is insufficient information to resolve the component along the beam velocity field. Hence, additional constraints such as shifted, circular, closed magnetic flux surfaces are used. We discuss details of the simulation including various image processing algorithms, accuracy of the reconstructed 3D-trajectory, and agreement between the prescribed and computed magnetic fields.

  9. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  10. Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID on cantilever tips

    Directory of Open Access Journals (Sweden)

    Soraya Sangiao

    2017-10-01

    Full Text Available In this work, we present a detailed investigation of the magnetic properties of cobalt nanospheres grown on cantilever tips by focused electron beam induced deposition (FEBID. The cantilevers are extremely soft and the cobalt nanospheres are optimized for magnetic resonance force microscopy (MRFM experiments, which implies that the cobalt nanospheres must be as small as possible while bearing high saturation magnetization. It was found that the cobalt content and the corresponding saturation magnetization of the nanospheres decrease for nanosphere diameters less than 300 nm. Electron holography measurements show the formation of a magnetic vortex state in remanence, which nicely agrees with magnetic hysteresis loops performed by local magnetometry showing negligible remanent magnetization. As investigated by local magnetometry, optimal behavior for high-resolution MRFM has been found for cobalt nanospheres with a diameter of ≈200 nm, which present atomic cobalt content of ≈83 atom % and saturation magnetization of 106 A/m, around 70% of the bulk value. These results represent the first comprehensive investigation of the magnetic properties of cobalt nanospheres grown by FEBID for application in MRFM.

  11. Exploring the Optical and Morphological Properties of Ag and Ag/TiO₂ Nanocomposites Grown by Supersonic Cluster Beam Deposition.

    Science.gov (United States)

    Cavaliere, Emanuele; Benetti, Giulio; Van Bael, Margriet; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-12-13

    Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  12. Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique

    International Nuclear Information System (INIS)

    Banerjee, A.N.; Ghosh, C.K.; Chattopadhyay, K.K.; Minoura, Hideki; Sarkar, Ajay K.; Akiba, Atsuya; Kamiya, Atsushi; Endo, Tamio

    2006-01-01

    The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm -1 , respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm -1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 x 10 16 and 3.1 x 10 2 cm -3 , respectively. This report will provide newer applications of ZnO thin films in flexible display technology

  13. Self-limiting growth of anatase TiO{sub 2}: A comparison of two deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, Nicholas G. [Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Wolden, Colin A., E-mail: cwolden@mines.ed [Department of Chemical Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2010-09-30

    Self-limiting deposition of titanium dioxide thin films was accomplished using pulsed plasma-enhanced chemical vapor deposition (PECVD) and plasma-enhanced atomic layer deposition (PEALD) at low temperatures (T < 200 {sup o}C) using TiCl{sub 4} and O{sub 2}. TiCl{sub 4} is shown to be inert with molecular oxygen at process conditions, making it a suitable precursor for these processes. The deposition kinetics were examined as a function of TiCl{sub 4} exposure and substrate temperature. The quality of the anatase films produced by the two techniques was nominally identical. The key distinctions are found in precursor utilization and conformality. Pulsed PECVD requires 20 times less TiCl{sub 4}, while PEALD must be used to uniformly coat complex topographies.

  14. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  15. Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    Full Text Available In this work, zinc oxide (ZnO multilayer thin films are deposited on glass substrate using sol-gel spin coating technique and the effect of these multilayer films on optical, electrical and structural properties are investigated. It is observed that these multilayer films have great impact on the properties of ZnO. X-ray Diffraction (XRD confirms that ZnO has hexagonal wurtzite structure. Scanning Electron Microscopy (SEM showed the crack-free films which have uniformly distributed grains structures. Both micro and nano particles of ZnO are present on thin films. Four point probe measured the electrical properties showed the decreasing trend between the average resistivity and the number of layers. The optical absorption spectra measured using UV–Vis. showed the average transmittance in the visible region of all films is 80% which is good for solar spectra. The performance of the multilayer as transparent conducting material is better than the single layer of ZnO. This work provides a low cost, environment friendly and well abandoned material for solar cells applications. Keywords: Multilayer films, Semiconductor, ZnO, XRD, SEM, Optoelectronic properties

  16. Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Zhensheng Yang

    2018-03-01

    Full Text Available Polymers are being used in a wide range of Additive Manufacturing (AM applications and have been shown to have tremendous potential for producing complex, individually customized parts. In order to improve part quality, it is essential to identify and monitor the process malfunctions of polymer-based AM. The present work endeavored to develop an alternative method for filament breakage identification in the Fused Deposition Modeling (FDM AM process. The Acoustic Emission (AE technique was applied due to the fact that it had the capability of detecting bursting and weak signals, especially from complex background noises. The mechanism of filament breakage was depicted thoroughly. The relationship between the process parameters and critical feed rate was obtained. In addition, the framework of filament breakage detection based on the instantaneous skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the breakage could be successfully identified. Achievements of the present work could be further used to develop a comprehensive in situ FDM monitoring system with moderate cost.

  17. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  18. Deposition of corrosion products from dowels on human dental root surfaces measured with proton microprobe technique

    Science.gov (United States)

    Brune, D.; Brunell, G.; Lindh, U.

    1982-06-01

    Distribution of copper, mercury and zinc on human teeth root surfaces adjacent to dowels of gold alloy or brass as well as dowels of brass in conjunction with an amalgam crown has been measured with a proton microprobe using PIXE techniques. Upper limits of the contents of gold and silver on the root surfaces were established. Pronounced concentration profiles of copper and zinc were observed on the root surfaces of teeth prepared with dowels of brass. The dowel of gold alloy revealed only zinc deposition. The major part of copper on the root surfaces is assumed to arise from corrosion of the dowels, and has been transported to the surface by diffusion through the dential tubuli. Zinc in the volume analysed is a constituent of dentin tissue as well as a corrosion product of the brass dowel. Part of the zinc level could also be ascribed to erosion of the zinc phosphate cement matrix. The volumes analysed were (25×25×25)μm 3. The levels of copper, mercury and zinc on the tooth root surfaces attained values up to about 200, 20 and 600 ppm, respectively.

  19. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    Science.gov (United States)

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  20. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Science.gov (United States)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  1. Introduction to analytical techniques of beam-target interactions and resolutions; Introduction aux techniques d`analyse interactions rayonnement-matiere et resolutions

    Energy Technology Data Exchange (ETDEWEB)

    Ruste, J.

    1995-08-01

    For several years, new analysis and observation techniques have been developed, which have considerably improved material research. Almost all these techniques are based on the interaction of a beam of `primary particles` (electrons, photons, ions, particles, etc) with target. Correct and appropriate use of these techniques requires a good knowledge of these interactions and their consequences (emissions of `secondary particles`, modifications of the primary beam and target, etc). The first part of this report deals with the radiation/material interactions according to the nature of the radiation and its energy. The nature and consequences of the interaction of an electromagnetic wave, a beam of electrons, ions and neutrons are examined over an extended range of energy from MeV to MeV. Certain notions such as the analysis area, spatial resolutions or limits of detection can also be defined. In the second part, some of the most important and widespread techniques of analysis and observation are compared in terms of properties and performance. In particular, there is a brief principle of the technique, nature of the data obtained, spatial resolution, and the limits of detection with today`s methods permit. (author). 5 refs., 23 figs., 9 tabs.

  2. Lung stereotactic body radiotherapy using a coplanar versus a non-coplanar beam technique: a comparison of clinical outcomes

    Science.gov (United States)

    Stauder, Michael C.; Miller, Robert C.; Garces, Yolanda I.; Foote, Robert L.; Sarkaria, Jann N.; Bauer, Heather J.; Mayo, Charles S.; Olivier, Kenneth R.

    2013-01-01

    Objectives To determine if lung stereotactic body radiotherapy (SBRT) using a coplanar beam technique was associated with similar outcomes as lung SBRT using a non-coplanar beam technique. Methods A retrospective review was performed of patients undergoing lung SBRT between January 2008 and April 2011. SBRT was initially delivered with multiple non-coplanar, non-overlapping beams; however, starting in December 2009, SBRT was delivered predominantly with all coplanar beams in order to reduce treatment time and complexity. Results This analysis included 149 patients; the median follow-up was 21 months. SBRT was delivered for primary (n = 90) or recurrent (n = 17) non-small cell lung cancer, or lung oligometastasis (n = 42). The most common dose (Gy)/fraction (fx) regimens were 48 Gy/4 fx (39%), 54 Gy/3 fx (37%), and 50 Gy/5 fx (17%). The beam arrangement was coplanar in 61 patients (41%) and non-coplanar in 88 patients (59%). In patients treated with 54 Gy/3 fx, the mean treatment times per fraction for the coplanar and non-coplanar cohorts were 10 and 14 minutes (p < 0.0001). Kaplan-Meier 2-year estimates of overall survival (OS), progression-free survival, and local control (LC) for the coplanar and non-coplanar cohorts were 65% vs. 56% (p = 0.30), 47% vs. 39% (p = 0.71), and 92% and 92% (p = 0.94), respectively. The 1-year estimates of grade 2-5 pulmonary toxicity for the coplanar and non-coplanar cohorts were 11% and 17%, respectively (p = 0.30). On multivariate analysis, beam arrangement was not significantly associated with OS, LC or pulmonary toxicity. Conclusions Patients treated with lung SBRT using a coplanar technique had similar outcomes as those treated with a non-coplanar technique. PMID:29296365

  3. Strengthening of RCC Beams in Shear by Using SBR Polymer-Modified Ferrocement Jacketing Technique

    Directory of Open Access Journals (Sweden)

    Rajinder Ghai

    2018-01-01

    Full Text Available There is a common phenomenon of shear failure in RCC beams, especially in old buildings and bridges. Any possible strengthening of such beams is needed to be explored that could strengthen and make them fit for serviceable conditions. The present research has been made to determine the performance of predamaged beams strengthened with three-layered wire mesh polymer-modified ferrocement (PMF with 15% styrene-butadiene-rubber latex (SBR polymer. Forty-eight shear-designed and shear-deficient real-size beams were used in this experimental work. Ultimate shear load-carrying capacity of control beams was found at two different shear-span (a/d ratios 1 and 3. The sets of remaining beams were loaded with different predetermined damage levels of 45%, 75%, and 95% of the ultimate load values and then strengthened with 20 mm thick PMF. The strengthened beams were then again tested for ultimate load-carrying capacity by conducting the shear load test at a/d = 1 and 3. As a result, the PMF-strengthened beams showed restoration and enhancement of ultimate shear load-carrying capacity by 5.90% to 12.03%. The ductility of strengthened beams was improved, and hence, the corresponding deflections were prolonged. On the other hand, the cracking pattern of PMF-strengthened beams was also improved remarkably.

  4. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  5. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Directory of Open Access Journals (Sweden)

    Y. Nie

    2017-08-01

    Full Text Available The conceptual design of the Future Circular Collider (FCC is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  6. Studies of CdS/CdTe interface: Comparison of CdS films deposited by close space sublimation and chemical bath deposition techniques

    International Nuclear Information System (INIS)

    Han, Jun-feng; Fu, Gan-hua; Krishnakumar, V.; Schimper, Hermann-Josef; Liao, Cheng; Jaegermann, Wolfram; Besland, M.P.

    2015-01-01

    The CdS layers were deposited by two different methods, close space sublimation (CSS) and chemical bath deposition (CBD) technique. The CdS/CdTe interface properties were investigated by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a large CSS-CdS grain size in the range of 70-80 nm. The interface between CSS-CdS and CdTe were clear and sharp, indicating an abrupt hetero-junction. On the other hand, CBD-CdS layer had much smaller grain size in the 5-10 nm range. The interface between CBD-CdS and CdTe was not as clear as CSS-CdS. With the stepwise coverage of CdTe layer, the XPS core levels of Cd 3d and S 2p in CSS-CdS had a sudden shift to lower binding energies, while those core levels shifted gradually in CBD-CdS. In addition, XPS depth profile analyses indicated a strong diffusion in the interface between CBD-CdS and CdTe. The solar cells prepared using CSS-CdS yielded better device performance than the CBD-CdS layer. The relationships between the solar cell performances and properties of CdS/CdTe interfaces were discussed. - Highlights: • Studies of CdS deposited by close space sublimation and chemical bath deposition • An observation of CdS/CdTe interface by transmission electron microscope • A careful investigation of CdS/CdTe interface by X ray photoelectron spectra • An easier diffusion at the chemical bath deposition CdS and CdTe interface

  7. A technique to evaluate the good operation of FBG sensors embedded in a carbon fiber beam

    Science.gov (United States)

    Cazzulani, Gabriele; Cinquemani, Simone; Comolli, Lorenzo

    2013-05-01

    Embedding FBG sensors in carbon fiber structures is a very attractive solution, due to the small fiber diameter, and the possibility to manufacture arrays of many gratings into a single optical fiber. These embedding is particularly useful for the manufacturing of smart structures, able to improve their characteristics thanks to embedded sensors and actuators. In this work a carbon fiber beam of 3 m length, with an array of 30 FBG sensors and 3 piezoelectric actuators, is described. The focus of the work is on the evaluation of the good operation of embedded FBG sensors, that is not easy due to the microstructure of woven carbon fiber layers, producing non-homogeneous strain field, a well known problem for the reliability of FBG strain measurements. The proposed technique looks at the standard deviation of the full width at -6 dB of the spectra of each FBG sensors, during a quasi-static motion producing quasi-static strains. 37% of the 30 FBG sensors have been found to produce measurements corrupted by a small error. At the end, vibration control of the described structure is shown.

  8. A High-Resolution Multi-Slit Phase Space Measurement Technique for Low-Emittance Beams

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J. C.T. [Fermilab; Piot, P. [Northern Illinois U.

    2012-07-25

    Precise measurement of transverse phase space of a high-brightness electron beamis of fundamental importance in modern accelerators and free-electron lasers. Often, the transverse phase space of a high-brightness, space-charge-dominated electron beam is measured using a multi-slit method. In this method, a transverse mask (slit/pepperpot) samples the beaminto a set of beamlets, which are then analyzed on to a screen downstream. The resolution in this method is limited by the type of screen used which is typically around 20 mum for a high-sensitivity Yttrium Aluminum Garnet screen. Accurate measurement of sub-micron transverse emittance using this method would require a long drift space between the multi-slit mask and observation screen. In this paper, we explore a variation of the technique that incorporates quadrupole magnets between the multi-slit mask and the screen. It is shown that this arrangement can improve the resolution of the transverse-phase-space measurement with in a short footprint.

  9. Fault Diagnosis of Beam-Like Structure Using Modified Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Dhirendranath Thatoi

    2014-01-01

    Full Text Available This paper presents a novel hybrid fuzzy logic based artificial intelligence (AI technique applicable to diagnosis of the crack parameters in a fixed-fixed beam by using the vibration signatures as input. The presence of damage in engineering structures leads to changes in vibration signatures like natural frequency and mode shapes. In the first part of this work, a structure with a failure crack has been analyzed using finite element method (FEM and retrospective changes in the vibration signatures have been recorded. In the second part of the research work, these deviations in the vibration signatures for the first three mode shapes have been taken as input parameters for a fuzzy logic based controller for calculation of crack location and its severity as output parameters. In the proposed fuzzy controller, hybrid membership functions have been taken. Several fuzzy rules have been identified for prediction of crack depth and location and the results have been compared with finite element analysis. A database of experimental results has also been considered to check the robustness of the fuzzy controller. The results show that predictions for the nondimensional crack location, α, deviate ~2.4% from experimental values and for the nondimensional crack depth, δ, are less than ~−2%.

  10. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique.

    Science.gov (United States)

    Ajami, S; Coathup, M J; Khoury, J; Blunn, G W

    2017-08-01

    Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p PEEK compared to PEEK (p PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.

  11. Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Qiang, G. [Tsinghua U., Beijing, Dept. Eng. Phys.; Ha, G. [POSTECH; Wisniewski, E. [Argonne (main); Piot, P. [NIU, DeKalb; Power, J. G. [Argonne (main); Gai, W. [Argonne (main)

    2017-07-24

    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.

  12. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, Aliaksei [NICADD, DeKalb; Edstrom, Dean [Fermilab; Gai, Wei [Argonne, HEP; Ha, Gwanghui [Argonne, HEP; Piot, Philippe [NICADD, DeKalb; Power, John [Argonne, HEP; Qiang, Gao [Unlisted, CN; Ruan, Jinhao [Fermilab; Santucci, James [Fermilab; Wisniewski, Eric [Argonne, HEP

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  13. An economic CVD technique for pure SnO2 thin films deposition ...

    Indian Academy of Sciences (India)

    sis of the hydrolysis reaction between tin tetrachloride and water vapour showed that the rate of deposition of SnO2 is a strong function of the temperature and the ratio of the reactants. Later, in the year 1990, undoped tin oxide films have been prepared by a chemical vapour deposition tech- nique by Sanon et al (1990).

  14. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Matsui, S.; Mori, Y.; Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M.

    2016-01-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  15. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  16. Evaluation of the Energy Deposition in the event of an Asynchronous Beam Dump for a 7 TeV beam on the new TCDQ model proposed for the LHC

    CERN Document Server

    Versaci, R; CERN. Geneva. ATS Department

    2012-01-01

    An asynchronous beam dump is one of the most critical accident the LHC could face. In the effort to have a better protection of the machine, a new model for the TCDQ (Target Collimator Dump Quadrupole) has been proposed and is under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition. The results of our simulations are also input for the evaluation of the heat load on the collimator.

  17. A Layer Correlation Technique for Pion Energy Calibration at the 2004 ATLAS Combined Beam Test (Conference record)

    CERN Document Server

    Grahn, K-J; The ATLAS collaboration

    2009-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the ATLAS calorimeters were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by about 20% compared to the electromagnetic scale.

  18. Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques

    International Nuclear Information System (INIS)

    Negishi, R.; Hasegawa, T.; Terabe, K.; Aono, M.; Ebihara, T.; Tanaka, H.; Ogawa, T.

    2006-01-01

    We have developed and tested a new method of fabricating nanogaps using a combination of self-assembled molecular and electron beam lithographic techniques. The method enables us to control the gap size with an accuracy of approximately 2 nm and designate the positions where the nanogaps should be formed with high-resolution patterning by using electron beam lithography. We have demonstrated the utility of the fabricated nanogaps by measuring a single electron tunneling phenomenon through dodecanethiol-coated Au nanoparticles placed in the fabricated nanogap

  19. Dosimetric characterization of BeO samples in alpha, beta and X radiation beams using luminescent techniques

    International Nuclear Information System (INIS)

    Groppo, Daniela Piai

    2013-01-01

    In the medical field, the ionizing radiation is used both for therapeutic and diagnostic purposes, in a wide range of radiation doses. In order to ensure that the objective is achieved in practice, detailed studies of detectors and devices in different types of radiations beams are necessary. In this work a dosimetric characterization of BeO samples was performed using the techniques of thermoluminescence (TL) and optically stimulated luminescence (OSL) by a comparison of their response for alpha, beta and X radiations and the establishment of an appropriated system for use in monitoring of these radiations beams. The main results are: the high sensitivity to beta radiation for both techniques, good reproducibility of TL and OSL response (coefficients of variation lower than 5%), maximum energy dependence of the X radiation of 28% for the TL technique, and only 7% for the OSL technique, within the studied energy range. The dosimetric characteristics obtained in this work show the possibility of applying BeO samples to dosimetry of alpha, beta and X radiations, considering the studied dose ranges, using the TL and OSL techniques. From the results obtained, the samples of BeO showed their potential use for beam dosimetry in diagnostic radiology and radiotherapy. (author)

  20. CdS thin films obtained by thermal treatment of cadmium(II) complex precursor deposited by MAPLE technique

    International Nuclear Information System (INIS)

    Rotaru, Andrei; Mietlarek-Kropidlowska, Anna; Constantinescu, Catalin; Scarisoreanu, Nicu; Dumitru, Marius; Strankowski, Michal; Rotaru, Petre; Ion, Valentin; Vasiliu, Cristina; Becker, Barbara; Dinescu, Maria

    2009-01-01

    Thin films of [Cd{SSi(O-Bu t ) 3 }(S 2 CNEt 2 )] 2 , precursor for semiconducting CdS layers, were deposited on silicon substrates by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Structural analysis of the obtained films by Fourier transform infrared spectroscopy (FTIR) confirmed the viability of the procedure. After the deposition of the coordination complex, the layers are manufactured by appropriate thermal treatment of the system (thin film and substrate), according to the thermal analysis of the compound. Surface morphology of the thin films was investigated by atomic force microscopy (AFM) and spectroscopic-ellipsometry (SE) measurements.

  1. Study of the light emission from hydrogen atoms excited by the beam-foil technique

    International Nuclear Information System (INIS)

    Broll, Norbert.

    1976-01-01

    Zero-field and Stark-induced quantum beat measurements have been performed for beam foil excited hydrogen (H + and H 2 + beam). Experimental evidence of coherent excitation of S and P states of Lyman α line has been demonstrated [fr

  2. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  3. Demonstration of feasibility of depositing semiconductor layers using microwave enhanced plasma techniques. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Manufacturing of low cost more efficient photovoltaic cells partly depends on the development of new process technologies, one of which is the deposition of thin films at relatively low substrate temperatures. Superwave Technology, in an effort to demonstrate the feasibility of microwave enhanced plasma as a means of producing better quality films, has successfully developed a simple but versatile system. The microwave enhanced plasma system developed has the capability of depositing various films of different compositions. This effort was directed towards deposition of silicon nitride film through gas phase plasma reaction.

  4. Influence of solution deposition rate on properties of V{sub 2}O{sub 5} thin films deposited by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Abd–Alghafour, N. M., E-mail: na2013bil@gmail.com [Iraqi Ministry of Education, Anbar (Iraq); Ahmed, Naser M.; Hassan, Zai; Mohammad, Sabah M. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, University Sains Malaysia,11800 Penang (Malaysia)

    2016-07-19

    Vanadium oxide (V{sub 2}O{sub 5}) thin films were deposited on glass substrates by using a cost-efficient spray pyrolysis technique. The films were grown at 350° through thermal decomposition of VCl{sub 3} in deionized water with different solution spray rates. The high resolution X-ray diffraction results revealed the formation of nanocrystalline films having orthorhombic structures with preferential orientation along (101) direction. The spray rate influenced the surface morphology and crystallite size of the films. The crystallite size was found to increase whereas the micro-strain was decreased by increasing the spray deposition rates. The increase in crystallite size and decrease in the macrostrain resulted in an improvement in the films’ crystallinity. The UV-Visible spectroscopy analysis indicated that the average transmittance of all films lies in the range 75-80 %. The band gap of V{sub 2}O{sub 5} film was decreased from 2.65 to 2.46 eV with increase of the spray deposition rate from 5 ml/min to 10 ml/min. first, second, and third level headings (first level heading).

  5. Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy.

    Science.gov (United States)

    Egashira, Yusuke; Nishio, Teiji; Matsuura, Taeko; Kameoka, Satoru; Uesaka, Mitsuru

    2012-07-01

    In proton therapy, pencil-beam algorithms (PBAs) are the most widely used dose calculation methods. However, the PB calculations that employ one-dimensional density scaling neglect the effects of lateral density heterogeneity on the dose distributions, whereas some particles included in such pencil beams could overextend beyond the interface of the density heterogeneity. We have simplified a pencil-beam redefinition algorithm (PBRA), which was proposed for electron therapy, by a spatial resampling technique toward an application for proton therapy. The purpose of this study is to evaluate the calculation results of the spatial resampling technique in terms of lateral density heterogeneity by comparison with the dose distributions that were measured in heterogeneous slab phantoms. The pencil beams are characterized for multiple residual-range (i.e., proton energy) bins. To simplify the PBRA, the given pencil beams are resampled on one or two transport planes, in which smaller sub-beams that are parallel to each other are generated. We addressed the problem of lateral density heterogeneity comparing the calculation results to the dose distributions measured at different depths in heterogeneous slab phantoms using a two-dimensional detector. Two heterogeneity slab phantoms, namely, phantoms A and B, were designed for the measurements and calculations. In phantom A, the heterogeneity slab was placed close to the surface. On the other hand, in phantom B, it was placed close to the Bragg peak in the mono-energetic proton beam. In measurements, lateral dose profiles showed a dose reduction and increment in the vicinity of x = 0 mm in both phantoms at depths z = 142 and 161 mm due to lateral particle disequilibrium. In phantom B, these dose reduction∕increment effects were higher∕lower, respectively, than those in phantom A. This is because a longer distance from the surface to the heterogeneous slab increases the strength of proton scattering. Sub-beams, which were

  6. Experimental evaluation of a spatial resampling technique to improve the accuracy of pencil-beam dose calculation in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, Yusuke; Nishio, Teiji; Matsuura, Taeko; Kameoka, Satoru; Uesaka, Mitsuru [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan) and Japan Society for the Promotion of Science, Ichibancho 8, Chiyoda-ku, Tokyo 102-8472 (Japan); Particle Therapy Division, Research Center for Innovative Oncology, National Cancer Center, Kashiwa, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577 (Japan); Department of Applied Molecular-Imaging Physics, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638 (Japan); Particle Therapy Division, Research Center for Innovative Oncology, National Cancer Center, Kashiwa, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba 277-8577 (Japan); Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-07-15

    Purpose: In proton therapy, pencil-beam algorithms (PBAs) are the most widely used dose calculation methods. However, the PB calculations that employ one-dimensional density scaling neglect the effects of lateral density heterogeneity on the dose distributions, whereas some particles included in such pencil beams could overextend beyond the interface of the density heterogeneity. We have simplified a pencil-beam redefinition algorithm (PBRA), which was proposed for electron therapy, by a spatial resampling technique toward an application for proton therapy. The purpose of this study is to evaluate the calculation results of the spatial resampling technique in terms of lateral density heterogeneity by comparison with the dose distributions that were measured in heterogeneous slab phantoms. Methods: The pencil beams are characterized for multiple residual-range (i.e., proton energy) bins. To simplify the PBRA, the given pencil beams are resampled on one or two transport planes, in which smaller sub-beams that are parallel to each other are generated. We addressed the problem of lateral density heterogeneity comparing the calculation results to the dose distributions measured at different depths in heterogeneous slab phantoms using a two-dimensional detector. Two heterogeneity slab phantoms, namely, phantoms A and B, were designed for the measurements and calculations. In phantom A, the heterogeneity slab was placed close to the surface. On the other hand, in phantom B, it was placed close to the Bragg peak in the mono-energetic proton beam. Results: In measurements, lateral dose profiles showed a dose reduction and increment in the vicinity of x= 0 mm in both phantoms at depths z= 142 and 161 mm due to lateral particle disequilibrium. In phantom B, these dose reduction/increment effects were higher/lower, respectively, than those in phantom A. This is because a longer distance from the surface to the heterogeneous slab increases the strength of proton scattering. Sub-beams

  7. A Mini-Prototype YBCO SMES Using Combustion Chemical Vapor Deposition Technique

    National Research Council Canada - National Science Library

    Shoup, Shara

    2000-01-01

    .... Textured nickel metal substrates were joined by 1 mm joints by several methods and in several physical configurations and then tested for feasibility by using the Combustion Chemical Vapor Deposition (CCVD...

  8. Evaluation of Co-rich manganese deposits by image analysis and photogrammetric techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Stereo-seabed photographs of Co-rich manganese deposits on a mid-Pacific seamount, were analysed using an image analysis software for coverage estimation and size classification of nodules, and a photogrammetric software for calculation of height...

  9. Identification of sources of tar balls deposited along the Goa coast, India, using fingerprinting techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Suneel, V.; Vethamony, P.; Zakaria, M.P.; Naik, B.G.; Prasad, K.V.

    Deposition of tar balls along the coast of Goa, India is a common phenomenon during the southwest monsoon. Representative tar ball samples collected from various beaches of Goa and one Bombay High (BH) crude oil sample were subjected to fingerprint...

  10. Atmospheric deposition of trace elements around Ulan Bator city studied by moss and lichen biomonitoring technique and INAA

    International Nuclear Information System (INIS)

    Ganbold, G.; Gehrbish, Sh.; Tsehndehehkhuu, Ts.; Gundorina, S.F.; Frontas'eva, M.V.; Ostrovnaya, T.M.; Pavlov, S.S.

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (Rhytidium rugosum, Thuidium abietinum, Entodon concinnus) and lichens (Cladonia stellaris, Parmelia separata) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries

  11. Atmospheric Deposition of Trace Elements Around Ulan-Bator City Studied by Moss and Lichen Biomonitoring Technique and INAA

    CERN Document Server

    Ganbold, G; Gundorina, S F; Frontasyeva, M V; Ostrovnaya, T M; Pavlov, S S; Tsendeekhuu, T

    2005-01-01

    For the first time the moss and lichen biomonitoring technique has been applied to air pollution in Mongolia (Ulan-Bator, the capital city). INAA at the IBR-2 reactor has made it possible to determine the content of 35 elements in moss and lichen biomonitors. Samples collected at sites located 10-15 km from the center of Ulan-Bator were analyzed by Instrumental Neutron Activation Analysis (INAA) using epithermal neutrons. The mosses (\\textit{Rhytidium rugosum}, \\textit{Thuidium abietinum}, \\textit{Entodon concinnus}) and lichens (\\textit{Cladonia stellaris}, \\textit{Parmelia separata}) were used to study the atmospheric deposition of trace elements. It was shown that the suggested types of mosses could be used as suitable biomonitors to estimate the concentration levels of heavy metals and trace elements in Ulan-Bator atmospheric deposition. The results are compared to the data of atmospheric deposition of some European countries.

  12. Influence of plasma-induced energy deposition effects, the equation of state, thermal ionization, pulse shaping, and radiation on ion-beam-driven expansions of plane metal targets

    International Nuclear Information System (INIS)

    Long, K.A.; Tahir, N.A.

    1986-01-01

    In a previous paper by Long and Tahir [Phys. Fluids 29, 275 (1986)], the motion of plane targets irradiated by ion beams whose energy deposition was assumed to be independent of the ion energy, and the temperature and density of the plasma, was analyzed. In this paper, the analytic solution is extended in order to include the effects of a temperature-and density-dependent energy deposition as a result of electron excitation, an improved equation of state, thermal ionization, a pulse shape, and radiation losses. The change in the energy deposition with temperature and density leads to range shortening and an increased power deposition in the target. It is shown how the analytic theory can be used to analyze experiments to measure the enhanced energy deposition. In order to further analyze experiments, numerical simulations are presented which include the plasma-induced effects on the energy deposition. It is shown that since the change in the range is due to both decrease in density and the increase in temperature, it is not possible to separate these two effects in present experiments. Therefore, the experiments which measure the time-dependent energy of the ions emerging from the back side of a plane target do not as yet measure the energy loss as a function of the density and temperature of the plasma or of the energy of the ion, but only an averaged loss over certain ranges of these physical quantities

  13. Development of phosphonic acid chelating fibers by means of electron beam irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Jyo, Akinori; Aoki, Shoji; Yamabe, Kazunori; Shuto, Taketomi

    2001-01-01

    Chloromethylstyrene was graft-polymerized onto polyethylene coated polypropylene fibers (0.9 denier) and its nonwoven cloth (1.5 denier) by means of electron beam irradiation induced graft polymerization technique. The grafted fiber and cloth were reacted with phosphorus trichloride in the presence of anhydrous aluminum trichloride under reflux of phosphorus trichloride, and the followed hydrolysis gave the objective phosphonic acid fibrous chelating exchangers FCSP-c (cloth type) and FCSP-f (fiber type) with phosphorus contents of 3.3 ± 0.2 mmol/g and acid capacities of 5.5 ± 0.2 meq/g. Adsorption rates of Pb(II), Cu(II) and Cd(II) by FCSP-c and FCSP-f were evaluated by batchwise and columnar methods, and compared with those by a chelating resin RCSP having the same functional groups. In batchwise and columnar adsorption of these metal ions, both FCSP-c and FCSP-f exhibited extremely higher adsorption rates than did the resin RCSP. For instance, FCSP-f packed columns exhibited flow rate independent breakthrough capacities of ca. 0.7-0.8 mmol/g for Cu(II) and Cd(II) within the tested range of flow rates from 50 to 1000 h -1 in space velocity, whereas breakthrough capacities of a RCSP resin packed one for Cu(II) decreased markedly with an increase in flow rate. For example, the breakthrough capacity of RCSP column at the flow rate of 500 h -1 was only ca. 0.2 mmol/g. (author)

  14. The rapid prototyping of textured amorphous surfaces for the graphoepitaxial deposition of CdTe films using focused ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Neretina, S. [McMaster University, Department of Engineering Physics and Centre for Emerging Device Technologies, Hamilton, Ontario (Canada); Temple University, Department of Mechanical Engineering, Philadelphia, PA (United States); Hughes, R.A. [McMaster University, Brockhouse Institute for Materials Research, Hamilton, Ontario (Canada); Temple University, Department of Mechanical Engineering, Philadelphia, PA (United States); Stortz, G.; Mascher, P. [McMaster University, Department of Engineering Physics and Centre for Emerging Device Technologies, Hamilton, Ontario (Canada); Preston, J.S. [McMaster University, Department of Engineering Physics and Centre for Emerging Device Technologies, Hamilton, Ontario (Canada); McMaster University, Brockhouse Institute for Materials Research, Hamilton, Ontario (Canada)

    2011-02-15

    Cadmium telluride films deposited on amorphous substrates exhibit a grain structure characterized by [111]-oriented grains, but where the in-plane grain orientation is randomized due to the absence of epitaxy. Here, we explore the viability of promoting an in-plane grain alignment through graphoepitaxy. Fifteen different substrate surface textures were fabricated using focused ion beam lithography. This approach allows for the side-by-side deposition of surface textures where both the areal extent and depth of the surface features are varied in a systematic manner. CdTe films deposited overtop these textures show grain structures with dramatic variations, revealing that particular length scales have the most pronounced effect on the grain structure. (orig.)

  15. Phase and amplitude modification of a laser beam by two deformable mirrors using conventional 4f image encryption techniques

    Science.gov (United States)

    Wu, Chensheng; Ko, Jonathan; Rzasa, John Robertson; Davis, Christopher C.

    2017-08-01

    The image encryption and decryption technique using lens components and random phase screens has attracted a great deal of research interest in the past few years. In general, the optical encryption technique can translate a positive image into an image with nearly a white speckle pattern that is impossible to decrypt. However, with the right keys as conjugated random phase screens, the white noise speckle pattern can be decoded into the original image. We find that the fundamental ideas in image encryption can be borrowed and applied to carry out beam corrections through turbulent channels. Based on our detailed analysis, we show that by using two deformable mirrors arranged in similar fashions as in the image encryption technique, a large number of controllable phase and amplitude distribution patterns can be generated from a collimated Gaussian beam. Such a result can be further coupled with wavefront sensing techniques to achieve laser beam correction against turbulence distortions. In application, our approach leads to a new type of phase conjugation mirror that could be beneficial for directed energy systems.

  16. Computer simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation

    Science.gov (United States)

    Ling, C.; Connor, K. A.; Demers, D. R.; Radke, R. J.; Schoch, P. M.

    2007-11-01

    A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This paper describes the computational tools created to model camera images of the light emitted from a simulated ion beam, reconstruct a three-dimensional trajectory, and estimate the accuracy of the reconstruction. First, a computer model is used to create images of the torus interior from any candidate camera location. It is used to explore the visual field of the camera and thus to guide camera parameters and placement. Second, it is shown that a three-dimensional ion beam trajectory can be recovered from a pair of perspectively projected trajectory images. The reconstruction considers effects due to finite beam size, nonuniform beam current density, and image background noise. Third, it is demonstrated that the trajectory reconstructed from camera images can help compute magnetic field profiles, and might be used as an additional constraint to an equilibrium reconstruction code, such as MSTFit.

  17. Emittance characteristics of negative ion beams generated by the sputter technique

    International Nuclear Information System (INIS)

    Alton, G.D.

    1989-01-01

    Average emittance data for ion beams extracted from cesium-sputter negative ion sources equipped with spherical, ellipsoidal, and cylindrical geometry cesium-surface ionizers are presented. The attributes of the respective source geometries are described in terms of their cesium ion optical properties. The results of recent measurement of the emittances of momentum-analyzed beams extracted from the ellipsoidal geometry source are also presented. These measurements indicate the presence of a species-dependent effect. The effect is believed to be attributable to differences in the energy spreads of the respective negative ion beams introduced by the sputter generation process. 11 refs., 8 figs

  18. Construction and measurement techniques for the APS LEUTL project RF beam position monitors.

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, A.

    1999-04-20

    The design, construction, and assembly procedure of 24 rf beam position monitors used in the Advanced Photon Source low-energy undulator test line and linear accelerator (linac) are described. Beam stability as well as beam positioning capabilities are essential to the LEUTL project. A design objective of the LEUTL facility is to achieve better than 1-{micro}m resolution. The highest care was used in the mechanical fabrication and assembly of the BPM units. The latest experimental results using these BPMs are presented.

  19. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitative...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  20. Formation of ion beam with high current density for micro irradiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A.V.; Ponomarev, A.G.

    2015-04-01

    The paper describes a study of the ion beam formation for irradiation of microareas of construction materials with individual grains. A numerical simulation of the microbeam formation was performed with profiles of current density distribution close to rectangular to obtain uniform dose. Ion beams with the total current on the target 10–100 nA were considered. An approach for beam focusing with energy variation without moving a sample was considered. The ability to create current density distributions close to uniform in the target plane was experimentally validated.

  1. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    International Nuclear Information System (INIS)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    The fabrication and performance of multilayer Al 2 O 3 /Ta 2 O 5 Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al 2 O 3 /Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV

  2. Novel imaging and quality assurance techniques for ion beam therapy a Monte Carlo study

    CERN Document Server

    Rinaldi, I; Jäkel, O; Mairani, A; Parodi, K

    2010-01-01

    Ion beams exhibit a finite and well defined range in matter together with an “inverted” depth-dose profile, the so-called Bragg peak. These favourable physical properties may enable superior tumour-dose conformality for high precision radiation therapy. On the other hand, they introduce the issue of sensitivity to range uncertainties in ion beam therapy. Although these uncertainties are typically taken into account when planning the treatment, correct delivery of the intended ion beam range has to be assured to prevent undesired underdosage of the tumour or overdosage of critical structures outside the target volume. Therefore, it is necessary to define dedicated Quality Assurance procedures to enable in-vivo range verification before or during therapeutic irradiation. For these purposes, Monte Carlo transport codes are very useful tools to support the development of novel imaging modalities for ion beam therapy. In the present work, we present calculations performed with the FLUKA Monte Carlo code and pr...

  3. Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets

    Science.gov (United States)

    Kawaharamura, Toshiyuki; Dang, Giang T.; Nitta, Noriko

    2016-10-01

    A multiple quantum well α-Fe2O3/α-Ga2O3 with parallel and coherent formation of uniform and highly single-crystalline layers on a sapphire substrate has been fabricated by open-air atmospheric-pressure solution-processed mist chemical vapor deposition (Mist CVD). This report demonstrates that complicated structures with atomic-level control can be fabricated even in non-vacuum conditions by the Mist CVD. This can be achieved via the precise control of the precursor flow and ambient temperature combined with the formation of mist droplets of the special Leidenfrost state, which increased the atomic migration length by 108 times more than that of traditional vacuum techniques. This work could be a milestone in the transformation from vacuum to non-vacuum thin film deposition techniques towards a green and sustainable industry.

  4. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  5. Novel GIMS technique for deposition of colored Ti/TiO₂ coatings on industrial scale

    Directory of Open Access Journals (Sweden)

    Zdunek Krzysztof

    2016-03-01

    Full Text Available The aim of the present paper has been to verify the effectiveness and usefulness of a novel deposition process named GIMS (Gas Injection Magnetron Sputtering used for the flrst time for deposition of Ti/TiO₂ coatings on large area glass Substrates covered in the condition of industrial scale production. The Ti/TiO₂ coatings were deposited in an industrial System utilizing a set of linear magnetrons with the length of 2400 mm each for covering the 2000 × 3000 mm glasses. Taking into account the speciflc course of the GIMS (multipoint gas injection along the magnetron length and the scale of the industrial facility, the optical coating uniformity was the most important goal to check. The experiments on Ti/TiO₂ coatings deposited by the use of GIMS were conducted on Substrates in the form of glass plates located at the key points along the magnetrons and intentionally non-heated during any stage of the process. Measurements of the coatings properties showed that the thickness and optical uniformity of the 150 nm thick coatings deposited by GIMS in the industrial facility (the thickness differences on the large plates with 2000 mm width did not exceed 20 nm is fully acceptable form the point of view of expected applications e.g. for architectural glazing.

  6. Comprehensive geophysical survey technique in exploration for deep-buried hydrothermal type uranium deposits in Xiangshan volcanic basin, China

    International Nuclear Information System (INIS)

    Ke, D.

    2014-01-01

    According to recent drilling results, uranium mineralization has been found underground more than 1000 m deep in the Xiangshan volcanic basin, in where uranium exploration has been carried out for over 50 years. This paper presents a comprehensive geophysical survey technique, including audio magnetotelluric method (AMT), high resolution ground magnetic and radon survey, which aim to prospect deep-buried and concealed uranium deposits in Xiangshan volcanic basin. Based on research and application, a comprehensive geophysical technique consisting of data acquisition, processing and interpretation has been established. Concealed rock and ore-controlling structure buried deeper than 1000 m can be detected by using this technique. Moreover, one kind of anti-interference technique of AMT survey is presented, which can eliminate the interference induced by the high-voltage power lines. Result of AMT in Xiangshan volcanic basin is demonstrated as high-low-high mode, which indicates there are three layers in geology. The upper layer with high resistivity is mainly the react of porphyroclastic lava. The middle layer with low resistivity is metamorphic schists or dellenite whereas the lower layer with high resistivity is inferred as granite. The interface between middle and lower layer is recognized as the potential zone for occurrence of uranium deposits. According to the corresponding relation of the resistivity and magnetic anomaly with uranium ore bodies, the tracing model of faults and interfaces between the different rocks, and the forecasting model of advantageous area for uranium deposits have been established. In terms of the forecasting model, some significant sections for uranium deposits were delineated in the west of the Xiangshan volcanic basin. As a result, some achievements on uranium prospecting have been acquired. High grade economic uranium ore bodies have been found in several boreholes, which are located in the forecasted zones. (author)

  7. Electro-spark deposition: A technique for producing wear resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, G.L. (Washington State Univ., Pullman, WA (USA)); Johnson, R.N. (Westinghouse Hanford Co., Richland, WA (USA))

    1984-12-01

    Electro-spark deposition (ESD) is a coating process using short duration, high current electrical pulses to deposit an electrode material on a metallic substrate. A principal attribute of the process is its ability to apply metallurgically bonded coatings with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. A review of the process is briefly given, then current research using WC-TiC and Cr{sub 3}C{sub 2} electrodes to deposit coatings on Type 316 stainless steel and other substrates is presented. The ESD carbide coatings were found to be exceptionally hard, wear-resistant and spalling-resistant in high-stress rubbing tests. Several applications for nuclear reactor components are described. 17 refs., 18 figs., 1 tab.

  8. Synthesis of dense nano cobalt-hydroxyapatite by modified electroless deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my; Mohd Nazree, B. D., E-mail: nazree@unimap.edu.my; Aimi Noorliyana, H., E-mail: aimiliyana@unimap.edu.my [School of Materials Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi Universiti Malaysia Perlis, Taman Muhibbah, Jejawi 02600 Arau Perlis (Malaysia)

    2016-07-19

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3 % wt Co and gradually decreased at higher Co content.

  9. Sizing of near-surface fatigue cracks in cladded pressure vessels by the multiple beam-satellite pulse technique

    International Nuclear Information System (INIS)

    Gruber, G.J.

    1983-01-01

    The stainless steel cladding of the inside surface of a reactor pressure vessel makes ultrasonic inspection for detection and sizing of cracks immediately under the cladding significantly harder. One solution to the inspection difficulty has been found in the multiple beam-satellite pulse technique. (While this technique both detects and sizes, only sizing is addressed in this paper.) The technique employs a multiple-beam transducer, which produces both longitudinal and shear waves. Novel waveform-processing and pattern-recognition methods are used in conjunction with this transducer design. The longitudinal-wave component is diffracted mainly by the upper extremity of the crack at or near the clad-base material interface, and its shear-wave components are diffracted mainly by the lower extremity of the crack in the base material. Proof-of-principle sizing results, based on the observance of a pair of satellite pulses from the diffracted beams, were obtained for three sets of planar flaws. They were (1) six side-milled underclad notches ranging in throughwall dimension from 3.1 to 12.9 mm, (2) fatigue cracks implanted in three cladded pressure vessel blocks and ranging in depth from 3.7 to 27.9 mm, and (3) six underclad fatigue cracks in the 2.7 to 8.5 mm depth range

  10. Influence of external beam technique and brachytherapy quality assurance on the side effects in the combined external beam- and brachytherapy treatment of local advanced prostate cancer

    International Nuclear Information System (INIS)

    Kovacs, G.; Galalae, R.; Wirth, B.; Bertermann, H.; Wilhelm, R.; Kohr, P.; Kimmig, B.

    1996-01-01

    Transrectal ultrasound(TRUS) guided HDR implantation of the prostate has been established at the Kiel University by Bertermann and Brix in 1986 and there are to date 179 (T1b-T3 No Mo) patients treated in a combined modality. The dose for the implant was 2x 15 Gy on the capsule of the prostate in 14-20 days. For local and regional lymph nodes 20 Gy external beam therapy (AP-PA pelvic portals), 20 Gy with an individual transmission block (100% for subclinical disease, 70% and 50% according to the implant dosimetry for the prostate) and 10 Gy small volume irradiation for the prostate was applied, conventional fractioned. Total dose after the therapy 70 Gy for the prostate and 50 Gy for the subclinical disease in 6-7 weeks. As a quality control method we use since 1991 in vivo dosimetry on the medial rectum wall as well as in the prostatic part of the urethra. Regular follow-up 3-118 months after therapy (median 55) with PSA, digital rectal examination, control TRUS with volumetry (after one year with biopsy) and bone scan. There were no major early side effects within the first three months. Proctitis till 1991 with a duration up to 12 months 49%, prolonging more than one year in 23 %, (total proctitis 72.6%). Dysuria in up to 12 months 30 %, long lasting 30% (total number of dysuria 60 %). Erectile dysfunction in 56 %. Because of the number of the side effects 1991 we changed the external beam technique: instead of the biaxial arch therapy the AP-PA portals, and reduced irradiated volume (from 6480 cm 3 to 5040 cm 3 ). We introduced instead of the small volume arch therapy for 10 Gy external boost the box-technique with shielding the back part of the rectum and the upper part of the bladder resulting additional volume reduction. Through the 15 Gy HDR brachytherapy dose on the prostate capsule there are up to 8 Gy on the medial rectal wall, measured by in vivo dosimetry. This dose could not be responsible for the high number of side effects (see gynecological

  11. Determination of boron in aqueous solutions by solid state nuclear track detectors technique, using a filtered neutron beam

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Pugliesi, R.; Khouri, M.T.F.C.

    1985-11-01

    The solid state nuclear track detectors technique has been used for determination of boron in aqueous solutions, using a filtered neutron beam. The particles tracks from the 10 B(n,α)Li 7 reaction were registered in the CR-39 film, chemically etched in a (30%) KOH solution 70 0 C during 90 minutes. The obtained results showed the usefulness of this technique for boron determination in the ppm range. The inferior detectable limit was 9 ppm. The combined track registration efficiency factor K has been evaluated in the solutions, for the CR-39 detector and its values is K= (4,60 - + 0,06). 10 -4 cm. (Author) [pt

  12. Accurate technique for complete geometric calibration of cone-beam computed tomography systems

    International Nuclear Information System (INIS)

    Cho Youngbin; Moseley, Douglas J.; Siewerdsen, Jeffrey H.; Jaffray, David A.

    2005-01-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 deg. (around beam direction) to 0.3 deg. (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0.1 mm in

  13. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  14. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  15. Initial Imaging of 7-GeV Electron Beams with OTR/ODR Techniques at APS

    CERN Document Server

    Lumpkin, Alex H; Sereno, Nicholas S; Yao, Chihyuan

    2005-01-01

    The development of nonintercepting (NI) diagnostics continues to be of interest at the Advanced Photon Source (APS) as well as elsewhere. In the three rings of the APS facility we use optical synchrotron radiation generated as the electron beam transits the dipole magnetic fields as an NI mechanism to image the beam during top-up operations. However, in the straight transport lines an alternative method is needed. Optical diffraction radiation (ODR) is under investigation to monitor 7-GeV beam trajectory and potentially transverse shape in the booster-to-storage ring (BTS) beamline during top-up operations. We have performed our initial measurements with an Al blade/mirror that served as an optical transition radiation (OTR) monitor when fully inserted into the beam and as an ODR monitor when the beam passed near the edge. In the case of ODR, appreciable signal is emitted by the metal when gamma times the reduced ODR wavelength is comparable to the impact parameter, where gamma is the Lorentz factor. Visible ...

  16. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  17. Nitrogen rich carbon nitride thin films deposited by hybrid PLD technique

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kulish, W.; Lančok, Ján; Popov, C.; Bulíř, Jiří; Delplancke-Ogletree, M. P.

    2002-01-01

    Roč. 374, - (2002), s. 207-210 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * carbon nitride * radiofrequency discharge * hollow cathode discharge Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  18. Diamond-coated three-dimensional GaN micromembranes: effect of nucleation and deposition techniques

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Vanko, G.; Babchenko, Oleg; Potocký, Štěpán; Marton, M.; Vojs, M.; Choleva, P.; Kromka, Alexander

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2585-2590 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GP14-16549P Institutional support: RVO:68378271 Keywords : diamond film * GaN micromembranes * microwave chemical vapour deposition * polymer-based nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  19. Fabrication of Antireflection Nanodiamond Particle Film by the Spin Coating Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available Diamond-based antireflective (AR coatings were fabricated using a spin coating of diamond suspension at room temperature as nucleation enhancement procedure and microwave plasma enhanced chemical vapour deposition. Various working pressures were used to investigate their effect on the optical characterization of the as-deposited diamond films. Scanning electron microscopy (SEM and atomic forced microscopy (AFM were employed to analyze the surface properties of the diamond films. Raman spectra and transmission electron microscopy (TEM also were used for analysis of the microstructure of the films. The results showed that working pressure had a significant effect on thickness, surface roughness, and wettability of the as-deposited diamond films. Deposited under 35 Torr or working pressure, the film possessed a low surface roughness of 13.8 nm and fine diamond grain sizes of 35 nm. Reflectance measurements of the films also were carried out using UV-Vis spectrometer and revealed a low reflectance value of the diamond films. The achievement demonstrated feasibility of the proposed spin-coating procedure for large scale production and thus opens up a prospect application of diamond film as an AR coating in industrial optoelectronic device.

  20. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Constantinescu, C.; Patroi, E.; Codescu, M.; Dinescu, M.

    2013-01-01

    Highlights: ► NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. ► Nitrogen inclusion in thin film structures is related to improved coercitivity. ► Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3ω and 4ω) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 °C), nitrogen gas pressure, and radiofrequency power (75–150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  1. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C., E-mail: catalin.constantinescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania); Patroi, E.; Codescu, M. [National Institute for Research and Development in Electrical Engineering - Advanced Research, 313 Spl. Unirii, Sector 3, RO-030138, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. Black-Right-Pointing-Pointer Nitrogen inclusion in thin film structures is related to improved coercitivity. Black-Right-Pointing-Pointer Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3{omega} and 4{omega}) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 Degree-Sign C), nitrogen gas pressure, and radiofrequency power (75-150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  2. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    Directory of Open Access Journals (Sweden)

    Domagoj Belić

    2017-11-01

    Full Text Available This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID. Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications.

  3. Comparison of Techniques to Reduce Bremsstrahlung Background Radiation from Monoenergetic Photon Beams

    International Nuclear Information System (INIS)

    Johnson, M; McNabb, D

    2006-01-01

    An important applied technology is a tunable mono-energetic photon source [1]. These sources are made of relativistic electron accelerators coupled to low-energy lasers, which produce high-energy, mono-energetic-rays. One challenge associated with systems such as this is a continuum of bremsstrahlung background created when an electron beam passes through an aperture of some sort and the electron bunch or its halo impinges on the aperture pictured in figure 1. For instance, in the current T-REX [1] design for the interaction point between the laser- and electron-beam, the electron-beam passes through the center of a mirror used to reflect the laser. There is a potential with this design that bremsstrahlung radiation may be produced at the edges of the mirror openings and contaminate the mono-energetic photon beam. Certain applications [2] may be sensitive to this contamination. To reduce the bremsstrahlung contaminate a collimator (thickness ∼24in. (calculated from XCOM database [3]) to attenuate by a factor of 10 -3 the 112MeV photons expected in the T-REX demonstration [1]) is situated between the aperture and target. To maximize the brightness of the photon-beam, the collimator opening must be no less than the size of the photon-beam spot size expected to be about 1mm. This fixes the collimator opening. a priori the aperture size must be greater than the collimator opening and is a function distance between the aperture and collimator. In this paper we focus on two approaches to estimate the aperture size, given a collimator and a target whose sizes and distances from the aperture are given. In the next section we will discuss these approaches

  4. A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants

    International Nuclear Information System (INIS)

    Jonge, Lise T. de; Ju, J.; Leeuwenburgh, S.C.G.; Yamagata, Y.; Higuchi, T.; Wolke, J.G.C.; Inoue, K.; Jansen, J.A.

    2010-01-01

    Surface modification of implant materials with biomolecule coatings is of high importance to improve implant fixation in bone tissue. In the current study, we present two techniques for the deposition of biologically active enzyme coatings onto implant materials. The well-established thin film ElectroSpray Deposition (ESD) technique was compared with the SAW-ED technique that combines high-frequency Surface Acoustic Wave atomization with Electrostatic Deposition. By immobilizing the enzyme alkaline phosphatase (ALP) onto implant surfaces, the influence of both SAW-ED and ESD deposition parameters on ALP deposition efficiency and ALP biological activity was investigated. ALP coatings with preserved enzyme activity were deposited by means of both the SAW-ED and ESD technique. The advantages of SAW-ED over ESD include the possibility to spray highly conductive protein solutions, and the 60-times faster deposition rate. Furthermore, significantly higher deposition efficiencies were observed for the SAW-ED technique compared to ESD. Generally, it was shown that protein inactivation is highly dependent on both droplet dehydration and the applied electrical field strength. The current study shows that SAW-ED is a versatile and flexible technique for the fabrication of functionally active biomolecule coatings.

  5. Improving the Characteristics of Sn-doped In{sub 2}O{sub 2} Grown at Room Temperature with Oxygen Radical-Assisted Electron Beam Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Min-Suk [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of); Seo, Inseok [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-07-15

    Sn-doped In{sub 2}O{sub 3} (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm{sup 2}/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ∼ 2.8 × 10{sup −2} Ω{sup −1}, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  6. Improving the characteristics of Sn-doped In2O2 grown at room temperature with oxygen radical-assisted electron beam deposition

    Science.gov (United States)

    Oh, Min-Suk; Seo, Inseok

    2017-07-01

    Sn-doped In2O3 (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm2/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ˜ 2.8 × 10-2 Ω-1, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  7. Thickness effect on properties of titanium film deposited by dc ...

    Indian Academy of Sciences (India)

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD) ...

  8. Study on the Properties of 1319 nm Ultra-High Reflector Deposited by Electron Beam Evaporation Assisted by an Energetic RF Ion Source

    Directory of Open Access Journals (Sweden)

    Songwen Deng

    2018-02-01

    Full Text Available Ultra-high reflectors, working as a critical optical component, has been widely applied as a cavity mirror in fine optical systems such as laser gyro, F-P interferometer, etc. For decades, ion beam sputtering (IBS technology, which can deposit ultra-low loss and dense layers, has been commonly believed to be the only and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on other methods are rare and a reflectivity above 99.99% obtained by evaporation technology (including ion assisted evaporation has not been seen yet. In the present study, an energetic radio frequency (RF ion source was introduced during the electron beam evaporation process, which improved the layer quality dramatically. An ultra-high reflector at 1319 nm with reflectivity of 99.992% (measured by cavity-ring down method was successfully deposited on a φ100 mm × 25 mm single crystal silicon substrate whose surface roughness was approximately 0.420 nm. The surface figure of the reflector was accurately controlled superior to 1/6λ (λ = 632.8 nm. The measured absorption was approximately 3–5 ppm and the calculated scatter based on surface roughness measurement was approximately 6.64 ppm. Total loss of the reflector was systematically discussed. This study showed that it is possible to apply electron beam evaporation in ultra-high reflector manufacture and the method is capable of depositing reflectors with an aperture larger than φ600 mm which is the maximum capacity of current IBS technology.

  9. Multi-beamlet focusing of intense negative ion beams by aperture displacement technique

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Y.; Kaneko, O.; Oka, Y.; Tsumori, K.; Asano, E.; Akiyama, R.; Kawamoto, T.; Kuroda, T.; Ando, A.

    1995-08-01

    Multi-beamlet focusing of an intense negative ion beam has been performed using the beamlet steering by the aperture displacement. The apertures of the grounded grid were displaced as all beamlets of 270 (18 x 15) in the area of 25 cm x 26 cm would be steered to a common point (a focal point) in both the two-stage and the single-stage accelerators. The multi-beamlets were successfully focused and the e-folding half width of 10 cm was achieved 11.2 m downstream from the ion source in both the accelerators. The corresponding gross divergence angle is 9 mrad. The negative ion beamlets are deflected by the magnetic field for the electron deflection at the extraction grid and the deflection direction oppositely changes line by line, resulting in the beam split in the deflection direction. This beamlet deflection was well compensated also using the beamlet steering by the aperture displacement of the grounded grid. The beam acceleration properties related with the beam divergence and the H{sup -} ion current were nearly the same for both the two-stage and the single-stage accelerators, and were dependent on the ratio of the extraction to the acceleration electric fields. (author).

  10. Studies on the dose distribution and treatment technique of high energy electron beams

    International Nuclear Information System (INIS)

    Lee, D.H.; Chu, S.S.

    1978-01-01

    Some important properties of high energy electron beams from the linear accelerator, LMR-13, installed in the Yonsei Cancer Center were studied. The results of experimental studies on the problems associated with the 8, 10, and 12 MeV electron beam therapy were as followings; The ionization type dosemeters calibrated by 90 Sr standard source were suitable to the measurements of the outputs and the obsorbed doses in accuracy point of view, and dose measurements using ionization chambers were difficult when measuring doses in small field size and the regions of rapid fall off. The electron energies were measured precisely with an energy spectrometer, and the practical electron energy was calculated within 5% error in the maximum range of the high energy electron beam in water. The correcting factors of perturbated dose distributions owing to radiation field, energy, and materials of the treatment cone were checked and described systematically and thus the variation of dose distributions due to the non-homogeneities of tissues and slopping skin surfaces were completely compensated. The electron beams were adequately diffused using the scatterers, and minimized the bremsstrahlung, irradiation field size, and materials of scatterers. Thus, the therapeutic capacity with the limited electron energy could be extended by improving the dose distributions. (author)

  11. The techniques of investigation of works of art: ion-beam accelerator and x-ray radiography

    International Nuclear Information System (INIS)

    Dupouy, Jean-Michel

    1996-01-01

    X-rays are essential for the museum laboratory because they give rise to three types of techniques which are currently used, the radiography, the diffraction and the elemental analyses based on the characteristic emission. They have been at the origin of the creation of this type of laboratories throughout the world. Radiography brings unique information on the present condition of the works of art and on the techniques which have been used to make them. Its indiscreet glance often sheds a new light on the gesture or the thought process of the artist. The information they give on the evolution of the artefacts since their creation are also essential to ensure their restoration and their conservation. The elemental analyses, some of which are also based on the characteristic x-ray emission allow to investigate not only the fabrication techniques but also the provenances and the state of preservation. A tandem ion beam accelerator has been installed in the Louvre to increase the analytical potential of the laboratory. It gives access to the three main ion beam analysis techniques, proton induced x-ray emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Nuclear Reaction Analysis (NRA). Numerous examples taken from the work at the laboratory of the French museums illustrate these applications. (author). 18 refs., 33 figs

  12. Glass Fiber Reinforced Polymer (GFRP Bars for Enhancing the Flexural Performance of RC Beams Using Side-NSM Technique

    Directory of Open Access Journals (Sweden)

    Md. Akter Hosen

    2017-05-01

    Full Text Available Reinforced concrete (RC structures require strengthening for numerous factors, such as increased load, modification of the structural systems, structural upgrade or errors in the design and construction stages. The side near-surface mounted (SNSM strengthening technique with glass fiber-reinforced polymer (GFRP bars is a relatively new emerging technique for enhancing the flexural capacities of existing RC elements. Nine RC rectangular beams were flexurally strengthened with this technique and tested under four-point bending loads until failure. The main goal of this study is to optimize the structural capacity of the RC beams by varying the amount of strengthening reinforcement and bond length. The experimental test results showed that strengthening with SNSM GFRP bars significantly enhanced the flexural responses of the specimens compared with the control specimen. The first cracking and ultimate loads, energy absorption capacities, ductility and stiffness were remarkably enhanced by the SNSM technique. It was also confirmed that the bond length of the strengthened reinforcement greatly influences the energy absorption capacities, ductility and stiffness. The effect of the bond length on these properties is more significant compared to the amount of strengthening reinforcement.

  13. Electroless deposition of metal nanoparticles on graphene with substrate-assisted techniques

    Science.gov (United States)

    Zaniewski, Anna M.; Trimble, Christie J.; Meeks, Veronica; Nemanich, Robert J.

    2015-03-01

    We present the electroless reduction of solution-based metal ions for nanoparticle deposition on a variety of substrates. The substrates include graphene-coated metals, insulators, doped semiconductors, and patterned ferroelectrics. We find that the metal ions are spontaneously reduced on a wide variety of graphene substrates, and the substrates play a large role in the nanoparticle coverage. For example, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. Given that the work function of graphene is approximately 4.4eV, the Fermi level is -0.1 V vs the normal hydrogen electrode (NHE). Since the reduction potential of gold chloride is +1.002 V, the spontaneous transfer of electrons from the graphene to the metal ion is energetically favorable. However, we find substrates with similar work functions nevertheless result in varied deposition rates, which we attribute to electron availability. We also find that patterned ferrolectrics can be used as a template for patterned nanoparticle deposition, with and without graphene. This work is supported by the National Science Foundation under Grant # DMR-1206935.

  14. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  15. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    Science.gov (United States)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.

    2018-03-01

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.

  16. Ion source electrode biasing technique for microsecond beam pulse rise times

    International Nuclear Information System (INIS)

    Perkins, L.T.; Kwan, J.W.; Leung, K.N.; Rickard, M.; Williams, M.D.

    1998-01-01

    Heavy ion fusion (HIF) induction accelerators require ion sources that can deliver intense heavy ion beams with low emittance. The typical pulse length is 20 μs with a rise time less than 1 μs and a repetition rate of 10 Hz. So far, the surface ionization sources have been used in most HIF induction linac designs. However, there are other ions of interest to HIF (e.g., Hg, Xe, Rb, Ar, and Ne) which cannot be produced by the surface ionization sources, but rather by volume ion sources. In this paper, we describe an experiment that uses a multicusp source with a magnetic filter to produce beam pulses that have a rise time in the order of 1 μs. By applying a positive biasing pulse on the plasma electrode with respect to the source body, the positive plasma ions can be temporarily repelled from the neighborhood of the extraction aperture, leading to a suppression of the ion beam. As the bias is removed, positive ions flow to the extraction region, enabling a fast-rising beam pulse. The beam current pulses show that there are two distinct groups of ions. An initial fast current rise time (<2μs) corresponding to ions originating from within the magnetic filter region followed by a second group of ions with a longer rise time (10 endash 20 μs) originating from the plasma bulk region. Proper positioning of the filament cathode and the magnetic filter field relative to the extraction aperture was found to be critical. copyright 1998 American Institute of Physics

  17. Studies on methods and techniques of weak information extraction and integrated evaluation for sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Han Shaoyang; Ke Dan; Hou Huiqun; Hu Shuiqing

    2004-01-01

    Weak information extraction and integrated evaluation for sandstone-type uranium deposits are currently one of the important research contents in uranium exploration. Through several years researches, the authors put forward the meaning of aeromagnetic and aeroradioactive weak information extraction, study the formation theories of aeromagnetic and aeroradioactive weak information and establish effective mathematic models for weak information extraction. Based on GIS software, models of weak information extraction are actualized and the expert-grading model for integrated evaluation is developed. The trial of aeromagnetic and aeroradioactive weak information and integrated evaluation of uranium resources are completed by using GIS software in the study area. The researchful results prove that techniques of weak information extraction and integrated evaluation may further delineate the prospective areas of sandstone-type uranium deposits rapidly and improve the predicitive precision. (authors)

  18. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide.

    Science.gov (United States)

    Melisi, Domenico; Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current-voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  19. Comparison of CdS films deposited by different techniques: Effects on CdTe solar cell

    International Nuclear Information System (INIS)

    Lee, Jaehyeong

    2005-01-01

    Polycrystalline cadmium sulfide (CdS) thin-films were deposited on glass substrate by chemical bath deposition (CBD) and vacuum evaporation (VE) techniques. VE-CdS films consisted primarily of hexagonal phase, whereas CBD CdS films containing primarily the cubic form. VE-grown films were shown to have better crystallinity than CBD-grown films. The grain size of the CBD films is smaller than the ones of VE films. VE-CdS films exhibited relatively high transmittance in the above-gap region and band gap compared with CBD films. However, CdTe solar cells with these low quality CBD-CdS layers yield higher and more stable characteristics. Current-voltage-temperature measurements showed that the current transport for both cells was controlled by both tunneling and interface recombination but the cells with CBD-CdS displayed less tunneling

  20. Properties of TiN coatings deposited by the method of condensation with ion bombardment accompanied by high-energy ion beam

    International Nuclear Information System (INIS)

    Obrezkov, O.I.; Vershok, B.A.; Dormashev, A.B.; Margulev, I.Ya.; Molchanova, S.A.; Andreev, E.S.; Dervuk, V.V.

    2002-01-01

    Vacuum-sputtering adapted commercial facility based coating of stainless steel with titanium nitride followed two procedures: ion bombardment condensation (IBC) and IBC under simultaneous effect of ion beam (IB). The deposition rate was equal to 0.1 μm min -1 ; the investigated coatings were characterized by 2.5 μm depth. Comparison analysis of features and characteristics of the specimens, as well as, full-scale tests of a coated cutting tool enabled to make conclusions about advantages of application of IB assisted IBC technology in contrast to the reference IBC technology [ru

  1. Study on the Properties of 1319 nm Ultra-High Reflector Deposited by Electron Beam Evaporation Assisted by an Energetic RF Ion Source

    OpenAIRE

    Songwen Deng; Gang Li; Feng Wang; Qipeng Lv; Long Sun; Yuqi Jin

    2018-01-01

    Ultra-high reflectors, working as a critical optical component, has been widely applied as a cavity mirror in fine optical systems such as laser gyro, F-P interferometer, etc. For decades, ion beam sputtering (IBS) technology, which can deposit ultra-low loss and dense layers, has been commonly believed to be the only and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on other methods are rare and a reflectivity above 99.99% obtained by evaporation technology (includin...

  2. The Influences of Thickness on the Optical and Electrical Properties of Dual-Ion-Beam Sputtering-Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2011-01-01

    Full Text Available The thickness of transparent conductive oxide (TCO layer significantly affects not only the optical and electrical properties, but also its mechanical durability. To evaluate these influences on the molybdenum-doped zinc oxide layer deposited on a flexible polyethersulfone (PES substrate by using a dual-ion-beam sputtering system, films with various thicknesses were prepared at a same condition and their optical and electrical performances have been compared. The results show that all the deposited films present a crystalline wurtzite structure, but the preferred orientation changes from (002 to (100 with increasing the film thickness. Thicker layer contains a relative higher carrier concentration, but the consequently accumulated higher internal stress might crack the film and retard the carrier mobility. The competition of these two opposite trends for carrier concentration and carrier mobility results in that the electrical resistivity of molybdenum-doped zinc oxide first decreases with the thickness but suddenly rises when a critical thickness is reached.

  3. Room temperature photoluminescence from In{sub x}Al{sub (1−x)}N films deposited by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Mohanta, A. [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Roberts, A. T. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [Plasma Chemistry Research Center-CNR, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 10–12 nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1−x)}N were comparatively investigated for indium compositions ranging from x = 0.092 to 0.235, including x = 0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  4. Noninvasive radioisotopic technique for detection of platelet deposition in mitral valve prostheses and quantitation of visceral microembolism in dogs

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Fuster, V.; Rao, S.A.; Forshaw, P.L.; Kaye, M.P.

    1983-01-01

    A noninvasive technique has been developed in the dog model for imaging, with a gamma camera, the platelet deposition on Bjoerk-Shiley mitral valve prostheses early postoperatively. At 25 hours after implantation of the prosthesis and 24 hours after intravenous administration of 400 to 500 microCi of platelets labeled with indium-111, the platelet deposition in the sewing ring and perivalvular cardiac tissue can be clearly delineated in a scintiphotograph. An in vitro technique was also developed for quantitation of visceral microemboli in brain, lungs, kidneys, and other tissues. Biodistribution of the labeled platelets was quantitated, and the tissue/blood radioactivity ratio was determined in 22 dogs in four groups: unoperated normal dogs, sham-operated dogs, prosthesis-implanted dogs, and prosthesis-implanted dogs treated with dipyridamole before and aspirin and dipyridamole immediately after operation. Fifteen to 20% of total platelets were consumed as a consequence of the surgical procedure. On quantitation, we found that platelet deposition on the components of the prostheses was significantly reduced in prosthesis-implanted animals treated with dipyridamole and aspirin when compared with prosthesis-implanted, untreated dogs. All prosthesis-implanted animals considered together had a twofold to fourfold increase in tissue/blood radioactivity ratio in comparison with unoperated and sham-operated animals, an indication that the viscera work as filters and trap platelet microemboli that are presumably produced in the region of the mitral valve prostheses. In the dog model, indium-111-labeled platelets thus provide a sensitive marker for noninvasive imaging of platelet deposition on mechanical mitral valve prostheses, in vitro evaluation of platelet microembolism in viscera, in vitro quantitation of surgical consumption of platelets, and evaluation of platelet-inhibitor drugs

  5. Effects of Sputtering Parameters on AlN Film Growth on Flexible Hastelloy Tapes by Two-Step Deposition Technique.

    Science.gov (United States)

    Peng, Bin; Gong, Dongdong; Zhang, Wanli; Jiang, Jianying; Shu, Lin; Zhang, Yahui

    2016-08-10

    AlN thin films were deposited on flexible Hastelloy tapes and Si (100) substrate by middle-frequency magnetron sputtering. A layer of Y₂O₃ films was used as a buffer layer for the Hastelloy tapes. A two-step deposition technique was used to prepare the AlN films. The effects of deposition parameters such as sputtering power, N₂/Ar flow rate and sputtering pressure on the microstructure of the AlN thin films were systematically investigated. The results show that the dependency of the full width at half maximum (FWHM) of AlN/Y₂O₃/Hastelloy on the sputtering parameters is similar to that of AlN/Si (100). The FWHM of the AlN (002) peak of the prepared AlN films decreases with increasing sputtering power. The FWHM decreases with the increase of the N₂/Ar flow rate or sputtering pressure, and increases with the further increase of the N₂/Ar flow rate or sputtering pressure. The FWHM of the AlN/Y₂O₃/Hastelloy prepared under optimized parameters is only 3.7° and its root mean square (RMS) roughness is 5.46 nm. Based on the experimental results, the growth mechanism of AlN thin films prepared by the two-step deposition process was explored. This work would assist us in understanding the AlN film's growth mechanism of the two-step deposition process, preparing highly c-axis-oriented AlN films on flexible metal tapes and developing flexible surface acoustic wave (SAW) sensors from an application perspective.

  6. SU-F-T-188: A Robust Treatment Planning Technique for Proton Pencil Beam Scanning Cranial Spinal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M; Mehta, M; Badiyan, S; Young, K; Malyapa, R; Regine, W; Langen, K [University of Maryland School of Medicine, Baltimore, MD (United States); Yam, M [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2016-06-15

    Purpose: To propose a proton pencil beam scanning (PBS) cranial spinal irradiation (CSI) treatment planning technique robust against patient roll, isocenter offset and proton range uncertainty. Method: Proton PBS plans were created (Eclipse V11) for three previously treated CSI patients to 36 Gy (1.8 Gy/fractions). The target volume was separated into three regions: brain, upper spine and lower spine. One posterior-anterior (PA) beam was used for each spine region, and two posterior-oblique beams (15° apart from PA direction, denoted as 2PO-15) for the brain region. For comparison, another plan using one PA beam for the brain target (denoted as 1PA) was created. Using the same optimization objectives, 98% CTV was optimized to receive the prescription dose. To evaluate plan robustness against patient roll, the gantry angle was increased by 3° and dose was recalculated without changing the proton spot weights. On the re-calculated plan, doses were then calculated using 12 scenarios that are combinations of isocenter shift (±3mm in X, Y, and Z directions) and proton range variation (±3.5%). The worst-case-scenario (WCS) brain CTV dosimetric metrics were compared to the nominal plan. Results: For both beam arrangements, the brain field(s) and upper-spine field overlap in the T2–T5 region depending on patient anatomy. The maximum monitor unit per spot were 48.7%, 47.2%, and 40.0% higher for 1PA plans than 2PO-15 plans for the three patients. The 2PO-15 plans have better dose conformity. At the same level of CTV coverage, the 2PO-15 plans have lower maximum dose and higher minimum dose to the CTV. The 2PO-15 plans also showed lower WCS maximum dose to CTV, while the WCS minimum dose to CTV were comparable between the two techniques. Conclusion: Our method of using two posterior-oblique beams for brain target provides improved dose conformity and homogeneity, and plan robustness including patient roll.

  7. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    Science.gov (United States)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG

  8. A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment

    International Nuclear Information System (INIS)

    Fu Weihua; Yang Yong; Yue, Ning J; Heron, Dwight E; Huq, M Saiful

    2009-01-01

    The purpose of this work is to develop an online plan modification technique to compensate for the interfractional anatomic changes for prostate cancer intensity-modulated radiation therapy (IMRT) treatment based on daily cone beam CT (CBCT) images. In this proposed technique, pre-treatment CBCT images are acquired after the patient is set up on the treatment couch using an in-room laser with the guidance of the setup skin marks. Instead of moving the couch to rigidly align the target or re-planning using the CBCT images, we modify the original IMRT plan to account for the interfractional target motion and deformation based on the daily CBCT image feedback. The multileaf collimator (MLC) leaf positions for each subfield are automatically adjusted in the proposed algorithm based on the position and shape changes of target projection in the beam's eye view (BEV). Three typical prostate cases were adopted to evaluate the proposed technique, and the results were compared with those obtained with bony-structure-based rigid translation correction, prostate-based correction and CBCT-based re-planning strategies. The study revealed that the proposed modification technique is superior to the bony-structure-based and prostate-based correction techniques, especially when interfractional target deformation exists. Its dosimetric performance is closer to that of the re-planned strategy, but with much higher efficiency, indicating that the introduced online CBCT-guided plan modification technique may be an efficient and practical method to compensate for the interfractional target position and shape changes for prostate IMRT.

  9. Investigation of Non-Vacuum Deposition Techniques in Fabrication of Chalcogenide-Based Solar Cell Absorbers

    KAUST Repository

    Alsaggaf, Ahmed

    2015-07-01

    The environmental challenges are increasing, and so is the need for renewable energy. For photovoltaic applications, thin film Cu(In,Ga)(S,Se)2 (CIGS) and CuIn(S,Se)2 (CIS) solar cells are attractive with conversion efficiencies of more than 20%. However, the high-efficiency cells are fabricated using vacuum technologies such as sputtering or thermal co-evaporation, which are very costly and unfeasible at industrial level. The fabrication involves the uses of highly toxic gases such as H2Se, adding complexity to the fabrication process. The work described here focused on non-vacuum deposition methods such as printing. Special attention has been given to printing designed in a moving Roll-to-Roll (R2R) fashion. The results show potential of such technology to replace the vacuum processes. Conversion efficiencies for such non-vacuum deposition of Cu(In,Ga)(S,Se)2 solar cells have exceeded 15% using hazardous chemicals such as hydrazine, which is unsuitable for industrial scale up. In an effort to simplify the process, non-toxic suspensions of Cu(In,Ga)S2 molecular-based precursors achieved efficiencies of ~7-15%. Attempts to further simplify the selenization step, deposition of CuIn(S,Se)2 particulate solutions without the Ga doping and non-toxic suspensions of Cu(In,Ga)Se2 quaternary precursors achieved efficiencies (~1-8%). The contribution of this research was to provide a new method to monitor printed structures through spectral-domain optical coherence tomography SD-OCT in a moving fashion simulating R2R process design at speeds up to 1.05 m/min. The research clarified morphological and compositional impacts of Nd:YAG laser heat-treatment on Cu(In,Ga)Se2 absorber layer to simplify the annealing step in non-vacuum environment compatible to R2R. Finally, the research further simplified development methods for CIGS solar cells based on suspensions of quaternary Cu(In,Ga)Se2 precursors and ternary CuInS2 precursors. The methods consisted of post deposition reactive

  10. Cone beam computed tomography in veterinary dentistry: description and standardization of the technique

    International Nuclear Information System (INIS)

    Roza, Marcello R.; Silva, Luiz A.F.; Fioravanti, Maria C. S.; Barriviera, Mauricio

    2009-01-01

    Eleven dogs and four cats with buccodental alterations, treated in the Centro Veterinario do Gama, in Brasilia, DF, Brazil, were submitted to cone beam computed tomography. The exams were carried out in a i-CAT tomograph, using for image acquisition six centimeters height, 40 seconds time, 0.2 voxel, 120 kilovolts and 46.72 milli amperes per second. The ideal positioning of the animal for the exam was also determined in this study and it proved to be fundamental for successful examination, which required a simple and safe anesthetic protocol due to the relatively short period of time necessary to obtain the images. Several alterations and diseases were identified with accurate imaging, demonstrating that cone beam computed tomography is a safe, accessible and feasible imaging method which could be included in the small animal dentistry routine diagnosis. (author)

  11. Laser Pencil Beam Based Techniques for Visualization and Analysis of Interfaces Between Media

    Science.gov (United States)

    Adamovsky, Grigory; Giles, Sammie, Jr.

    1998-01-01

    Traditional optical methods that include interferometry, Schlieren, and shadowgraphy have been used successfully for visualization and evaluation of various media. Aerodynamics and hydrodynamics are major fields where these methods have been applied. However, these methods have such major drawbacks as a relatively low power density and suppression of the secondary order phenomena. A novel method introduced at NASA Lewis Research Center minimizes disadvantages of the "classical" methods. The method involves a narrow pencil-like beam that penetrates a medium of interest. The paper describes the laser pencil beam flow visualization methods in detail. Various system configurations are presented. The paper also discusses interfaces between media in general terms and provides examples of interfaces.

  12. Development of the techniques for food processing with low-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Todoroki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-02-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of {gamma}-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of {gamma}-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  13. Development of the techniques for food processing with low-energy electron beam

    International Nuclear Information System (INIS)

    Todoroki, Setsuko; Hayashi, Toru

    1999-01-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of γ-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of γ-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  14. Sputter deposition of metallic thin film and directpatterning

    Energy Technology Data Exchange (ETDEWEB)

    Ji, L.; Chen, Y.; Jiang, X.; Ji, Q.; Leung, K.-N.

    2005-09-09

    A compact apparatus is developed for deposition of metal thin film. The system employs an RF discharge plasma source with a straight RF antenna, which is made of or covered with deposition material, serving as sputtering target at the same time. The average deposition rate of copper thin film is as high as 450nm/min. By properly allocating the metal materials on the sputtering antenna, mixture deposition of multiple metal species is achieved. Using an ion beam imprinting scheme also taking advantage of ion beam focusing technique, two different schemes of direct patterning deposition process are developed: direct depositing patterned metallic thin film and resistless ion beam sputter patterning. Preliminary experiments have demonstrated direct pattern transfer from a template with feature size of micro scale; patterns with more than 10x reduction are achieved by sputtering patterning method.

  15. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  16. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  17. A novel deposition technique for switchable vanadium sesquioxide (V sub 2 O sub 3 ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Case, F.C. (LTV Missiles and Electronics Group, Research Department, MS WT-50, Dallas, Texas 75265-0003 (USA))

    1991-05-01

    V{sub 2}O{sub 3} is a phase transition material, which, like other oxides of vanadium, undergoes large changes in optical and electrical properties upon switching from the semiconductor to metal state. The transition in V{sub 2}O{sub 3} occurs at temperatures well below that of oxides in the same family, namely near 150--170 K, making it attractive for a number of low-temperature applications. This material has been deposited by a variety of methods, including chemical vapor transport, rf sputtering of a stoichiometric target, pyrolysis, and heat treatment of a sputtered vanadium oxide film. Thin films of this material have also been prepared by the reduction of predeposited VO{sub 2} thin films, requiring the flow of hazardous gases such as hydrogen or carbon monoxide over the sample, which is held at high temperatures in excess of 700 {degree}C. A direct synthesis method for the deposition of high quality V{sub 2}O{sub 3} thin films with low infrared absorption and resistivity change of more than six orders of magnitude is described. Optical, resistivity, and morphological characteristics of this material are discussed.

  18. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    Science.gov (United States)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  19. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  20. Patterning of gold nanoparticles on fluoropolymer films by using patterned surface grafting and layer-by-layer deposition techniques.

    Science.gov (United States)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Kwon, Oh-Sun; Shin, Kwanwoo

    2013-09-11

    The patterning of gold nanoparticles (GNPs) on the surface of a fluoropolymer substrate by using patterned surface grafting and layer-by-layer deposition techniques is described. The surface of a poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) substrate was selectively implanted with 150 keV proton ions. Peroxide groups were successfully formed on the implanted PFA surface, and their concentration depended on the fluence. Acrylic acid was graft polymerized onto the implanted regions of the PFA substrate, resulting in well-defined patterns of poly(acrylic acid) (PAA) on the PFA substrate. The surface properties of the PAA-patterned PFA surface, such as chemical compositions, wettability, and morphology, were investigated. The surface analysis results revealed that PAA was definitely present on the implanted regions of the PFA surface, and the degree of grafting was dependent on three factors: fluence, grafting time, and monomer concentration. Furthermore, GNP patterns were generated on the prepared PAA-patterned PFA surface by layer-by-layer deposition of GNPs and poly(diallyldimethyl ammonium chloride). The multilayers of GNPs were deposited only onto the PAA-grafted regions separated by bare PFA regions, and the resulting GNP patterns exhibited good electrical conductivity.