WorldWideScience

Sample records for beam deposition methods

  1. Dose calculation methods in photon beam therapy using energy deposition kernels

    International Nuclear Information System (INIS)

    Ahnesjoe, A.

    1991-01-01

    The problem of calculating accurate dose distributions in treatment planning of megavoltage photon radiation therapy has been studied. New dose calculation algorithms using energy deposition kernels have been developed. The kernels describe the transfer of energy by secondary particles from a primary photon interaction site to its surroundings. Monte Carlo simulations of particle transport have been used for derivation of kernels for primary photon energies form 0.1 MeV to 50 MeV. The trade off between accuracy and calculational speed has been addressed by the development of two algorithms; one point oriented with low computional overhead for interactive use and one for fast and accurate calculation of dose distributions in a 3-dimensional lattice. The latter algorithm models secondary particle transport in heterogeneous tissue by scaling energy deposition kernels with the electron density of the tissue. The accuracy of the methods has been tested using full Monte Carlo simulations for different geometries, and found to be superior to conventional algorithms based on scaling of broad beam dose distributions. Methods have also been developed for characterization of clinical photon beams in entities appropriate for kernel based calculation models. By approximating the spectrum as laterally invariant, an effective spectrum and dose distribution for contaminating charge particles are derived form depth dose distributions measured in water, using analytical constraints. The spectrum is used to calculate kernels by superposition of monoenergetic kernels. The lateral energy fluence distribution is determined by deconvolving measured lateral dose distributions by a corresponding pencil beam kernel. Dose distributions for contaminating photons are described using two different methods, one for estimation of the dose outside of the collimated beam, and the other for calibration of output factors derived from kernel based dose calculations. (au)

  2. Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Tan Yongjun, E-mail: yj.tan@curtin.edu.a [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia); Fwu, Young; Bhardwaj, Kriti [Western Australian Corrosion Research Group, Department of Chemistry, Curtin University, GPO Box U1987, Perth (Australia)

    2011-04-15

    Research highlights: A new experiment method for evaluating under-deposit corrosion and its inhibitors. Under-deposit corrosion did not occur in a CO{sub 2} saturated pure brine solution. Inhibitor imidazoline addition and O{sub 2} contamination initiated under-deposit corrosion. Inhibitor imidazoline reduced general corrosion but enhanced localised corrosion. - Abstract: A new experimental method has been applied to evaluate under-deposit corrosion and its inhibition by means of an electrochemically integrated multi-electrode array, namely the wire beam electrode (WBE). Maps showing galvanic current and corrosion potential distributions were measured from a WBE surface that was partially covered by sand. Under-deposit corrosion did not occur during the exposure of the WBE to carbon dioxide saturated brine under ambient temperature. The introduction of corrosion inhibitor imidazoline and oxygen into the brine was found to significantly affect the patterns and rates of corrosion, leading to the initiation of under-deposit corrosion over the WBE.

  3. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  4. In situ analysis of thin film deposition processes using time-of-flight (TOF) ion beam analysis methods

    International Nuclear Information System (INIS)

    Im, J.; Lin, Y.; Schultz, J.A.; Auciello, O.H.; Chang, R.P.H.

    1995-05-01

    Non-destructive, in situ methods for characterization of thin film growth phenomena is key to understand thin film growth processes and to develop more reliable deposition procedures, especially for complex layered structures involving multi-phase materials. However, surface characterization methods that use either electrons (e.g. AES or XPS) or low energy ions (SIMS) require an UHV environment and utilize instrumentation which obstructs line of sight access to the substrate and are therefore incompatible with line of sight deposition methods and thin film deposition processes which introduce gas, either part of the deposition or in order to produce the desired phase. We have developed a means of differentially pumping both the ion beam source and detectors of a TOF ion beam surface analysis spectrometer that does not interfere with the deposition process and permits compositional and structural analysis of the growing film in the present system, at pressures up to several mTorr. Higher pressures are feasible with modified source-detector geometry. In order to quantify the sensitivity of Ion Scattering Spectroscopy (ISS) and Direct Recoil Spectroscopy (DRS), we have measured the signal intensity for stabilized clean metals in a variety of gas environments as a function of the ambient gas species and pressure, and ion beam species and kinetic energy. Results are interpreted in terms of collision cross sections which are compared with known gas phase scattering data and provide an apriori basis for the evaluation of time-of-flight ion scattering and recoil spectroscopies (ToF-ISARS) for various industrial processing environments which involve both inert and reactive cases. The cross section data for primary ion-gas molecule and recoiled atom-gas molecule interactions are also provided. from which the maximum operating pressure in any experimental configuration can be obtained

  5. Supersonic cluster beams: a powerful method for the deposition of nanostructured thin films with tailored properties

    International Nuclear Information System (INIS)

    Milani, P.

    2002-01-01

    By using a pulsed micro-plasma cluster source and by exploiting aero-dynamical effects typical of supersonic beams it is possible to obtain very high deposition rates with a control on neutral cluster mass distribution, allowing the deposition of thin films with controlled nanostructure. Due to high deposition rates, high lateral resolution, low temperature processing supersonic cluster beams can also be used for the micro and nano-patterning of cluster-assembled films when little or no post-growth manipulation or assembly is required. For example the nano and meso-structure of films obtained by carbon cluster beam deposition can be controlled by selecting in the beam the elemental building blocks, moreover functional properties such as field emission can be controlled and tailored. The use of supersonic cluster beams opens also new perspectives for the production of nano-structured films with novel physico-chemical and topological properties such as nano-structured carbon matrices containing carbide and transition metal particles. (Author)

  6. Study on the Deposition Rate Depending on Substrate Position by Using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ion beams have been used for over thirty years to modify materials in manufacturing of integrated circuits, and improving the corrosion properties of surfaces. Recently, the requirements for ion beam processes are becoming especially challenging in the following areas : ultra shallow junction formation for LSI fabrication, low damage high rate ion beam sputtering and smoothing, high quality functional surface treatment for electrical and optical properties. Ion beam sputtering is an attractive technology for the deposition of thin film coatings onto a broad variety of polymer, Si-wafer, lightweight substrates. Demand for the decoration metal is increasing. In addition, lightweight of parts is important, because of energy issues in the industries. Although a lot of researches have been done with conventional PVD methods for the deposition of metal or ceramic films on the surface of the polymer, there are still adhesion problems.

  7. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    Science.gov (United States)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  8. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  9. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  10. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  11. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  12. Freeform Deposition Method for Coolant Channel Closeout

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Reynolds, David Christopher (Inventor); Walker, Bryant H. (Inventor)

    2017-01-01

    A method is provided for fabricating a coolant channel closeout jacket on a structure having coolant channels formed in an outer surface thereof. A line of tangency relative to the outer surface is defined for each point on the outer surface. Linear rows of a metal feedstock are directed towards and deposited on the outer surface of the structure as a beam of weld energy is directed to the metal feedstock so-deposited. A first angle between the metal feedstock so-directed and the line of tangency is maintained in a range of 20-90.degree.. The beam is directed towards a portion of the linear rows such that less than 30% of the cross-sectional area of the beam impinges on a currently-deposited one of the linear rows. A second angle between the beam and the line of tangency is maintained in a range of 5-65 degrees.

  13. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  14. Focused ion beam machining and deposition for nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Davies, S T; Khamsehpour, B [Warwick Univ., Coventry (United Kingdom). Dept. of Engineering

    1996-05-01

    Focused ion beam micromatching (FIBM) and focused ion beam deposition (FIBD) enable spatially selective, maskless, patterning and processing of materials at extremely high levels of resolution. State-of-the-art focused ion beam (FIB) columns based on high brightness liquid metal ion source (LMIS) technology are capable of forming probes with dimensions of order 10 nm with a lower limit on spot size set by the inherent energy spread of the LMIS and the chromatic aberration of ion optical systems. The combination of high lateral and depth resolution make FIBM and FIBD powerful tools for nanotechnology applications. In this paper we present some methods of controlling FIBM and FIBD processes for nanofabrication purposes and discuss their limitations. (author).

  15. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  16. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  17. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  18. High-rate deposition of SI absorber layers by electron beam evaporation and first electron beam crystallization tests

    OpenAIRE

    Saager, Stefan; Ben Yaala, Marwa; Heinß, Jens-Peter; Temmler, Dietmar; Pfefferling, Bert; Metzner, Christoph

    2014-01-01

    In earlier electron beam physical vapor deposition tests (EB-PVD), using a conventional copper crucible (A), high Si deposition rates at relatively high EB power together with a contamination level of 1016 cm-3 are demonstrated. To improve the rate vs. EB power relation as well as the Si layer purity, two alternative high rate EBPVD methods are investigated and reported here - a contact-less crucible setup (B) and a crucible-free setup (C).In these experiments comparable deposition rates of ~...

  19. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  20. Real-time beam tracing for control of the deposition location of electron cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M., E-mail: matthias.reich@ipp.mpg.de; Bilato, R.; Mszanowski, U.; Poli, E.; Rapson, C.; Stober, J.; Volpe, F.; Zille, R.

    2015-11-15

    Highlights: • We successfully integrated a real-time EC beam tracing code at ASDEX Upgrade. • The calculation of EC beam deposition location is fast enough for control purposes. • The accuracy of the deposition location calculation exceeds equivalent measurements. • The implementation method is by design portable to larger fusion devices. - Abstract: Plasma control techniques that use electron cyclotron (EC) resonance heating and current drive such as control of neoclassical tearing modes require accurate control of the deposition location of EC beams. ASDEX Upgrade has successfully implemented a real-time version of the beam-tracing code TORBEAM into its real-time diagnostic system to act as a globally available module that calculates current deposition location and its sensitivity from other real-time diagnostic measurements for all its moveable EC wave launchers. Based on a highly (100×) accelerated version of TORBEAM, the software implementation as a diagnostic process uses parallelization and achieves cycle times of 15–20 ms for determining the radial deposition location of 12 beams in the plasma. This cycle time includes data input–output overhead arising from the use of available real-time signals. The system is by design portable to other machines such as ITER.

  1. Ion beams application to modification of surface layer of solids with particular regard to IBAD method - ion beam assisted deposition realized in the INP; Zastosowanie wiazek jonowych do modyfikowania warstwy wierzchniej cial stalych, ze szczegolnym uwzglednieniem metody IBAD - Ion Beam Assisted Deposition, realizowanej w IFJ

    Energy Technology Data Exchange (ETDEWEB)

    Drwiega, M.; Lipinska, E.

    1992-12-31

    The different trends in ion engineering such as: dynamic ion mixing, ionized cluster beam deposition and ion beam assisted deposition are described. Some examples of properties of surface coatings are given and their applications are presented. The future of ion engineering is described. 48 refs, 12 figs, 4 tabs.

  2. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  3. The charge deposition in the numerical simulation of high-current beam

    International Nuclear Information System (INIS)

    Wang Shijun

    1987-01-01

    A new method of charge deposition of high-current beam, conservation-map method, is given. THe advantages of Neil's and other various methods are adopted. The mistake of Neil's method and the limitation of other various methods is discarded. So the method is accurate without additional assumption. The method not only applies to the case of steady laminar flow but also applies to the case of steady non-laminar flow

  4. Calculation of neutral beam deposition accounting for excited states

    International Nuclear Information System (INIS)

    Gianakon, T.A.

    1992-09-01

    Large-scale neutral-beam auxillary heating of plasmas has led to new plasma operational regimes which are often dominated by fast ions injected via the absorption of an energetic beam of hydrogen neutrals. An accurate simulation of the slowing down and transport of these fast ions requires an intimate knowledge of the hydrogenic neutral deposition on each flux surface of the plasma. As a refinement to the present generation of transport codes, which base their beam deposition on ground-state reaction rates, a new set of routines, based on the excited states of hydrogen, is presented as mechanism for computing the attenuation and deposition of a beam of energetic neutrals. Additionally, the numerical formulations for the underlying atomic physics for hydrogen impacting on the constiuent plasma species is developed and compiled as a numerical database. Sample results based on this excited state model are compared with the ground-state model for simple plasma configurations

  5. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  6. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    Science.gov (United States)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  7. The suggestion of droplets generation prevention method of CNx coating by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yagi, Yuji; Tokoroyama, Takayuki; Kousaka, Hiroyuki; Umehara, Noritsugu; Fuwa, Yoshio; Manabe, Kazuyoshi

    2013-01-01

    It has been reported that the carbon nitride (CNx) coating was the super-low friction in which friction coefficient was less than 0.01, and it attracts attention as a high wear resistance and low friction material. When synthesizing a CNx coating with Ion Beam Assisted Deposition (IBAD) method, it was clear that the small asperities called droplets was generated onto the CNx coating surface with increasing thickness, and these droplets generated high friction. Therefore, it is necessary to clarify droplets generation mechanism to reduce droplets. To establish optimal coating conditions for controlling droplets were clarified by paying attention to the energy of an electron beam and the shape of a carbon target. First of all, 300 nm thickness CNx coatings were synthesized with five different filament current densities to clarify the relationship between the filament current density and droplet heights. Secondly, the effect of carbon target shape on droplets generation was confirmed with normal and processed carbon target. Finally, friction coefficient of these surfaces was measured by friction tests under PAO lubrication. (author)

  8. Comparison of beam deposition for three neutral beam injection codes

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.; Mense, A.T.

    1979-03-01

    The three neutral beam injection codes BEAM (Houlberg, ORNL), HOFR (Howe, ORNL), and FREYA (Post, PPPL) are compared with respect to the calculation of the fast ion deposition profile H(r). Only plasmas of circular cross section are considered, with injection confined to the mid-plane of the torus. The approximations inherent in each code are pointed out, and a series of comparisons varying several parameters (beam energy and radius, machine size, and injection angle) shows excellent agreement among all the codes. A cost comparison (execution time and memory requirements) is made which points out the relative merits of each code within the context of incorporation into a plasma transport simulation code

  9. Low resistivity Pt interconnects developed by electron beam assisted deposition using novel gas injector system

    International Nuclear Information System (INIS)

    Dias, R J; Romano-Rodriguez, A; O'Regan, C; Holmes, J D; Petkov, N; Thrompenaars, P; Mulder, J J L

    2012-01-01

    Electron beam-induced deposition (EBID) is a direct write process where an electron beam locally decomposes a precursor gas leaving behind non-volatile deposits. It is a fast and relatively in-expensive method designed to develop conductive (metal) or isolating (oxide) nanostructures. Unfortunately the EBID process results in deposition of metal nanostructures with relatively high resistivity because the gas precursors employed are hydrocarbon based. We have developed deposition protocols using novel gas-injector system (GIS) with a carbon free Pt precursor. Interconnect type structures were deposited on preformed metal architectures. The obtained structures were analysed by cross-sectional TEM and their electrical properties were analysed ex-situ using four point probe electrical tests. The results suggest that both the structural and electrical characteristics differ significantly from those of Pt interconnects deposited by conventional hydrocarbon based precursors, and show great promise for the development of low resistivity electrical contacts.

  10. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  11. Imprint reduction in rotating heavy ions beam energy deposition

    International Nuclear Information System (INIS)

    Bret, A.; Piriz, A.R.; Tahir, N.A.

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω

  12. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties.

    Science.gov (United States)

    Han, Cheol-Min; Lee, Eun-Jung; Kim, Hyoun-Ee; Koh, Young-Hag; Kim, Keung N; Ha, Yoon; Kuh, Sung-Uk

    2010-05-01

    The surface of polyetheretherketone (PEEK) was coated with a pure titanium (Ti) layer using an electron beam (e-beam) deposition method in order to enhance its biocompatibility and adhesion to bone tissue. The e-beam deposition method was a low-temperature coating process that formed a dense, uniform and well crystallized Ti layer without deteriorating the characteristics of the PEEK implant. The Ti coating layer strongly adhered to the substrate and remarkably enhanced its wettability. The Ti-coated samples were evaluated in terms of their in vitro cellular behaviors and in vivo osteointegration, and the results were compared to a pure PEEK substrate. The level of proliferation of the cells (MC3T3-E1) was measured using a methoxyphenyl tetrazolium salt (MTS) assay and more than doubled after the Ti coating. The differentiation level of cells was measured using the alkaline phosphatase (ALP) assay and also doubled. Furthermore, the in vivo animal tests showed that the Ti-coated PEEK implants had a much higher bone-in-contact (BIC) ratio than the pure PEEK implants. These in vitro and in vivo results suggested that the e-beam deposited Ti coating significantly improved the potential of PEEK for hard tissue applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  14. Method and system for near-field spectroscopy using targeted deposition of nanoparticles

    Science.gov (United States)

    Anderson, Mark S. (Inventor)

    2012-01-01

    There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.

  15. Summary and presentation of the international workshop on beam induced energy deposition (issues, concerns, solutions)

    International Nuclear Information System (INIS)

    Soundranayagam, R.

    1991-11-01

    This report discusses: energy deposition and radiation shielding in antriproton source at FNAL; radiation issues/problems at RHIC; radiation damage to polymers; radiation effects on optical fibre in the SSC tunnel; capabilities of the Brookhaven Radiation Effects Facility; the SSC interaction region; the FLUKA code system, modifications, recent extension and experimental verification; energy particle transport calculations and comparisons with experimental data; Los Alamos High Energy Transport code system; MCNP features and applications; intercomparison of Monte Carlo codes designed for simulation of high energy hadronic cascades; event generator, DTUJET-90 and DTUNUC; Preliminary hydrodynamic calculations of beam energy deposition; MESA code calculations of material response to explosive energy deposition; Smooth particle hydrodynamic; hydrodynamic effects and mass depletion phenomena in targets; beam dump: Beam sweeping and spoilers; Design considerations to mitigate effects of accidental beam dump; SSC beam abort and absorbed; beam abort system of SSC options; unconventional scheme for beam spoilers; low β quadrupoles: Energy deposition and radioactivation; beam induces energy deposition in the SSC components; extension of SSC-SR-1033 approach to radioactivation in LHC and SSC detectors; energy deposition in the SSC low-β IR-quads; beam losses and collimation in the LHC; and radiation shielding around scrapers

  16. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  17. Site control technique for quantum dots using electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Minami-saitama, Saitama 3458501 (Japan)

    2014-05-15

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement.

  18. Site control technique for quantum dots using electron beam induced deposition

    International Nuclear Information System (INIS)

    Iizuka, Kanji; Jung, JaeHun; Yokota, Hiroshi

    2014-01-01

    To develop simple and high throughput sit definition technique for quantum dots (QDs), the electron beam induced deposition (EBID) method was used as desorption guide of phosphorus atoms form InP substrate. As the results one or a few indium (In) droplets (DLs) were created in the carbon grid pattern by thermal annealing at a temperature of 450°C for 10 min in the ultra high vacuum condition. The size of In DLs was larger than QDs, but arsenide DLs by molecular beam in growth chamber emitted wavelength of 1.028μm at 50K by photoluminescence measurement

  19. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  20. Electron beam deposition system causing little damage to organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Minoru [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan); Matsumura, Michio, E-mail: matsu@chem.es.osaka-u.ac.jp [Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Maeda, Yasuhiro [Business Incubation Department, Hitachi Zosen Corporation, 2-11 Funamachi 2-Chome, Taisho-ku, Osaka 551-0022 (Japan)

    2011-07-29

    Conditions for deposition of an aluminum (Al) layer on an organic light-emitting layer with an electron beam (EB) deposition system were optimized with respect to deposition rate and damage to organic layers. The damage to the organic layers was found to be mostly caused by X-rays emitted from a target bombarded with accelerated electrons. In order to decrease the X-ray intensity while maintaining a high deposition rate, we used an EB source which emits high-density EB at low acceleration voltage. In addition, we inserted a heat reflector and a sintered-carbon liner between the Al target and copper crucible to improve heat insulation. As a result, the voltage needed for the deposition of Al electrodes at a rate of about 8 nm/s was lowered from normal voltages of 2.0 kV or higher to as low as 1.5 kV. To reduce the number of electrons hitting the substrate, we set pole pieces near the target and an electron trap in the chamber. The devices on which Al electrodes were deposited with the EB system showed almost the same properties as those of devices on which the Al electrodes were deposited by a resistive-heating method.

  1. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane : The role of dissociative ionization and dissociative electron attachment in the deposition process

    NARCIS (Netherlands)

    Ragesh Kumar, T. P.; Hari, S.; Damodaran, Krishna K.; Ingólfsson, Oddur; Hagen, C.W.

    2017-01-01

    We present first experiments on electron beam induced deposition of silacyclohexane (SCH) and dichlorosilacyclohexane (DCSCH) under a focused high-energy electron beam (FEBID). We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we

  2. Space-qualified optical thin films by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Hsiao, C.N.; Chen, H.P.; Chiu, P.K.; Lin, Y.W.; Chen, F.Z.; Tsai, D.P.

    2013-01-01

    Optical interference coatings designed for use in a space-grade multispectral assembly in a complementary metal-oxide‐semiconductor sensor were deposited on glass by ion-beam-assisted deposition for a Cassegrain-type space-based remote-sensing platform. The patterned multispectral assembly containing blue, green, red, near infrared, and panchromatic multilayer high/low alternated dielectric band-pass filter arrays in a single chip was fabricated by a mechanical mask and the photolithography process. The corresponding properties of the films were investigated by in situ optical monitoring and spectrometry. It was found that the optical properties were significantly improved by employing ion-beam-assisted deposition. The average transmittances were above 88% for the multispectral assembly, with a rejection transmittance of less than 1% in the spectral range 350–1100 nm. To estimate the optical stability of optical coatings for aerospace applications, a space environment assuming a satellite orbiting the Earth at an altitude of near 800 km was simulated by a Co 60 gamma (γ) radiation test. - Highlights: ►Parameters of optical filters were optimized by using admittance loci analysis. ►Higher index of refraction of films prepared by ion beam assisted deposition. ►The dielectric filters have acceptable resistance after γ radiation exposure

  3. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.; Cassinese, A. [CNR-SPIN and Physics Department, University of Naples, Piazzale Tecchio 80, I-80125 Naples (Italy); Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R. [IMEM-CNR-FBK Division of Trento, Via alla Cascata 56/C, I-38123 Povo (Italy); Iannotta, S. [IMEM-CNR, Parco Area delle Scienze 37/A, I-43124 Parma (Italy)

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  4. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances.

  5. Preliminary results on adhesion improvement using Ion Beam Sputtering Deposition

    International Nuclear Information System (INIS)

    Kim, Yonggi; Kim, Bomsok; Lee, Jaesang

    2013-01-01

    Sputtering is an established technique for depositing films with smooth surfaces and interfaces and good thick control. Ejection of articles from a condensed matter due to impingement of high energy particles, termed as sputtering was observed as early as in 1852, however, it is only recently that the complex process of sputtering system. Coating adhesion and environmental stability of the ion beam sputtering deposition coatings performed very well. High-energy high-current ion beam thin film synthesis of adhesion problems can be solved by using. Enhancement of adhesion in thin film synthesis, using high energy and high current ion beam, of mobile phones, car parts and other possible applications in the related industry Alternative technology of wet chrome plating, considering environment and unit cost, for car parts and esthetic improvement on surface of domestic appliances

  6. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  7. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  8. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  9. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  10. Annealing of TiO2 Films Deposited on Si by Irradiating Nitrogen Ion Beams

    International Nuclear Information System (INIS)

    Yokota, Katsuhiro; Yano, Yoshinori; Miyashita, Fumiyoshi

    2006-01-01

    Thin TiO2 films were deposited on Si at a temperature of 600 deg. C by an ion beam assisted deposition (IBAD) method. The TiO2 films were annealed for 30 min in Ar at temperatures below 700 deg. C. The as-deposited TiO2 films had high permittivities such 200 εo and consisted of crystallites that were not preferentially oriented to the c-axis but had an expanded c-axis. On the annealed TiO2 films, permittivities became lower with increasing annealing temperature, and crystallites were oriented preferentially to the (110) plane

  11. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  12. Preparation and characterization of nanocrystalline ITO thin films on glass and clay substrates by ion-beam sputter deposition method

    International Nuclear Information System (INIS)

    Venkatachalam, S.; Nanjo, H.; Kawasaki, K.; Wakui, Y.; Hayashi, H.; Ebina, T.

    2011-01-01

    Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 x 10 -3 /Ω) was also higher than that of ITO/clay-1 (9.6 x 10 -3 /Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.

  13. Comparison of the Al back contact deposited by sputtering, e-beam, or thermal evaporation for inverted perovskite solar cells

    Science.gov (United States)

    Wahl, Tina; Hanisch, Jonas; Ahlswede, Erik

    2018-04-01

    In this work, we present inverted perovskite solar cells with Al top electrodes, which were deposited by three different methods. Besides the widely used thermal evaporation of Al, we also used the industrially important high deposition rate processes sputtering and electron beam evaporation for aluminium electrodes and examined the influence of the deposition method on the solar cell performance. The current-voltage characteristics of as grown solar cells with sputtered and e-beam Al electrode show an s-shape due to damage done to the organic electronic transport layers (ETL) during Al deposition. It can be cured by a short annealing step at a moderate temperature so that fill factors  >60% and power conversion efficiencies of almost 12% with negligible hysteresis can be achieved. While solar cells with thermally evaporated Al electrode do not show an s-shape, they also exhibit a clear improvement after a short annealing step. In addition, we varied the thickness of the ETL consisting of a double layer ([6,6]-Phenyl-C61-butyric acid methyl ester and bathocuproine) and investigated the influence on the solar cell parameters for the three different Al deposition methods, which showed distinct dependencies on ETL thickness.

  14. Purity and resistivity improvements for electron-beam-induced deposition of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, J.J.L. [FEI Company, Eindhoven (Netherlands)

    2014-12-15

    Electron-beam-induced deposition (EBID) of platinum is used by many researchers. Its main application is the formation of a protective layer and the ''welding material'' for making a TEM lamella with a focused ion beam thinning process. For this application, the actual composition of the deposition is less relevant, and in practice, both the mechanical strength and the conductivity are sufficient. Another important application is the creation of an electrical connection to nanoscale structures such as nano-wires and graphene. To serve as an electrical contact, the resistivity of the Pt deposited structure has to be sufficiently low. Using the commonly used precursor MeCpPtMe{sub 3} for deposition, the resistivity as created by the basic process is 10{sup +5}-10{sup +6} higher than the value for bulk Pt, which is 10.6 μΩ cm. The reason for this is the high abundance of carbon in the deposition. To improve the deposition process, much attention has been given by the research community to parameter optimization, to ex situ or in situ removal of carbon by anneal steps, to prevention of carbon deposition by use of a carbon-free precursor, to electron beam irradiation under a high flux of oxygen and to the combination with other techniques such as atomic layer deposition (ALD). In the latter technique, the EBID structures are used as a 1-nm-thick seed layer only, while the ALD is used to selectively add pure Pt. These techniques have resulted in a low resistivity, today approaching the 10-150 μΩ cm, while the size and shape of the structure are preserved. Therefore, now, the technique is ready for application in the field of contacting nano-wires. (orig.)

  15. An optimized nanoparticle separator enabled by electron beam induced deposition

    International Nuclear Information System (INIS)

    Fowlkes, J D; Rack, P D; Doktycz, M J

    2010-01-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  16. An optimized nanoparticle separator enabled by electron beam induced deposition

    Science.gov (United States)

    Fowlkes, J. D.; Doktycz, M. J.; Rack, P. D.

    2010-04-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  17. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  18. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  19. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  20. Computer simulation of scattered ion and sputtered species effects in ion beam sputter-deposition of high temperature superconducting thin films

    International Nuclear Information System (INIS)

    Krauss, A.R.; Auciello, O.

    1992-01-01

    Ion beam sputter-deposition is a technique currently used by many groups to produce single and multicomponent thin films. This technique provides several advantages over other deposition methods, which include the capability for yielding higher film density, accurate stoichiometry control, and smooth surfaces. However, the relatively high kinetic energies associated with ion beam sputtering also lead to difficulties if the process is not properly controlled. Computer simulations have been performed to determine net deposition rates, as well as the secondary erosion, lattice damage, and gas implantation in the films, associated with primary ions scattered from elemental Y, Ba and Cu targets used to produce high temperature superconducting Y-Ba-Cu-O films. The simulations were performed using the TRIM code for different ion masses and kinetic energies, and different deposition geometries. Results are presented for primary beams of Ar + , Kr + and Xe + incident on Ba and Cu targets at 0 degrees and 45 degrees with respect to the surface normal, with the substrate positioned at 0 degrees and 45 degrees. The calculations indicate that the target composition, mass and kinetic energy of the primary beam, angle of incidence on the target, and position and orientation of the substrate affect the film damage and trapped primary beam gas by up to 5 orders of magnitude

  1. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  2. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  3. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  4. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Enders, B.; Krauss, S.; Wolf, G.K.

    1994-01-01

    The replacement of cadmium coatings by other protective measures is an important task because of the environmentally detrimental properties of cadmium. Therefore, aluminum and aluminum alloy coatings containing elements such as silicon or magnesium with more positive or negative positions in the galvanic series in relation to pure aluminum were deposited by ion beam assisted deposition onto glass and low carbon steel. Pure aluminum films were deposited onto low carbon steel in order to study the influence of the ion-to-atom arrival ratio and the angle of ion incidence on the corrosion properties. For examination of the pitting behavior as a function of the concentration of alloying element, quasipotentiostatic current-potential and potentiostatic current-time plots were measured in chlorine-containing acetate buffer. It is shown that these alloys can protect steel substrates under uniform and pitting corrosion conditions considerably better than pure aluminum coatings. ((orig.))

  5. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  6. A critical literature review of focused electron beam induced deposition

    International Nuclear Information System (INIS)

    Dorp, W. F. van; Hagen, C. W.

    2008-01-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally

  7. Neutral-beam deposition in large, finite-beta noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Wieland, R.M.; Houlberg, W.A.

    1982-02-01

    A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross section and noncircular shifted plasma cross sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is benchmarked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radius a = 120 cm and elongation b/a = 1.6. Deposition profiles are compared for deuterium beam energies of 120 to 150 keV, central plasma densities of 8 x 10 13 - 2 x 10 14 cm -3 , and beam orientation ranging from perpendicular to tangential to the inside wall

  8. Hydrogen Charging Effects in Pd/Ti/TiO2/Ti Thin Films Deposited on Si(111 Studied by Ion Beam Analysis Methods

    Directory of Open Access Journals (Sweden)

    K. Drogowska

    2012-01-01

    Full Text Available Titanium and titanium dioxide thin films were deposited onto Si(111 substrates by magnetron sputtering from a metallic Ti target in a reactive Ar+O2 atmosphere, the composition of which was controlled by precision gas controllers. For some samples, 1/3 of the surface was covered with palladium using molecular beam epitaxy. Chemical composition, density, and layer thickness of the layers were determined by Auger electron spectroscopy (AES and Rutherford backscattering spectrometry (RBS. The surface morphology was studied using high-resolution scanning electron microscopy (HRSEM. After deposition, smooth, homogenous sample surfaces were observed. Hydrogen charging for 5 hours under pressure of 1 bar and at temperature of 300°C results in granulation of the surface. Hydrogen depth profile was determined using secondary ion mass spectrometry (SIMS and nuclear Reaction Analysis (N-15 method, using a 15N beam at and above the resonance energy of 6.417 MeV. NRA measurements proved a higher hydrogen concentration in samples with partially covered top layers, than in samples without palladium. The highest value of H concentration after charging was about 50% (in the palladium-covered part and about 40% in titanium that was not covered by Pd. These values are in good agreement with the results of SIMS measurements.

  9. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  10. Alternative stitching method for massively parallel e-beam lithography

    Science.gov (United States)

    Brandt, Pieter; Tranquillin, Céline; Wieland, Marco; Bayle, Sébastien; Milléquant, Matthieu; Renault, Guillaume

    2015-07-01

    In this study, a stitching method other than soft edge (SE) and smart boundary (SB) is introduced and benchmarked against SE. The method is based on locally enhanced exposure latitude without throughput cost, making use of the fact that the two beams that pass through the stitching region can deposit up to 2× the nominal dose. The method requires a complex proximity effect correction that takes a preset stitching dose profile into account. Although the principle of the presented stitching method can be multibeam (lithography) systems in general, in this study, the MAPPER FLX 1200 tool is specifically considered. For the latter tool at a metal clip at minimum half-pitch of 32 nm, the stitching method effectively mitigates beam-to-beam (B2B) position errors such that they do not induce an increase in critical dimension uniformity (CDU). In other words, the same CDU can be realized inside the stitching region as outside the stitching region. For the SE method, the CDU inside is 0.3 nm higher than outside the stitching region. A 5-nm direct overlay impact from the B2B position errors cannot be reduced by a stitching strategy.

  11. Electron-beam induced deposition and autocatalytic decomposition of Co(CO3NO

    Directory of Open Access Journals (Sweden)

    Florian Vollnhals

    2014-07-01

    Full Text Available The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID and electron beam-induced surface activation (EBISA is studied for two precursors: iron pentacarbonyl, Fe(CO5, and cobalt tricarbonyl nitrosyl, Co(CO3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM and scanning transmission X-ray microscopy (STXM, including near edge X-ray absorption fine structure (NEXAFS spectroscopy. It has previously been shown that Fe(CO5 decomposes autocatalytically on Fe seed layers (EBID and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO3NO and compare it to results obtained from Fe(CO5. Co(CO3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  12. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  13. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  14. Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Liu, Z.Q.; Mitsuishi, K.; Furuya, K.

    2005-01-01

    Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed. (orig.)

  15. Handbook of thin film deposition processes and techniques principles, methods, equipment and applications

    CERN Document Server

    Seshan, Krishna

    2002-01-01

    New second edition of the popular book on deposition (first edition by Klaus Schruegraf) for engineers, technicians, and plant personnel in the semiconductor and related industries. This book traces the technology behind the spectacular growth in the silicon semiconductor industry and the continued trend in miniaturization over the last 20 years. This growth has been fueled in large part by improved thin film deposition techniques and the development of highly specialized equipment to enable this deposition. The book includes much cutting-edge material. Entirely new chapters on contamination and contamination control describe the basics and the issues-as feature sizes shrink to sub-micron dimensions, cleanliness and particle elimination has to keep pace. A new chapter on metrology explains the growth of sophisticated, automatic tools capable of measuring thickness and spacing of sub-micron dimensions. The book also covers PVD, laser and e-beam assisted deposition, MBE, and ion beam methods to bring together a...

  16. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  17. Characterization of copper thin films prepared by metal self-ion beam sputter deposition

    International Nuclear Information System (INIS)

    Gotoh, Yasuhito; Amioka, Takao; Tsuji, Hiroshi; Ishikawa, Junzo

    1994-01-01

    New deposition technique, 'metal-ion beam self-sputtering' method has been developed. Using metal ions which is the same element with the target material, no contamination with noble gas atoms, which are often used in the conventional sputtering, will occur. In this paper, fundamental measurement of the film purity is reported. As a result of PIXE measurements, it was clarified that only slight amount of iron is incorporated in the films. (author)

  18. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  19. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  20. BIRTH: a beam deposition code for non-circular tokamak plasmas

    International Nuclear Information System (INIS)

    Otsuka, Michio; Nagami, Masayuki; Matsuda, Toshiaki

    1982-09-01

    A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)

  1. Adhesion-enhanced thick copper film deposition on aluminum oxide by an ion-beam-mixed Al seed layer

    International Nuclear Information System (INIS)

    Kim, Hyung-Jin; Park, Jae-Won

    2012-01-01

    We report a highly-adherent 30-μm Cu conductive-path coating on an aluminum-oxide layer anodized on an aluminum-alloy substrate for a metal-printed circuit-board application. A 50-nm Al layer was first coated with an e-beam evaporative deposition method on the anodized oxide, followed by ion bombardment to mix the interfacial region. Subsequently, a Cu coating was deposited onto the mixed seed layer to the designed thickness. Adhesions of the interface were tested by using tape adhesion test, and pull-off tests and showed commercially acceptable adhesions for such thick coating layers. The ion beam mixing (IBM) plays the role of fastening the thin seed coating layer to the substrate and enhancing the adhesion of the Cu conductive path on the anodized aluminum surface.

  2. Energy deposition profile on ISOLDE Beam Dumps by FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    In this report an estimation of the energy deposited on the current ISOLDE beam dumps obtained by means of FLUKA simulation code is presented. This is done for both ones GPS and HRS. Some estimations of temperature raise are given based on the assumption of adiabatic increase from energy deposited by the impinging protons. However, the results obtained here in relation to temperature are only a rough estimate. They are meant to be further studied through thermomechanical simulations using the energyprofiles hereby obtained.

  3. Deposition of thin films by retardation of an isotope separator beam

    International Nuclear Information System (INIS)

    Colligon, J.S.; Grant, W.A.; Williams, J.S.; Lawson, R.P.W.

    1976-01-01

    An ion optical lens system capable of retarding and focusing a mass-analysed ion beam, produced in the University of Salford isotope separator, from an energy of 20 keV to 50-60 eV is described. Using this system it is technically feasible to deposit spectroscopically pure ions of all species onto a substrate to produce thin film for devices and junctions. Preliminary investigations of the technique have been carried out using lead and copper ions which were deposited onto silicon single-crystal substrates. These ions were selected because their high mass relative to silicon allowed analyses of the deposited films by low-angle Rutherford backscattering of 2 MeV He ions; the single-crystal silicon substrate enabled the extent of damage due to unretarded neutral particles to be estimated from channelling data. Results for lead films showed that films less than 150 A in thickness were discontinuous and scanning electron microscopy confirmed their 'island' structure. For thicker deposits, of order 600 A, the films were continuous. Results are also presented for copper-lead sandwich layers produced by successive depositions. Channelling experiments indicated that the neutral component was less than 5% of the total ion-beam intensity. Investigations of the spatial distribution of the lead films indicated a non-uniformity which, it is suggested, arises from a fault in the retardation lens design. (author)

  4. Fabrication of highly oriented β-FeSi2 by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Nakanoya, Takamitsu; Sasase, Masato; Yamamoto, Hiroyuki; Saito, Takeru; Hojou, Kiichi

    2002-01-01

    We have prepared the 'environmentally friendly' semiconductor, β-FeSi 2 thin films by ion beam sputter deposition method. The temperature of Si (100) substrate during the deposition and total amount of deposited Fe have been changed in order to find the optimum condition of the film formation. The crystallinity and surface morphology of the formed silicides were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. It is understood that the domain of the epitaxially grown β-FeSi 2 increases with the substrate temperature up to 700degC at the fixed amount of deposited Fe (33 nm) by XRD spectra. On the other hand, α-FeSi 2 is appeared and increased with the temperature above 700degC. Granulation of the surface is also observed by SEM images at this temperature region. At the fixed temperature condition (700degC), formation of α phase, which is obtained at the higher temperature compared with β phase, is observed for the fewer deposited samples. These results suggest the possibility of the epitaxially grown β-FeSi 2 formation at the lower (< 700degC) temperature region. (author)

  5. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  6. Electron beam induced deposition of silacyclohexane and dichlorosilacyclohexane: the role of dissociative ionization and dissociative electron attachment in the deposition process

    Directory of Open Access Journals (Sweden)

    Ragesh Kumar T P

    2017-11-01

    Full Text Available We present first experiments on electron beam induced deposition of silacyclohexane (SCH and dichlorosilacyclohexane (DCSCH under a focused high-energy electron beam (FEBID. We compare the deposition dynamics observed when growing pillars of high aspect ratio from these compounds and we compare the proximity effect observed for these compounds. The two precursors show similar behaviour with regards to fragmentation through dissociative ionization in the gas phase under single-collision conditions. However, while DCSCH shows appreciable cross sections with regards to dissociative electron attachment, SCH is inert with respect to this process. We discuss our deposition experiments in context of the efficiency of these different electron-induced fragmentation processes. With regards to the deposition dynamics, we observe a substantially faster growth from DCSCH and a higher saturation diameter when growing pillars with high aspect ratio. However, both compounds show similar behaviour with regards to the proximity effect. With regards to the composition of the deposits, we observe that the C/Si ratio is similar for both compounds and in both cases close to the initial molecular stoichiometry. The oxygen content in the DCSCH deposits is about double that of the SCH deposits. Only marginal chlorine is observed in the deposits of from DCSCH. We discuss these observations in context of potential approaches for Si deposition.

  7. Lifetime obtained by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakaroun, M. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France); Antony, R. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)], E-mail: remi.antony@unilim.fr; Taillepierre, P.; Moliton, A. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)

    2007-09-15

    We have fabricated green organic light-emitting diodes based on tris-(8-hydroxyquinoline)aluminium (Alq3) thin films. In order to favor the charge carriers transport from the anode, we have deposited a N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) layer (hole transport layer) on a ITO anode. Cathode is obtained with a calcium layer covered with a silver layer. This silver layer is used to protect the other layers against oxygen during the OLED use. All the depositions are performed under vacuum and the devices are not exposed to air during their realisation. In order to improve the silver layer characteristics, we have realized this layer with the ion beam assisted deposition process. The aim of this process is to densify the layer and then reduce the permeation of H{sub 2}O and O{sub 2}. We have used argon ions to assist the silver deposition. All the OLEDs optoelectronic characterizations (I = f(V), L = f(V)) are performed in the ambient air. We compare the results obtained with the assisted layer with those obtained with a classical cathode realized by thermal unassisted evaporation. We have realized lifetime measurements in the ambient air and we discuss about the assisted layer influence on the OLEDs performances.

  8. Temperature dependence of InN film deposition by an RF plasma-assisted reactive ion beam sputtering deposition technique

    International Nuclear Information System (INIS)

    Shinoda, Hiroyuki; Mutsukura, Nobuki

    2005-01-01

    Indium nitride (InN) films were deposited on Si(100) substrates using a radiofrequency (RF) plasma-assisted reactive ion beam sputtering deposition technique at various substrate temperatures. The X-ray diffraction patterns of the InN films suggest that the InN films deposited at substrate temperatures up to 370 deg C were cubic crystalline InN; and at 500 deg C, the InN film was hexagonal crystalline InN. In a scanning electron microscope image of the InN film surface, facets of cubic single-crystalline InN grains were clearly observed on the InN film deposited at 370 deg C. The inclusion of metallic indium appeared on the InN film deposited at 500 deg C

  9. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  10. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    International Nuclear Information System (INIS)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi

    2002-01-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  11. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.

    Science.gov (United States)

    Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo

    2008-02-01

    The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.

  12. Studies on ion scattering and sputtering processes relevant to ion beam sputter deposition of multicomponent thin films

    International Nuclear Information System (INIS)

    Auciello, O.; Ameen, M.S.; Kingon, A.I.

    1989-01-01

    Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom ass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering Kr + or Xe + ions is preferable to the most commonly used Ar + ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition. 10 refs., 5 figs

  13. Ion beam assisted deposition of nano-structured C:Ni films

    Energy Technology Data Exchange (ETDEWEB)

    Abrasonis, G.; Muecklich, A.; Heller, R.; Heinig, K.H.; Gemming, S.; Moeller, W. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krause, M. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Institute of Physics, TU Dresden (Germany)

    2012-07-01

    Nanostructures influence material properties dramatically due to size, shape and interface effects. Thus the control of the structure at the nanoscale is a key issue in nanomaterials science. The interaction of hyperthermal ions with solids is confined to the nanometer scale. Thus, it can be used to control the morphology evolution during multiphase film deposition. Ion-induced displacements occur in a thin surface layer of the growing film where they increase the atomic mobility for the phase separation. Here the growth-structure relationship of C:Ni (15 at.%) nanocomposite films grown by oblique incidence (45 ) ion beam assisted deposition is reported. The influences of the flux of an assisting Ar+ ion beam (0-140 eV) as well as of an elevated substrate temperature have been studied. The formation of elongated nickel nanoparticles is strongly promoted by the ion beam assistance. Moreover, the metal nanocolumns no longer align with the advancing surface, but with the incoming ions. A window of conditions is established within which the ion assistance leads to the formation of regular composition modulations with a well defined periodicity and tilt. As the dominating driving force for the pattern formation is of physical origin, this approach might be applicable to other immiscible systems.

  14. Photon beam convolution using polyenergetic energy deposition kernels

    International Nuclear Information System (INIS)

    Hoban, P.W.; Murray, D.C.; Round, W.H.

    1994-01-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, μ, to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio μ ab /μ as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author)

  15. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  16. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  17. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    Science.gov (United States)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  18. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  19. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  20. Towards high purity nanostructures from electron beam induced deposition of platinum

    NARCIS (Netherlands)

    Botman, A.P.J.M.

    2009-01-01

    Electron beam induced deposition (EBID) is a novel nanofabrication technique allowing the rapid prototyping of three-dimensional nanodevices and the metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. EBID is a process wherein a precursor molecule

  1. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Yu Zhinong; Li Yuqiong; Xia Fan; Zhao Zhiwei; Xue Wei

    2009-01-01

    The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO 2 ) between the ITO film and the PET substrate. ITO films deposited on SiO 2 -coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO 2 -coated PET are 85% and 0.90 x 10 -3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO 2 -coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO 2 buffer layer.

  2. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  3. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  4. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Lien, W.-C.

    2008-01-01

    Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 x 10 -17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power

  5. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Yingbing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Zayd Chad

    2015-01-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties

  6. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  7. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  8. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  9. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is

  10. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  11. The Impact of Beam Deposition on Bootstrap Current of Fast Ion Produced by Neutral Beam Tangential Injection

    International Nuclear Information System (INIS)

    Huang Qian-Hong; Gong Xue-Yu; Lu Xing-Qiang; Yu Jun; Cao Jin-Jia

    2015-01-01

    The density profile of fast ions arising from a tangentially injected diffuse neutral beam in tokamak plasma is calculated. The effects of mean free paths and beam tangency radius on the density profile are discussed under typical HL-2A plasmas parameters. The results show that the profile of fast ions is strongly peaked at the center of the plasma when the mean free path at the maximum deuteron density is larger than the minor radius, while the peak value decreases when the mean free path at the maximum deuteron density is larger than twice that of the minor radius due to the beam transmission loss. Moreover, the bootstrap current of fast ions for various mean free paths at the maximum deuteron density is calculated and its density is proved to be closely related to the deposition of the neutral beam. With the electron return current considered, the net current density obviously decreases. Meanwhile, the peak central fast ion density increases when the beam tangency radius approaches the major radius, and the net bootstrap current increases rapidly with the increasing beam tangency radius. (paper)

  12. Reduction of deposition asymmetries in directly driven ion-beam and laser targets

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    The authors have developed a procedure for reducing energy-dependent asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which they propose as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driver or reactor scenarios. It also allows the use of beam currents or energy fluxes to help reduce deposition asymmetry

  13. A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F. D.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Legodi, M. J.; Nel, J. M.; Meyer, W. E.; Chawanda, A.

    2011-01-01

    A systematic investigation to check the quality of Pd Schottky contacts deposited on ZnO has been performed on electron beam (e-beam) deposited and resistively/thermally evaporated samples using current-voltage, IV, and conventional deep level transient spectroscopy (DLTS) measurements. Room temperature IV measurements reveal the dominance of pure thermionic emission on the resistively evaporated contacts, while the e-beam deposited contacts show the dominance of generation recombination at low voltages, -10 A at a reverse voltage of 1.0 V whereas the e-beam deposited contacts have reverse currents of the order of 10 -6 A at 1.0 V. Average ideality factors have been determined as (1.43 ± 0.01) and (1.66 ± 0.02) for the resistively evaporated contacts and e-beam deposited contacts, respectively. The IV barrier heights have been calculated as (0.721 ± 0.002) eV and (0.624 ± 0.005) eV for the resistively evaporated and e-beam deposited contacts, respectively. Conventional DLTS measurements reveal the presence of three prominent defects in both the resistive and e-beam contacts. Two extra peaks with energy levels of 0.60 and 0.81 eV below the conduction band minimum have been observed in the e-beam deposited contacts. These have been explained as contributing to the generation recombination current that dominates at low voltages and high leakage currents. Based on the reverse current at 1.0 V, the degree of rectification, the dominant current transport mechanism and the observed defects, we conclude that the resistive evaporation technique yields better quality Schottky contacts for use in solar cells and ultraviolet detectors compared to the e-beam deposition technique. The 0.60 eV has been identified as possibly related to the unoccupied level for the doubly charged oxygen vacancy, V o 2+ .

  14. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  15. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasaka, Naotaka

    2004-04-01

    Effects of Coulomb collisions on neutral beam (NB) injected fast ions into Field-Reversed Configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing down and pitch angle collisions. The Monte-Carlo method is used for the pitch angle scattering, and the friction term is added to the equation of motion to show effects of slowing down collision such as the deposited power profile. Calculation parameters used are relevant to the NB injection on the FRC Injection Experiment (FIX) device. It is found that the dominant local power deposition occurs in the open field region between the X-point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found negligible. The loss mechanism due to non-adiabatic fast ion motion, which is intrinsic in non-uniform FRC plasmas, affects much greater than the pitch angle scattering by Coulomb collision. (author)

  16. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  17. Development of an ion-beam sputtering system for depositing thin films and multilayers of alloys and compounds

    International Nuclear Information System (INIS)

    Gupta, Mukul; Gupta, Ajay; Phase, D.M.; Chaudhari, S.M.; Dasannacharya, B.A.

    2002-01-01

    An ion-beam sputtering (IBS) system has been designed and developed for preparing thin films and multilayers of various elements, alloys and compounds. The ion source used is a 3 cm diameter, hot-cathode Kaufman type 1.5 kV ion source. The system has been successfully tested with the deposition of various materials, and the deposition parameters were optimised for achieving good quality of thin films and multilayers. A systematic illustration of the versatility of the system to produce a variety of structures is done by depositing thin film of pure iron, an alloy film of Fe-Zr, a compound thin film of FeN, a multilayer of Fe-Ag and an isotopic multilayer of 57 FeZr/FeZr. Microstructural measurements on these films using X-ray and neutron reflectivity, atomic force microscopy (AFM), and X-ray diffraction are presented and discussed to reveal the quality of the microstructures obtained with the system. It is found that in general, the surface roughnesses of the film deposited by IBS are significantly smaller as compared to those for films deposited by e-beam evaporation. Further, the grain size of the IBS crystalline films is significantly refined as compared to the films deposited by e-beam evaporation. Grain refinement may be one of the reasons for reduced surface roughness. In the case of amorphous films, the roughness of the films does not increase appreciably beyond that of the substrate even after depositing thicknesses of several hundred angstroms

  18. Effect of laser beam parameters on magnetic properties of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    Fukunaga, H.; Nakano, M.; Yanai, T.; Kamikawatoko, T.; Yamashita, F.

    2011-01-01

    The effects of varying the laser power and the spot diameter of a laser beam on the magnetic properties, morphology, and deposition rate of Nd-Fe-B thick-film magnets fabricated by pulsed laser deposition (PLD) were investigated. Reducing the laser fluence on the target reduces the remanence and increases the Nd content and consequently the coercivity of the prepared films. The spot size of the laser beam was found to affect the film surface morphology, the deposition rate, and the reproducibility of the magnetic properties of the prepared films. Reducing the spot size reduces the number of droplets and the reproducibility of the magnetic properties and increases the droplet size. Controlling the spot size of the laser beam enabled us to maximize the deposition rate. Consequently, a coercivity of 1210 kA/m and a remanence of 0.51 T were obtained at a deposition rate of 11.8 μm/(h·W). This deposition rate is 30% greater than the highest previously reported deposition rate by PLD.

  19. Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method

    International Nuclear Information System (INIS)

    Ramaswamy, N.; Arruda, T.M.; Wen, W.; Hakim, N.; Saha, M.; Gulla, A.; Mukerjee, S.

    2009-01-01

    Ultra low loading noble metal (0.04-0.12 mg Pt /cm 2 ) based electrodes were obtained by direct metallization of non-catalyzed gas diffusion layers via dual ion beam assisted deposition (IBAD) method. Fuel cell performance results reported earlier indicate significant improvements in terms of mass specific power density of 0.297 g Pt /kW with 250 A thick IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V in contrast to the state of the art power density of 1.18 g Pt /kW using 1 mg Pt(MEA) /cm 2 at 0.65 V. In this article we report the peroxide radical initiated attack of the membrane electrode assembly utilizing IBAD electrodes in comparison to commercially available E-TEK (now BASF Fuel Cell GmbH) electrodes and find the pathway of membrane degradation as well. A novel segmented fuel cell is used for this purpose to relate membrane degradation to peroxide generation at the electrode/electrolyte interface by means of systematic pre and post analyses of the membrane are presented. Also, we present the results of in situ X-ray absorption spectroscopy (XAS) experiments to elucidate the structure/property relationships of these electrodes that lead to superior performance in terms of gravimetric power density obtained during fuel cell operation.

  20. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  1. Effect of annealing on the structural properties of electron beam deposited CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, M. [Department of Electronics, Erode Arts College, Erode (India)], E-mail: prabhu7737@yahoo.com; Kannan, M.D.; Jayakumar, S.; Balasundaraprabhu, R. [Thin Film Center, PSG College of Technology, Coimbatore (India); Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore (India)

    2008-08-30

    CIGS bulk compound of three different compositions CuIn{sub 0.85}Ga{sub 0.15}Se{sub 2}, CuIn{sub 0.80}Ga{sub 0.20}Se{sub 2} and CuIn{sub 0.75}Ga{sub 0.25}Se{sub 2} have been prepared by direct reaction of elemental copper, indium, gallium and selenium. CIGS thin films of the three compositions have been deposited onto glass and silicon substrates using the prepared bulk by electron beam deposition method. The structural properties of the deposited films have been studied using X-ray diffraction technique. The as-deposited CIGS films have been found to be amorphous in nature. To study the effect of annealing on the structural properties, the films have been annealed in vacuum of the order of 10{sup -5} Torr. The X-ray diffractograms of the annealed CIGS films exhibited peaks revealing that the annealed films are crystalline in nature with tetragonal chalcopyrite structure. The (112) peak corresponding to the chalcopyrite structure has been observed to be the dominating peak in all the annealed films. The position of the (112) peak and other peaks in the X-ray diffraction pattern has been observed to shift to higher values of 2{theta} with the increase of gallium concentration. The lattice parameter values 'a' and 'c' have been calculated and they are found to be dependent on the concentration of gallium in the films. The FWHM in the X-ray diffraction pattern is found to decrease with an increase in annealing temperature indicating that the crystalline nature of the CIGS improves with increase in annealing temperature. The films grown on silicon substrates have been found to be of better crystalline quality than those deposited on glass substrates. The micro structural parameters like grain size, dislocation density and strain have been evaluated. The chemical constituents present in the deposited CIGS films have been identified using energy dispersive X-ray analysis. The surface topographical study on the films has been performed by AFM. The

  2. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    Science.gov (United States)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  3. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard [Johns Hopkins University, Department of Chemistry, Baltimore, MD (United States); Wu, Yung-Chien; McElwee-White, Lisa [University of Florida, Department of Chemistry, Gainesville, FL (United States)

    2014-12-15

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF{sub 3}, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures. (orig.)

  4. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  5. Progress on channel spark development and application of pulsed electron beam deposition (PED) in the field of medical coating work

    International Nuclear Information System (INIS)

    Schultheiss, Christoph; Buth, Lothar-H.-O.; Frey, Wolfgang; Bluhm, Hansjoachim; Mayer, Hanns-G.

    2002-01-01

    A promising source for Pulsed Electron Beam Deposition (PED) is the channel spark. Recent improvements helped to reduce beam instabilities which up to now have limited the life time of the system. The beam power could be increased and because of better beam quality the transport length of the beam is increased from 1 to several centimeters (up to 10 cm). Together with other improvements on the triggering system and beam transport in dielectric tubes, the channel spark approaches industrial standards. An overview of actual applications in research and industry will be presented. An attractive feature of the pulsed electron beam thin film deposition is the conservation of stoichiometry even during deposition of multi-component earth-alkali and alkali glasses. Specially developed glasses like BIOGLAS registered have the ability to anchor soft living tissue at the surface. In form of a bulk material bio active glasses are brittle limiting its applications. Contrary to brittle bulk material a thin layers on medical implants exhibits reliable bio-functionality. Coating of implants with this category of materials is subject of the European INCOMED project (Innovative Coating of Medical Implants with Soft Tissue Anchoring Ability) which just has started

  6. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  7. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  8. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device

    International Nuclear Information System (INIS)

    Stepina, N.P.; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V.

    2008-01-01

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO 2 , have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO 2 /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots

  9. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  10. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-01-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision

  11. The Two-Beam-Line Ion Implanter and Review of its Application to Creation of Complex Layers by the IBAD Method

    International Nuclear Information System (INIS)

    Rajchel, B.; Drwiega, M.; Lipinska, E.; Hajduk, R.

    1998-12-01

    The present status of the two-beam-line ion implanter its basic specifications after the upgrading and the possibilities of its application to ion engineering methods is presented. The examples of created layers (DLC, TiN x , SiC x ) and research methods applied to find out the features of the ion beam assisted deposited coatings are presented in order to prove the suitability of the device to scientific studies

  12. Growth of group III nitride films by pulsed electron beam deposition

    International Nuclear Information System (INIS)

    Ohta, J.; Sakurada, K.; Shih, F.-Y.; Kobayashi, A.; Fujioka, H.

    2009-01-01

    We have grown group III nitride films on Al 2 O 3 (0 0 0 1), 6H-SiC (0 0 0 1), and ZnO (0001-bar) substrates by pulsed electron beam deposition (PED) for the first time and investigated their characteristics. We found that c-plane AlN and GaN grow epitaxially on these substrates. It has been revealed that the growth of GaN on atomically flat 6H-SiC substrates starts with the three-dimensional mode and eventually changes into the two-dimensional mode. The GaN films exhibited strong near-band-edge emission in their room temperature photoluminescence spectra. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C. - Graphical abstract: We have grown group III nitride films by pulsed electron beam deposition (PED) and found that the films of group III nitrides grow epitaxially on 6H-SiC and Al 2 O 3 substrates. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C.

  13. An indirect method to measure the electric charge deposited on insulators during PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dinator, M.I.; Cancino, S.A.; Miranda, P.A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile); Morales, J.R. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago (Chile)], E-mail: rmorales@uchile.cl; Seelenfreund, A. [Universidad Academia de Humanismo Cristiano, Condell 343, Providencia, Santiago (Chile)

    2007-10-15

    Total charge deposited by a proton beam in an insulator during PIXE analysis has been indirectly determined using a Mylar film coated with cobalt. Elemental concentrations in the samples, pieces of volcanic glass, were obtained and compared to concentrations determined by ICP OES on the same samples. The strong agreement between these results shows the accuracy of the charge determined by this method.

  14. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    International Nuclear Information System (INIS)

    Bharathy, P. Vijai; Nataraj, D.; Chu, Paul K.; Wang, Huaiyu; Yang, Q.; Kiran, M.S.R.N.; Silvestre-Albero, J.; Mangalaraj, D.

    2010-01-01

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp 3 /sp 2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  15. Large area ion and plasma beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Waldorf, J. [IPT Ionen- und Plasmatech. GmbH, Kaiserslautern (Germany)

    1996-06-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.).

  16. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    Waldorf, J.

    1996-01-01

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  17. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO{sub 2} for non-volatile memory device

    Energy Technology Data Exchange (ETDEWEB)

    Stepina, N.P. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)], E-mail: nstepina@mail.ru; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)

    2008-11-03

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO{sub 2}, have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO{sub 2} /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots.

  18. Properties of TiN coatings deposited by the method of condensation with ion bombardment accompanied by high-energy ion beam

    International Nuclear Information System (INIS)

    Obrezkov, O.I.; Vershok, B.A.; Dormashev, A.B.; Margulev, I.Ya.; Molchanova, S.A.; Andreev, E.S.; Dervuk, V.V.

    2002-01-01

    Vacuum-sputtering adapted commercial facility based coating of stainless steel with titanium nitride followed two procedures: ion bombardment condensation (IBC) and IBC under simultaneous effect of ion beam (IB). The deposition rate was equal to 0.1 μm min -1 ; the investigated coatings were characterized by 2.5 μm depth. Comparison analysis of features and characteristics of the specimens, as well as, full-scale tests of a coated cutting tool enabled to make conclusions about advantages of application of IB assisted IBC technology in contrast to the reference IBC technology [ru

  19. Analysis of sub-bandgap losses in TiO2 coating deposited via single and dual ion beam deposition

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Hlubuček, Jiří; Horodyská, Petra; Budasz, Jiří; Václavík, Jan

    2017-01-01

    Roč. 626, March (2017), s. 60-65 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Ion beam deposition * Titanium dioxide * Optical coating * Sub-bandgap losses * Urbach tail Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.879, year: 2016 http://www.sciencedirect.com/science/article/pii/S0040609017301256

  20. Atomic layer deposition of HfO2 on graphene through controlled ion beam treatment

    International Nuclear Information System (INIS)

    Kim, Ki Seok; Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun; Yeom, Geun Young; Kim, Kyong Nam

    2016-01-01

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar + ion beam, we cleaned the polymer residue without damaging the graphene network. HfO 2 grown by atomic layer deposition on graphene cleaned using an Ar + ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar + ion cleaning) showed a non-uniform structure. A graphene–HfO 2 –metal capacitor fabricated by growing 20-nm thick HfO 2 on graphene exhibited a very low leakage current (<10 −11 A/cm 2 ) for Ar + ion-cleaned graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  1. Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition

    NARCIS (Netherlands)

    Botman, A.; Hesselberth, M.; Mulders, J.J.L.

    2008-01-01

    Focused electron-beam-induced deposition (EBID) allows the rapid fabrication of three-dimensional nanodevices and metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. The authors present two topics on platinum-containing nanostructures created by

  2. Surface modification of M50 steel by dual-ion-beam dynamic mixing

    International Nuclear Information System (INIS)

    Kuang Yuanzhu; Jan Jun; Qin Ouyang

    1994-01-01

    TaN films have many attractive characteristics, and so have been used for electronic and mechanical applications. There are many methods used for deposition of TaN films. Recently, the ion-beam dynamic mixing method has been used for thin film deposition and materials modification. In order to obtain high performance, stoichiometric composition and good adhesion we have deposited TaN films by a dual-ion-beam dynamic mixing method. This paper introduces the deposition and properties of TaN films on M50 steel by dual-ion-beam dynamic mixing. The microstructure of films was analysed by X-ray diffraction and Auger electron spectroscopy (AES). The microhardness, resistance to wear and erosion of these films were determined. The results showed that (1) the TaN films were successfully deposited on M50 steel by this method, (2) the performance, resistance to wear and erosion of M50 steel were improved by ion-beam-mixing deposition of the TaN thin films, (3) AES showed there was a mixed layer on the film interface, (4) the microhardness of the thin film depends on microstructure and thickness and (5) the microstructure and quality of the films depends on the deposition conditions, so it is important to select the proper operational parameters of ion sources. ((orig.))

  3. Influence of substrate temperature and annealing on structural and optical properties of TiO{sub 2} films deposited by reactive e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pjević, D., E-mail: dejanp@vinca.rs [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Marinković, T.; Savić, J.; Bundaleski, N.; Obradović, M.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Kulik, M. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie St. 6, Dubna 141980, Moscow Region (Russian Federation)

    2015-09-30

    The influence of deposition and post-deposition annealing parameters on the structure and optical properties of TiO{sub 2} thin films synthesized by reactive e-beam evaporation is reported. Pure Ti (99.9%) was evaporated in oxygen atmosphere to form thin films on Si (100) and glass substrates. Depositions were conducted on substrates held at room temperature and at 200–400 °C heated substrates. Post-deposition annealing was done for 3 h at 500 °C in air. Compositional and structural studies were performed by Rutherford backscattering spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy, and optical properties were studied by ultraviolet–visible spectroscopy and analytically by pointwise unconstrained minimization approach method. It was found that both the structure and optical properties of the films are strongly influenced by the deposition and processing parameters. All deposited samples showed good stoichiometry of Ti:O ~ 1:2. Depending on the substrate temperature and oxygen pressure in the chamber during the deposition, anatase–rutile mixed films were obtained, and in some cases TiO and Ti{sub 2}O{sub 3} phases were observed. Substrate deposition temperature appears to play the major role on the final structure of the films, while post-deposition annealing adds up for the lack of oxygen in some cases and invokes crystal grain growth of already initiated phases. The results can be interesting towards the development of TiO{sub 2} thin films with defined structure and optical properties. - Highlights: • TiO{sub 2} films were deposited by reactive e-beam evaporation. • Structure and properties were studied as a function of deposition temperature. • Stoichiometry of as-deposited films was Ti:O ~ 1:2, containing different Ti-O phases. • Post-deposition annealing yielded phase transformation, affecting the properties. • Refractive index increases with the substrate deposition temperature.

  4. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    Science.gov (United States)

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  5. Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.

    2018-03-01

    The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.

  6. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  7. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathy, P. Vijai [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Nataraj, D., E-mail: de.natraj@gmail.com [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Chu, Paul K.; Wang, Huaiyu [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Kiran, M.S.R.N. [School of Physics, University of Hyderabad, Hyderabad, Andra Pradesh (India); Silvestre-Albero, J. [Laboratorio de Materiales Avanzados, Departmento de Quimica Inorganica, Universidad de Alicante, Ap 99, E-03080 Alicante (Spain); Mangalaraj, D. [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India)

    2010-10-15

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp{sup 3}/sp{sup 2} hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  8. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    International Nuclear Information System (INIS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO x N y ) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized

  9. The rational design of a Au(I) precursor for focused electron beam induced deposition

    NARCIS (Netherlands)

    Marashdeh, Ali; Tiesma, Thiadrik; van Velzen, Niels J. C.; Harder, Sjoerd; Havenith, Remco W. A.; De Hosson, Jeff T. M.; van Dorp, Willem F.

    2017-01-01

    Au(I) complexes are studied as precursors for focused electron beam induced processing (FEBIP). FEBIP is an advanced direct-write technique for nanometer-scale chemical synthesis. The stability and volatility of the complexes are characterized to design an improved precursor for pure Au deposition.

  10. Flexible, ionic liquid-based micro-supercapacitor produced by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, L.G.; Piseri, P.; De Giorgio, F.; Arbizzani, C.; Milani, P.; Soavi, F.

    2015-01-01

    Highlights: • We exploited Supersonic Cluster Beam Deposition for the fabrication of a flexible, planar micro-supercapacitor featuring nanostructured carbon electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. • The micro-supercapacitor operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 . • The micro-supercapacitor features long cycling stability over 2x10 4 cycle on flat and bent configuration. -- Graphical abstract: Display Omitted -- Abstract: Power generation and storage in electronics require flexible, thin micro-electrochemical energy storage/conversion systems. Micro-supercapacitors (μSCs) with double-layer capacitance carbon electrodes are attracting much attention for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. Supersonic Cluster Beam Deposition (SCBD) is an effective strategy for the development of nanostructured, binder-free porous carbon electrodes on temperature sensitive substrates including polymers. We exploited SCBD for the development of a flexible, planar μSC featuring nanostructured carbon (ns-C) electrodes deposited on a plastic Mylar substrate and N-trimethyl-N-propyl-ammonium bis(trifluoromethanesulfonyl) imide (N 1113 TFSI) ionic liquid electrolyte. The electrochemical performance at different temperatures of the μSC which operates at 3 V above RT up to 80 °C with a capacitance density approaching 10 F cm −3 and delivering maximum specific energy and power densities of 10 mWh cm −3 and 8-10 W cm −3 with long cycling stability over 2 × 10 4 cycles is here reported and discussed

  11. Cumulative percent energy deposition of photon beam incident on different targets, simulated by Monte Carlo

    International Nuclear Information System (INIS)

    Kandic, A.; Jevremovic, T.; Boreli, F.

    1989-01-01

    Monte Carlo simulation (without secondary radiation) of the standard photon interactions (Compton scattering, photoelectric absorption and pair protection) for the complex slab's geometry is used in numerical code ACCA. A typical ACCA run will yield: (a) transmission of primary photon radiation differential in energy, (b) the spectrum of energy deposited in the target as a function of position and (c) the cumulative percent energy deposition as a function of position. A cumulative percent energy deposition of photon monoenergetic beam incident on simplest and complexity tissue slab and Fe slab are presented in this paper. (author). 5 refs.; 2 figs

  12. Metallographic techniques for evaluation of Thermal Barrier Coatings produced by Electron Beam Physical Vapor Deposition

    International Nuclear Information System (INIS)

    Kelly, Matthew; Singh, Jogender; Todd, Judith; Copley, Steven; Wolfe, Douglas

    2008-01-01

    Thermal Barrier Coatings (TBC) produced by Electron Beam Physical Vapor Deposition (EB-PVD) are primarily applied to critical hot section turbine components. EB-PVD TBC for turbine applications exhibit a complicated structure of porous ceramic columns separated by voids that offers mechanical compliance. Currently there are no standard evaluation methods for evaluating EB-PVD TBC structure quantitatively. This paper proposes a metallographic method for preparing samples and evaluating techniques to quantitatively measure structure. TBC samples were produced and evaluated with the proposed metallographic technique and digital image analysis for columnar grain size and relative intercolumnar porosity. Incorporation of the proposed evaluation technique will increase knowledge of the relation between processing parameters and material properties by incorporating a structural link. Application of this evaluation method will directly benefit areas of quality control, microstructural model development, and reduced development time for process scaling

  13. Controlled fabrication of nano-scale double barrier magnetic tunnel junctions using focused ion beam milling method

    International Nuclear Information System (INIS)

    Wei, H.X.; Wang, T.X.; Zeng, Z.M.; Zhang, X.Q.; Zhao, J.; Han, X.F.

    2006-01-01

    The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni 79 Fe 21 (5)/Ir 22 Mn 78 (12)/Co 6 Fe 2 B 2 (4)/Al(1) -oxide/Co 6 Fe 2 B 2 (6)/Al (1)-oxide/Co 6 Fe 2 B 2 (4)/Ir 22 Mn 78 (12)/Ni 79 Fe 21 (5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nmx400 nm, 200 nmx200 nm nano-scale were prepared and their R-H, I-V characteristics were measured.

  14. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    OpenAIRE

    Venkattraman, A; Alexeenko, Alina A

    2010-01-01

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron‐beam (e‐beam) physical vapor deposition of copper thin films. A suitable molecular model for copper‐copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi‐symmetric DSMC simulations for analysis of a typical e‐beam metal deposition system with a cup crucible. The dimensional and non‐dimensional mass fluxes obt...

  15. Electron pulsed beam induced processing of thin film surface by Nb3Ge deposited into a stainless steel tape

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1988-01-01

    A surface of superconductive thin film of Nb 3 Ge deposited onto a stainless steel tape was processed using the electron beam technique. The electron beam used had the following parameters: beam current density from 400 to 1000 A/cm 2 ; beam energy 100 keV; beam impulse length 300 ns. By theoretical analysis it is shown that the heating of film surface is an adiabatic process. It corresponds to our experimental data and pictures showing a surface remelting due to electron beam influence. After beam processing the superconductive parameters of the film remain unchanged. Roentgenograms have been analysed of Nb 3 Ge film surface recrystallized due to electron beam influence

  16. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  17. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    Science.gov (United States)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  18. Effective beam method for element concentrations

    International Nuclear Information System (INIS)

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-01-01

    A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)

  19. Erosion behaviour of physically vapour-deposited and chemically vapour-deposited SiC films coated on molybdenum during oxygenated argon beam thinning

    International Nuclear Information System (INIS)

    Shikama, T.; Kitajima, M.; Fukutomi, M.; Okada, M.

    1984-01-01

    The erosion behaviour during bombardment with a 5 keV argon beam at room temperature was studied for silicon carbide (SiC) films of thickness of about 10 μm coated on molybdenum by physical vapour deposition (PVD) and chemical vapour deposition (CVD). The PVD SiC (plasma-assisted ion plating) exhibited a greater thinning rate than the CVD SiC film. Electron probe X-ray microanalysis revealed that the chemical composition of PVD SiC was changed to a composition enriched in silicon by the bombardment, and there was a notable change in its surface morphology. The CVD SiC retained its initial chemical composition with only a small change in its surface morphology. Auger electron spectroscopy indicated that silicon oxide was formed on the surface of PVD SiC by the bombardment. The greater thinning rate and easier change in chemical composition in PVD SiC could be attributed to its readier chemical reaction with oxygen due to its more non-uniform structure and weaker chemical bonding. Oxygen was present as one of the impurities in the argon beam. (Auth.)

  20. SRF cavity alignment detection method using beam-induced HOM with curved beam orbit

    Science.gov (United States)

    Hattori, Ayaka; Hayano, Hitoshi

    2017-09-01

    We have developed a method to obtain mechanical centers of nine cell superconducting radio frequency (SRF) cavities from localized dipole modes, that is one of the higher order modes (HOM) induced by low-energy beams. It is to be noted that low-energy beams, which are used as alignment probes, are easy to bend in fringe fields of accelerator cavities. The estimation of the beam passing orbit is important because only information about the beam positions measured by beam position monitors outside the cavities is available. In this case, the alignment information about the cavities can be obtained by optimizing the parameters of the acceleration components over the beam orbit simulation to consistently represent the position of the beam position monitors measured at every beam sweep. We discuss details of the orbit estimation method, and estimate the mechanical center of the localized modes through experiments performed at the STF accelerator. The mechanical center is determined as (x , y) =(0 . 44 ± 0 . 56 mm , - 1 . 95 ± 0 . 40 mm) . We also discuss the error and the applicable range of this method.

  1. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  2. Brain tumors and synchrotron radiation: new methods for mini-beams radiation therapy and treatment follow-up by functional imaging

    International Nuclear Information System (INIS)

    Deman, P.

    2012-01-01

    An innovative method of synchrotron radiation therapy, called mini-beams, was proposed by A. Dilmanian et al. in 2006. Mini-beams consists in tumor irradiation with monochromatic sub-millimetric x-ray beams spatially fractionated produced by a synchrotron source. To obtain a homogeneous dose in the target volume, an interleaving is realized using two orthogonal incidences. Adjacent healthy tissue is only partially irradiated by mini-beams, the areas between the beams only receive scattered radiation and therefore the energy deposited is 10 to 15 times lower than on one mini-beam axis, leading to a sparing effect of healthy tissue even when a high dose is deposited in the target volume. The thesis project is the development of this experimental method of monochromatic mini-beams, which involves the control of the irradiation geometry, the control of dosimetry and its modeling by Monte Carlo simulations. To evaluate the method, preclinical experiments on models of brain tumors implanted in rats (F98) are performed. Follow-up by anatomical and functional imaging is carried out to evaluate the effectiveness of the treatment. Functional imaging of cerebral perfusion (volume and cerebral blood flow, mean transit time of heavy elements) appears to be associated in the literature as a relevant method for monitoring prognostic. The key parameters of the cerebral vasculature are mainly studied in magnetic resonance imaging (MRI), because of the harmlessness of this imaging modality. The relation between MRI signal and contrast agent concentration is very complex and no quantitative relationship is well known. Synchrotron Radiation Computed Tomography (SRCT) is an imaging modality with performances to measure absolute contrast agent concentration very close to the theoretical limits and can be used as gold-standard. The used pharmacokinetic models need as input parameters a contrast agent concentration versus time. A comparison of perfusion measurements between MRI and SRCT

  3. SERS analysis of Ag nanostructures produced by ion-beam deposition

    Science.gov (United States)

    Atanasov, P. A.; Nedyalkov, N. N.; Nikov, Ru G.; Grüner, Ch; Rauschenbach, B.; Fukata, N.

    2018-03-01

    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).

  4. Atomic layer deposition of HfO{sub 2} on graphene through controlled ion beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Seok [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 (Korea, Republic of); Oh, Il-Kwon; Jung, Hanearl; Kim, Hyungjun [School of Electrical and Electronics Engineering, Yonsei University, 50 Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Yeom, Geun Young, E-mail: knam1004@dju.kr, E-mail: gyyeom@skku.edu [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 (Korea, Republic of); Kim, Kyong Nam, E-mail: knam1004@dju.kr, E-mail: gyyeom@skku.edu [School of Advanced Materials Science and Engineering, Daejeon University, Yongun-dong, Dong-gu, Daejeon 34520 (Korea, Republic of)

    2016-05-23

    The polymer residue generated during the graphene transfer process to the substrate tends to cause problems (e.g., a decrease in electron mobility, unwanted doping, and non-uniform deposition of the dielectric material). In this study, by using a controllable low-energy Ar{sup +} ion beam, we cleaned the polymer residue without damaging the graphene network. HfO{sub 2} grown by atomic layer deposition on graphene cleaned using an Ar{sup +} ion beam showed a dense uniform structure, whereas that grown on the transferred graphene (before Ar{sup +} ion cleaning) showed a non-uniform structure. A graphene–HfO{sub 2}–metal capacitor fabricated by growing 20-nm thick HfO{sub 2} on graphene exhibited a very low leakage current (<10{sup −11} A/cm{sup 2}) for Ar{sup +} ion-cleaned graphene, whereas a similar capacitor grown using the transferred graphene showed high leakage current.

  5. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation

    Science.gov (United States)

    Ristau, Detlev; Gunster, Stefan; Bosch, Salvador; Duparre, Angela; Masetti, Enrico; Ferre-Borrull, Josep; Kiriakidis, George; Peiro, Francesca; Quesnel, Etienne; Tikhonravov, Alexander

    2002-06-01

    Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approx1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nmrms) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

  6. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  7. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  8. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  9. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  10. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    Directory of Open Access Journals (Sweden)

    Domagoj Belić

    2017-11-01

    Full Text Available This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID. Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications.

  11. Effect of beam condition in variable-shaped electron-beam direct writing for 0.25 μm and below

    International Nuclear Information System (INIS)

    Hirasawa, S.; Nakajima, K.; Tamura, T.; Aizaki, N.

    1993-01-01

    The effect of incident electron-beam conditions, which are acceleration voltage and beam blur of variable-shaped electron-beam direct writing, is investigated using the deposited energy distribution to realize a fine pattern of ≤0.25 μm in trilayer resist process. The deposited energy distribution is calculated using a three-dimensional Monte Carlo method. In a trilayer resist system, a thin bottom resist layer can be used, because the contrast value derived from the Monte Carlo calculation is independent of the bottom layer thickness. The beam blur of 0.05 μm does not degrade 0.25 μm line-and-space (L/S) patterns, but seriously degrades 0.1 μm L/S patterns. Higher acceleration voltage is effective for improving the contrast. At lower acceleration voltage, the slope of the deposited energy profile defined at the resist bottom is mainly influenced by electron scattering. On the other hand, at higher acceleration voltage, the slope of deposited energy profile mainly depends on the beam blur. The 0.1 μm L/S patterns are expected to be resolved at 30 kV when there is less than 0.02 μm beam blur with trilayer resist system. The possibility of using a single layer resist process for 0.1 μm L/S pattern will be barely realized at the conditions of 50 kV and 0.02 μm beam blur

  12. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growt......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....... experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation...

  13. Characterization and in situ fluorescence diagnostic of the deposition of YBa2Cu3O7-x thin films by pseudo-spark electron beam ablation

    International Nuclear Information System (INIS)

    Jiang, Q.D.; Matacotta, F.C.; Masciarelli, G.; Fuso, F.; Arimondo, E.; Sandrin, G.

    1992-12-01

    The pseudo-spark electron beam ablation (PSA) technique is a comparatively simple and inexpensive method to deposit thin films of oxide materials. The effect of the electron beam power density on the efficiency of the PSA is studied. Results concerning the optimization of the deposition process of high quality superconducting YBa 2 Cu 3 O 7-x thin films on single crystal SrTiO 3 substrates are reported. Correlation between processing parameters and superconducting properties of the thin films are presented: in particular, the effects of the break-down voltage of the pseudo-spark and geometrical arrangement of the target-substrate-beam system on the T c of the resulting films. In situ spectral analysis of the radiative emission from the plasma plume has been performed at different distances from the surface of the target and at different break-down voltages of the pseudo-spark. The role of the oxygen pressure in the PSA process, which could be one order of magnitude less than that for a typical laser ablation system, is discussed. (author). 17 refs, 7 figs, 1 tab

  14. Synthetic methods for beam to beam power balancing capability of large laser facilities

    International Nuclear Information System (INIS)

    Chen Guangyu; Zhang Xiaomin; Zhao Runchang; Zheng Wanguo; Yang Xiaoyu; You Yong; Wang Chengcheng; Shao Yunfei

    2011-01-01

    To account for output power balancing capability of large laser facilities, a synthetic method with beam to beam root-mean-square is presented. Firstly, a conversion process for the facilities from original data of beam powers to regular data is given. The regular data contribute to the normal distribution approximately, and then a corresponding simple method of root-mean-square for beam to beam power balancing capability is given.Secondly, based on theory of total control charts and cause-selecting control charts, control charts with root-mean-square are established which show short-term variety of power balancing capability of the facilities. Mean rate of failure occurrence is also defined and used to describe long-term trend of global balancing capabilities of the facilities. Finally, advantages of the intuitive and efficient diagnosis for synthetic methods are illustrated by analysis of experimental data. (authors)

  15. Large flexibility of high aspect ratio carbon nanostructures fabricated by electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-11-26

    The mechanical properties of free-standing electron beam deposited amorphous carbon structures have been studied using atomic force microscopy. The fabricated carbon blades are found to be extraordinarily flexible, capable of undergoing vertical deflection up to {approx} 75% of their total length without inelastic deformation. The elastic bending modulus of these structures was calculated to be 28 {+-} 10 GPa.

  16. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO3 capacitor application

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2008-01-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO 3 (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of ± 2.5 MV/cm and a leakage current density of about 1 x 10 -5 A/cm 2 at an applied field of ± 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO 2 /Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors

  17. 3D magnetic nanostructures grown by focused electron and ion beam induced deposition

    Science.gov (United States)

    Fernandez-Pacheco, Amalio

    Three-dimensional nanomagnetism is an emerging research area, where magnetic nanostructures extend along the whole space, presenting novel functionalities not limited to the substrate plane. The development of this field could have a revolutionary impact in fields such as electronics, the Internet of Things or bio-applications. In this contribution, I will show our recent work on 3D magnetic nanostructures grown by focused electron and ion beam induced deposition. This 3D nano-printing techniques, based on the local chemical vapor deposition of a gas via the interaction with electrons and ions, makes the fabrication of complex 3D magnetic nanostructures possible. First, I will show how by exploiting different growth regimes, suspended Cobalt nanowires with modulated diameter can be patterned, with potential as domain wall devices. Afterwards, I will show recent results where the synthesis of Iron-Gallium alloys can be exploited in the field of artificial multiferroics. Moreover, we are developing novel methodologies combining physical vapor deposition and 3D nano-printing, creating Permalloy 3D nanostrips with controllable widths and lengths up to a few microns. This approach has been extended to more complex geometries by exploiting advanced simulation growth techniques combining Monte Carlo and continuum model methods. Throughout the talk, I will show the methodology we are following to characterize 3D magnetic nanostructures, by combining magneto-optical Kerr effect, scanning probe microscopy and electron and X-R magnetic imaging, and I will highlight some of the challenges and opportunities when studying these structures. I acknowledge funding from EPSRC and the Winton Foundation.

  18. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  19. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  20. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  1. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  2. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  3. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013) ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  4. Improved stability of organic light-emitting diode with aluminum cathodes prepared by ion beam assisted deposition

    Directory of Open Access Journals (Sweden)

    Soon Moon Jeong, Deuk Yeon Lee, Won Hoe Koo, Sang Hun Choi, Hong Koo Baik, Se-Jong Lee and Kie Moon Song

    2005-01-01

    Full Text Available We have fabricated highly stable organic electroluminescent devices based on spin-coated poly-p-phenylene-vynylene (PPV thin films. The electrical properties of aluminum cathode, prepared by ion beam assisted deposition, on PPV have been investigated and compared to those by thermal evaporation. Although energetic particles of Al assisted by Ar+ ion may damage the organic material, I–V–L characteristics are improved by applying thin Al buffer layer. In addition, a dense Al cathode inhibits the permeation of H2O and O2 into PPV film through pinhole defects, and thus retards dark spot growth. It may be deduced from highly packed structure of Al cathode with an increase in the contact area between Al and PPV that reduce the contact resistance. In conclusion, the lifetime of organic light-emitting device (OLED has been extended effectively by dense Al film through ion beam assisted deposition process.

  5. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  6. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  7. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  8. Optical band gap of ZnO thin films deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Nadeem, M. Y.; Ali, S. L.; Wasiq, M. F.; Rana, A. M.

    2006-01-01

    Optical band gap of ZnO thin films deposited by electron beam evaporation at evaporation rates ranging 5 As/sup -1/ to 15 As /sup -1/ and thickness ranging 1000A to 3000A is presented. Deposited films were annealed at 573K for one and half hour. The variations in the optical band gap were observed and showed decreasing behavior from 3.15 eV, 3.05 eV, from 3.18 eV to 3.10 eV and from 3.19 eV to 3.18 eV for films with respective thickness 1000A, 2000 A, 3000 A on increasing the evaporation rate from 5 As/sup-1/ to As/sup -1/ by keeping thickness constant. (author)

  9. Crystal structure of TiNi nanoparticles obtained by Ar ion beam deposition

    International Nuclear Information System (INIS)

    Castro, A. Torres; Cuellar, E. Lopez; Mendez, U. Ortiz; Yacaman, M. Jose

    2008-01-01

    Nanoparticles are a state of matter that have properties different from either molecules or bulk solids, turning them into a very interesting class of materials to study. In the present work, the crystal structure of TiNi nanoparticles obtained by ion beam deposition is characterized. TiNi nanoparticles were obtained from TiNi wire samples by sputtering with Ar ions using a Gatan precision ion polishing system. The TiNi nanoparticles were deposited on a Lacey carbon film that was used for characterization by transmission electron microscopy. The nanoparticles were characterized by high-resolution transmission electron microscopy, high-angle annular dark-field imaging, electron diffraction, scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Results of nanodiffraction seem to indicate that the nanoparticles keep the same B2 crystal structure as the bulk material but with a decreased lattice parameter

  10. Ion beam assisted deposition of metal-coatings on beryllium

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Tul'ev, V.V.

    2015-01-01

    Thin films were applied on beryllium substrates on the basis of metals (Cr, Ti, Cu and W) with method of the ion-assisted deposition in vacuum. Me/Be structures were prepared using 20 kV ions irradiation during deposition on beryllium neutral fraction generated from vacuum arc plasma. Rutherford back scattering and computer simulation RUMP code were applied to investigate the composition of the modified beryllium surface. Researches showed that the superficial structure is formed on beryllium by thickness ~ 50-60 nm. The covering composition includes atoms of the deposited metal (0.5-3.3 at. %), atoms of technological impurity carbon (0.8-1.8 at. %) and oxygen (6.3-9.9 at. %), atoms of beryllium from the substrate. Ion assisted deposition of metals on beryllium substrate is accompanied by radiation enhanced diffusion of metals, oxygen atoms in the substrate, out diffusion of beryllium, carbon atoms in the deposited coating and sputtering film-forming ions assists. (authors)

  11. Advance in research on aerosol deposition simulation methods

    International Nuclear Information System (INIS)

    Liu Keyang; Li Jingsong

    2011-01-01

    A comprehensive analysis of the health effects of inhaled toxic aerosols requires exact data on airway deposition. A knowledge of the effect of inhaled drugs is essential to the optimization of aerosol drug delivery. Sophisticated analytical deposition models can be used for the computation of total, regional and generation specific deposition efficiencies. The continuously enhancing computer seem to allow us to study the particle transport and deposition in more and more realistic airway geometries with the help of computational fluid dynamics (CFD) simulation method. In this article, the trends in aerosol deposition models and lung models, and the methods for achievement of deposition simulations are also reviewed. (authors)

  12. Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amin-Ahmadi, B., E-mail: behnam.amin-ahmadi@ua.ac.be [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Idrissi, H. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Galceran, M. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Colla, M.S. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Raskin, J.P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Pardoen, T. [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-la-Neuve (Belgium); Godet, S. [Université Libre de Bruxelles, Matters and Materials Department, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Schryvers, D. [Electron Microscopy for Materials Science (EMAT), Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-07-31

    The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 55–65° leads to a higher potential for twin formation. - Highlights: • Fraction of twinned grains and twin boundary density increase with deposition rate. • Clear increase of dislocation density was observed for the highest deposition rate. • A moderate increase of the mean grain size with increase of deposition rate is found. • For the highest deposition rate, the twin boundaries lose their coherency. • Fraction of high angle grain boundary (55–65) increases with deposition rate.

  13. Smooth silk fibroin nanofilm deposited by 1064-nm pulsed laser beam from an opaque target

    International Nuclear Information System (INIS)

    Nozaki, R.; Nakayama, S.; Senna, M.

    2013-01-01

    In an attempt to prepare smooth nanostructured thin films of silk fibroin (SF) by near-infrared (NIR) pulsed laser deposition, an opaque target was prepared from an emulsified aqueous solution of SF. Upon irradiation of 1064-nm pulsed laser beam at its fluence 5 J/cm 2 , a thin film of SF was deposited on the Si(100) substrate with its root-mean-square surface roughness, 0.37 nm, smoother than those obtained from a compressed target of SF powders by approximately an order of magnitude. The attainment of an extra-smooth film from the opaque target was discussed in terms of multiple Mie scattering of the incident NIR beam, leading to an increase in the plasma density, intensified optical breakdown, ablation of better dispersed SF molecular units, and a film with more intensive intermolecular cross-linking. - Highlights: • Thin film of silk fibroin with its RMS surface roughness, R rms , 0.37 nm was obtained. • The use of a target from an emulsified solution of SF was the key issue. • Mechanism involved was elucidated in terms of enhanced Mie scattering

  14. Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced haemocompatibility on PTFE

    International Nuclear Information System (INIS)

    Srinivasan, S.; Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A.

    2012-01-01

    Diamond-like carbon (DLC) and N-doped DLC (DLC:N) thin films have been synthesized on polytetrafluroethylene (PTFE) and silicon wafers using ion beam deposition. Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were used to study the structural and morphological properties of the coated surface. The results show that the ion beam deposited DLC thin films exhibit high hardness and Young's modulus, low coefficient of friction and high adhesion to the substrate. Low concentration of nitrogen doping in DLC improves the mechanical properties and reduces the surface roughness. DLC coating decreases the surface energy and improves the wettability of PTFE. The platelet adhesion results show that the haemocompatibility of DLC coated PTFE, especially DLC:N coated PTFE, has been significantly enhanced as compared with uncoated PTFE. SEM observations show that the platelet reaction on the DLC and DLC:N coated PTFE was minimized as the platelets were much less aggregated and activated.

  15. Ion beam sputter deposited TiAlN films for metal-insulator-metal (Ba,Sr)TiO{sub 3} capacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Wang, S.-C. [Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St, Yung-Kang City, Tainan, Taiwan (China); Chen, J.-S. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China); Huang, J.-L. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan, Taiwan (China)], E-mail: jlh888@mail.ncku.edu.tw

    2008-09-01

    The present study evaluated the feasibility of TiAlN films deposited using the ion beam sputter deposition (IBSD) method for metal-insulator-metal (MIM) (Ba,Sr)TiO{sub 3} (BST) capacitors. The BST films were crystallized at temperatures above 650 deg. C. TiAlN films deposited using the IBSD method were found having smooth surface and low electrical resistivity at high temperature conditions. TiAlN films showed a good diffusion barrier property against BST components. The J-E (current density-electric field) characteristics of Al/BST/TiAlN capacitors were good, with a high break down electric field of {+-} 2.5 MV/cm and a leakage current density of about 1 x 10{sup -5} A/cm{sup 2} at an applied field of {+-} 0.5 MV/cm. Thermal stress and lateral oxidation that occurred at the interface damaged the capacitor stacking structure. Macro holes that dispersed on the films resulted in higher leakage current and inconsistent J-E characteristics. Vacuum annealing with lower heating rate and furnace cooling, and a Ti-Al adhesion layer between TiAlN and the SiO{sub 2}/Si substrate can effectively minimize the stress effect. TiAlN film deposited using IBSD can be considered as a potential electrode and diffusion barrier material for MIM BST capacitors.

  16. Systematic study of radiation hardness of single crystal CVD diamond material investigated with an Au beam and IBIC method

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang; Traeger, Michael [GSI, Darmstadt (Germany); Draveny, Antoine; Galatyuk, Tetyana [TU, Darmstadt (Germany); Grilj, Veljko [RBI, Zagreb (Croatia); Collaboration: HADES-Collaboration

    2016-07-01

    For the future high rate CBM experiment at FAIR a radiation hard and fast beam detector is required. The detector has to perform precise T0 measurement (σ<50 ps) and should also offer decent beam monitoring capability. These tasks can be performed by utilizing single-crystal Chemical Vapor Deposition (ScCVD) diamond based detector. A prototype, segmented, detector have been constructed and the properties of this detector have been studied with a high current density beam (about 3.10{sup 6}/s/mm{sup 2}) of 1.23 A GeV Au ions in HADES. The irradiated detector properties have been studied at RBI in Zagreb by means of IBIC method. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  17. Uniform deposition of size-selected clusters using Lissajous scanning

    International Nuclear Information System (INIS)

    Beniya, Atsushi; Watanabe, Yoshihide; Hirata, Hirohito

    2016-01-01

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt n (n = 7, 15, 20) clusters uniformly deposited on the Al 2 O 3 /NiAl(110) surface and demonstrated the importance of uniform deposition.

  18. Uniform deposition of size-selected clusters using Lissajous scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Hirata, Hirohito [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.

  19. Method for energy recovery of spent ERL beams

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Frank; Hannon, Fay; Rimmer, Robert; Whitney, R. Roy

    2018-01-16

    A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.

  20. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa

    2012-01-01

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO 2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm 2 ) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  1. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  2. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    Hou Xinggang; Ma Jun; Liu Andong; Li Dejun; Huang Meidong; Deng Xiangyun

    2010-01-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  3. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  4. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  5. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  6. Importance of dewetting in organic molecular-beam deposition: Pentacene on gold

    International Nuclear Information System (INIS)

    Beernink, G.; Strunskus, T.; Witte, G.; Woell, Ch.

    2004-01-01

    Organic molecular-beam deposition of pentacene on gold substrates has been investigated using a multitechnique approach. The morphology of the organic thin films depends strongly on the substrate temperature. Pronounced dewetting and island formation are observed at room temperature. Whereas pentacene molecules adopt a planar monolayer structure, they continue to grow in an upright orientation in multilayer films as inferred from x-ray absorption spectroscopy and atomic force microscopy. These results are in pronounced contrast to a recent scanning tunneling microscopy (STM) study by Kang and Zhu [Appl. Phys. Lett. 82, 3248 (2003)] and indicate fundamental problems in the interpretation of STM measurements for organic thin films

  7. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  8. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  9. Electrical characterization of defects introduced in n-Si during electron beam deposition of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Coelho, S.M.M.; Nel, J.M.; Meyer, W.E. [Physics Department, University of Pretoria, Pretoria (South Africa)

    2012-10-15

    We have used deep level transient spectroscopy (DLTS) and high resolution DLTS to characterize the defects introduced in epitaxially grown n-type, P-doped, Si during electron beam deposition (EBD) of Pt for Schottky contact formation. The identity of some of these defects could be established by comparing their properties to those of well-known defects introduced by high energy electron irradiation of the same material. The most prominent EBD-induced defects thus identified were the E-center (VP center), the A-center (VO center), interstitial carbon (C{sub i}), and the interstitial carbon-substitutional carbon (C{sub i}C{sub s}) pair. EBD also introduced some defects that were not observed after high energy electron irradiation. DLTS depth profiling revealed that the main defects, VO and VP, could be detected up to 0.5 {mu}m below the metal-Si interface. Shielding the sample from particles originating in the region of the electron beam significantly reduced defect introduction and resulted in Schottky contacts with improved rectification properties. Finally, we have found that exposing the sample to EBD conditions, without actually depositing metal, introduced a different set of electron traps, not introduced by the EBD process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Broad beam ion sources and some surface processes

    International Nuclear Information System (INIS)

    Neumann, H.; Scholze, F.; Tarz, M.; Schindler, A.; Wiese, R.; Nestler, M.; Blum, T.

    2005-01-01

    Modern broad-beam multi-aperture ion sources are widely used in material and surface technology applications. Customizing the generated ion beam properties (i. e. the ion current density profile) for specific demands of the application is a main challenge in the improvement of the ion beam technologies. First we introduce ion sources based on different plasma excitation principles shortly. An overview of source plasma and ion beam measurement methods deliver input data for modelling methods. This beam profile modelling using numerical trajectory codes and the validation of the results by Faraday cup measurements as a basis for ion beam profile design are described. Furthermore possibilities for ex situ and in situ beam profile control are demonstrated, like a special method for in situ control of a linear ion source beam profile, a grid modification for circular beam profile design and a cluster principle for broad beam sources. By means of these methods, the beam shape may be adapted to specific technological demands. Examples of broad beam source application in ion beam figuring of optical surfaces, modification of stainless steel, photo voltaic processes and deposition of EUVL-multilayer stacks are finally presented. (Author)

  11. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  12. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  13. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  14. Two Methods For Simulating the Strong-Strong Beam-Beam Interaction in Hadron Colliders

    International Nuclear Information System (INIS)

    Warnock, Robert L.

    2002-01-01

    We present and compare the method of weighted macro particle tracking and the Perron-Frobenius operator technique for simulating the time evolution of two beams coupled via the collective beam-beam interaction in 2-D and 4-D (transverse) phase space. The coherent dipole modes, with and without lattice nonlinearities and external excitation, are studied by means of the Vlasov-Poisson system

  15. Energy deposition profile for modification proposal of ISOLDE’s HRS Beam Dump, from FLUKA simulations

    CERN Document Server

    Vlachoudis, V

    2014-01-01

    The current ISOLDE HRS beam dump has been found to be unsuitable on previous simulations, due to thermomechanical stresses. In this paper a proposal for modifying HRS dump is studied using FLUKA. The energy deposited in this modified beam dump and the amount of neutrons streaming to the tunnel area are scored and compared with the simulation of current dump. Two versions of the modification have been assessed, determining which of them is more desirable in terms of influence of radiation on ISOLDE’s tunnel. Finally, a rough estimate of temperature raise in the modified dump is shown. Further conclusions on the adequacy of these modifications need to include the thermomechanical calculations’ results, based on those presented here.

  16. Beam imaging sensor and method for using same

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2017-01-03

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature. In another embodiment, the beam imaging sensor of the present invention comprises, among other things, a discontinuous partially circumferential slit. Also disclosed is a method for using the various beams sensor embodiments of the present invention.

  17. Effect of ion beam bombardment on the carbide in M2 steel modified by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y.; Wang, F.J.; Wang, Y.K. (Dept. of Materials Engineering, Dalian Univ. of Technology (China)); Ma, T.C. (National Lab. of Materials Modification by Beam Three, Dalian (China))

    1991-10-30

    Transmission electron microscopy was used to study the effect of nitrogen ion bombardment with different doses on the carbides in M2 high speed steel as the nitrogen ions penetrated into the nitride films during ion-beam-assisted deposition. With different doses of nitrogen, alterations in the morphological characteristics of the carbide M6C at the interface were observed. With lower doses, knitting-like contrast within the carbide showed subboundary structure defects in M6C. With increasing dose, the substructure defects were broken up into small fragments owing to heavy bombardment. The microstructures of carbides at the interface damaged by nitrogen ions are discussed in detail. (orig.).

  18. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    International Nuclear Information System (INIS)

    Remnev, G.E.; Zakoutaev, A.N.; Grushin, I.I.; Matvenko, V.M.; Potemkin, A.V.; Ryzhkov, V.A.; Chernikov, E.V.

    1996-01-01

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm 2 , pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs

  19. The deposition of thin metal films at the high-intensity pulsed-ion-beam influence on the metals

    Energy Technology Data Exchange (ETDEWEB)

    Remnev, G E; Zakoutaev, A N; Grushin, I I; Matvenko, V M; Potemkin, A V; Ryzhkov, V A [Tomsk Polytechnic Univ. (Russian Federation). Nuclear Physics Inst.; Ivanov, Yu F [Construction Academy, Tomsk (Russian Federation); Chernikov, E V [Siberian Physical Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    A high-intensity pulsed ion beam with parameters: ion energy 350-500 keV, ion current density at a target > 200 A/cm{sup 2}, pulse duration 60 ns, was used for metal deposition. The film deposition rate was 0.6-4.0 mm/s. Transmission electron microscopy/transmission electron diffraction investigations of the copper target-film system were performed. The impurity content in the film was determined by x-ray fluorescence analysis and secondary ion mass spectrometry. The angular distributions of the ablated plasma were measured. (author). 2 figs., 7 refs.

  20. A simple three dimensional wide-angle beam propagation method

    Science.gov (United States)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  1. Visible light active TiO{sub 2} films prepared by electron beam deposition of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Hou Xinggang, E-mail: hou226@163.co [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Ma Jun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Liu Andong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Dejun; Huang Meidong; Deng Xiangyun [Department of Physics, Tianjin Normal University, Tianjin 300387 (China)

    2010-03-15

    TiO{sub 2} films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO{sub 2} films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO{sub 2} is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO{sub 2} films by this method is affected by the concentration of impregnating solution.

  2. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    Science.gov (United States)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  3. Creation of biomaterials using the dual beam IBAD methods

    International Nuclear Information System (INIS)

    Rajchel, B.; Jaworska, L.; Proniewicz, L.M.

    2001-01-01

    The Dual Beam Ion Assisted Deposition technique (IBAD) application for creation of the hard, biocompatible coating layers has been presented and discussed. As substrate the stainless steel, Ti, special titanium alloys, the Al 2 O 3 or other solid materials can be used. Presently, the biocompatible coating layers such as DLC (Diamond Like Coating), β-SiC, TiC, hydroxyapatite and thin coating layer based on Ca, P, O, H have been prepared and investigated

  4. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

    Science.gov (United States)

    Nishino, Shunsuke; Ekino, Satoshi; Inukai, Manabu; Omprakash, Muthusamy; Adachi, Masahiro; Kiyama, Makoto; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro

    2018-06-01

    Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1- x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K-1 m-1 was found at around 0.2 Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

  5. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  6. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  7. π-Conjugated organic-based devices with different layered structures produced by the neutral cluster beam deposition method and operating conduction mechanism

    International Nuclear Information System (INIS)

    Seo, Hoon-Seok; Oh, Jeong-Do; Kim, Dae-Kyu; Shin, Eun-Sol; Choi, Jong-Ho

    2012-01-01

    The authors report on the systematic characterization of structural effects of organic complementary inverters based on two π-conjugated organic molecules, pentacene and copper hexadecafluorophthalocyanine (F 16 CuPc). Three classes of inverters with different layered structures in top-contact configuration were produced using the neutral cluster beam deposition method. Their voltage transfer characteristics, gain curves and hysteresis behaviour were characterized with respect to their thickness. Class I inverters, with generic structures of single-layered, p-and n-type (200/180 Å) transistors, exhibited high gains of 12.8 ± 1.0 with sharp inversions. Their two constituent transistors, with hole and electron mobilities of 0.38 cm 2 V -1 s -1 and 7.0 × 10 -3 cm 2 V -1 s -1 , respectively, showed well-coupled carrier conduction during operation. The behaviour of class II and III inverters, with layered heterojunction structures, was independent of upper-layer thickness and did not show hysteresis. The better performances of class II inverters, which showed high gains of 14.4 ± 1.1, were rationalized partly in terms of decreased mobility differences between their constituent transistors. Heterojunction geometries can be applied to obtain high-performance, fast-switching inverters by avoiding direct exposure of the air-sensitive transistors to ambient conditions. The inverters' general operating conduction mechanism is also discussed.

  8. Physical vapor deposition of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Kester, D.J.

    1991-01-01

    Cubic boron nitride was successfully deposited using physical vapor-deposition methods. RF-sputtering, magnetron sputtering, dual-ion-beam deposition, and ion-beam-assisted evaporation were all used. The ion-assisted evaporation, using boron evaporation and bombardment by nitrogen and argon ions, led to successful cubic boron nitride growth over the widest and most controllable range of conditions. It was found that two factors were important for c-BN growth: bombardment of the growing film and the presence of argon. A systematic study of the deposition conditions was carried out. It was found that the value of momentum transferred into the growing from by the bombarding ions was critical. There was a very narrow transition range in which mixed cubic and hexagonal phase films were prepared. Momentum-per-atom value took into account all the variables involved in ion-assisted deposition: deposition rate, ion energy, ion flux, and ion species. No other factor led to the same control of the process. The role of temperature was also studied; it was found that at low temperatures only mixed cubic and hexagonal material are deposited

  9. Method of the nanosecond microstructure creation of the negative ion beam

    International Nuclear Information System (INIS)

    Novikov-Borodin, A.V.

    2001-01-01

    The method of the nanosecond microstructure creation of the negative ion beam with nanosecond edge times is presented. The method of creation does not destroy the beam compensation by the residual gas,so it available for low-energy beams. Such effects as a beam divergence and,therefore,a bad beam transport are overcome. The two plate travelling wave chopper is used.The special shape of the plate deflecting voltage is needed. The estimations and a comparison with the existing methods of a beam deflection are presented

  10. Hydrodynamic calculations of 20-TeV beam interactions with the SSC beam dump

    International Nuclear Information System (INIS)

    Wilson, D.C.; Wingate, C.A.; Goldstein, J.C.; Godwin, R.P.; Mokhov, N.V.

    1993-01-01

    The 300μs, 400 MJ SSC proton beam must be contained when extracted to the external beam dump. The current design for the SSC beam dump can tolerate the beat load produced if the beam is deflected into a raster scan over the face of the dump. If the high frequency deflecting magnet were to fail, the beam would scan a single strip across the dump face resulting in higher local energy deposition. This could vaporize some material and lead to high pressures. Since the beam duration is comparable to the characteristic time of expected hydrodynamic motions, we have combined the static energy deposition capability of the MARS computer code with the two- and three-dimensional hydrodynamics of the MBA and SPHINX codes. EOS data suggest an energy deposition threshold of 15 kJ/g, below which hydrodynamic effects are minimal. Above this our 2D calculations show a hole boring rate of 7 cm/μs for the nominal beam, and pressures of a few kbar. Scanning the nominal beam faster than 0.08 cm/μs should minimize hydrodynamic effects. 3D calculations support this

  11. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  12. Characteristics of OTFTs based on α-ω- Dihexyl-sexithiophene(DH6T) using Organic Molecular Beam Deposition

    International Nuclear Information System (INIS)

    Han, Dae Hee; Park, Byung Eun

    2011-01-01

    We fabricated an organic thin film transistor using organic semiconductor material α-ω- Dihexyl-sexithiophene (DH6T). The organic semiconductor was deposited using organic molecular beam deposition (OMBD). The deposition rate was 0.3A/s and the final thickness was 100 nm. After deposition, we annealed at 40 deg. C, 60 deg. C, 80 deg. C. In present, DH6T was used as a p-type semiconductor, so we measured 0V∼-40V. We measured drain current versus drain voltage, drain current versus gate voltage, calculated mobility and On/Off ratio at 40 deg. C, 60 deg. C, 80 deg. C. The field-effect mobility was 8x10- 3 , 9x10- 3 , 1.2x10- 2 , and on/off ratio was 1.75x10- 2 , 1.85x10- 2 , 2.17x10- 2 , respectively.

  13. Assessment of the effectiveness of uranium deposit searching methods

    International Nuclear Information System (INIS)

    Suran, J.

    1998-01-01

    The following groups of uranium deposit searching methods are described: radiometric review of foreign work; aerial radiometric survey; automobile radiometric survey; emanation survey up to 1 m; emanation survey up to 2 m; ground radiometric survey; radiometric survey in pits; deep radiometric survey; combination of the above methods; and other methods (drilling survey). For vein-type deposits, the majority of Czech deposits were discovered in 1945-1965 by radiometric review of foreign work, automobile radiometric survey, and emanation survey up to 1 m. The first significant indications of sandstone type uranium deposits were observed in the mid-1960 by aerial radiometric survey and confirmed later by drilling. (P.A.)

  14. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  15. Method of laser beam coding for control systems

    Science.gov (United States)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  16. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  17. Impact of post deposition annealing in the electrically active traps at the interface between Ge(001) substrates and LaGeO{sub x} films grown by molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Baldovino, Silvia; Fanciulli, Marco [Laboratorio MDM, CNR-IMM, via C. Olivetti 2, Agrate Brianza (MB) I-20864 (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy); Tsoutsou, Dimitra; Golias, Evangelos; Dimoulas, Athanasios [MBE Laboratory, Institute of Materials Science, NCSR DEMOKRITOS, Athens 153 10 (Greece)

    2011-10-15

    Changes in the electron trapping at the interface between Ge substrates and LaGeO{sub x} films grown by atomic O assisted molecular beam deposition are inferred upon post deposition annealing treatment on the as-deposited films from electrically detected magnetic resonance (EDMR) spectroscopy and from the electrical response of Pt/LaGeO{sub x}/Ge metal oxide semiconductor (MOS) capacitors. The improved electrical performance of the MOS capacitors upon annealing is consistent with the EDMR detected reduction of oxide defects which are associated with GeO species in the LaGeO{sub x} layer as evidenced by x-ray photoelectron spectroscopy.

  18. Optimization of ion assist beam deposition of magnesium oxide template films during initial nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Groves, James R [Los Alamos National Laboratory; Matias, Vladimir [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; De Paula, Raymond F [Los Alamos National Laboratory; Hammond, Robert H [STANFORD UNIV.; Clemens, Bruce M [STANFOED UNIV.

    2010-01-01

    Recent efforts in investigating the mechanism of ion beam assisted deposition (IBAD) of biaxially textured thin films of magnesium oxide (MgO) template layers have shown that the texture develops suddenly during the initial 2 nm of deposition. To help understand and tune the behavior during this initial stage, we pre-deposited thin layers of MgO with no ion assist prior to IBAD growth of MgO. We found that biaxial texture develops for pre-deposited thicknesses < 2 nm, and that the thinnest layer tested, at 1 nm, resulted in the best qualitative RHEED image, indicative of good biaxial texture development. The texture developed during IBAD growth on the 1.5 nm pre-deposited layer is slightly worse and IBAD growth on the 2 nm pre-deposited layer produces a fiber texture. Application of these layers on an Al{sub 2}O{sub 3} starting surface, which has been shown to impede texture development, improves the overall quality of the IBAD MgO and has some of the characteristics of a biaxially texture RHEED pattern. It is suggested that the use of thin (<2 nm) pre-deposited layers may eliminate the need for bed layers like Si{sub 3}N{sub 4} and Y{sub 2}O{sub 3} that are currently thought to be required for proper biaxial texture development in IBAD MgO.

  19. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  20. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    International Nuclear Information System (INIS)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook

    2017-01-01

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  1. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook, E-mail: cwjeon@ynu.ac.kr

    2017-04-30

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  2. Ammonia release method for depositing metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Silver, G.L.; Martin, F.S.

    1993-12-31

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  3. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  4. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  5. SU-D-BRC-01: An Automatic Beam Model Commissioning Method for Monte Carlo Simulations in Pencil-Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Shen, C; Tian, Z; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States)

    2016-06-15

    Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy, and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with

  6. Simultaneous Power Deposition Detection of Two EC Beams with the BIS Analysis in Moving TCV Plasmas

    Science.gov (United States)

    Curchod, L.; Pochelon, A.; Decker, J.; Felici, F.; Goodman, T. P.; Moret, J.-M.; Paley, J. I.

    2009-11-01

    Modulation of power amplitude is a widespread to determine the radial absorption profile of externally launched power in fusion plasmas. There are many techniques to analyze the plasma response to such a modulation. The break-in-slope (BIS) analysis can draw an estimated power deposition profile for each power step up. In this paper, the BIS analysis is used to monitor the power deposition location of one or two EC power beams simultaneously in a non-stationary plasma being displaced vertically in the TCV tokamak vessel. Except from radial discrepancies, the results have high time resolution and compare well with simulations from the R2D2-C3PO-LUKE ray-tracing and Fokker-Planck code suite.

  7. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  8. Gas flow parameter determination by molecular beam method

    International Nuclear Information System (INIS)

    Zarvin, A.E.; Sharafutdinov, R.G.

    1977-01-01

    This paper describes a molecular-beam system intended for studying nonequilibrium processes in supersonic rarefied gas flows. The system represented is a small molecular beam source placed inside the low intensity wind tunnel of the Institute of Thermophysics, Siberian Branch of the USSR Academy of Sciences. The time-of-flight method is used for measuring molecular velocity distribution functions on molecular beam axis. (Auth.)

  9. Comparison of two methods for measuring the emittance of a beam

    International Nuclear Information System (INIS)

    Parain, J.

    Two methods of measuring beam emittance were analyzed. The three-distance method is based on measurement of the dimensions of the beam at three points, while the three-slope method uses beam dimension measurements under three focusing conditions. Allowing for the errors in measuring the dimensions of the beam, the two methods are of equal accuracy. The three-distance method requires three detectors, but it has the advantage of making it possible to measure the emittance on a single cycle of the accelerator, and can therefore be used to perform control measurements on each cycle. (auth)

  10. Tests of Local Hadron Calibration Approaches in ATLAS Combined Beam Tests

    International Nuclear Information System (INIS)

    Grahn, Karl-Johan; Kiryunin, Andrey; Pospelov, Guennadi

    2011-01-01

    Three ATLAS calorimeters in the region of the forward crack at |η| 3.2 in the nominal ATLAS setup and a typical section of the two barrel calorimeters at |η| = 0.45 of ATLAS have been exposed to combined beam tests with single electrons and pions. Detailed shower shape studies of electrons and pions with comparisons to various Geant4 based simulations utilizing different physics lists are presented for the endcap beam test. The local hadron calibration approach as used in the full Atlas setup has been applied to the endcap beam test data. An extension of it using layer correlations has been tested with the barrel test beam data. Both methods utilize modular correction steps based on shower shape variables to correct for invisible energy inside the reconstructed clusters in the calorimeters (compensation) and for lost energy deposits outside of the reconstructed clusters (dead material and out-of-cluster deposits). Results for both methods and comparisons to Monte Carlo simulations are presented.

  11. Characterization of ion beam induced nanostructures

    International Nuclear Information System (INIS)

    Ghatak, J.; Satpati, B.; Umananda, M.; Kabiraj, D.; Som, T.; Dev, B.N.; Akimoto, K.; Ito, K.; Emoto, T.; Satyam, P.V.

    2006-01-01

    Tailoring of nanostructures with energetic ion beams has become an active area of research leading to the fundamental understanding of ion-solid interactions at nanoscale regime and with possible applications in the near future. Rutherford backscattering spectrometry (RBS), high resolution transmission electron microscopy (HRTEM) and asymmetric X-ray Bragg-rocking curve experimental methods have been used to characterize ion-induced effects in nanostructures. The possibility of surface and sub-surface/interface alloying at nano-scale regime, ion-beam induced embedding, crater formation, sputtering yield variations for systems with isolated nanoislands, semi-continuous and continuous films of noble metals (Au, Ag) deposited on single crystalline silicon will be reviewed. MeV-ion induced changes in specified Au-nanoislands on silicon substrate are tracked as a function of ion fluence using ex situ TEM. Strain induced in the bulk silicon substrate surface due to 1.5 MeV Au 2+ and C 2+ ion beam irradiation is determined by using HRTEM and asymmetric Bragg X-ray rocking curve methods. Preliminary results on 1.5 MeV Au 2+ ion-induced effects in nanoislands of Co deposited on silicon substrate will be discussed

  12. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  13. Corrosion-resistant titanium nitride coatings formed on stainless steel by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    1994-01-01

    Titanium films 70nm thick were deposited on austenitic type 316L stainless steel substrates, and these specimens were irradiated with titanium ions of energy 70kV at a fluence of 1x10 17 ioncm -2 , using a metal vapor vacuum arc (MEVVA) IV metallic ion source at room temperature. After irradiation, titanium nitride (TiN) films were deposited by titanium evaporation and simultaneous irradiation by a nitrogen ion beam, with transport ratios of Ti to N atoms from 0.5 to 10.0 and an ion acceleration voltage of 2kV. The preferred orientation of the TiN films varied from left angle 200 right angle to left angle 111 right angle normal to the surface when the transport ratio was increased. With the help of Auger electron spectroscopy, interfacial mixing was verified. Nitrogen atoms were present in the state of titanium nitride for all transport ratios from 0.5 up to 10.0. However, the chemical bonding state of titanium changed from titanium nitride to the metallic state with increasing transport ratio Ti/N. The corrosion behavior was evaluated in an aqueous solution of sulfuric acid saturated with oxygen, using multisweep cyclic voltammetry measurements. Thin film deposition of pure titanium and titanium implantation prior to TiN deposition have beneficial effects on the suppression of transpassive chromium dissolution. ((orig.))

  14. A simple method of dosimetry for E-beam radiation

    International Nuclear Information System (INIS)

    Spencer, D.S.; Thalacker, V.P.; Chasman, J.N.; Siegel, S.

    1985-01-01

    A simple method utilizing a photochromic 'intensity label' for monitoring electron-beam sources was evaluated. The labels exhibit a color change upon exposure to UV or e-beam radiation. A correlation was found between absorbed energy and Gardner Color Index at low electron-beam doses. (author)

  15. Effects of beam, target and substrate potentials in ion beam processing

    International Nuclear Information System (INIS)

    Harper, J.M.E.

    1982-01-01

    Ion beam etching and deposition are normally carried out with beam, target and substrate potentials near ground potential. In this paper, the effects of intentional or unintentional changes in these potentials are described. Examples include beam neutralization, a single extraction grid, substrate bias, and target bias. Each example is described in terms of beam plasma parameters. (Auth.)

  16. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y. [The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsucho, Nishiku, Hamamatsu, Shizuoka 431-1202 (Japan); Nonaka, T.; Hattori, T.; Kasamatsu, Y.; Haraguchi, D.; Watanabe, Y.; Uchiyama, K.; Ishikawa, M. [Hamamatsu Photonics K.K. Electron Tube Division, 314-5 Shimokanzo, Iwata, Shizuoka 438-0193 (Japan)

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  17. Laser ray tracing and power deposition on an unstructured three-dimensional grid

    International Nuclear Information System (INIS)

    Kaiser, Thomas B.

    2000-01-01

    A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent the beam(s). Ray trajectory equations are integrated using a method that is second order in time, exact for a constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Comparisons with analytic results are given for a density ramp in three dimensions, and a ''quadratic-well'' density trough in two dimensions. (c) 2000 The American Physical Society

  18. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. Examples of thin film property modification by ion bombardment during deposition, including effects which are primarily compositional as well as those which are primarily structural are presented. The examples demonstrate the usefulness of ion beam techniques in identifying and controlling the fundamental deposition parameters. 68 refs.; 15 figs.; 1 table

  19. Method for deposition of a conductor in integrated circuits

    Science.gov (United States)

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  20. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  1. An apparatus for sequential pulsed plasma beam treatment in combination with Arc PVD deposition

    International Nuclear Information System (INIS)

    Stanislawski, J.; Werner, Z.; Piekoszewski, J.; Richter, E.

    2002-01-01

    A hybrid type of apparatus is described which enables one to form a thin multi-layer film on the surface of any kind of solid substrate. In one process, the surface is treated with a high intensity pulse plasma beam which introduces the chosen kind of atoms into the near-surface layer of the substrate. In the second process, following the first without breaking the vacuum, the coating is formed by arc PVD (physics vapour deposition) process. Two examples of coatings formed on metallic and ceramic substrates are presented. (author)

  2. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  3. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  4. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    Storr, G.J.: Harrington, B.V.

    1993-01-01

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  5. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  6. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  7. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Constantinescu, C.; Patroi, E.; Codescu, M.; Dinescu, M.

    2013-01-01

    Highlights: ► NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. ► Nitrogen inclusion in thin film structures is related to improved coercitivity. ► Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3ω and 4ω) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 °C), nitrogen gas pressure, and radiofrequency power (75–150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  8. Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C., E-mail: catalin.constantinescu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania); Patroi, E.; Codescu, M. [National Institute for Research and Development in Electrical Engineering - Advanced Research, 313 Spl. Unirii, Sector 3, RO-030138, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor bd., Magurele, RO-077125, Bucharest (Romania)

    2013-03-01

    Highlights: Black-Right-Pointing-Pointer NdFeB thin films grown by PLD, in vacuum and in nitrogen, are presented. Black-Right-Pointing-Pointer Nitrogen inclusion in thin film structures is related to improved coercitivity. Black-Right-Pointing-Pointer Magnetical, optical and morphological properties of the thin films are discussed. - Abstract: NdFeB is a very attractive material for applications in electrical engineering and in electronics, for high-tech devices where high coercive field and high remanence are needed. In this paper we demonstrate that the deposition of nitrogen doped NdFeB thin films by pulsed laser deposition, in the presence of a nitrogen radiofrequency plasma beam, exhibit improved magnetic properties and surface morphology, when compared to vacuum deposited NdFeB layers. A Nd:YAG pulsed laser (3{omega} and 4{omega}) was focused on a NdFeB target, in vacuum, or in the presence of a nitrogen plasma beam. Substrate temperature (RT-850 Degree-Sign C), nitrogen gas pressure, and radiofrequency power (75-150 W), were particularly varied. The thin films were investigated by means of X-ray diffraction, atomic force microscopy, scanning electron microscopy, spectroscopic-ellipsometry, and vibrating sample magnetometry.

  9. High-throughput shadow mask printing of passive electrical components on paper by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo, E-mail: pmilani@mi.infn.it [CIMaINa and Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2016-04-18

    We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors with paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.

  10. Advances in complexity of beam halo-chaos and its control methods for beam transport networks

    International Nuclear Information System (INIS)

    Fang Jinqing

    2004-11-01

    The complexity theory of beam halo-chaos in beam transport networks and its control methods for a new subject of high-tech field is discussed. It is pointed that in recent years, there has been growing interest in proton beams of high power linear accelerator due to its attractive features in possible breakthrough applications in national defense and industry. In particular, high-current accelerator driven clean activity nuclear power systems for various applications as energy resources has been one of the most focusing issues in the current research, because it provides a safer, cleaner and cheaper nuclear energy resource. However, halo-chaos in high-current beam transport networks become a key concerned issue because it can generate excessive radioactivity therefore significantly limits its applications. It is very important to study the complexity properties of beam halo-chaos and to understand the basic physical mechanisms for halo chaos formation as well as to develop effective control methods for its suppression. These are very challenging subjects for the current research. The main research advances in the subjects, including experimental investigation and the oretical research, especially some very efficient control methods developed through many years of efforts of authors are reviewed and summarized. Finally, some research outlooks are given. (author)

  11. The Investigation of E-beam Deposited Titanium Dioxide and Calcium Titanate Thin Films

    Directory of Open Access Journals (Sweden)

    Kristina BOČKUTĖ

    2013-09-01

    Full Text Available Thin titanium dioxide and calcium titanate films were deposited using electron beam evaporation technique. The substrate temperature during the deposition was changed from room temperature to 600 °C to test its influence on TiO2 film formation and optical properties. The properties of CaTiO3 were investigated also. For the evaluation of the structural properties the formed thin ceramic films were studied by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, scanning electron microscopy (SEM and atomic force microscopy (AFM. Optical properties of thin TiO2 ceramics were investigated using optical spectroscope and the experimental data were collected in the ultraviolet-visible and near-infrared ranges with a step width of 1 nm. Electrical properties were investigated by impedance spectroscopy.It was found that substrate temperature has influence on the formed thin films density. The density increased when the substrate temperature increased. Substrate temperature had influence on the crystallographic, structural and optical properties also. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.1805

  12. Fast beam cut-off method in RF-knockout extraction for spot-scanning

    CERN Document Server

    Furukawa, T

    2002-01-01

    An irradiation method with magnetic scanning has been developed in order to provide accurate irradiation even for an irregular target shape. The scanning method has strongly required a lower ripple of the beam spill and a faster response to beam-on/off in slow extraction from a synchrotron ring. At HIMAC, RF-knockout extraction has utilized a bunched beam to reduce the beam-spill ripple. Therefore, particles near the resonance can be spilled out from the separatrices by synchrotron oscillation as well as by a transverse RF field. From this point of view, a fast beam cut-off method has been proposed and verified by both simulations and experiments. The maximum delay from the beam cut-off signal to beam-off has been improved to around 60 mu s from 700 mu s by a usual method. Unwanted dose has been considerably reduced by around a factor of 10 compared with that by the usual method.

  13. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  14. Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.; Wolford, M. F. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5346 (United States)

    2016-03-14

    Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO{sub 2} concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO{sub 2} is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO{sub 2} and energy cost for breaking a CO{sub 2} molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting of 82% N{sub 2}, 6% O{sub 2}, and 12% CO{sub 2}, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO{sub 2} molecules, beam energy density deposition on the order of 20 J/cm{sup 3} is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO{sub 2} and 10% CH{sub 4} at beam energy density deposition of 4.2 J/cm{sup 3}, accumulated over 43 shots in a 20 min interval, reduced the CO{sub 2} concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO{sub 2}, 11.5% CH{sub 4}, and balance of Ar, reduced the CO{sub 2} concentration to below 11% with energy deposition 0.71 J/cm{sup 3}, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO{sub 2} reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO{sub 2} with pulsed electron beams are also explored, yielding new possible avenues of research.

  15. A practical attenuation compensation method for cone beam spect

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.; Greer, K.L.; Coleman, R.E.

    1987-01-01

    An algorithm for attenuation compensation of cone beam SPECT images has been developed and implemented. The algorithm is based on a multiplicative post-processing method previously used for parallel and fan beam geometries. This method computes the compensation from the estimated average attenuation of photons originating from each image pixel. In the present development, a uniform attenuation coefficient inside of the body contour is assumed, although the method could be extended to include a non-uniform attenuation map. The algorithm is tested with experimental projections of a phantom obtained using a cone beam collimator. Profiles through the reconstructed images are presented as a quantitative test of the improvement due to the compensation. The algorithm provides adequate compensation for attenuation in a simple uniform cylindrical phantom, and the computational time is short compared to that expected for iterative reconstruction techniques. Also observed are image distortions in some reconstructed slices when the source distribution extends beyond the edge of the cone beam axial field-of-view

  16. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  17. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  18. Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells

    OpenAIRE

    Nematollahi, Mohammadreza; Yang, Xiaodong; Aas, Lars Martin Sandvik; Ghadyani, Zahra; Kildemo, Morten; Gibson, Ursula; Reenaas, Turid Worren

    2015-01-01

    We have investigated the structural and optical properties of Cr-doped ZnS (ZnS:Cr) thin films (0–7.5 at.% Cr) for use in intermediate band solar cells. The films were grown on Si(100) in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) equipments. Introducing Cr into ZnS resulted in Cr related subbandgap absorption, but also reduced the grain size. The sub-bandgap absorption increased with increasing Cr content, and with increasing growth temperature, but did not depend on the ...

  19. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  20. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jian-ping [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Fu, Zhi-qiang, E-mail: fuzq@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Xiao-peng [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Yue, Wen; Wang, Cheng-biao [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-10-30

    Highlights: • AlN films were fabricated by dual ion beam sputtering. • Chemical bond status and phase composition of the films were studied by XPS and XRD. • Optical constants were measured by spectroscopic ellipsometry. • Influence of ion/atom arrival ratio on the films was studied. - Abstract: In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV–vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  1. A method of beam control for NFZ-10 industrial irradiation linac

    International Nuclear Information System (INIS)

    Zhao Minghua

    2000-01-01

    Traditionally negative feedback coming from output beam is used to stabilize output beam by regulating filament voltage of bombarding diode electron gun. The authors analysed the shortcomings of the method in detail and put forward a new method of regulating bombarding high voltage in NFZ-10 industrial irradiation linac. Output beam with high stability and high accuracy was obtained

  2. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  3. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  4. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  5. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  6. Comparative study of LaNiO$_3$/LaAlO$_3$ heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    OpenAIRE

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H. -U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity, microstructure as revealed by high-resolution transmission electron microscopy images and resistiv...

  7. Analytical Evaluation of Beam Deformation Problem Using Approximate Methods

    DEFF Research Database (Denmark)

    Barari, Amin; Kimiaeifar, A.; Domairry, G.

    2010-01-01

    The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified......, and this process produces noise in the obtained answers. This paper deals with the solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Perturbation, Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM) and Variational...... Iteration Method (VIM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate for systems of non-linear differential equation....

  8. Analytical N beam position monitor method

    Directory of Open Access Journals (Sweden)

    A. Wegscheider

    2017-11-01

    Full Text Available Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β^{*}-leveling on luminosity will require many operational optics. A fast measurement of the β-function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs. A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  9. Analytical N beam position monitor method

    Science.gov (United States)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  10. Electrical performance of phase change memory cells with Ge3Sb2Te6 deposited by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella; Boniardi, Mattia; Redaelli, Andrea

    2015-01-01

    Here, we report on the electrical characterization of phase change memory cells containing a Ge 3 Sb 2 Te 6 (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles

  11. Electron beam treatment planning: A review of dose computation methods

    International Nuclear Information System (INIS)

    Mohan, R.; Riley, R.; Laughlin, J.S.

    1983-01-01

    Various methods of dose computations are reviewed. The equivalent path length methods used to account for body curvature and internal structure are not adequate because they ignore the lateral diffusion of electrons. The Monte Carlo method for the broad field three-dimensional situation in treatment planning is impractical because of the enormous computer time required. The pencil beam technique may represent a suitable compromise. The behavior of a pencil beam may be described by the multiple scattering theory or, alternatively, generated using the Monte Carlo method. Although nearly two orders of magnitude slower than the equivalent path length technique, the pencil beam method improves accuracy sufficiently to justify its use. It applies very well when accounting for the effect of surface irregularities; the formulation for handling inhomogeneous internal structure is yet to be developed

  12. Simulation of the Beam Dump for a High Intensity Electron Gun

    CERN Document Server

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  13. Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Seval Pinarbasi

    2012-01-01

    Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.

  14. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  15. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  16. Evaluation of methods for characterizations of deposits; Utvaerdering av metoder foer avlagringsmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, J.; Bjoerkman, P. [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-11-01

    In boilers there are problems with deposits on parts exposed to the flue gas, in particular on heat exchanging parts and to an increasing extent with the changeover to the use of biofuels and wood waste fuels. In order to solve the problems deposits are examined by using a deposit probe and taking deposit samples from the interior of the boiler. In this report an evaluation of methods of analysis is performed based on experiences in both literature and laboratory work. The evaluation forms the basis of an instruction for deposit measurements in 'Vaermeforsks Maethandbok'. The procedure for use of deposit probes is treated as well as the importance of careful and well planned sample preparation before analysis. In the literature a large number of methods used for analysis of deposits from flue ashes and similar applications are found. The methods include chemical analyses of solids and liquids, analysis of crystal structures, thermal properties and the solid mechanics of the materials. Several methods, for example SEM-EDX, XRF, ICP, IC and methods for determining the mechanical and thermal properties are suited for a survey examination of a deposit, while more specialised methods with higher resolution can add information but require a clear framing of a question and in practice are suited for only separate samples. Examples from the latter category are AES, ESCA and TOF-SIMS.

  17. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-01-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO 2 ) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility

  18. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique

    International Nuclear Information System (INIS)

    Galdikas, A.; Cerapaite-Trusinskiene, R.; Laukaitis, G.; Dudonis, J.

    2008-01-01

    In the present study, the process of yttrium-stabilized zirconia (YSZ) thin films deposition on optical quartz (SiO 2 ) substrates using e-beam deposition technique controlling electron gun power is analyzed. It was found that electron gun power influences the non-monotonous kinetics of YSZ film surface roughness. The evolution of YSZ thin film surface roughness was analyzed by a kinetic model. The model is based on the rate equations and includes processes of surface diffusion of the adatoms and the clusters, nucleation, growth and coalescence of islands in the case of thin film growth in Volmer-Weber mode. The analysis of the experimental results done by modeling explains non-monotonous kinetics and dependence of the surface roughness on the electron gun power. A good quantitative agreement with experimental results is obtained taking into account the initial roughness of the substrate surface and the amount of the clusters in the flux of evaporated material.

  19. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  20. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  1. A variable electron beam and its irradiation effect on optical and ...

    Indian Academy of Sciences (India)

    A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by ...

  2. Electroplating method for producing ultralow-mass fissionable deposits

    International Nuclear Information System (INIS)

    Ruddy, F.H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit

  3. Method of research and study of uranium deposits

    International Nuclear Information System (INIS)

    Lenoble, A.

    1955-01-01

    In a first part, the author gives a fast retrospective of the evaluations of the uranium deposits in the French Union. The author established a method of prospecting and studying, modifiable at all times following the experiences and the results, permitting to make the general inventory of uranium resources on the territory. The method is based on: 1 - the determination of geological guides in order to mark the most promising deposits, 2 - the definition of a methodology adapted to every steps of the research, 3 - the choice of the material adapted for each of the steps. This method, originally established for the prospecting in crystalline massifs, is adaptable to the prospecting of the sedimentary formations. (M.B.) [fr

  4. Method for varying the diameter of a beam of charged particles

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1977-01-01

    In the bombardment of targets with beams of charged particles, a method is described for varying and controlling the diameter of such beams by passing the beam through an envelope of conductive material. The envelope is spaced from and coaxial with the beam. A selected dc potential is applied to the envelope, and the beam diameter is controlled by changing this applied potential in a direction away from ground potential to increase the beam diameter or by changing the potential in a direction toward ground potential to decrease said beam diameter

  5. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    Science.gov (United States)

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  6. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  7. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    Science.gov (United States)

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  8. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    Science.gov (United States)

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Control of beam halo-chaos using neural network self-adaptation method

    International Nuclear Information System (INIS)

    Fang Jinqing; Huang Guoxian; Luo Xiaoshu

    2004-11-01

    Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)

  10. Acoustic signal generation in excised muscle by pulsed proton beam irradiation and the possibility of its clinical application to radiation therapy

    International Nuclear Information System (INIS)

    Hayakawa, Yoshinori; Tada, Junichiro; Inada, Tetsuo; Kitagawa, Toshio; Wagai, Toshio; Yoshioka, Katsuya.

    1989-01-01

    Acoustic signals generated in liquids and in metals by pulsed proton beam are thought to be thermal shock wave due to localized energy deposition of incident protons. Thus the intensity of generated acoustic signals is almost proportional to the energy deposited at the region. This suggests the possibility for measuring spatial distribution of energy deposition of proton beam using the acoustic method. In proton beam radiation therapy, treatment planning is developed from data of X-ray computer tomography which reflects the information on the electron density distribution in the patient's body. Ensuring the agreement of the dose distribution in the patient with the planned one, however, is difficult. It is expected that the acoustic method can provide a useful tool for this purpose. The pulsed proton beam of 50ns in pulse width is used for cancer therapy at the University of Tsukuba. A hydrophone is used to detect acoustic signals generated by pulsed proton beam. Detected signals are amplified ten thousand times before being averaged and analyzed by digital oscilloscope. Measurements made suggest that the method could be useful for radiation therapy. (N.K.)

  11. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  12. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J

    1999-01-01

    An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.

  13. Method for producing uranium atomic beam source

    International Nuclear Information System (INIS)

    Krikorian, O.H.

    1976-01-01

    A method is described for producing a beam of neutral uranium atoms by vaporizing uranium from a compound UM/sub x/ heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared with that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe 2 . An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced

  14. Comparison of radiation detector performance for different metal contacts on CdZnTe deposited by electroless deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Q.; Dierre, F.; Crocco, J.; Bensalah, H.; Dieguez, E. [Crystal Growth Laboratory, Department of Materials Physics, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Ayoub, M. [Durham Scientific Crystals Laboratory, Netpark, Thomas Wright Way, Sedgefield, TS21, 3FD (United Kingdom); Corregidor, V.; Alves, E. [Unidade de Fisica e Aceleradores, LFI, ITN, E.N.10, 2686-953, Sacavem (Portugal); Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion. Laboratorio de TXRF/Laue-XRD. Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Perez, J.M. [CIEMAT, Edificio 22, Avda Complutense 22, 28040 Madrid (Spain)

    2011-11-15

    A comparative study of four different metals gold (Au), platinum (Pt), ruthenium (Ru) and rhodium (Rh) deposited on CdZnTe(CZT) by the electroless deposition method has been carried out. Two of these materials, Ru and Rh, have been deposited for the first time by this method. In contrast to the Pt deposition, the deposition of Ru and Rh were not carried out under the optimal conditions. The metals deposited on the samples were identified by Total reflection X-ray Fluorescence (TXRF). Rutherford Backscattering Spectrometry (RBS) analyses show that Au forms the thickest layer ({proportional_to}160 nm) for the experimental conditions of this work. Current-voltage measurements show that Pt forms a more linear ohmic contact with the lowest leakage current. A {sup 57}Co gamma ray spectrum gave a better detector performance with a FWHM 11 keV at 122 keV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, R. Shane; MacFarlan, Paul J.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. We demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.

  16. A fast and efficient method for sequential cone-beam tomography

    International Nuclear Information System (INIS)

    Koehler, Th.; Proksa, R.; Grass, M.

    2001-01-01

    Sequential cone-beam tomography is a method that uses data of two or more parallel circular trajectories of a cone-beam scanner to reconstruct the object function. We propose a condition for the data acquisition that ensures that all object points between two successive circles are irradiated over an angular span of the x-ray source position of exactly 360 deg. in total as seen along the rotation axis. A fast and efficient approximative reconstruction method for the proposed acquisition is presented which uses data from exactly 360 deg. for every object point. It is based on the Tent-FDK method which was recently developed for single circular cone-beam CT. The measurement geometry does not provide sufficient data for exact reconstruction but it is shown that the proposed reconstruction method provides satisfying image quality for small cone angles

  17. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co 60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  18. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition

    International Nuclear Information System (INIS)

    Yu, Ning; Shi, Qing; Wang, Huaping; Huang, Qiang; Fukuda, Toshio; Nakajima, Masahiro; Yang, Zhan; Sun, Lining

    2017-01-01

    Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy. (paper)

  19. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection

    International Nuclear Information System (INIS)

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Schardt, Dieter; Rietzel, Eike

    2010-01-01

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to ±28 mm on degrader were performed which resulted in a range adaptation of up to ±15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  20. Near spherical illumination of ion-beam and laser targets

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1985-01-01

    A procedure is developed for reducing energy-deposition asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which is proposed as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driven or reactor scenarios. It also allows the use of beam currents or energy fluxes and beam transverse profiles to help reduce deposition asymmetry with fewer beamlets. In the ideal limit of thin deposition layers and controlled beam profiles, at most six beamlets are needed for target symmetry

  1. Sagagd method for the beam shaping of uniform illumination

    International Nuclear Information System (INIS)

    Li Yongping; Chen Dewei; Wang Wei

    2002-01-01

    The simulated annealing algorithm, the genetic and the gradient descent algorithm are retrospectively and successfully amalgamated to optimal design of pure phase element for uniform beams. The process of this method is divided into three steps, first the energy enhancement of the main lobe, then the process to make the top of the main lobe to be smooth and the fringe to be steep, at last the full optimization beam. After these three steps of optimization, the beam is good enough to be applied to ICF

  2. ZnSe thin films by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Patil, P.S.; Tributsch, H. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CS, Glienicker Strasse-100, D-14109 Berlin (Germany); Ennaoui, A. [Hahn-Meitner-Institute, Bereich Physikalische Chemie, Abt. CG, Glienicker Strasse-100, D-14109 Berlin (Germany)

    1998-09-04

    The ZnSe thin films have been deposited onto glass substrates by the simple chemical bath deposition method using selenourea as a selenide ion source from an aqueous alkaline medium. The effect of Zn ion concentration, bath temperature and deposition time period on the quality and thickness of ZnSe films has been studied. The ZnSe films have been characterized by XRD, TEM, EDAX, TRMC (time-resolved microwave conductivity), optical absorbance and RBS techniques for their structural, compositional, electronic and optical properties. The as-deposited ZnSe films are found to be amorphous, Zn rich with optical band gap, Eg, equal to 2.9 eV

  3. Ion beam collimating grid to reduce added defects

    Science.gov (United States)

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  4. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  5. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  6. Systems and methods of varying charged particle beam spot size

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  7. Efficient electron beam deposition for repetitively pulsed krypton fluoride lasers

    International Nuclear Information System (INIS)

    Hegeler, F.; Myers, M.C.; Friedman, M.; Sethian, J.D.; Swanekamp, S.B.; Rose, D.V.; Welch, D.R.

    2002-01-01

    We have demonstrated that we can significantly increase the electron beam transmission efficiency through a pressure foil structure (hibachi) by segmenting the beam into strips to miss the hibachi support ribs. In order to increase the electron beam transmission, the cathode strips are adjusted to compensate for beam rotation and pinching. The beam propagation through the hibachi has been both measured and simulated with 1-D and 3-D codes

  8. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  9. Pulsed power particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1979-01-01

    Although substantial progress has been made in the last few years in developing the technology of intense particle beam drivers, there are still several unanswered questions which will determine their ultimate feasibility as fusion ignition systems. The questions of efficiency, cost, and single pulse scalability appear to have been answered affirmatively but repetitive pulse technology is still in its infancy. The allowable relatively low pellet gains and high available beam energies should greatly ease questions of pellet implosion physics. Insofar as beam-target coupling is concerned, ion deposition is thought to be understood and our measurements of enhanced electron deposition agree with theory. With the development of plasma discharges for intense beam transport and concentration it appears that light ion beams will be the preferred approach for reactors

  10. A fast iterative method for computing particle beams penetrating matter

    International Nuclear Information System (INIS)

    Boergers, C.

    1997-01-01

    Beams of microscopic particles penetrating matter are important in several fields. The application motivating our parameter choices in this paper is electron beam cancer therapy. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of this problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation (six if time independence is the only dimension-reducing assumption). If grid-based methods are to be practical at all, it is therefore necessary to develop fast solvers for the discretized problems. This is the subject of the present paper. For two-dimensional, mono-energetic, linear particle beam problems, we describe an iterative domain decomposition algorithm based on overlapping decompositions of the set of particle directions and computationally demonstrate its rapid, grid independent convergence. There appears to be no fundamental obstacle to generalizing the method to three-dimensional, energy dependent problems. 34 refs., 15 figs., 6 tabs

  11. Neutral beam heating in stellarators: a numerical approach

    International Nuclear Information System (INIS)

    Hokin, S.A.; Rome, J.A.; Hender, T.C.; Fowler, R.H.

    1983-03-01

    Calculation of neutral beam deposition and heating in stellarators is complicated by the twisty stellarator geometry and by the usual beam focusing, divergence, and cross-sectional shape considerations. A new deposition code has been written that takes all of this geometry into account. A unique feature of this code is that it gives particle deposition in field-line coordinates, enabling the thermalization problem to be solved more efficiently

  12. Improving the characteristics of Sn-doped In2O2 grown at room temperature with oxygen radical-assisted electron beam deposition

    Science.gov (United States)

    Oh, Min-Suk; Seo, Inseok

    2017-07-01

    Sn-doped In2O3 (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm2/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ˜ 2.8 × 10-2 Ω-1, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  13. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    Directory of Open Access Journals (Sweden)

    Kawata S.

    2013-11-01

    Full Text Available A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF throughout the heavy ion beam (HIB driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T growth [Laser Part. Beams 11, 757 (1993, Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009, Phys. Plasmas 19, 024503 (2012] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ∼ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  14. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique

    Science.gov (United States)

    Mohamed, H. A.; Ali, H. M.; Mohamed, S. H.; Abd El-Raheem, M. M.

    2006-04-01

    Thin films of Zn{1-x} Cd{x}O with x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 at.% were deposited by electron-beam evaporation technique. It has been found that, for as-deposited films, both the transmittance and electrical resistivity decreased with increasing the Cd content. To improve the optical and electrical properties of these films, the effect of annealing temperature and time were taken into consideration for Zn{1-x} Cd{x}O film with x = 0.2. It was found that, the optical transmittance and the electrical conductivity were improved significantly with increasing the time of annealing. At fixed temperature of 300 °C, the transmittance increased with increasing the time of annealing and reached its maximum values of 81% in the visible region and 94% in the NIR region at annealing time of 120 min. The low electrical resistivity of 3.6 × 10-3 Ω cm was achieved at the same conditions. Other parameters named free carrier concentrations, refractive index, extinction coefficient, plasma frequency, and relaxation time were studied as a function of annealing temperature and time for 20% Cd content.

  15. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  16. Impurities in chromium deposits produced by electroplating and physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J.W.

    1994-05-01

    Impurity contents in electrodeposited (hexavalent and trivalent) chromium deposits and physically vapor deposited (thermal evaporation, electron beam evaporation and rf-sputtering) were compared. Oxygen is the key impurity obtained in electrodeposited films but it can be minimized in hexavalent plating solutions by operating at high temperature, e. g., 85 C. Electrodeposits produced in trivalent chromium plating solutions and physically vapor deposited films have much higher oxygen contents than electrodeposits produced in hexavalent chromium solutions operated at temperatures around 85 C. Depending on the target material used for physically vapor deposited films, these films can also have high amounts of other impurities.

  17. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Abu-Alazm, S.M.; Helal, A.I.; Zahran, N.F.

    2002-01-01

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  18. Evaluation of the Energy Deposition in the event of an Asynchronous Beam Dump for a 7 TeV beam on the new TCDQ model proposed for the LHC

    CERN Document Server

    Versaci, R; CERN. Geneva. ATS Department

    2012-01-01

    An asynchronous beam dump is one of the most critical accident the LHC could face. In the effort to have a better protection of the machine, a new model for the TCDQ (Target Collimator Dump Quadrupole) has been proposed and is under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition. The results of our simulations are also input for the evaluation of the heat load on the collimator.

  19. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  20. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    International Nuclear Information System (INIS)

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.; Grabiec, P.; Janus, P.; Sierakowski, A.

    2011-01-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  1. Analytical examination of a spiral beam scanning method for uniform irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)

  2. High-power neutral-beam heating in the adiabatic toroidal compressor

    International Nuclear Information System (INIS)

    Ellis, R.A.; Eubank, H.P.; Goldston, R.; Smith, R.R.; Nagashima, T.

    1976-05-01

    Neutral-beam injection experiments on ATC have resulted in net power deposited in the plasma of up to 230 kW. The power deposited in the plasma ions is large compared to that from ohmic heating. For a variety of beam and plasma ion species, the increase in ion temperature is proportional to beam power

  3. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-03-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments were made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapidly-pulsed scanning electron beam was designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods

  4. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  5. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  6. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  7. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  8. Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO2 thin films deposited by electron beam evaporation technique

    International Nuclear Information System (INIS)

    Mohanty, P.; Kabiraj, D.; Mandal, R.K.; Kulriya, P.K.; Sinha, A.S.K.; Rath, Chandana

    2014-01-01

    TiO 2 thin films deposited by electron beam evaporation technique annealed in either O 2 or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O 2 atmosphere. While the pristine film shows a super-paramagnetic behavior, both O 2 and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford’s backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O 2 annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O 2 annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O 2 annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO 2 film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]). - Highlights: • TiO 2 films were deposited by e-beam evaporation technique and post annealed under O 2 /Ar at 500 °C. • The pristine film shows SPM behavior where as O 2 and Ar annealed films demonstrate RTFM. • The presence of magnetic impurities has been discarded by various characterization techniques. • The magnetic moment is found to be higher in O 2 annealed film than the Ar annealed one. • The higher M s in O 2 annealed film is attributed to oxygen vacancies as well as crystallinity

  9. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Science.gov (United States)

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  10. Evaluation of a method for correction of scatter radiation in thorax cone beam CT

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Esteve, F.

    2004-01-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  11. Indium sulfide buffer layers deposited by dry and wet methods

    International Nuclear Information System (INIS)

    Asenjo, B.; Sanz, C.; Guillen, C.; Chaparro, A.M.; Gutierrez, M.T.; Herrero, J.

    2007-01-01

    Indium sulfide (In 2 S 3 ) thin films have been deposited on amorphous glass, glass coated by tin oxide (TCO) and crystalline silicon substrates by two different methods: modulated flux deposition (MFD) and chemical bath deposition (CBD). Composition, morphology and optical characterization have been carried out with Scanning Electron Microscopy (SEM), IR-visible-UV Spectrophotometry, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometer. Different properties of the films have been obtained depending on the preparation techniques. With MFD, In 2 S 3 films present more compact and homogeneous surface than with CBD. Films deposited by CBD present also indium oxide in their composition and higher absorption edge values when deposited on glass

  12. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  13. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O+ ion beam assistance

    International Nuclear Information System (INIS)

    Huang Xintang; Huazhong Normal Univ., Wuhan, HB; Wang Youqing; Wang Qiuliang; Chen Qingming

    1999-01-01

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O + ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.)

  14. Machine Learning Methods for Identifying Composition of Uranium Deposits in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Kuchin Yan

    2017-12-01

    Full Text Available The paper explores geophysical methods of wells survey, as well as their role in the development of Kazakhstan’s uranium deposit mining efforts. An analysis of the existing methods for solving the problem of interpreting geophysical data using machine learning in petroleum geophysics is made. The requirements and possible applications of machine learning methods in regard to uranium deposits of Kazakhstan are formulated in the paper.

  15. Simulation of dose deposition in heterogeneities in the human body, using the Penelope code for photons beams of energies of a linear accelerator

    International Nuclear Information System (INIS)

    Cardena R, A. R.; Vega R, J. L.; Apaza V, D. G.

    2015-10-01

    The progress in cancer treatment systems in heterogeneities of human body has had obstacles by the lack of a suitable experimental model test. The only option is to develop simulated theoretical models that have the same properties in interfaces similar to human tissues, to know the radiation behavior in the interaction with these materials. In this paper we used the Monte Carlo method by Penelope code based solely on studies for the cancer treatment as well as for the calibration of beams and their various interactions in mannequins. This paper also aims the construction, simulation and characterization of an equivalent object to the tissues of the human body with various heterogeneities, we will later use to control and plan experientially doses supplied in treating tumors in radiotherapy. To fulfill the objective we study the ionizing radiation and the various processes occurring in the interaction with matter; understanding that to calculate the dose deposited in tissues interfaces (percentage depth dose) must be taken into consideration aspects such as the deposited energy, irradiation fields, density, thickness, tissue sensitivity and other items. (Author)

  16. Electron beam disruption simulation of first wall material

    International Nuclear Information System (INIS)

    Quataert, D.; Brossa, F.; Moretto, P.; Rigon, G.

    1984-01-01

    The destructive effect of plasma disruptions on first wall material and limiters has been predicted and models have been made to study their behaviour under intensive pulsed energy deposition. The results presented here give a full description of qualitative and semi-quantitative results obtained for several materials (Mo, stainless steel, Cu, Al, Inconel, etc.) under various experimental conditions. Examples are given of specific defects such as: evaporation, melting, void and crack formation and recrystallization of the underlying material. Methods for the evaluation of deposited energy and beam dimensions are also presented. (author)

  17. Simulation of the Beam-Beam Effects in e+e- Storage Rings with a Method of Reducing the Region of Mesh

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2000-08-31

    A highly accurate self-consistent particle code to simulate the beam-beam collision in e{sup +}e{sup -} storage rings has been developed. It adopts a method of solving the Poisson equation with an open boundary. The method consists of two steps: assigning the potential on a finite boundary using the Green's function, and then solving the potential inside the boundary with a fast Poisson solver. Since the solution of the Poisson's equation is unique, the authors solution is exactly the same as the one obtained by simply using the Green's function. The method allows us to select much smaller region of mesh and therefore increase the resolution of the solver. The better resolution makes more accurate the calculation of the dynamics in the core of the beams. The luminosity simulated with this method agrees quantitatively with the measurement for the PEP-II B-factory ring in the linear and nonlinear beam current regimes, demonstrating its predictive capability in detail.

  18. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  19. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  20. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  1. Deposition of dielectric films on silicon using a fore-vacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2016-06-15

    We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

  2. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  3. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Science.gov (United States)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  4. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hao, E-mail: haolei@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Meihan [College of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka [Center for Hyper Media Research, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa 243-0297 (Japan)

    2013-11-15

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  5. Geometric calibration method for multiple head cone beam SPECT systems

    International Nuclear Information System (INIS)

    Rizo, Ph.; Grangeat, P.; Guillemaud, R.; Sauze, R.

    1993-01-01

    A method is presented for performing geometric calibration on Single Photon Emission Tomography (SPECT) cone beam systems with multiple cone beam collimators, each having its own orientation parameters. This calibration method relies on the fact that, in tomography, for each head, the relative position of the rotation axis and of the collimator does not change during the acquisition. In order to ensure the method stability, the parameters to be estimated in intrinsic parameters and extrinsic parameters are separated. The intrinsic parameters describe the acquisition geometry and the extrinsic parameters position of the detection system with respect to the rotation axis. (authors) 3 refs

  6. GEOLOGICAL-GEOPHYSICAL EXPLORATION OF THE BAUXITE DEPOSITS APPLICATION OF THE SHALLOW SEIZMIC REFLECTION METHOD

    Directory of Open Access Journals (Sweden)

    Ivan Dragičević

    1991-12-01

    Full Text Available The exploration of bauxite deposits in the region of the carbonaceous Dinarides has been performed by using different geological and geophysical methods. Deposits laying shallower or deeper below the roof sediments have so far most often been discovered by expensive drilling methods in a corresponding grid. Complex geological explorations have led to a series of valuable data thus enabling the application of other much more economical methods as well. In the region of the bauxite sedimentary basin Mesihovina-Rakitno, western Herzegovina, at the site of Studena vrila - after extensive geological explorations - a conclusion was drawn that the shallow seismic reflection geophysical method as well might be successfully applied in locating new bauxite deposits. In the paper, the geological framework of the bauxite deposits occurrences, stipulating the selection of this methode, will be presented. Measurements were performed on a known deposit (L-84, Povaljenica, completely defined by exploration drilling. The obtained results justify the selection of the shallow seismic reflection method as one of the methods for exploring bauxite deposits beneath the roof beds.

  7. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  8. Experimental Results and Numerical Simulation of the Target RCS using Gaussian Beam Summation Method

    Directory of Open Access Journals (Sweden)

    Ghanmi Helmi

    2018-05-01

    Full Text Available This paper presents a numerical and experimental study of Radar Cross Section (RCS of radar targets using Gaussian Beam Summation (GBS method. The purpose GBS method has several advantages over ray method, mainly on the caustic problem. To evaluate the performance of the chosen method, we started the analysis of the RCS using Gaussian Beam Summation (GBS and Gaussian Beam Launching (GBL, the asymptotic models Physical Optic (PO, Geometrical Theory of Diffraction (GTD and the rigorous Method of Moment (MoM. Then, we showed the experimental validation of the numerical results using experimental measurements which have been executed in the anechoic chamber of Lab-STICC at ENSTA Bretagne. The numerical and experimental results of the RCS are studied and given as a function of various parameters: polarization type, target size, Gaussian beams number and Gaussian beams width.

  9. Arc-based smoothing of ion beam intensity on targets

    International Nuclear Information System (INIS)

    Friedman, Alex

    2012-01-01

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  10. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed {beta}-NiAl coatings for Hf-containing superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)], E-mail: Guo.hongbo@buaa.edu.cn; Cui Yongjing; Peng Hui; Gong Shengkai [School of Materials Science and Engineering, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, No. 37, Xueyuan Road, Beijing 100191 (China)

    2010-04-15

    Oxide dispersed (OD) {beta}-NiAl coatings and OD-free {beta}-NiAl coatings were deposited onto a Hf-containing Ni-based superalloy by electron beam physical vapor deposition (EB-PVD). Excessive enrichment of Hf was found in the TGO on the OD-free coating due to outward diffusion of Hf from the superalloy, causing accelerated TGO thickening and spalling. The OD-coating effectively prevented Hf from outward diffusion. Only small amount of Hf diffused to the coating surface and improved the TGO adherence by virtue of the reactive element effect. The OD-coating exhibited an improved oxidation resistance as compared to the OD-free coating.

  11. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER

    International Nuclear Information System (INIS)

    QIAN, S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-01-01

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately

  12. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co{sub 73}Si{sub 12}B{sub 15} thin films prepared by Dual-Ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)

    2017-03-15

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.

  13. Study of nanocluster-assembled ZnO thin films by nanocluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing [School of Electronic Science and Engieering, Southeast University, Nanjing (China); Tay, Beng Kang [School of Electronical and Electronic Engineering, Nanyang Technological University, Nanyang (Singapore)

    2012-01-15

    Nanocluster-assembled ZnO thin films were obtained by nanocluster-beam deposition, in which nanoclusters were produced by a magnetron sputtering gas aggregation source. Two kinds of ZnO thin films were obtained using this method with the one grown under the on-line heating temperature of 700 C, and the other grown without on-line heating. Film microstructure and optical properties are investigated by various diagnostic techniques. It was found that both of film microstructure of ZnO thin films keep wurtzite structure as that of ZnO bulk materials. The averaged particle size for the film grown without on-line heating is around 6 nm, which is a little lower than that grown with the on-line heating. It was also found that as increasing the wavelength, both of the absorbance spectra for the films decrease sharply near ultra-visible to extend slowly to the visible and infrared wavelength range. For the film grown without on-line heating, the bandgap energy was estimated to 3.77 eV, while for the film grown with on-line heating, the bandgap energy was redshift to 3.71 eV. Similar behavior was also found for PL spectra analysis, where PL spectrum exhibited a peak centered at 3.31 eV without on-line heating, while it redshift to 3.20 eV with on-line heating. The mechanisms behind these behaviors were presented in this article. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  15. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  16. Rock excavation by pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1976-01-01

    If an intense short pulse of megavolt electrons is deposited in a brittle solid, dynamic spalling can be made to occur with removal of material. Experiments have been made on several types of hard rock; results are reproducible and well-described theoretically. An accelerator with a rapid-pulsed scanning electron-beam has been designed that could tunnel in hard rock about ten times faster than conventional drill/blast methods. (author)

  17. Plasma and ion beam processing at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-01-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition

  18. Direct formation of thin films and epitaxial overlayers at low temperatures using a low-energy (10-500 eV) ion beam deposition system

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Alton, G.D.; Appleton, B.R.; Herbots, N.; Noggle, T.S.; Pennycook, S.J.

    1987-01-01

    A low-energy ion beam deposition system has been developed at Oak Ridge National Laboratory and has been applied successfully to the growth of epitaxial films at low temperatures for a number of different elements. The deposition system utilizes the ion source and optics of a commercial ion implantation accelerator. The 35 keV mass- and energy-analyzed ion beam from the accelerator is decelerated in a four-element electrostatic lens assembly to energies between 10 and 500 eV for direct deposition onto a target under UHV conditions. Current densities on the order of 10 μA/cm 2 are achieved with good uniformity over a 1.4 cm diameter spot. The completed films are characterized by Rutherford backscattering, ion channeling, cross-section transmission electron microscopy, and x-ray diffraction. The effects of substrate temperature, ion energy, and substrate cleaning have been studied. Epitaxial overlayers which show good minimum yields by ion channeling (3 to 4%) have been produced at temperatures as low as 375 0 C for Si on Si(100) and 250 0 C for Ge on Ge(100) at growth rates that exceed the solid-phase epitaxy rates at these temperatures by more than an order of magnitude

  19. Fabrication and characterization of Ni-YSZ anode functional coatings by electron beam physical vapor deposition

    International Nuclear Information System (INIS)

    Meng, B.; Sun, Y.; He, X.D.; Peng, J.H.

    2009-01-01

    Two kinds of NiO-YSZ (yttria-stabilized zirconia) coatings, respectively with uniform and gradient distributions of NiO content along the coating thickness direction, were prepared by electron beam physical vapor deposition (EB-PVD) via adjusting electron beam currents. Then uniform and graded Ni-YSZ coatings were obtained from corresponding NiO-YSZ coatings after a reduction treatment. For uniform Ni-YSZ coating, the composition and porosity distributions along the coating thickness were uniform. The specific surface area and total pore volume for this coating could reach up to 4.330 m 2 g -1 and 0.0346 cm 3 g -1 respectively. The area specific resistance (ASR) of this coating kept increasing with the rise in temperature and an ASR of 2.1 x 10 -5 Ω cm 2 was obtained at 600 o C. For graded Ni-YSZ coating, a gradient in Ni content and porosity was realized along the coating thickness. A high porosity of up to 33% was achieved in the part of the coating close to the substrate, while a low porosity of 10% was obtained in the part close to coating surface.

  20. PREPARING OF THE CHAMELEON COATING BY THE ION JET DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Jakub Skocdopole

    2017-07-01

    Full Text Available Preparation of chameleon coatings using an Ionized Jet Deposition (IJD technique is reported in the present paper. IJD is a new flexible method for thin film deposition developed by Noivion, Srl. The chameleon coatings are thin films characterised by a distinct change of their tribological properties according to the external conditions. The deposited films of SiC and TiN materials were examined by the Raman spectroscopy, SEM and XPS. The results of the Raman spectroscopy have proved an amorphous structure of SiC films. The data from XPS on TiN films have shown that the films are heavily oxidized, but also prove that the films are composed of TiN and pure Ti. The SEM provided information about the size of grains and particles constituting the deposited films, which is important for tribological properties of the films. Deposition of the chameleon coating is very complex problem and IJD could be ideal method for preparation of this coating.

  1. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  2. Computation of tightly-focused laser beams in the FDTD method.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2013-01-14

    We demonstrate how a tightly-focused coherent TEMmn laser beam can be computed in the finite-difference time-domain (FDTD) method. The electromagnetic field around the focus is decomposed into a plane-wave spectrum, and approximated by a finite number of plane waves injected into the FDTD grid using the total-field/scattered-field (TF/SF) method. We provide an error analysis, and guidelines for the discrete approximation. We analyze the scattering of the beam from layered spaces and individual scatterers. The described method should be useful for the simulation of confocal microscopy and optical data storage. An implementation of the method can be found in our free and open source FDTD software ("Angora").

  3. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  4. Mechanical and tribological properties of silicon nitride films synthesized by ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Chen Yuanru; Li Shizhuo; Zhang Xushou; Liu Hong; Yang Genqing; Qu Baochun

    1991-01-01

    This article describes preliminary investigations of mechanical and tribological properties of silicon nitride film formed by ion beam enhanced deposition (IBED) on GH37 (Ni-based alloys) steel. The films were synthesized by silicon vapor deposition with a rate of 1 A/s and by 40 keV nitrogen ion bombardment simultaneously. The thickness of the film was about 5000 A. X-ray photoelectron spectroscopy and infrared absorption spectroscopy revealed that a stoichiometric Si 3 N 4 film was formed. The observation of TEM showed that the IBED Si 3 N 4 film normally had an amorphous structure. However, electron diffraction patterns revealed a certain crystallinity. The mechanical and tribological properties of the films were investigated with a scratch tester, microhardness meter, and a ball-on-disc tribometer respectively. Results show that the adhesive strength between film and substrate is about 51 N, the Vickers microhardness with a load of 0.2 N is 980, the friction coefficient measured for steel against silicon nitride film ranges from 0.1 to 0.15, and the wear rate of coatings is about 6.8x10 -5 mm 3 /(mN). Finally, the relationship among thermal annealing, crystallinity and tribological characteristics of the Si 3 N 4 film is discussed. (orig.)

  5. PIXE analysis of nephrite minerals from different deposits

    Science.gov (United States)

    Zhang, Z. W.; Gan, F. X.; Cheng, H. S.

    2011-02-01

    External-beam PIXE was used to determine the major, minor and trace elements of 45 nephrite minerals from 14 different deposits, including China and other countries. Depending on the R∗ value (mole percent of Mg 2+/(Mg 2+ + Fe 2+(3+))) and content of Cr, Co and Ni, two types of nephrite minerals from dolomite and serpentinized ultramafic deposits can be more accurately distinguished. Besides, the nephrite minerals from Xiaomeiling and Wenchuan deposit can be distinguished with others from dolomite deposits, through the content of Sr and Mn/Fe value, respectively. Moreover, depending on the Sr content, clear evidence was given to prove that the raw materials of ancient nephrite artifacts from Liangzhu culture ruins are not from Xiaomeiling nephrite deposit. Furthermore, PIXE as a non-destructive method will be more used to study ancient nephrite artifacts, so these results can provide scientific basis for seeking the provenance of nephrite raw materials.

  6. Working methods experimentation: Bauzot deposit, Bauzot and La Faye deposits - Empty room with initial thin veins sub-layers

    International Nuclear Information System (INIS)

    Paucard, A.

    1959-01-01

    The Bauzot deposit was one of the first small CEA workings, and thus served as a guinea-pig for the testing of several working methods. The lessons learned at Bauzot render the rapid choice of a suitable method for the working of large CEA deposits possible. Reprint from 2 papers published in 'Revue de l'Industrie Minerale', vol. 40, n. 12, dec 1958, and Nov 1958, p. 831-843 [fr

  7. Modeling laser beam diffraction and propagation by the mode-expansion method.

    Science.gov (United States)

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  8. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  9. A possible method to produce a polarized antiproton beam at intermediate energies

    International Nuclear Information System (INIS)

    Spinka, H.; Vaandering, E.W.; Hofmann, J.S.

    1994-01-01

    A feasible and conservative design for a medium energy polarized antiproton beam has been presented. The design requires an intense beam of unpolarized antiprotons (≥ 10 7 /sec) from a typical secondary beam line in order to achieve reasonable anti pp elastic scattering count rates. All three beam spin directions can be achieved. Methods were discussed to reverse the spin directions in modest times, and to change to a polarized proton beam if desired. It is expected that experiments with such a beam would have a profound effect on the understanding of the anti NN interaction at intermediate energies

  10. Isotope-beam modification of materials at eV energies

    International Nuclear Information System (INIS)

    Krug, C.; Radtke, C.; Stedile, F.C.; Baumvol, I.J.R.

    2001-01-01

    We developed a low energy ion beam deposition system for isotope-selective modification of materials. It consists of a conventional ion implanter (HVEE 500 kV) and an attachable deceleration system. 29 (N 2 ) + ion beams were used for the nitridation of Si(0 0 1) and the resulting 15 N retained doses and profiles were determined by narrow nuclear resonance profiling. 29 Si was deposited on amorphous carbon films on Si(0 0 1) and the doses evaluated by channeled α particle beams with detection of scattered α at grazing angles. 29 Si was also deposited on Si(0 0 1) and the resulting profiles determined by narrow nuclear resonance

  11. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  12. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    International Nuclear Information System (INIS)

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-01-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results

  13. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Idir, Mourad, E-mail: midir@bnl.gov; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken [NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States); Conley, Ray [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rennie, Kent; Kahn, Jim; Nethery, Richard [Kaufman & Robinson, Inc., 1330 Blue Spruce Drive, Fort Collins, Colorado 80524 (United States); Zhou, Lin [College of Mechatronics and Automation, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073 (China); Hu’nan Key Laboratory of Ultra-precision Machining Technology, Changsha, Hunan 410073 (China)

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  14. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Boniardi, Mattia; Redaelli, Andrea [Micron Semiconductor Italia S.r.l., Via C. Olivetti, 2, 20864, Agrate Brianza, MB (Italy)

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  15. Electronic properties of single Ge/Si quantum dot grown by ion beam sputtering deposition.

    Science.gov (United States)

    Wang, C; Ke, S Y; Yang, J; Hu, W D; Qiu, F; Wang, R F; Yang, Y

    2015-03-13

    The dependence of the electronic properties of a single Ge/Si quantum dot (QD) grown by the ion-beam sputtering deposition technique on growth temperature and QD diameter is investigated by conductive atomic force microscopy (CAFM). The Si-Ge intermixing effect is demonstrated to be important for the current distribution of single QDs. The current staircase induced by the Coulomb blockade effect is observed at higher growth temperatures (>700 °C) due to the formation of an additional barrier between dislocated QDs and Si substrate for the resonant tunneling of holes. According to the proposed single-hole-tunneling model, the fact that the intermixing effect is observed to increase as the incoherent QD size decreases may explain the increase in the starting voltage of the current staircase and the decrease in the current step width.

  16. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  17. Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapour deposition

    International Nuclear Information System (INIS)

    Dai, Jun; Kometani, Reo; Ishihara, Sunao; Warisawa, Shin’ichi; Onomitsu, Koji; Krockenberger, Yoshiharu; Yamaguchi, Hiroshi

    2014-01-01

    A tungsten-carbide (W-C) superconductor/normal metal/superconductor (SNS) Josephson junction has been fabricated using focused-ion-beam chemical vapour deposition (FIB-CVD). Under certain process conditions, the component ratio has been tuned from W: C: Ga = 26%: 66%: 8% in the superconducting wires to W: C: Ga = 14%: 79%: 7% in the metallic junction. The critical current density at 2.5 K in the SNS Josephson junction is 1/3 of that in W-C superconducting nanowire. Also, a Fraunhofer-like oscillation of critical current in the junction with four periods is observed. FIB-CVD opens avenues for novel functional superconducting nanodevices. (paper)

  18. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  19. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    Zagonel, L.F.; Alvarez, F.

    2007-01-01

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  20. A novel method to survey parameters of an ion beam and its interaction with a target

    Science.gov (United States)

    Long, J. D.; Yang, Z.; Li, J.; Wang, X. H.; Wang, T.; Lan, C. H.; Dong, P.; Li, X.; He, J. L.; Zheng, L.; Liu, P.

    2017-09-01

    Beam profile and composition of the pulsed ion beam from a vacuum arc source are valuable information for designing a high-intensity deuterium-tritium neutron generator. Traditional methods are notoriously difficult to obtain the information at the same time. A novel off-line diagnostic method is presented, which can obtain the transverse beam profile with high resolution as well as species of the ions in the beam. The method is using a silicon target with high purity to interact with the ion beam, and then use secondary ion mass spectrometry (SIMS) to analyze the interaction zone of the target to get the beam information. More information on beam-target interaction could get simultaneously. Proof-of-principle simulation and experimental works have demonstrated this method is practical.

  1. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  2. Gaussian beam profile shaping apparatus, method therefore and evaluation thereof

    International Nuclear Information System (INIS)

    Dickey, F.M.; Holswade, S.C.; Romero, L.A.

    1999-01-01

    A method and apparatus maps a Gaussian beam into a beam with a uniform irradiance profile by exploiting the Fourier transform properties of lenses. A phase element imparts a design phase onto an input beam and the output optical field from a lens is then the Fourier transform of the input beam and the phase function from the phase element. The phase element is selected in accordance with a dimensionless parameter which is dependent upon the radius of the incoming beam, the desired spot shape, the focal length of the lens and the wavelength of the input beam. This dimensionless parameter can also be used to evaluate the quality of a system. In order to control the radius of the incoming beam, optics such as a telescope can be employed. The size of the target spot and the focal length can be altered by exchanging the transform lens, but the dimensionless parameter will remain the same. The quality of the system, and hence the value of the dimensionless parameter, can be altered by exchanging the phase element. The dimensionless parameter provides design guidance, system evaluation, and indication as to how to improve a given system. 27 figs

  3. Influence of deposition rate on the properties of tin coatings deposited on tool steels using arc method

    International Nuclear Information System (INIS)

    Akhtar, P.; Abbas, M.

    2007-01-01

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapour deposition method. The study concentrated on cathodic arc physical vapour deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MD's) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester and pin-on-disc machine, were used to analyze and quantify the following properties and parameters, surface morphology, thickness, hardness, adhesion and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MD's produced during the etching stage, protruded through the thin film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 macro m showed the most stable trend of COF versus sliding distance. (author)

  4. Uncoupled thermoelasticity solutions applied on beam dumps

    Directory of Open Access Journals (Sweden)

    A. Ouzia

    2016-06-01

    Full Text Available In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the

  5. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  6. Diagnostic of the beam by pepper-pot method

    CERN Document Server

    Dolinskaya, M E; Zajchenko, A K

    2002-01-01

    The new method for the measuring of the particle distribution in the transversal plane with pepper-pot device is described. The algorithm for the beam emittance and Twiss parameters determination, using such measurements is presented. 7 refs., 8 figs.

  7. Standard test method for determining atmospheric chloride deposition rate by wet candle method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers a wet candle device and its use in measuring atmospheric chloride deposition (amount of chloride salts deposited from the atmosphere on a given area per unit time). 1.2 Data on atmospheric chloride deposition can be useful in classifying the corrosivity of a specific area, such as an atmospheric test site. Caution must be exercised, however, to take into consideration the season because airborne chlorides vary widely between seasons. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  8. Application of molecular beam mass spectrometry to chemical vapor deposition studies

    International Nuclear Information System (INIS)

    Hsu, W.L.; Tung, D.M.

    1992-01-01

    A molecular beam mass spectrometer system has been designed and constructed for the specific purpose of measuring the gaseous composition of the vapor environment during chemical vapor deposition of diamond. By the intrinsic nature of mass analysis, this type of design is adaptable to a broad range of other applications that rely either on thermal- or plasma-induced chemical kinetics. When gas is sampled at a relatively high process pressure (∼2700 Pa for our case), supersonic gas expansion at the sampling orifice can cause the detected signals to have a complicated dependence on the operating conditions. A comprehensive discussion is given on the effect of gas expansion on mass discrimination and signal scaling with sampling pressure and temperature, and how these obstacles can be overcome. This paper demonstrates that radical species can be detected with a sensitivity better than 10 ppm by the use of threshold ionization. A detailed procedure is described whereby one can achieve quantitative analysis of the detected species with an accuracy of ±20%. This paper ends with an example on the detection of H, H 2 , CH 3 , CH 4 , and C 2 H 2 during diamond growth

  9. Cathodoluminescence characteristics of polycrystalline diamond films grown by cyclic deposition method

    International Nuclear Information System (INIS)

    Seo, Soo-Hyung; Park, Chang-Kyun; Park, Jin-Seok

    2002-01-01

    Polycrystalline diamond films were deposited using a cyclic deposition method where the H 2 plasma for etching (t E ) and the CH 4 +H 2 plasma for growing (t G ) are alternately modulated with various modulation ratios (t E /t G ). From the measurement of full width at half maximum and I D /I G intensity ratio obtained from the Raman spectra, it was found that diamond defects and non-diamond carbon phases were reduced a little by adopting the cyclic deposition method. From the cathodoluminescence (CL) characteristics measured for deposited films, the nitrogen-related band (centered at approximately 590 nm) as well as the so-called band-A (centered at approximately 430 nm) were observed. As the cyclic ratio t E /t G increased, the relative intensity ratio of band-A to nitrogen-related band (I A /I N ) was found to monotonically decrease. In addition, analysis of X-ray diffraction spectra and scanning electron microscope morphologies showed that CL characteristics of deposited diamond films were closely related to their crystal orientations and morphologies

  10. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Directory of Open Access Journals (Sweden)

    Y. Nie

    2017-08-01

    Full Text Available The conceptual design of the Future Circular Collider (FCC is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  11. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  12. An analytical method for free vibration analysis of functionally graded beams with edge cracks

    Science.gov (United States)

    Wei, Dong; Liu, Yinghua; Xiang, Zhihai

    2012-03-01

    In this paper, an analytical method is proposed for solving the free vibration of cracked functionally graded material (FGM) beams with axial loading, rotary inertia and shear deformation. The governing differential equations of motion for an FGM beam are established and the corresponding solutions are found first. The discontinuity of rotation caused by the cracks is simulated by means of the rotational spring model. Based on the transfer matrix method, then the recurrence formula is developed to get the eigenvalue equations of free vibration of FGM beams. The main advantage of the proposed method is that the eigenvalue equation for vibrating beams with an arbitrary number of cracks can be conveniently determined from a third-order determinant. Due to the decrease in the determinant order as compared with previous methods, the developed method is simpler and more convenient to analytically solve the free vibration problem of cracked FGM beams. Moreover, free vibration analyses of the Euler-Bernoulli and Timoshenko beams with any number of cracks can be conducted using the unified procedure based on the developed method. These advantages of the proposed procedure would be more remarkable as the increase of the number of cracks. A comprehensive analysis is conducted to investigate the influences of the location and total number of cracks, material properties, axial load, inertia and end supports on the natural frequencies and vibration mode shapes of FGM beams. The present work may be useful for the design and control of damaged structures.

  13. Field-enhanced REB deposition and Bremsstrahlung production

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Widner, M.M.

    1977-07-01

    Recently developed models are employed to describe the interaction of a high-current REB (relativistic electron beam) with planar gold foils in the presence of macroscopic electromagnetic fields. It is shown that, under certain conditions, azimuthal magnetic fields which either penetrate into the foil and/or exist on the transmission side of the foil can significantly enhance the specific power deposited in the foil over that which would be deposited for diode fields alone. Similar field effects suggest methods for improving the external conversion efficiencies, softening the spectra and focussing the source intensities of flash x-ray facilities. Finally, preliminary results are shown from a new trajectory-field model for self-consistent REB transport

  14. Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings on AISI M2 steel and WC-Co substrates

    International Nuclear Information System (INIS)

    Avelar-Batista, J.C.; Spain, E.; Housden, J.; Fuentes, G.G.; Rebole, R.; Rodriguez, R.; Montala, F.; Carreras, L.J.; Tate, T.J.

    2005-01-01

    This paper is focussed on the characterisation of electron beam evaporation plasma-assisted physical vapour deposition Cr-N coatings deposited on AISI M2 steel and hardmetal (K10) substrates in two different conditions: Pristine (i.e., coated) and Recoated (i.e., stripped and recoated). Analytical methods, including X-ray diffraction (XRD), scanning electron microscopy, scratch adhesion and pin-on-disc tests were used to evaluate several coating properties. XRD analyses indicated that both Pristine and Recoated coatings consisted of a mixture of hexagonal Cr 2 N and cubic CrN, regardless of substrate type. For the M2 steel substrate, only small differences were found in terms of coating phases, microstructure, adhesion, friction and wear coefficients between Pristine and Recoated. Recoated on WC-Co (K10) exhibited a less dense microstructure and significant inferior adhesion compared to Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those exhibited by all other specimens. The results obtained confirm that the stripping process did not adversely affect the Cr-N properties when this coating was deposited onto M2 steel substrates, but it is clear from the unsatisfactory tribological performance of Recoated on WC-Co that the stripping process is unsuitable for hardmetal substrates

  15. The mechanical spectra of deposited materials by a composite reed vibration method

    International Nuclear Information System (INIS)

    Ying, X.N.; Zhang, L.; Yuan, Y.H.

    2010-01-01

    Recently a composite reed vibration method has been designed to measure the mechanical spectra (complex Young's modulus) of materials from liquid to solid state. The mechanical spectra of materials can be obtained from a composite system consisting of a substrate reed and of materials deposited on it. In this report, two sets of formulas to calculate the mechanical spectra of deposited materials are further analyzed. The proof is given for the previous named 'approximate formulas' (labeled as Formula II). Then the composite reed vibration method can be safely used as an extension of the mechanical spectrum method of the thin solid film. At the same time, some comments are made on previous analytical formulas (labeled as Formula I). At last, more experiments with a small amount of deposited materials are performed. It is found that smaller quantity is more favorable to achieve the intrinsic mechanical spectra of deposited materials.

  16. Single-slice rebinning method for helical cone-beam CT

    International Nuclear Information System (INIS)

    Noo, F.; Defrise, M.; Clackdoyle, R.

    1999-01-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. (author)

  17. THE IMPROVEMENT OF THE EXCAVATION METHODS IN BAUXITE DEPOSITS

    Directory of Open Access Journals (Sweden)

    Borislav Perić

    1990-12-01

    Full Text Available The underground bauxite excavation in Yugoslavia is getting more important recently due to gradual exploitation of shallow deposits. The main excavation method is sublevel caving method. That technology of exploitation is characterized by high excavation loosses reaching even to 50% due to mixing of bauxite with waste. By beds with competent limestone roof which are not liable to direct caving are formed unplanned open spaces so the work safety is often dangercd by sudden caving. That was the reason for carrying out the observations in situ and investigations on mathematical models to define boundary of excavated space stability. This investigation were the basis for the new conception of further excavation of the »Jukići-Didare« mine with the application of even three exploitation methods maximally adapted to the characteristics of the remaining part of deposit.

  18. CO2 laser coating of nanodiamond on aluminum using an annular beam

    International Nuclear Information System (INIS)

    Blum, Rodger; Molian, Pal

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO 2 laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  19. Two self-referencing methods for the measurement of beam spot position

    International Nuclear Information System (INIS)

    Nyiri, Balazs J.; Smale, Jason R.; Gerig, Lee H.

    2012-01-01

    Purpose: Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Methods: Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy/MU value is measured as a function of collimator rotation, e.g., every 30°. If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements were also performed

  20. Two self-referencing methods for the measurement of beam spot position

    Energy Technology Data Exchange (ETDEWEB)

    Nyiri, Balazs J.; Smale, Jason R.; Gerig, Lee H. [Ottawa Hospital Cancer Centre, Ottawa K1H 8L6 (Canada) and Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5 (Canada); Elekta Canada, Ottawa, Ontario K1Y 1Z3 (Canada); Ottawa Hospital Cancer Centre, Ottawa K1H 8L6 (Canada); Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada) and Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5 (Canada)

    2012-12-15

    Purpose: Two quantitative methods of measuring electron beam spot position with respect to the collimator axis of rotation (CAOR) are described. Methods: Method 1 uses a cylindrical ion chamber (IC) mounted on a jig corotational with the collimator making the relationship among the chamber, jaws, and CAOR fixed and independent of collimator angle. A jaw parallel to the IC axis is set to zero and the IC position adjusted so that the IC signal is approximately 50% of the open field value, providing a large dose gradient in the region of the IC. The cGy/MU value is measured as a function of collimator rotation, e.g., every 30 Degree-Sign . If the beam spot does not lie on the CAOR, the signal from the ion chamber will vary with collimator rotation. Based on a measured spatial sensitivity, the distance of the beam spot from the CAOR can be calculated from the IC signal variation with rotation. The 2nd method is image based. Two stainless steel rods, 3 mm in diameter, are mounted to a jig attached to the Linac collimator. The rods, offset from the CAOR, lay in different planes normal to the CAOR, one at 158 cm SSD and the other at 70 cm SSD. As the collimator rotates the rods move tangent along an envelope circle, the centers of which are on the CAOR in their respective planes. Three images, each at a different collimator rotation, containing the shadows of both rods, are acquired on the Linac EPID. At each angle the shadow of the rods on the EPID defines lines tangent to the projection of the envelope circles. From these the authors determine the projected centers of the two circles at different heights. From the distance of these two points using the two heights and the source to EPID distance, the authors calculate the distance of the beam spot from the CAOR. Measurements with all two techniques were performed on an Elekta Linac. Measurements were performed with the beam spot in nominal clinical position and in a deliberately offset position. Measurements were also

  1. A method of quantitative prediction for sandstone type uranium deposit in Russia and its application

    International Nuclear Information System (INIS)

    Chang Shushuai; Jiang Minzhong; Li Xiaolu

    2008-01-01

    The paper presents the foundational principle of quantitative predication for sandstone type uranium deposits in Russia. Some key methods such as physical-mathematical model construction and deposits prediction are described. The method has been applied to deposits prediction in Dahongshan region of Chaoshui basin. It is concluded that the technique can fortify the method of quantitative predication for sandstone type uranium deposits, and it could be used as a new technique in China. (authors)

  2. In-plane aligned YBCO tape on textured YSZ buffer layer deposited on stainless steel substrate by laser ablation only with O{sup +} ion beam assistance

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xintang [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.]|[Huazhong Normal Univ., Wuhan, HB (China). Dept. of Physics; Wang Youqing; Wang Qiuliang; Chen Qingming [Huazhong Univ. of Sci. and Technol., Wuhan (China). Nat. Lab. of Laser Technol.

    1999-08-16

    In this paper we have prepared YSZ buffer layers on stainless steel substrates by laser ablation only with O{sup +} ion beam assistance and YBCO films on YSZ/steel consequently. The relevant parameters of YSZ and YBCO film deposition are indicated. (orig.) 8 refs.

  3. Application of mathematical methods to the investigation of uranium deposits

    International Nuclear Information System (INIS)

    Formery, P.; Ziegler, V.

    1958-01-01

    It may be considered approximately that grades, widths and accumulations (grade-width products), in french uranium deposits are distributed according to a lognormal law. This property associated to KRIGE'S and de WIGE'S formulae make a powerful tool in ore deposits surveys. The correlation between radioactivities and grades is realized, in logarithmic coordinates, through a straight line the properties of which are analysed in the paper. MATHERON'S recent works, in association with data of classical statistics and the above mentioned formulae make possible to complete the ore reserves evaluation by computing the accuracy. Statistical methods applied to ore deposits have given birth to a parameter which is as important as the mean grade for characterisation of deposits: the absolute dispersion. (author) [fr

  4. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  5. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  6. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  7. Analysis of beam propagation characteristics in gain-guided, index antiguided fibers with the beam propagation method.

    Science.gov (United States)

    Ai, Fei; Qian, Jianqiang; Shi, Junfeng; Zhang, Machi

    2017-10-10

    The transmission properties of beams in gain fibers are studied with the complex refractive index beam propagation method (CRI-BPM). The method is checked by comparison with an analytic method. The behavior of a gain-guided, index antiguided (GG-IAG) fiber with different gain coefficients is studied. The simulation results show that the signal can transfer in the fiber with almost no loss when the gain coefficient reaches the threshold of the fundamental mode, and the shape of output spot will have no major changes when the gain coefficient is over the thresholds of high-order modes, even when the mode competition is not obvious. The CRI-BPM can predict the changes in light power and light mode at the same time, and will be very useful in the designing of fiber amplifiers and lasers with complex structures. More factors will be considered in this method to provide reference for practical application in our further research.

  8. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition

    International Nuclear Information System (INIS)

    Saha, Madhu Sudan; Gulla, Andrea F.; Allen, Robert J.; Mukerjee, Sanjeev

    2006-01-01

    Ultra-low pure Pt-based electrodes (0.04-0.12 mg Pt /cm 2 ) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 A, these are compared with a control, a conventional Pt/C (1.0 mg Pt(MEA) /cm 2 , E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 A). Mass specific power density of 0.297 g Pt /kW is reported with 250 A IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mg Pt(MEA) /cm 2 where mass specific power density obtained was 1.18 g Pt /kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm 2 (for 250-750 A IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm 2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized

  9. Code OK3 - An upgraded version of OK2 with beam wobbling function

    Science.gov (United States)

    Ogoyski, A. I.; Kawata, S.; Popov, P. H.

    2010-07-01

    For computer simulations on heavy ion beam (HIB) irradiation onto a target with an arbitrary shape and structure in heavy ion fusion (HIF), the code OK2 was developed and presented in Computer Physics Communications 161 (2004). Code OK3 is an upgrade of OK2 including an important capability of wobbling beam illumination. The wobbling beam introduces a unique possibility for a smooth mechanism of inertial fusion target implosion, so that sufficient fusion energy is released to construct a fusion reactor in future. New version program summaryProgram title: OK3 Catalogue identifier: ADST_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADST_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 221 517 No. of bytes in distributed program, including test data, etc.: 2 471 015 Distribution format: tar.gz Programming language: C++ Computer: PC (Pentium 4, 1 GHz or more recommended) Operating system: Windows or UNIX RAM: 2048 MBytes Classification: 19.7 Catalogue identifier of previous version: ADST_v2_0 Journal reference of previous version: Comput. Phys. Comm. 161 (2004) 143 Does the new version supersede the previous version?: Yes Nature of problem: In heavy ion fusion (HIF), ion cancer therapy, material processing, etc., a precise beam energy deposition is essentially important [1]. Codes OK1 and OK2 have been developed to simulate the heavy ion beam energy deposition in three-dimensional arbitrary shaped targets [2, 3]. Wobbling beam illumination is important to smooth the beam energy deposition nonuniformity in HIF, so that a uniform target implosion is realized and a sufficient fusion output energy is released. Solution method: OK3 code works on the base of OK1 and OK2 [2, 3]. The code simulates a multi-beam illumination on a target with arbitrary shape and

  10. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  11. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  12. Studies on mass deposition effect and energy effect of biomolecules implanted by N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1994-05-01

    By analyzing some spectrum of tyrosine sample implanted by N + ion beam, it is deduced that the implantation N + could react with the tyrosine molecule and substitute =C 5 H- group of benzene ring to produce a N-heterocyclic compound. This compound would notably affect the residual activity of the sample. Moreover, the percentage of the product molecules to the damaged tyrosine molecules is larger than the reciprocal of the proportion of their extinction coefficients. On the other hand, by comparing the release of inorganic phosphate, it is found that the radiation sensibility for four basic nucleotides is 5'-dTMP>5'-CMP>5'-GMP>5'-AMP. to implanted nucleotides, alkali treatment and heat treatment could increase the amount of inorganic phosphate. The amount of inorganic phosphate in the nucleotide samples directly implanted by ions beam is about 60% of the total amount of inorganic phosphate that could be released from the implanted samples heated at 90 degree C for 1.75 hours. Alkali treatment could damage and split the free bases released from the implanted nucleotides, but heat treatment might repair those damaged bases. Above results prove that ions implantation to biomolecules has the mass deposition effects and energy effects

  13. General beam position controlling method for 3D optical systems based on the method of solving ray matrix equations

    Science.gov (United States)

    Chen, Meixiong; Yuan, Jie; Long, Xingwu; Kang, Zhenglong; Wang, Zhiguo; Li, Yingying

    2013-12-01

    A general beam position controlling method for 3D optical systems based on the method of solving ray matrix equations has been proposed in this paper. As a typical 3D optical system, nonplanar ring resonator of Zero-Lock Laser Gyroscopes has been chosen as an example to show its application. The total mismatching error induced by Faraday-wedge in nonplanar ring resonator has been defined and eliminated quite accurately with the error less than 1 μm. Compared with the method proposed in Ref. [14], the precision of the beam position controlling has been improved by two orders of magnitude. The novel method can be used to implement automatic beam position controlling in 3D optical systems with servo circuit. All those results have been confirmed by related alignment experiments. The results in this paper are important for beam controlling, ray tracing, cavity design and alignment in 3D optical systems.

  14. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    Science.gov (United States)

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  15. Chemical deposition methods using supercritical fluid solutions

    Science.gov (United States)

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  16. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  17. Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    Directory of Open Access Journals (Sweden)

    Qiuqiu WEN

    2017-06-01

    Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.

  18. The use of electron beam in RIA R and D

    International Nuclear Information System (INIS)

    Gomes, Itacil C.; Nolen, Jerry; Reed, Claude

    2004-01-01

    This paper discusses two electron beam applications for the RIA (Rare Isotope Accelerator) R and D. The first is for simulating energy deposition of heavy ions on lithium jets. The peak energy deposition for a 400-kW uranium beam will be 4 MW/cm 3 . Calculations have shown that a 1-MeV electron beam with 40mA of current has a peak energy deposition about 4 MW/cm 3 making it suitable to mimic the thermal response of lithium jet at that uranium beam heat load. The second application of electron beams for RIA R and D, discussed in this paper, is the use of low energy electron beam as a diagnosis tool for on-line monitoring of thickness variations of thin foils or thin jets. Thin foils can be corroded and jets might experience instabilities that can compromise their functionality. Low energy electron beams can be used to detect any change in thickness enabling a continuous on-line monitoring of the thin film being monitored. Calculations have indicated that variations in lithium jet thicknesses at the micron level can easily be detected

  19. Handbook of methods for acid-deposition studies. Laboratory analyses for soil chemistry

    International Nuclear Information System (INIS)

    Blume, L.J.; Schumacher, P.W.; Schaffer, K.A.; Cappo, K.A.; Papp, M.L.

    1990-09-01

    The handbook describes methods used to process and analyze soil samples. It is intended as a guidance document for groups involved in acid deposition monitoring activities similar to those implemented by the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. These methods were developed for use in the Direct/Delayed Response Project, a component project of the Aquatic Effects Research Program within the Office of Ecological Processes and Effects Research. The program addresses the following issues relating to the effects of acid deposition on aquatic ecosystems: The extent and magnitude of past change; The change to be expected in the future under various deposition scenarios; The maximum rates of deposition below which further change is not expected; and The rate of change or recovery of aquatic ecosystems if deposition rates are decreased. Chemical and physical parameters were measured during the Direct/Delayed Response Project and are described in the document

  20. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  1. Apparatus and method for increasing the bandwidth of a laser beam

    Science.gov (United States)

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  2. On beam propagation methods for modelling in integrated optics

    NARCIS (Netherlands)

    Hoekstra, Hugo

    1997-01-01

    In this paper the main features of the Fourier transform and finite difference beam propagation methods are summarized. Limitations and improvements, related to the paraxial approximation, finite differencing and tilted structures are discussed.

  3. A Normalized Transfer Matrix Method for the Free Vibration of Stepped Beams: Comparison with Experimental and FE(3D Methods

    Directory of Open Access Journals (Sweden)

    Tamer Ahmed El-Sayed

    2017-01-01

    Full Text Available The exact solution for multistepped Timoshenko beam is derived using a set of fundamental solutions. This set of solutions is derived to normalize the solution at the origin of the coordinates. The start, end, and intermediate boundary conditions involve concentrated masses and linear and rotational elastic supports. The beam start, end, and intermediate equations are assembled using the present normalized transfer matrix (NTM. The advantage of this method is that it is quicker than the standard method because the size of the complete system coefficient matrix is 4 × 4. In addition, during the assembly of this matrix, there are no inverse matrix steps required. The validity of this method is tested by comparing the results of the current method with the literature. Then the validity of the exact stepped analysis is checked using experimental and FE(3D methods. The experimental results for stepped beams with single step and two steps, for sixteen different test samples, are in excellent agreement with those of the three-dimensional finite element FE(3D. The comparison between the NTM method and the finite element method results shows that the modal percentage deviation is increased when a beam step location coincides with a peak point in the mode shape. Meanwhile, the deviation decreases when a beam step location coincides with a straight portion in the mode shape.

  4. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  5. Method of measuring the polarization of high momentum proton beams

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1976-01-01

    A method of measuring the polarization of high momentum proton beams is proposed. This method utilizes the Primakoff effect and relates asymmetries at high energy to large asymmetries already measured at low energy. Such a new method is essential for the success of future experiments at energies where present methods are no longer feasible

  6. Ion beam generation and focusing

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.

    1975-01-01

    Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied

  7. 1/f noise in titanium doped aluminum thin film deposited by electron beam evaporation method and its dependence on structural variation with temperature

    Science.gov (United States)

    Ananda, P.; Vedanayakam, S. Victor; Thyagarajan, K.; Nandakumar, N.

    2018-05-01

    A brief review of Titanium doped Aluminum film has many attractive properties such as thermal properties and 1/f noise is highlighted. The thin film devices of Titanium doped alluminium are specially used in aerospace technology, automotive, biomedical fields also in microelectronics. In this paper, we discus on 1/f noise and nonlinear effects in titanium doped alluminium thin films deposited on glass substrate using electron beam evaporation for different current densities on varying temperatures of the film. The plots are dawn for 1/f noise of the films at different temperatures ranging from 300°C to 450°C and the slopes are determined. The studies shows a higher order increment in FFT amplitude of low frequency 1/f noise in thin films at annealing temperature 400°C. In this technology used in aerospace has been the major field of application of titanium doped alluminium, being one of the major challenges of the development of new alloys with improved strength at high temperature, wide chord Titanium doped alluminium fan blades increases the efficiency while reducing 1/f noise. Structural properties of XRD is identified.

  8. Equivalent circuit study of beam-loading using a moment method

    International Nuclear Information System (INIS)

    Wang, T.F.; Machida, S.; Mori, Y.; Ohmori, C.

    1997-01-01

    In this work, we present a formalism by considering the perturbations in the moments of a bunched beam for the equivalent circuit model to include all harmonics of the synchroton oscillation in a beam-cavity interaction system. The linear coupling among all longitudinal modes under the influence of narrow-band impedance can be naturally incorporated in this new approach. We used this method to re-examine the coupling between the dipole and the quadrupole modes. The dispersion relation obtained by this new method was compared with that derived from the linearized Vlasov equation up to the second harmonic of the synchrotron motion. We found excellent qualitative agreements between two approaches

  9. Time-domain least-squares migration using the Gaussian beam summation method

    Science.gov (United States)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  10. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    International Nuclear Information System (INIS)

    Xufei, X.; Fan, T.; Nocente, M.; Gorini, G.; Bonomo, F.; Franzen, P.; Fröschle, M.; Grosso, G.; Tardocchi, M.; Grünauer, F.; Pasqualotto, R.

    2014-01-01

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes

  11. CO{sub 2} laser coating of nanodiamond on aluminum using an annular beam

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Rodger; Molian, Pal, E-mail: molian@iastate.edu

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO{sub 2} laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  12. Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition

    Directory of Open Access Journals (Sweden)

    Emanuele Cavaliere

    2017-12-01

    Full Text Available Nanocomposite systems and nanoparticle (NP films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs films and of Ag NPs/TiO2 porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO2 (Ag/Ti 50-50 nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE. We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO2 NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  13. Proton beam therapy how protons are revolutionizing cancer treatment

    CERN Document Server

    Yajnik, Santosh

    2013-01-01

    Proton beam therapy is an emerging technology with promise of revolutionizing the treatment of cancer. While nearly half of all patients diagnosed with cancer in the US receive radiation therapy, the majority is delivered via electron accelerators, where photons are used to irradiate cancerous tissue. Because of the physical properties of photon beams, photons may deposit energy along their entire path length through the body. On the other hand, a proton beam directed at a tumor travels in a straight trajectory towards its target, gives off most of its energy at a defined depth called the Bragg peak, and then stops. While photons often deposit more energy within the healthy tissues of the body than within the cancer itself, protons can deposit most of their cancer-killing energy within the area of the tumor. As a result, in the properly selected patients, proton beam therapy has the ability to improve cure rates by increasing the dose delivered to the tumor and simultaneously reduce side-effects by decreasing...

  14. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  15. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  16. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    International Nuclear Information System (INIS)

    Simone, Monica de; Snidero, Elena; Coreno, Marcello; Bongiorno, Gero; Giorgetti, Luca; Amati, Matteo; Cepek, Cinzia

    2012-01-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti 3+ is the first oxidation state observed, followed by Ti 4+ , whereas Ti 2+ is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  17. Methods of exploitation of different types of uranium deposits

    International Nuclear Information System (INIS)

    2000-09-01

    Deposits are mined using three broad types of mining methods: open pit, underground and in situ leaching. This publication addresses all aspects of mining and milling methods for several types of deposits and provides information to assist in the selection process of methods and also considers what actions must be taken into account for obtaining regulatory approvals for a project and for final decommissioning and reclamation of a project. The objective of this publication is to provide a process of selections of methods for mining engineers and managers involved in modernising ongoing operations or considering opening new operations. Several practical examples are given. These guidelines can be consulted and used in many countries involved in uranium mining and milling operations. The examples where costs are given can also be adjusted to specific economic conditions of various countries. The authors are from four uranium producing countries. They bring diversified experience for all types of mining and milling operations from tile opening of a mine to the decommissioning of the complete operation

  18. Methods of exploitation of different types of uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Deposits are mined using three broad types of mining methods: open pit, underground and in situ leaching. This publication addresses all aspects of mining and milling methods for several types of deposits and provides information to assist in the selection process of methods and also considers what actions must be taken into account for obtaining regulatory approvals for a project and for final decommissioning and reclamation of a project. The objective of this publication is to provide a process of selections of methods for mining engineers and managers involved in modernising ongoing operations or considering opening new operations. Several practical examples are given. These guidelines can be consulted and used in many countries involved in uranium mining and milling operations. The examples where costs are given can also be adjusted to specific economic conditions of various countries. The authors are from four uranium producing countries. They bring diversified experience for all types of mining and milling operations from tile opening of a mine to the decommissioning of the complete operation.

  19. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  20. Improving the Characteristics of Sn-doped In{sub 2}O{sub 2} Grown at Room Temperature with Oxygen Radical-Assisted Electron Beam Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Min-Suk [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of); Seo, Inseok [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-07-15

    Sn-doped In{sub 2}O{sub 3} (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm{sup 2}/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ∼ 2.8 × 10{sup −2} Ω{sup −1}, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  1. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  2. Homotopy perturbation method for free vibration analysis of beams on elastic foundation

    International Nuclear Information System (INIS)

    Ozturk, Baki; Coskun, Safa Bozkurt; Koc, Mehmet Zahid; Atay, Mehmet Tarik

    2010-01-01

    In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, N r . The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.

  3. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Science.gov (United States)

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  4. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  5. Testing beam-induced quench levels of LHC superconducting magnets

    Directory of Open Access Journals (Sweden)

    B. Auchmann

    2015-06-01

    Full Text Available In the years 2009–2013 the Large Hadron Collider (LHC has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012 instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  6. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  7. Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Chemical deposition of cadmium selenide (CdSe) films has been carried out from alkaline aqueous solution containing Cd 2+ and Se 2- ions. In general, the alkaline pH of the CdSe deposition bath has been adjusted by addition of liquid ammonia. However, the use of ammonia in large-scale chemical deposition method represents an environmental problem due to its volatility and toxicity. The volatility of ammonia changes the pH of deposition bath and results into irreproducible film properties. In the present paper, ammonia-free and weak alkaline (pH < 9.0) chemical method for cadmium selenide film has been developed. The cadmium selenide films are microcrystalline (grain size 0.5-0.7 μm) with hexagonal crystal structure. These films are photoactive and therefore, useful in photo conversion of light into electrical power

  8. GLASS FIBERS – MODERN METHOD IN THE WOOD BEAMS REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Cătălina IANĂŞI

    2017-05-01

    Full Text Available : One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. Specifically, the use of GFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. The results obtained in this paper indicate that the behavior of reinforced beams is totally different from that of un-reinforced one. The main conclusion of the tests is that the tensioning forces allow beam taking a maximum load for a while, something that is particularly useful when we consider a real construction, The experiments have shown that the method of increasing resistance of wood constructions with composite materials is good for it and easy to implement.

  9. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  10. A possible method of carbon deposit mapping on plasma facing components using infrared thermography

    International Nuclear Information System (INIS)

    Mitteau, R.; Spruytte, J.; Vallet, S.; Travere, J.M.; Guilhem, D.; Brosset, C.

    2007-01-01

    The material eroded from the surface of plasma facing components is redeposited partly close to high heat flux areas. At these locations, the deposit is heated by the plasma and the deposition pattern evolves depending on the operation parameters. The mapping of the deposit is still a matter of intense scientific activity, especially during the course of experimental campaigns. A method based on the comparison of surface temperature maps, obtained in situ by infrared cameras and by theoretical modelling is proposed. The difference between the two is attributed to the thermal resistance added by deposited material, and expressed as a deposit thickness. The method benefits of elaborated imaging techniques such as possibility theory and fuzzy logics. The results are consistent with deposit maps obtained by visual inspection during shutdowns

  11. A simple method to deposit palladium doped SnO2 thin films using plasma enhanced chemical vapor deposition technique

    International Nuclear Information System (INIS)

    Kim, Young Soon; Wahab, Rizwan; Shin, Hyung-Shik; Ansari, S. G.; Ansari, Z. A.

    2010-01-01

    This work presents a simple method to deposit palladium doped tin oxide (SnO 2 ) thin films using modified plasma enhanced chemical vapor deposition as a function of deposition temperature at a radio frequency plasma power of 150 W. Stannic chloride (SnCl 4 ) was used as precursor and oxygen (O 2 , 100 SCCM) (SCCM denotes cubic centimeter per minute at STP) as reactant gas. Palladium hexafluroacetyleacetonate (Pd(C 5 HF 6 O 2 ) 2 ) was used as a precursor for palladium. Fine granular morphology was observed with tetragonal rutile structure. A peak related to Pd 2 Sn is observed, whose intensity increases slightly with deposition temperature. Electrical resistivity value decreased from 8.6 to 0.9 mΩ cm as a function of deposition temperature from 400 to 600 deg. C. Photoelectron peaks related to Sn 3d, Sn 3p3, Sn 4d, O 1s, and C 1s were detected with varying intensities as a function of deposition temperature.

  12. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  13. Research of beam hardening correction method for CL system based on SART algorithm

    International Nuclear Information System (INIS)

    Cao Daquan; Wang Yaxiao; Que Jiemin; Sun Cuili; Wei Cunfeng; Wei Long

    2014-01-01

    Computed laminography (CL) is a non-destructive testing technique for large objects, especially for planar objects. Beam hardening artifacts were wildly observed in the CL system and significantly reduce the image quality. This study proposed a novel simultaneous algebraic reconstruction technique (SART) based beam hardening correction (BHC) method for the CL system, namely the SART-BHC algorithm in short. The SART-BHC algorithm took the polychromatic attenuation process in account to formulate the iterative reconstruction update. A novel projection matrix calculation method which was different from the conventional cone-beam or fan-beam geometry was also studied for the CL system. The proposed method was evaluated with simulation data and experimental data, which was generated using the Monte Carlo simulation toolkit Geant4 and a bench-top CL system, respectively. All projection data were reconstructed with SART-BHC algorithm and the standard filtered back projection (FBP) algorithm. The reconstructed images show that beam hardening artifacts are greatly reduced with the SART-BHC algorithm compared to the FBP algorithm. The SART-BHC algorithm doesn't need any prior know-ledge about the object or the X-ray spectrum and it can also mitigate the interlayer aliasing. (authors)

  14. Co-deposition methods for the fabrication of organic optoelectronic devices

    Science.gov (United States)

    Thompson, Mark E.; Liu, Zhiwei; Wu, Chao

    2016-09-06

    A method for fabricating an OLED by preparing phosphorescent metal complexes in situ is provided. In particular, the method simultaneously synthesizes and deposits copper (I) complexes in an organic light emitting device. Devices comprising such complexes may provide improved photoluminescent and electroluminescent properties.

  15. Evaluation of beam wobbling methods for heavy-ion radiotherapy

    International Nuclear Information System (INIS)

    Yonai, Shunsuke; Kanematsu, Nobuyuki; Komori, Masataka; Kanai, Tatsuaki; Takei, Yuka; Takahashi, Osamu; Isobe, Yoshiharu; Tashiro, Mutsumi; Koikegami, Hajime; Tomita, Hideki

    2008-01-01

    The National Institute of Radiological Sciences (NIRS) has extensively studied carbon-ion radiotherapy at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) with some positive outcomes, and has established its efficacy. Therefore, efforts to distribute the therapy to the general public should be made, for which it is essential to enable direct application of clinical and technological experiences obtained at NIRS. For widespread use, it is very important to reduce the cost through facility downsizing with minimal acceleration energy to deliver the HIMAC-equivalent clinical beams. For the beam delivery system, the requirement of miniaturization is translated to reduction in length while maintaining the clinically available field size and penetration range for range-modulated uniform broad beams of regular fields that are either circular or square for simplicity. In this paper, we evaluate the various wobbling methods including original improvements, especially for application to the compact facilities through the experimental and computational studies. The single-ring wobbling method used at HIMAC is the best one including a lot of experience at HIMAC but the residual range is a fatal problem in the case of a compact facility. On the other hand, uniform wobbling methods such as the spiral and zigzag wobbling methods are effective and suitable for a compact facility. Furthermore, these methods can be applied for treatment with passive range modulation including respiratory gated irradiation. In theory, the choice between the spiral and zigzag wobbling methods depends on the shape of the required irradiation field. However, we found that it is better to use the zigzag wobbling method with transformation of the wobbling pattern even when a circular uniform irradiation field is required, because it is difficult to maintain the stability of the wobbler magnet due to the rapid change of the wobbler current in the spiral wobbling method. The regulated wobbling method

  16. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  17. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  18. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    International Nuclear Information System (INIS)

    Blais, N.; Podgorsak, E.B.

    1992-01-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author)

  19. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  20. A modified time-of-flight method for precise determination of high speed ratios in molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.; Samelin, B.; Holst, B. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); Bracco, G. [Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen (Norway); CNR-IMEM, Department of Physics, University of Genova, V. Dodecaneso 33, 16146 Genova (Italy)

    2016-02-15

    Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beam using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.

  1. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  2. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  3. Developments in broad-beam, ion-source technology and applications

    International Nuclear Information System (INIS)

    Kaufman, H.R.; Harper, J.M.E.; Cuomo, J.J.

    1982-01-01

    Recent advances in broad-beam, ion-source technology are summarized, including low-energy ion optics, improved extraction grid fabrication, a compact ion-source design and a gridless ion-source design. Recent applications have emphasized concepts such as stress modification of vapor deposited films, very low energy ion beams to minimize the physical sputtering portion in reactive etching, and the use of multiple sources and targets to sputter deposit alloys and compounds. A comprehensive critical review by the same authors appears concurrently, describing in detail the developments in broad-beam, ion-source technology 1 and the applications of these sources. 2

  4. Microstructure Evolution of Electron Beam Physical Vapour Deposited Ni-23.5Cr-2.66Co-1.44Al Superalloy Sheet During Annealing at 600 °C

    Directory of Open Access Journals (Sweden)

    Li Mingwei

    2013-02-01

    Full Text Available Microstructure evolution of electron beam physical vapour deposited (EB-PVD Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the locations of diffraction peaks were still the same. The (220 diffraction peak of the deposition side increased with annealing time. The sheet on deposited side had a tendency toward forming (220 texture during post-annealing. No obvious texture was observed at as-deposited and annealed sheet at 600 °C in substrate side. The count and size of "voids" decreased with time. The size of grains increased obviously with annealing time. The ultimate tensile strength of EB-PVD Ni-23.5Cr-2.66Co-1.44Al alloy sheet increased from 641 MPa to 829 MPa after annealing at 600 °C for 30 hours.

  5. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  6. Structural and magnetic properties of ion-beam bombarded Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.W.; Guo, J.Y.; Lin, S.R.; Ouyang, H. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402 (China); Tsai, C.J. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300 (China); Van Lierop, J. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Phuoc, N.N.; Suzuki, T. [Information Storage Materials Laboratory, Toyota Technological Institute, Nagoya 468-8511 (Japan)

    2007-12-15

    A series of [Pt(2 nm)/Co(2 nm)]{sub 10}/Pt(30 nm) multilayers were deposited by using an ion-beam technique. X-ray diffraction and transmission electron microscopy results have shown that as-deposited samples consist of h.c.p. Co and f.c.c. Pt phases. Disordered CoPt{sub 3} phases were developed with increasing End-Hall voltage (V{sub EH}) that induces greater ion-beam bombardment energy during deposition. This indicates that intermixing of Co and Pt increases with ion-beam bombardment. The coercivities (ranging from 100 Oe to 300 Oe) of Co/Pt multilayers decreased with increasing V{sub EH}. After annealing, the formation of CoPt{sub 3} was observed in these ion-beam bombarded samples, resulting in lower coercivities (H{sub c}{proportional_to} 50 Oe). The depressed transition temperature of CoPt{sub 3} for films deposited with the largest V{sub EH} was attributed to distorted CoPt{sub 3} structures that appeared with annealing. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  8. Beams configuration design in target area with successive quadratic programming method

    International Nuclear Information System (INIS)

    Shi Zhiquan; Tan Jichun; Wei Xiaofeng; Man Jongzai; Zhang Xiaomin; Yuan Jing; Yuan Xiaodong

    1998-01-01

    The author describes the application of successive quadratic programming method (SQP) to design laser beam configuration in target area. Based on the requirement of ICF experiment physics, a math model of indirect-driver beam geometry is given. A 3D wire-frame is plotted, in which support lines represent 60 laser entireties and 240 turning points of support lines' segments stand for the spatial positions of reflectors

  9. Practical applications of ion beam and plasma processing for improving corrosion and wear protection

    CERN Document Server

    Klingenberg, M L; Wei, R; Demaret, J; Hirvonen, J

    2002-01-01

    A multi-year project for the US Army has been investigating the use of various ion beam and plasma-based surface treatments to improve the corrosion and wear properties of military hardware. These processes are intended to be complementary to, rather than competing with, other promising macro scale coating processes such high velocity oxy-fuel (HVOF) deposition, particularly in non-line-of- sight and flash chrome replacement applications. It is believed that these processes can improve the tribological and corrosion behavior of parts without significantly altering the dimensions of the part, thereby eliminating the need for further machining operations and reducing overall production costs. The ion beam processes chosen are relatively mature, low-cost processes that can be scaled-up. The key methods that have been considered under this program include nitrogen ion implantation into electroplated hard chrome, ion beam assisted chromium and chromium nitride coatings, and plasma-deposited diamond- like carbon an...

  10. Relativistic electron beam interaction with a thin target

    International Nuclear Information System (INIS)

    Gazaix, M.

    1981-03-01

    This study is concerned with the increasing possibilities of electron energy deposition in thin targets. The thesis theoretical part studies the relativistic electron beam-plasma instability; the Buneman-Pierce instability in limited medium is also studied. In the experimental part, several questions are tentatively answered: - what is the spatial and temporal evolution of the anode material, in temperature and in density. - What sort of interaction is the beam-target interaction; more particularly questions about focusing and energy deposition are studied [fr

  11. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  12. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-01-01

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He 3 , Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made

  13. Friction and wear study of diamond-like carbon gradient coatings on Ti6Al4V substrate prepared by plasma source ion implant-ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Jiang, Shuwen; Jiang Bin; Li Yan; Li Yanrong; Yin Guangfu; Zheng Changqiong

    2004-01-01

    DLC gradient coatings had been deposited on Ti6Al4V alloy substrate by plasma source ion implantation-ion beam enhanced deposition method and their friction and wear behavior sliding against ultra high molecular weight polyethylene counterpart were investigated. The results showed that DLC gradient coated Ti6Al4V had low friction coefficient, which reduced 24, 14 and 10% compared with non-coated Ti6Al4V alloy under dry sliding, lubrication of bovine serum and 0.9% NaCl solution, respectively. DLC gradient coated Ti6Al4V showed significantly improved wear resistance, the wear rate was about half of non-coated Ti6Al4V alloy. The wear of ultra high molecular weight polyethylene counterpart was also reduced. High adhesion to Ti6Al4V substrate of DLC gradient coatings and surface structure played important roles in improved tribological performance, serious oxidative wear was eliminated when DLC gradient coating was applied to the Ti6Al4V alloy

  14. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  15. Residual Strength Analysisof Asymmetrically Damaged Ship Hull GirderUsing Beam Finite Element Method

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Muis Alie

    2016-04-01

    Full Text Available The objective of the present study is to analyze the residual strength of asymmetrically damaged ship hull girder under longitudinal bending. Beam Finite Element Method isused for the assessment of the residual strength of two single hull bulk carriers (Ship B1 and Ship B4 and a three-cargo-hold model of a single-side Panamax Bulk Carrierin hogging and sagging conditions. The Smith’s  method  is  adopted  and  implemented  into  Beam  Finite  Element Method. An efficient solution procedure is applied; i.e. by assuming the cross section remains plane, the vertical bending moment is applied to the  cross section  and  three-cargo-hold  model. As a fundamental  case,  the  damage is simply  created  by removing the elements from the cross section, neglecting any welding residual stress and initial imperfection. Also no crack  extension  is considered.  The  result  obtained  by  Beam  Finite  Element  Method  so-called Beam-HULLST is compared to the progressive collapse analysis obtained by HULLST for the validation of the present work. Then, for the three-hold-model, the Beam-HULLST is used to investigate the effect of the rotation of the netral axisboth intact and damage condition taking the one and five frame spaces into account. 

  16. Diamagnetic measurement of JFT-2 plasma heated by neutral beam injection

    International Nuclear Information System (INIS)

    Maeno, Masaki; Sengoku, Seio; Yamamoto, Shin; Suzuki, Norio; Yamauchi, Toshihiko; Kawashima, Hisato; Miura, Yukitoshi

    1984-01-01

    A neutral beam was injected into the plasma in the JFT-2 tokamak, and the poloidal beta value βsub(p) of the plasma was determined by a diamagnetic method in which the change in the magnetic flux due to the plasma was obtained by measuring the very small perturbation of the current in the tokamak's toroidal field coil. The ratio of the perturbed to unperturbed currents in the coil was found to be (2-3) x 10 -4 . The poloidal beta value βsub(pd) determined by this method agrees within experimental error with that obtained from magnetic and energy profile analyses. βsub(pd) increases linearly with the total power Psub(net) deposited by the neutral beam in the plasma when Psub(net)=1.5 MW. The heating efficiency of the beam injection heating was found to be lower than that of Joule heating. (author)

  17. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  18. Morphology and structural studies of WO{sub 3} films deposited on SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Hossein, E-mail: h.kalhori@ph.iut.ac.ir [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of); Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael [School of Physics and CRANN, Trinity College, Dublin 2 (Ireland); Ranjbar, Mehdi; Salamati, Hadi [Department of Physics, Isfahan University of Technology, Isfahan 84156-8311 (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • Highly oriented WO{sub 3} stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO{sub 3} films at 700 °C from monoclinic to tetragonal. - Abstract: WO{sub 3} films have been grown by pulsed laser deposition on SrTiO{sub 3} (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  19. Room temperature photoluminescence from In{sub x}Al{sub (1−x)}N films deposited by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Mohanta, A. [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Roberts, A. T. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [Plasma Chemistry Research Center-CNR, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Research Lab, Army Aviation and Missile RD and E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-29

    InAlN films deposited by plasma-assisted molecular beam epitaxy exhibited a lateral composition modulation characterized by 10–12 nm diameter, honeycomb-shaped, columnar domains with Al-rich cores and In-rich boundaries. To ascertain the effect of this microstructure on its optical properties, room temperature absorption and photoluminescence characteristics of In{sub x}Al{sub (1−x)}N were comparatively investigated for indium compositions ranging from x = 0.092 to 0.235, including x = 0.166 lattice matched to GaN. The Stokes shift of the emission was significantly greater than reported for films grown by metalorganic chemical vapor deposition, possibly due to the phase separation in these nanocolumnar domains. The room temperature photoluminescence also provided evidence of carrier transfer from the InAlN film to the GaN template.

  20. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...