WorldWideScience

Sample records for beam deposited mgf

  1. Ion assistance effects on electron beam deposited MgF sub 2 films

    CERN Document Server

    Alvisi, M; Della Patria, A; Di Giulio, M; Masetti, E; Perrone, M R; Protopapa, M L; Tepore, A

    2002-01-01

    Thin films of MgF sub 2 have been deposited by the ion-assisted electron-beam evaporation technique in order to find out the ion beam parameters leading to films of high laser damage threshold whose optical properties are stable under uncontrolled atmosphere conditions. It has been found that the ion-assisted electron-beam evaporation technique allows getting films with optical properties (refraction index and extinction coefficient) of high environmental stability by properly choosing the ion-source voltage and current. But, the laser damage fluence at 308 nm was quite dependent on the assisting ion beam parameters. Larger laser damage fluences have been found for the films deposited by using assisting ion beams delivered at lower anode voltage and current values. It has also been found that the films deposited without ion assistance were characterized by the highest laser damage fluence (5.9 J/cm sup 2) and the lowest environmental stability. The scanning electron microscopy analysis of the irradiated areas...

  2. Focused helium-ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, P.F.A.; Miro, H. [Delft University of Technology, Kavli Institute of Nanoscience, Delft (Netherlands)

    2014-12-15

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He{sup +} ions in the tens of keV energy range with materials - i.e., minimal deflection and mainly energy loss via electronic excitations - renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm{sup 3}/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal. (orig.)

  3. Bichromatic slowing of MgF molecules in multilevel systems

    Science.gov (United States)

    Yang, Xiuxiu; Li, Chuanliang; Yin, Yanning; Xu, Supeng; Li, Xingjia; Xia, Yong; Yin, Jianping

    2017-01-01

    We present a theoretical study of the bichromatic force exerted on magnesium monofluoride (MgF), in which we have considered the complex vibrational and rotational levels and the effects of small internal splittings and degeneracies, including fine and hyperfine structures and the magnetic quantum numbers. We calculate some parameters used in the MgF molecular transitions between X 2Σ+, A 2Π and B 2Σ+ states. It is the first time that the radiative lifetimes of B 2Σ+ → X 2Σ+ and B 2Σ+ → A 2Π have been derived by ab initio calculations. The detailed numerical modeling of bichromatic forces by direct numerical solution for the time-dependent density matrix is presented. Here, we propose a simplified numerical model to study the dynamic process of MgF slowing by neglecting the effect of the high vibrational levels, in which a skewed magnetic field is applied to destabilize the dark state. We deduce the relation between per-bichromatic-component irradiance I and the total Rabi frequency amplitude. We also compare our proposed simplified model with two other theoretical ones (Aldridge et al 2016 Phys. Rev. A 93 013419). Monte Carlo simulations show that a buffer-gas-cooled MgF beam with a forward velocity of 120 m s-1 can be decelerated nearly to several m/s within a distance of ˜0.5 cm. Comparing with the B → X transition, we find that the A → X transition in MgF is more suitable for the bichromatic force cooling and slowing.

  4. Electron beam niobium oxide powder deposition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, D.S. [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil); Nono, M.C.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M. [Universidade de Brasilia (UnB), Brasilia, DF (Brazil)

    2009-07-01

    Full text: Zirconium oxide applied by Electron Beam –Physical Vapor Deposition can produce high quality coatings for high temperature blades. In this work niobium, yttrium and zirconium oxides were applied on metallic substrates, using EB-PVD, aiming thermal conductivity reduction. Coating characterization has been performed by X-ray diffractometry and scanning electron microscopy. X-ray diffractometry shows only tetragonal phase for the composition range evaluated, with tetragonality increase for higher niobium oxide amounts. Higher amounts of niobium promote reduction of ceramic coating theoretical density and thermal conductivity. (author)

  5. Lifetime obtained by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chakaroun, M. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France); Antony, R. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)], E-mail: remi.antony@unilim.fr; Taillepierre, P.; Moliton, A. [XLIM-MINACOM-UMR 6172, Faculte des Sciences et Techniques, 123 av. Albert Thomas, 87060 Limoges cedex (France)

    2007-09-15

    We have fabricated green organic light-emitting diodes based on tris-(8-hydroxyquinoline)aluminium (Alq3) thin films. In order to favor the charge carriers transport from the anode, we have deposited a N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) layer (hole transport layer) on a ITO anode. Cathode is obtained with a calcium layer covered with a silver layer. This silver layer is used to protect the other layers against oxygen during the OLED use. All the depositions are performed under vacuum and the devices are not exposed to air during their realisation. In order to improve the silver layer characteristics, we have realized this layer with the ion beam assisted deposition process. The aim of this process is to densify the layer and then reduce the permeation of H{sub 2}O and O{sub 2}. We have used argon ions to assist the silver deposition. All the OLEDs optoelectronic characterizations (I = f(V), L = f(V)) are performed in the ambient air. We compare the results obtained with the assisted layer with those obtained with a classical cathode realized by thermal unassisted evaporation. We have realized lifetime measurements in the ambient air and we discuss about the assisted layer influence on the OLEDs performances.

  6. Technology basis and perspectives on focused electron beam induced deposition and focused ion beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rius, Gemma, E-mail: rius.gemma@nitech.ac.jp

    2014-12-15

    The main characteristics of focused electron beam induced deposition (FEBID) and focused ion beam induced deposition (FIBID) are presented. FEBID and FIBID are two nanopatterning techniques that allow the fabrication of submicron patterns with nanometer resolution on selected locations of any kind of substrate, even on highly structured supports. The process consists of mask less serial deposition and can be applied to a wide variety of materials, depending strictly on the precursor material source used. The basic mechanism of FEBID and FIBID is the adsorption of volatile precursor molecules onto the sample surface and decomposition of the molecules induced by the energetic electron and ion focused beams. The essential similarities of the two techniques are presented and especial emphasis is dedicated to highlighting their main differences, such as aspects related to resolution, deposition rate, deposits purity, substrate integrity, etc. In both cases, the factors interplay and complex mechanisms are still understood in a qualitative basis, so much work can still be done in terms of modeling and simulating the processes involved in FEBID and FIBID. Current work on FEBID and FIBID is presented through examples of achievements, interesting results and novel approaches.

  7. Focused electron beam induced deposition: A perspective

    Directory of Open Access Journals (Sweden)

    Michael Huth

    2012-08-01

    Full Text Available Background: Focused electron beam induced deposition (FEBID is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical

  8. Mo SILICIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    T.H. Zhang; Z.Z. Yi; X.Y. Wu; S.J. Zhang; Y.G. Wu; X. Zhang; H.X. Zhang; A.D. Liu; X.J. Zhang

    2002-01-01

    Mo silicides MosSi3 with high quality were prepared using ion beam deposition equip-ment with two Filter Metal Vacuum Arc Deposition (FMEVAD). When the numberof alternant deposition times was 198, total thickness of the coating is 40nm. Thecoatings with droplet free can be readily obtained, so the surface is smooth. TEMobservation shows that Mo and Si alternant deposition coating is conpact structure.The fine Mo silicide grains densely distributed in the coating. The coating adherenceon silicon is excellent.

  9. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  10. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  11. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  12. Scaling in film growth by pulsed laser deposition and modulated beam deposition.

    Science.gov (United States)

    Lee, Sang Bub

    2011-04-01

    The scalings in film growth by pulsed laser deposition (PLD) and modulated beam deposition (MBD) were investigated by Monte Carlo simulations. In PLD, an atomic pulse beam with a period t(0) were deposited instantaneously on a substrate, whereas in MBD, adatoms were deposited during a short time interval t(1) (0≤t(1)≤t(0)) within each period. If t(1)=0, MBD will be identical to PLD and, if t(1)=t(0), MBD will become usual molecular beam epitaxy (MBE). Specifically, logarithmic scaling was investigated for the nucleation density reported for PLD, and the scaling of island density was studied regarding the growth for 0MBE growth was observed as t(1) increased. The phase diagram was also presented.

  13. Proximity effect in ion-beam-induced deposition of nanopillars

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    Ion-beam-induced deposition (IBID) is a powerful technique for prototyping three-dimensional nanostructures. To study its capability for this purpose, the authors investigate the proximity effect in IBID of nanopillars. In particular, the changes in shape and dimension of pillars are studied when a

  14. Solid gold nanostructures fabricated by electron beam deposition

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Rasmussen, A.M.;

    2003-01-01

    Direct writing with gold by electron beam deposition is a method for rapid fabrication of electrically conducting nanostructures. An environmental scanning electron microscope (ESEM) equipped with a source of the precursor gas dimethylacetylacetonate gold(Ill) was used to fabricate nanoscale tips...

  15. Fabrication of plasmonic nanostructures with electron beam induced deposition

    NARCIS (Netherlands)

    Acar, H.

    2013-01-01

    The work described in this thesis was shaped by the goal---coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. Thes

  16. Power deposition of deuteron beam in fast ignition

    Science.gov (United States)

    Azadifar, R.; Mahdavi, M.

    2017-02-01

    In ion fast ignition (FI) inertial confinement fusion (ICF), a laser accelerated ion beam called igniter provides energy required for ignition of a fuel pellet. The laser accelerated deuteron beam is considered as igniter. The deuteron beam with Maxwellian energy distribution produced at the distance d = 500 μm, from fuel surface, travels during time t = 20 ps and arrives with power P1D(t,TD) to the fuel surface. Then, the deuteron beam deposits its energy into fuel by Coulomb and nuclear interactions with background plasma particles during time t = 10 ps, with power P2D(t,TD,Tb). Since time and power of the two stages have same order, to calculate the total power deposited by igniter beam, both stages must be considered simultaneously. In this paper, the exact power of each stage has been calculated separately, and the total power Ptotal(t,TD,Tb) has been obtained. The obtained results show that the total power deposition Ptotal(t,TD,Tb) is significantly reduced due to reducing different temperature between projectile and target particles.

  17. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    Science.gov (United States)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  18. Calculation of the energy deposition in a water beam dump

    CERN Document Server

    Schönbacher, Helmut

    1975-01-01

    The energy deposition per interacting proton in GeV/cm/sup 3/ and the star density in star/cm/sup 3/ have been calculated in a water cylinder with a Monte Carlo computer program. These calculations permit the estimation of the temperature rise, induced radioactivity, etc., in beam dumps of high energy accelerator and storage rings. The calculation assumed a cylinder of different diameters and lengths and an incident proton beam energy of 20, 200, 300 and 400 GeV. (5 refs).

  19. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  20. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  1. Optical Properties of MgF2 / MgF2 / Glass and MgF2 / TiO2 / Glass

    Directory of Open Access Journals (Sweden)

    S. Ghahramani

    2014-01-01

    Full Text Available MgF2 thin films by thickness of 93 nm were deposited on MgF2 / glass and TiO2 / glass thin layers by resistance evaporation method under ultra-high vacuum (UHV conditions, rotating pre layer for sample one and normal deposition for second one. Optical properties were measured via spectrophotometer in spectral range of 300-1100 nm wave length. The optical constants such as, real part of refractive index (n, imaginary part of refractive index (k, real and imaginary parts of dielectric function ε1, ε2 respectively and absorption coefficient (, were obtained from Kramers-Kronig analysis of reflectivity curves. Band-gap energy was also estimated for these films.

  2. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  3. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  4. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  5. Photon beam convolution using polyenergetic energy deposition kernels

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, P.W.; Murray, D.C.; Round, W.H. (Waikato Univ., Hamilton (New Zealand). Dept. of Physics)

    1994-04-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, [mu], to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio [mu][sub ab]/[mu] as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author).

  6. Hemocompatibility of DLC coatings synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ion beam-assisted diamond-like carbon (DLC) coatings have beenused for growing the human platelet, fibrinogen, and albumin in the control environment in order to assess their hemocompatibility. The hard carbon films were prepared on polymethylmethacrylate (PMMA) at room temperature using ion beam assisted deposition (IBAD). Raman spectroscopic analysis proved that the carbon films on PMMA are diamond-like with a higher fraction of sp\\+3 bonds in the structure of mixed sp\\+2+sp\\+3 bonding. The blood protein adsorption tests showed that DLC coatings can adsorb more albumin and are slightly more fibrinogen than the PMMA chosen as a control sample. The platelets adhered on DLC coatings were reduced significantly in number. These results indicate good hemocompatibility of DLC coatings.

  7. Chemical vapour deposited diamonds for dosimetry of radiotherapeutical beams

    Energy Technology Data Exchange (ETDEWEB)

    Bucciolini, M.; Mazzocchi, S. [Firenze Univ., Firenze (Italy). Dipartimento di Fisiopatologia Clinica; INFN, Firenze (Italy); Borchi, E.; Bruzzi, M.; Pini, S.; Sciortino, S. [Firenze Univ., Firenze (Italy). Dipartimento di Energetica; INFN, Firenze (Italy); Cirrone, G.A.P.; Guttone, G.; Raffaele, L.; Sabini, M.G. [INFN, Catania (Italy). Laboratori Nazionali del Sud

    2002-07-01

    This paper deals with the application of synthetic diamond detectors to the clinical dosimetry of photon and electron beams. It has been developed in the frame of INFN CANDIDO project and MURST Cofin. Diamonds grown with CVD (Chemical Vapour Deposition) technique have been studied; some of them are commercial samples while others have been locally synthesised. Experiments have been formed using both on-line and off-line approaches. For the off-line measurements, TL (thermoluminescent) and TSC (thermally stimulated current) techniques have been used.

  8. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  9. Study of indium tin oxide thin films deposited on acrylics substrates by Ion beam assisted deposition technique

    OpenAIRE

    Meng Lijian; Liang Erjun; Gao Jinsong; Teixeira, Vasco M. P.; Santos, M. P. dos

    2009-01-01

    Indium tin oxide (ITO) thin films have been deposited onto acrylics (PMMA) substrates by ion beam assisted deposition technique at different oxygen flows. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, transmittance, FTIR, ellipometry and Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the ellipsometric spectra. The effects of the oxygen flow on the properties of the ...

  10. Energy deposition studies for the LBNE beam absorber

    CERN Document Server

    Rakhno, Igor L; Tropin, Igor S

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  11. Atomic layer deposition ultrathin film origami using focused ion beams

    Science.gov (United States)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  12. Dual ion beam deposition of carbon films with diamondlike properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  13. Electron-beam-induced deposition of platinum at low landing energies

    NARCIS (Netherlands)

    Botman, A.; De Winter, D.A.M.; Mulders, J.J.L.

    2008-01-01

    Electron-beam-induced deposition of platinum from methylcyclopentadienyl-platinum-trimethyl was performed with a focused electron beam at low landing energies, down to 10 eV. The deposition growth rate is maximal at 140 eV, with the process being over ten times more efficient than at 20 kV. No signi

  14. Ion-beam-deposited boron carbide coatings for the extreme ultraviolet.

    Science.gov (United States)

    Blumenstock, G M; Keski-Kuha, R A

    1994-09-01

    The normal-incidence reflectance of ion-beam-deposited boron carbide thin films has been evaluated in the extreme ultraviolet (EUV) spectral region. High-reflectance coatings have been produced with reflectances greater than 30% between 67 and 121.6 nm. This high reflectance makes ion-beam-deposited boron carbide an attractive coating for EUV applications.

  15. Development of a cw Co : MgF 2 laser

    Science.gov (United States)

    Di Lieto, A.

    2003-03-01

    The results obtained in the development of a cryogenic cw Co : MgF 2 laser, realized at the Dipartimento di Fisica of the Università di Pisa are presented. The laser can be tuned continuously in the range between 1.6 and 2.1 μm, with a typical output power of 1-2 W. A preliminary application to the spectroscopy of a Tm : YLF doped crystal is reported by using a photoacoustic apparatus.

  16. Tribological Properties of DLC Film Prepared by C + Ion Beam-assisted Deposition (IBAD)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    C + ion beam-assisted deposition was utilized to prepare deposit diamond-like carbon (DLC) film.With the help of a series of experiments such as Raman spectroscopy, FT- IR spectroscopy, AFM and nanoindentation, the DLC film has been recognized as hydrogenated DLC film and its tribological properties have been evaluated.The ball-on-disc testing results show that the hardness and the tribological properties of the DLC film produced by C + ion beam-assisted deposition are improved significandy.DLC film produced by C+ ion beam-assisted deposition is positive to have a prosperous tribological application in the near future.

  17. Focused electron beam induced deposition of magnetic nanostructures

    Science.gov (United States)

    de Teresa, Jose M.

    2011-03-01

    Nanopatterning strategies of magnetic materials normally rely on standard techniques such as electron-beam lithography using electron-sensitive resists. Focused electron beam induced deposition (FEBID) is currently being investigated as an alternative single-step route to produce functional magnetic nanostructures. Thus, Co-based and Fe-based precursors have been recently investigated for the growth of magnetic nanostructures by FEBID. In the present contribution, I will give an overview of the existing literature on magnetic nanostructures by FEBID and I will focus on the growth of Co nanostructures by FEBID using Co 2 (CO)8 as precursor gas. The Co content in the nanostructures can reach 95%. Magnetotransport experiments indicate that full metallic behaviour is displayed with relatively low residual resistivity and standard anisotropic magnetoresistance (0.8%). The coercive field of nanowires with changing aspect ratio has been determined in nanowires with width down to 150 nm by means of Magneto-optical Kerr Effect and the magnetization reversal has been imaged by means of Magnetic Force Microscopy, Scanning Transmission X-ray Microscopy as well as Lorentz Microscopy experiments. Nano-Hall probes have been grown with remarkable minimum detectable magnetic flux. Noticeably, it has been found that the domain-wall propagation field is lower than the domain-wall nucleation field in L-shaped nanowires, with potential applications in magnetic logic, sensing and storage. The spin polarization of these Co nanodeposits has been determined through Andreev-Reflection experiments in ferromagnetic-superconducting nanocontacts and amounts to 35%. Recent results obtained in Fe-based nanostructures by FEBID using Fe 2 (CO)9 precursor will be also presented. I acknowledge the collaboration in this field with A. Fernandez-Pacheco, R. Cordoba, L. Serrano, S. Sangiao, L.A. Rodriguez, C. Magen, E. Snoeck, L. Morellon, M.R. Ibarra.

  18. Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, E. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Sandu, C.S., E-mail: cosmin.sandu@3d-oxides.com [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Harada, S.; Benvenuti, G. [3D-OXIDES, 70 rue Gustave Eiffel, Saint Genis Pouilly 01630 (France); Savu, V. [Laboratoire de Microsystèmes 1, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne (Switzerland); Muralt, P. [Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-01

    Chemical Beam Vapour Deposition is a gas phase deposition technique, operated under high vacuum conditions, in which evaporated chemical precursors are thermally decomposed on heated substrates to form a film. In the particular equipment used in this work, different chemical beams effuse from a plurality of punctual precursor sources with line of sight trajectory to the substrate. A shadow mask is used to produce 3D-structures in a single step, replicating the apertures of a stencil as deposits on the substrate. The small gap introduced between substrate and mask induces a temperature difference between both surfaces and is used to deposit selectively solely on the substrate without modifying the mask, taking advantage of the deposition rate dependency on temperature. This small gap also enables the deposition of complex patterned structures resulting from the superposition of many patterns obtained using several precursor beams from different directions through a single mask aperture. A suitable process parameter window for precursor flow and substrate temperature is evidenced to maximize resolution. - Highlights: • Micro-feature growth with stencil mask by Chemical Beam Vapour Deposition • Growth of complex structured oxide films in one step • The gap between substrate and mask avoids deposition on the stencil. • Fabrication of 3D structures by superposing deposits from several beams • The versatile setup combines few chemical beams, variable geometry and stencil mask patterns.

  19. Nanopillar growth by focused helium ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Veldhoven, E. van; Sanford, C.A.; Salemink, H.W.M.; Maas, D.J.; Smith, D.A.; Rack, P.D.; Alkemade, P.F.A.

    2010-01-01

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3) 3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that el

  20. Pulsed Helium Ion Beam Induced Deposition: A Means to High Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, Paul F. A. [Delft University of Technology, Delft, Netherlands; Miro, Hozanna [Delft University of Technology, Delft, Netherlands; Van Veldhoven, Emile [TNO Van Leeuwenhoek Laboratory; Maas, Diederick [TNO Van Leeuwenhoek Laboratory; Smith, Daryl [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH{sub 3}){sub 3}Pt(CPCH{sub 3}) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.

  1. Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination

    Science.gov (United States)

    Drampyan, Rafael; Leonov, Nikita; Vartanyan, Tigran

    2016-04-01

    The technique of the laser controlled deposition of sodium and rubidium deposits on the sapphire substrate is presented. The metals were deposited on the clean sapphire substrate from the vapor phase contained in the evacuated and sealed cell. We use an axicon to produce a non-diffracting Bessel beam out of the beam got from the cw diode laser with 200 mW power at the wavelength of 532 nm. After 30 minutes of the laser-controlled deposition the substrates were examined in the optical microscope. The obtained metal deposits form the sharp-cut circles with the pitch of 10 μm, coincident with the tens of dark rings of the Bessel beam. Reduction of the laser power leads to the build up of the continuous metal film over the whole substrate.

  2. Crystalline inverted membranes grown on surfaces by electrospray ion beam deposition in vacuum.

    Science.gov (United States)

    Rauschenbach, Stephan; Rinke, Gordon; Malinowski, Nikola; Weitz, R Thomas; Dinnebier, Robert; Thontasen, Nicha; Deng, Zhitao; Lutz, Theresa; de Almeida Rollo, Pedro Martins; Costantini, Giovanni; Harnau, Ludger; Kern, Klaus

    2012-05-22

    Crystalline inverted membranes of the nonvolatile surfactant sodium dodecylsulfate are found on solid surfaces after electrospray ion beam deposition (ES-IBD) of large SDS clusters in vacuum. This demonstrates the equivalence of ES-IBD to conventional molecular beam epitaxy.

  3. Roles of secondary electrons and sputtered atoms in ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    The authors report the results of investigating two models for ion-beam-induced deposition (IBID). These models describe IBID in terms of the impact of secondary electrons and of sputtered atoms, respectively. The yields of deposition, sputtering, and secondary electron emission, as well as the ener

  4. Arbitrarily shaped Si nanostructures by glancing angle ion beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Patzig, Christian; Miessler, Andre [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Permoserstrasse 15, 04318 Leipzig (Germany); Karabacak, Tansel [University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Rauschenbach, Bernd [Leibniz-Institut fuer Oberflaechenmodifizierung e.V. (IOM), Permoserstrasse 15, 04318 Leipzig (Germany); Universitaet Leipzig, Institut fuer Experimentalphysik II, Linnestrasse 5, 04103 Leipzig (Germany)

    2010-06-15

    Using glancing angle deposition by ion beam sputtering, sculptured thin films (STFs) consisting of various Si nanostructures of manyfold shapes, such as inclined and vertical columns, screws, and spirals, were deposited on Si substrates. It will be shown that morphology, shape, and diameter of the structures are influenced and can thus be controlled by adjusting various deposition parameters, including substrate temperature and ratio of substrate rotational speed to film deposition rate. Especially the temperature-controlled surface diffusion is found to play an important role in the growth of STFs. Cross-sectional scanning electron microscopy micrograph of helical Si nanostructures, deposited with ion beam sputter glancing angle deposition. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  6. Ion Beam Assisted Deposition Of Optical Thin Films - Recent Results

    Science.gov (United States)

    McNally, J. J.; Al-Jumaily, G. A.; Wilson, S. R.; McNeil, J. R.

    1985-11-01

    We have examined the properties of dielectric (Ti02, Si02, -Al203, Ta205 and Hf02) films deposited using ion-assisted deposition (IAD). The films were characterized using an angularly resolved scatterometer, spectrophotometer and Raman spectroscopy. A reduction in optical scatter, especially that due to low spatial frequencies, is observed for films deposited with simultaneous ion bombardment. Higher values of refractive index are obtained for films deposited using IAD. Raman spectra indicate a crystalline phase change in TiO2 films is induced by bombardment of samples with 02 ions during deposition. Other experimental data and the effects of the induced phase transition on the optical properties of TiO2 will be discussed.

  7. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    CERN Document Server

    Yang Hai Liang; Zhang Jia Sheng; Huang Jian Jun; Sun Jian Feng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  8. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  9. Indium Tin Oxide-Magnesium Fluoride Co-Deposited Films for Spacecraft Applications

    Science.gov (United States)

    Dever, Joycer A.; Rutledge, Sharon K.; Hambourger, Paul D.; Bruckner, Eric; Ferrante, Rhea; Pal, Anna Marie; Mayer, Karen; Pietromica, Anthony J.

    1998-01-01

    Highly transparent coatings with a maximum sheet resistivity between 10(exp 8) and 10(exp 9) ohms/square are desired to prevent charging of solar arrays for low Earth polar orbit and geosynchronous orbit missions. Indium tin oxide (ITO) and magnesium fluoride (MgF2) were ion beam sputter co-deposited onto fused silica substrates and were evaluated for transmittance, sheet resistivity and the effects of simulated space environments including atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. Optical properties and sheet resistivity as a function of MgF2 content in the films will be presented. Films containing 8.4 wt.% MgF2 were found to be highly transparent and provided sheet resistivity in the required range. These films maintained a high transmittance upon exposure to AO and to VUV radiation, although exposure to AO in the presence of charged species and intense electromagnetic radiation caused significant degradation in film transmittance. Sheet resistivity of the as-fabricated films increased with time in ambient conditions. Vacuum beat treatment following film deposition caused a reduction in sheet resistivity. However, following vacuum heat treatment, sheet resistivity values remained stable during storage in ambient conditions.

  10. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang

    2006-01-01

    As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.

  11. Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits

    CERN Document Server

    Sapinski, M

    2012-01-01

    Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.

  12. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Brett B. Lewis

    2015-04-01

    Full Text Available Platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IVMe3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  13. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Science.gov (United States)

    Mao, Shoudong; Yang, Hengxiu; Li, Jinlong; Huang, Feng; Song, Zhenlun

    2011-04-01

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  14. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan; Liu Hongxue; Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Gu, Man [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Khokhlov, Mikhail; Wolf, Stuart A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Guilford College, Greensboro, North Carolina 27410 (United States)

    2013-01-14

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  15. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    Science.gov (United States)

    Comes, Ryan; Gu, Man; Khokhlov, Mikhail; Liu, Hongxue; Lu, Jiwei; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  16. Biaxially textured Ag films by grazing ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Daniel F., E-mail: foerster@ph2.uni-koeln.d [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany); Bleikamp, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln (Germany)

    2010-11-01

    The effect of grazing incidence 4 keV Ar{sup +} ion irradiation on the early stage of Ag thin film growth on amorphous Si was investigated. The double effect of axial and surface channeling resulted in grains oriented along the <110> axis in-plane, while the (111) out-of-plane texture was maintained. A slight average tilt of the (111) out-of-plane texture axis towards the ion beam direction is proposed to result from the difference between terrace and step edge sputtering yield. The observed tilt is consistent with a minimum erosion orientation of the surface profile.

  17. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  18. Ion Beam Induced Surface Modulations from Nano to Pico: Optimizing Deposition During Erosion and Erosion During Deposition.

    Energy Technology Data Exchange (ETDEWEB)

    MoberlyChan, W J; Schalek, R

    2007-11-08

    Ion beams of sufficient energy to erode a surface can lead to surface modulations that depend on the ion beam, the material surface it impinges, and extrinsic parameters such as temperature and geometric boundary conditions. Focused Ion Beam technology both enables site-specific placement of these modulations and expedites research through fast, high dose and small efficient use of material. The DualBeam (FIB/SEM) enables in situ metrology, with movies observing ripple formation, wave motion, and the influence of line defects. Nanostructures (ripples of >400nm wavelength to dots spaced <40nm) naturally grow from atomically flat surfaces during erosion, however, a steady state size may or may not be achieved as a consequence of numerous controlled parameters: temperature, angle, energy, crystallography. Geometric factors, which can be easily invoked using a FIB, enable a controlled component of deposition (and/or redeposition) to occur during erosion, and conversely allow a component of etching to be incurred during (ion-beam assisted) deposition. High angles of ion beam inclination commonly lead to 'rougher' surfaces, however, the extreme case of 90.0{sup o} etching enables deposition of organized structures 1000 times smaller than the aforementioned, video-recorded nanostructures. Orientation and position of these picostructures (naturally quantized by their atomic spacings) may be controlled by the same parameters as for nanostructures (e.g. ion inclination and imposed boundary conditions, which are flexibly regulated by FIB). Judicious control of angles during FIB-CVD growth stimulates erosion with directionality that produces surface modulations akin to those observed for sputtering. Just as a diamond surface roughens from 1-D ripples to 2-D steps with increasing angle of ion sputtering, so do ripples and steps appear on carbon-grown surfaces with increase in angle of FIB-CVD. Ion beam processing has been a stalwart of the microelectronics industry

  19. Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition

    NARCIS (Netherlands)

    Chen, P.

    2010-01-01

    The direct writing technology known as ion-beam-induced deposition (IBID) has been attracting attention mainly because of its high degree of flexibility of locally prototyping three-dimensional (3D) nanostructures. These high-resolution nanostructures have various research applications. However, no

  20. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...

  1. Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition

    NARCIS (Netherlands)

    Botman, A.; Hesselberth, M.; Mulders, J.J.L.

    2008-01-01

    Focused electron-beam-induced deposition (EBID) allows the rapid fabrication of three-dimensional nanodevices and metallic wiring of nanostructures, and is a promising technique for many applications in nanoresearch. The authors present two topics on platinum-containing nanostructures created by EBI

  2. Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective

    NARCIS (Netherlands)

    Botman, A.; Mulders, J.J.L.; Hagen, C.W.

    2009-01-01

    The creation of functional nanostructures by electron-beam-induced deposition (EBID) is becoming more widespread. The benefits of the technology include fast ‘point-and-shoot’ creation of three-dimensional nanostructures at predefined locations directly within a scanning electron microscope. One sig

  3. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is attrib

  4. The role of electron-stimulated desorption in focused electron beam induced deposition

    NARCIS (Netherlands)

    van Dorp, Willem F.; Hansen, Thomas W.; Wagner, Jakob B.; De Hosson, Jeff T. M.

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)(6) is used as a precursor it is observed that the growth

  5. Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition

    NARCIS (Netherlands)

    Fraters, B.D.; Cavaliere, E; Mul, G.; Gavioli, L.

    2014-01-01

    In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO2 nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Ram

  6. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  7. Texture-Induced Anisotropy in an Inconel 718 Alloy Deposited Using Electron Beam Freeform Fabrication

    Science.gov (United States)

    Tayon, W.; Shenoy, R.; Bird, R.; Hafley, R.; Redding, M.

    2014-01-01

    A test block of Inconel (IN) 718 was fabricated using electron beam freeform fabrication (EBF(sup 3)) to examine how the EBF(sup 3) deposition process affects the microstructure, crystallographic texture, and mechanical properties of IN 718. Tests revealed significant anisotropy in the elastic modulus for the as-deposited IN 718. Subsequent tests were conducted on specimens subjected to a heat treatment designed to decrease the level of anisotropy. Electron backscatter diffraction (EBSD) was used to characterize crystallographic texture in the as-deposited and heat treated conditions. The anisotropy in the as-deposited condition was strongly affected by texture as evidenced by its dependence on orientation relative to the deposition direction. Heat treatment resulted in a significant improvement in modulus of the EBF(sup 3) product to a level nearly equivalent to that for wrought IN 718 with reduced anisotropy; reduction in texture through recrystallization; and production of a more homogeneous microstructure.

  8. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  9. Tribological properties of boron nitride synthesized by ion beam deposition

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Spalvins, T.

    1985-01-01

    The adhesion and friction behavior of boron nitride films on 440 C bearing stainless steel substrates was examined. The thin films containing the boron nitride were synthesized using an ion beam extracted from a borazine plasma. Sliding friction experiments were conducted with BN in sliding contact with itself and various transition metals. It is indicated that the surfaces of atomically cleaned BN coating film contain a small amount of oxides and carbides, in addition to boron nitride. The coefficients of friction for the BN in contact with metals are related to the relative chemical activity of the metals. The more active the metal, the higher is the coefficient of friction. The adsorption of oxygen on clean metal and BN increases the shear strength of the metal - BN contact and increases the friction. The friction for BN-BN contact is a function of the shear strength of the elastic contacts. Clean BN surfaces exhibit relatively strong interfacial adhesion and high friction. The presence of adsorbates such as adventitious carbon contaminants on the BN surfaces reduces the shear strength of the contact area. In contrast, chemically adsorbed oxygen enhances the shear strength of the BN-BN contact and increases the friction.

  10. Purity and resistivity improvements for electron-beam-induced deposition of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, J.J.L. [FEI Company, Eindhoven (Netherlands)

    2014-12-15

    Electron-beam-induced deposition (EBID) of platinum is used by many researchers. Its main application is the formation of a protective layer and the ''welding material'' for making a TEM lamella with a focused ion beam thinning process. For this application, the actual composition of the deposition is less relevant, and in practice, both the mechanical strength and the conductivity are sufficient. Another important application is the creation of an electrical connection to nanoscale structures such as nano-wires and graphene. To serve as an electrical contact, the resistivity of the Pt deposited structure has to be sufficiently low. Using the commonly used precursor MeCpPtMe{sub 3} for deposition, the resistivity as created by the basic process is 10{sup +5}-10{sup +6} higher than the value for bulk Pt, which is 10.6 μΩ cm. The reason for this is the high abundance of carbon in the deposition. To improve the deposition process, much attention has been given by the research community to parameter optimization, to ex situ or in situ removal of carbon by anneal steps, to prevention of carbon deposition by use of a carbon-free precursor, to electron beam irradiation under a high flux of oxygen and to the combination with other techniques such as atomic layer deposition (ALD). In the latter technique, the EBID structures are used as a 1-nm-thick seed layer only, while the ALD is used to selectively add pure Pt. These techniques have resulted in a low resistivity, today approaching the 10-150 μΩ cm, while the size and shape of the structure are preserved. Therefore, now, the technique is ready for application in the field of contacting nano-wires. (orig.)

  11. MgF2/Se薄膜封装层对OLED性能及寿命的影响%Influence of MgF2/Se film encapsulation layer on performance and lifetime of OLED

    Institute of Scientific and Technical Information of China (English)

    高淑雅; 吕磊; 孔祥朝; 陈维铅; 张方辉

    2013-01-01

    有机电致发光器件(OLEDs)在使用过程中,易受到空气中水汽、氧气及其它污染物的影响从而导致其工作寿命降低.本文将具有良好光透过率和热稳定性的MgF2薄膜与在水汽和氧气中具有良好稳定性的Se薄膜通过真空蒸镀制成复合薄膜作为OLEDs的封装层,以达到提高器件使用寿命的目的.器件各功能层蒸镀完成后,保持真空度(3×10-4 Pa)不变,在阴极表面蒸镀MgF2/Se薄膜封装层.比较了绿光OLED器件(器件结构为ITO/CuPc/NPB/Alq3:C-545T/Alq3/LiF/A1)封装前后的亮度-电压-电流密度特性、电致发光光谱及寿命.研究发现,经过MgF2/Se封装后,器件的电流密度-电压特性、亮度和发光光谱几乎没有受到影响,二者的光谱峰都在528 nm处,色坐标(CIE)分别为(0.355 5,0.6131)和(0.3560,0.6104),只是起亮电压由3V变为4 V;器件的寿命由原来的175 h变为300 h,提高了1.7倍.因此,MgF2/Se薄膜是一种有效的OLEDs无机薄膜封装层.%Organic light emitting devices (OLEDs) are easy to be influenced by water vapor,oxygen of air and other pollutants,which leads to the reducing of their working life. In the paper,the MgF2 thin film with a good optical transmission and thermal stability and the Se thin film with a good stability in water vapor and oxygen were made in to composite thin film by vacuum evaporation as OLED encapsulation layer,and the lifetime of the device would be improved in expectation. The MgF2/Se thin film was vaporized on the cathode surface in the same conditon of vacuum (3?0-4 Pa) after the deposition of functional layers in OLEDs was completed. The luminance-voltage-current densities and electroluminesce spectra of green OLEDs (the device structure is ITO/CuPc/NPB/Alq3 :C-545T/Alq3/LiF/Al. )before and after encapsulation are compared. The research shows that the current density-voltage and electroluminesce spectrum of OLEDs are scarcely influenced by MgF2/Se encapsulation layer and both of their

  12. Wide band antireflective coatings Al2O3 / HfO2 / MgF2 for UV region

    Science.gov (United States)

    Winkowski, P.; Marszałek, Konstanty W.

    2013-07-01

    Deposition technology of the three layers antireflective coatings consists of hafnium compound are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5x10-5 mbar in presence of oxygen and fluoride films by thermal evaporation. Substrate temperature was 250°C. Coatings were deposited onto optical lenses made from quartz glass (Corning HPFS). Thickness and deposition rate were controlled by thickness measuring system Inficon XTC/2. Simulations leading to optimization of thickness and experimental results of optical measurements carried during and after deposition process were presented. Physical thickness measurements were made during deposition process and were equal to 43 nm/74 nm/51 nm for Al2O3 / HfO2 / MgF2 respectively. Optimization was carried out for ultraviolet region from 230nm to the beginning of visible region 400 nm. In this region the average reflectance of the antireflective coating was less than 0.5% in the whole range of application.

  13. Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lavrijsen, R; Schoenaker, F J; Ellis, T H; Barcones, B; Kohlhepp, J T; Swagten, H J M; Koopmans, B [Department of Applied Physics, Center for NanoMaterials and COBRA Research Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Cordoba, R; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50009 Zaragoza (Spain); De Teresa, J M; Magen, C [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Trompenaars, P; Mulders, J J L, E-mail: r.lavrijsen@tue.nl, E-mail: deteresa@unizar.es [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2011-01-14

    We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between {approx} 50 and 80 at.% with overall low C content ({approx}16 {+-} 3 at.%) by adding H{sub 2}O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

  14. Electron-beam induced deposition and autocatalytic decomposition of Co(CO3NO

    Directory of Open Access Journals (Sweden)

    Florian Vollnhals

    2014-07-01

    Full Text Available The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID and electron beam-induced surface activation (EBISA is studied for two precursors: iron pentacarbonyl, Fe(CO5, and cobalt tricarbonyl nitrosyl, Co(CO3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM and scanning transmission X-ray microscopy (STXM, including near edge X-ray absorption fine structure (NEXAFS spectroscopy. It has previously been shown that Fe(CO5 decomposes autocatalytically on Fe seed layers (EBID and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO3NO and compare it to results obtained from Fe(CO5. Co(CO3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  15. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter

    2014-01-01

    Summary The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures. PMID:25161851

  16. Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO.

    Science.gov (United States)

    Vollnhals, Florian; Drost, Martin; Tu, Fan; Carrasco, Esther; Späth, Andreas; Fink, Rainer H; Steinrück, Hans-Peter; Marbach, Hubertus

    2014-01-01

    The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS) spectroscopy. It has previously been shown that Fe(CO)5 decomposes autocatalytically on Fe seed layers (EBID) and on certain electron beam-activated surfaces, yielding high purity, polycrystalline Fe nanostructures. In this contribution, we investigate the growth of structures from Co(CO)3NO and compare it to results obtained from Fe(CO)5. Co(CO)3NO exhibits autocatalytic growth on Co-containing seed layers prepared by EBID using the same precursor. The growth yields granular, oxygen-, carbon- and nitrogen-containing deposits. In contrast to Fe(CO)5 no decomposition on electron beam-activated surfaces is observed. In addition, we show that the autocatalytic growth of nanostructures from Co(CO)3NO can also be initiated by an Fe seed layer, which presents a novel approach to the fabrication of layered nanostructures.

  17. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  18. Microanalyses of the hydroxyl—poly—calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LIUZhong-Yang; WANGChang-Xing; 等

    2002-01-01

    Thin calcium phosphate catings on titanium alloy substrates were prepared by Ar+ ion beam assisted deposition(IBAD) from hydroxyl-poly-calcium sodium phosphate(HPPA) target.The coatings were analyzed by XRD,FTIR,XPS,These analyses revealed that the as-deposited films were amorphous or no apparent crystallinity.No distinct absorption band of the hydroxyl group was observed in FTIR spectra of the coatings but new absorption bands were presented for CO3-2,The calcium to phosphorous ratio of these catings in different IBAD conditions varied from 0.46 to 3.36.

  19. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  20. Microanalyses of the hydroxyl-poly-calcium sodium phosphate coatings produced by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Thin calcium phosphate coatings on titanium alloy substrates wereprepared by Ar+ ion beam assisted deposition (IBAD) from hydroxyl-poly-calciumsodium phosphate (HPPA) target. The coatings were analyzed by XRD, FTIR, XPS.These analyses revealed that the as-deposited films were amorphous or no apparentcrystallinity. No distinct absorption band of the hydroxyl group was observed in FTIRspectra of the coatings but new absorption bands were presented for CO3-2. Thecalcium to phosphorous ratio of these coatings in different IBAD conditions variedfrom 0.46 to 3.36.

  1. Nitrogen as a carrier gas for regime control in focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Wachter Stefan

    2014-01-01

    Full Text Available This work reports on focused electron beam induced deposition (FEBID using a custom built gas injection system (GIS equipped with nitrogen as a gas carrier. We have deposited cobalt from Co2(CO8, which is usually achieved by a heated GIS. In contrast to a heated GIS, our strategy allows avoiding problems caused by eventual temperature gradients along the GIS. Moreover, the use of the gas carrier enables a high control over process conditions and consequently the properties of the synthesized nanostructures. Chemical composition and growth rate are investigated by energy dispersive X-ray spectroscopy (EDX and atomic force microscopy (AFM, respectively. We demonstrate that the N2 flux is strongly affecting the deposit growth rate without the need of heating the precursor in order to increase its vapour pressure. Particularly, AFM volume estimation of the deposited structures showed that increasing the nitrogen resulted in an enhanced deposition rate. The wide range of achievable precursor fluxes allowed to clearly distinguish between precursor- and electron-limited regime. With the carrier-based GIS an optimized deposition procedure with regards to the desired deposition regime has been enabled

  2. Highly conductive and pure gold nanostructures grown by electron beam induced deposition

    Science.gov (United States)

    Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich

    2016-09-01

    This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

  3. Strain-dependent conductivity of granular metals prepared by focused particle beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Christina; Baranowski, Markus; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, Frankfurt am Main (Germany); Voelklein, Friedemann [Institut fuer Mikrotechnologien, Hochschule RheinMain, Ruesselsheim (Germany)

    2010-07-01

    We report on the strain-dependence of the electrical conductivity of granular metals prepared by focused particle beam induced deposition. The samples were prepared in a dual-beam electron / Ga ion scanning microscope using selected precursors, such as W(CO){sub 6}. Stripe-like deposits were fabricated on dedicated cantilevers pre-patterned with contact pads made from Cr/Au. The cantilever deflection was induced in-situ by means of a four axes nano-manipulator and the conductivity change was recorded by lock-in technique employing a Wheatstone resistance bridge. Current-voltage characteristics and strain-dependence were measured for samples of various thicknesses and composition. For selected samples time-dependent conductivity data were taken as the samples were slowly exposed to air.

  4. Organic molecular beam deposition system and initial studies of organic layer growth

    Energy Technology Data Exchange (ETDEWEB)

    Andreasson, M [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Ilver, L [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Kanski, J [Department of Experimental Physics, Chalmers University of Technology, S-41296 Goeteborg (Sweden); Andersson, T G [Applied Semiconductor Physics, Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goeteborg (Sweden)

    2006-09-01

    This work describes an organic molecular beam deposition system with substrate entry/exit chamber, buffer chamber and with the possibility to transfer substrate from a III-V molecular beam deposition system. Flux calibrations of organic molecules and the initial growth of organic layers are described. For this purpose, the molecules 3,4,9,10 perylene tetra carboxylic dianhydride and copper phtalocyanine were used. Layers were grown on oxidized and hydrogen passivated Si(100), Indium tin oxide and glass respectively. The growth was investigated with atomic force microscopy, reflection high energy electron diffraction and ultraviolet photoemission spectroscopy. An investigation with x-ray photoelectron and Raman spectroscopy on the effect of atmospheric exposure is also included, showing little effect of surface pollution when the samples were handled carefully. The initial formation (monolayers) of copper phtalocyanine thin films was studied by ultraviolet photoemission spectroscopy.

  5. Ion beam deposition and surface characterization of thin multi-component oxide films during growth.

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.; Im, J.; Smentkowski, V.; Schultz, J.A.; Auciello, O.; Gruen, D.M.; Holocek, J.; Chang, R.P.H.

    1998-01-13

    Ion beam deposition of either elemental targets in a chemically active gas such as oxygen or nitrogen, or of the appropriate oxide or nitride target, usually with an additional amount of ambient oxygen or nitrogen present, is an effective means of depositing high quality oxide and nitride films. However, there are a number of phenomena which can occur, especially during the production of multicomponent films such as the ferroelectric perovskites or high temperature superconducting oxides, which make it desirable to monitor the composition and structure of the growing film in situ. These phenomena include thermodynamic (Gibbsian), and oxidation or nitridation-driven segregation, enhanced oxidation or nitridation through production of a highly reactive gas phase species such as atomic oxygen or ozone via interaction of the ion beam with the target, and changes in the film composition due to preferential sputtering of the substrate via primary ion backscattering and secondary sputtering of the film. Ion beam deposition provides a relatively low background pressure of the sputtering gas, but the ambient oxygen or nitrogen required to produce the desired phase, along with the gas burden produced by the ion source, result in a background pressure which is too high by several orders of magnitude to perform in situ surface analysis by conventional means. Similarly, diamond is normally grown in the presence of a hydrogen atmosphere to inhibit the formation of the graphitic phase.

  6. An analytical model of beam attenuation and powder heating during coaxial laser direct metal deposition

    Science.gov (United States)

    Pinkerton, Andrew J.

    2007-12-01

    In the laser direct metal deposition process, interaction between the laser beam and powder from a coaxial powder delivery nozzle alters the temperature of powder and the amount and spatial distribution of laser intensity reaching the deposition melt pool. These factors significantly affect the process and are also important input parameters for any finite element or analytical models of the melt pool and deposition tracks. The analytical model in this paper presents a method to calculate laser attenuation and powder temperatures at every point below such a nozzle. It is applicable to laser beams that are approximately parallel over the beam-powder interaction distance of any initial intensity distribution (Top Hat, Gaussian, TEM01ast or other). The volume below the nozzle is divided into the region above the powder consolidation plane, where the powder stream is annular, and below it, where it is a single Gaussian stream, and expressions derived for each region. Modelled and measured results are reasonably matched. Results indicate that attenuation is more severe once the annular powder stream has consolidated into a single stream but is not zero before that point. The temperature of powder reaching any point is not constant but the mean value is a maximum at the centre of the stream.

  7. Role of MgF2 on properties of glass–ceramics

    Indian Academy of Sciences (India)

    M Ghasemzadeh; A Nemati

    2012-10-01

    Formation of machinable glass–ceramic in the system MgO–SiO2–Al2O3–K2O–B2O3–F with and without addition of MgF2 has been investigated. Crystallization of glass sample was done by controlled thermal heat treatment at nucleation and crystallization temperatures. The results showed that MgF2 in high concentration had a synergistic effect and enhanced the formation of interlockedmica crystals. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses were changed in the range of 235–405 kJ/mol, while the crystallization activation energies of samples with addition of MgF2 were changed in the range of 548–752 kJ/mol.

  8. Single-crystal nanowires grown via electron-beam-induced deposition

    Science.gov (United States)

    Klein, K. L.; Randolph, S. J.; Fowlkes, J. D.; Allard, L. F.; Meyer, H. M., III; Simpson, M. L.; Rack, P. D.

    2008-08-01

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO)6) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF6) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured β-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W3O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  9. Single-crystal nanowires grown via electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Klein, K L; Randolph, S J; Simpson, M L; Rack, P D [Materials Science and Engineering Department, University of Tennessee, 434 Dougherty Hall, Knoxville, TN 37996 (United States); Fowlkes, J D [Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allard, L F; III, H M Meyer [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)], E-mail: prack@utk.edu

    2008-08-27

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO){sub 6}) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF{sub 6}) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured {beta}-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W{sub 3}O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  10. Precise thin film synthesis by ion beam sputter deposition; Herstellung von Praezisionsschichten mittels Ionenstrahlsputtern

    Energy Technology Data Exchange (ETDEWEB)

    Gawlitza, P.; Braun, S.; Leson, A.; Lipfert, S. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany); Nestler, M. [Roth und Rau AG, Hohenstein-Ernstthal (Germany)

    2007-04-15

    Ion beam sputter deposition (IBSD) is a promising technique for the fabrication of high performance thin films because of the well defined and adjustable particle energies, which are rather high in comparison to other PVD techniques. Recent developments concerning long-term stability and lateral uniformity of the ion beam sources strengthen the position of the IBSD technique in the field of precise thin film synthesis. Furthermore, IBSD offers a more independent choice of relevant deposition parameters like particle energy and flux, process gas pressure and deposition rate. In this paper we present our currently installed large area IBSD facility 'IonSys 1600', which was developed by Fraunhofer IWS Dresden and Roth and Rau company (Hohenstein-Ernstthal). Substrate sizes of up to 200 mm (circular) or up to 500 mm length (rectangular) can be coated and multilayer stacks with up to six different materials are possible. Tailored 1- or 2- dimensional film thickness distribution with deviations of <0.1% can be fabricated by a relative linear motion of the substrate holder above an aperture. In order to demonstrate the advantages of the IBSD technique especially for sophisticated materials and films with high requirements concerning purity, chemical composition or growth structure, several examples of deposited multilayers for various applications are presented. (orig.)

  11. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  12. Mechanical Properties and Thermal Stability of TiN/Ta Multilayer Film Deposited by Ion Beam Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hongfei Shang

    2014-01-01

    Full Text Available TiN/Ta multilayer film with a modulation period of 5.6 nm and modulation ratio of 1 : 1 was produced by ion beam assisted deposition. Microstructure of the as-deposited TiN/Ta multilayer film was observed by transmission electron microscopy and mechanical properties were investigated. Residual stress in the TiN/Ta multilayer film was about 72% of that of a TiN monolayer film with equivalent thickness deposited under the same conditions. Partial residual stress was released in the Ta sublayers during deposition, which led to the decrease of the residual stress of the TiN/Ta multilayer film. Nanohardness (H of the TiN/Ta multilayer film was 24 GPa, 14% higher than that of the TiN monolayer film. It is suggested that the increase of the nanohardness is due to the introduction of the Ta layers which restrained the growth of TiN crystal and led to the decrease of the grain size. A significant increase (3.5 times of the H3/E2 (E elastic modulus value indicated that the TiN/Ta multilayer film has higher elasticity than the TiN monolayer film. The Lc (critical load in nano-scratch test value of the TiN monolayer film was 45 mN, which was far lower than that of the TiN/Ta multilayer film (around 75 mN. Results of the indentation test showed a higher fracture toughness of the TiN/Ta multilayer film than that of the TiN monolayer film. Results of differential scanning calorimetric (DSC and thermo gravimetric analysis (TGA indicate that the TiN/Ta multilayer film has better thermal stability than the TiN monolayer film.

  13. Metallization of bacterial surface layer by cross-beam pulsed laser deposition

    Science.gov (United States)

    Pompe, Wolfgang; Mertig, Michael; Kirsch, Remo; Gorbunov, Andre A.; Sewing, Andreas; Engelhardt, Harald; Mensch, Axel

    1996-04-01

    We present first results on thin film metal deposition on the regular bacterial surface layer of Sporsarcina urea by pulsed laser deposition. To prevent structural damage of the biological specimen a recently developed cross beam technique is applied providing an effective filtering of the most energetic plasma particles. The deposited films are examined by low voltage scanning electron microscopy. The surface profile of the S-layer adsorbed onto mica substrate was investigated by atomic force microscopy. A lattice constant of 13.2 nm has been measured. The lattice parameters and the structural appearance of the protein layer is in reasonable agreement with the results of an electron microscopical 3D structural analysis.

  14. Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    CERN Document Server

    Woźniak, Paweł; Brönstrup, Gerald; Banyer, Peter; Christiansen, Silke; Leuchs, Gerd

    2015-01-01

    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.

  15. Density behaviors of Ge nanodots self-assembled by ion beam sputtering deposition

    Institute of Scientific and Technical Information of China (English)

    Xiong Fei; Yang Tao; Song Zhao-Ning; Yang Pei-Zhi

    2013-01-01

    Self-assembled Ge nanodots with areal number density up to 2.33 × 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition.The dot density,a function of deposition rate and Ge coverage,is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands,and to be associated with the adatom behaviors of attachment and detachment from the islands.An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition,and is shown to be related to the breaking down of the superstrained wetting layer.This result is attributed to the interaction between energetic atoms and the growth surface,which mediates the island nucleation.

  16. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography

    Science.gov (United States)

    Liu, Zhengjun; Shah, Ali; Alasaarela, Tapani; Chekurov, Nikolai; Savin, Hele; Tittonen, Ilkka

    2017-02-01

    In this work, focused ion beam (FIB) lithography was developed for plasma enhanced atomic layer deposited (PEALD) silicon dioxide SiO2 hard mask. The PEALD process greatly decreases the deposition temperature of the SiO2 hard mask. FIB Ga+ ion implantation on the deposited SiO2 layer increases the wet etch resistivity of the irradiated region. A programmed exposure in FIB followed by development in a wet etchant enables the precisely defined nanoscale patterning. The combination of FIB exposure parameters and the development time provides greater freedom for optimization. The developed process provides high pattern dimension accuracy over the tested range of 90–210 nm. Utilizing the SiO2 mask developed in this work, silicon nanopillars with 40 nm diameter were successfully fabricated with cryogenic deep reactive ion etching and the aspect ratio reached 16:1. The fabricated mask is suitable for sub-100 nm high aspect ratio silicon structure fabrication.

  17. Effect of deuterium ion beam irradiation onto the mirror-like pulsed laser deposited thin films of rhodium

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T., E-mail: abu@iitg.ernet.in [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Khare, Alika [Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Rao, C.V.S.; Vala, Sudhirsinh; Makwana, R.J.; Basu, T.K. [Neutronics Lab, Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2015-01-01

    Highlights: • Rh mirror like thin films are fabricated by PLD technique for FM application. • Rh thin film FMs are irradiated with 10, 20, and 30 keV D ion beam. • Effect of D ion beam irradiation on Rh FM’s reflectivity is investigated. - Abstract: The effect of deuterium ion beam irradiation on the reflectivity of mirror-like pulsed laser deposited (PLD) thin film of rhodium is reported. The deposition parameters; target-substrate distance and background helium gas pressure were optimized to obtain the good quality rhodium films, of higher thickness, oriented preferentially in (1 1 1) plane. The rhodium thin films deposited at optimum PLD parameters were exposed to 10, 20, and 30 keV deuterium ion beam. The changes in surface morphology and UV–Visible–FIR reflectivity of mirror-like rhodium thin films, as a function of energy of deuterium ion beam, after exposure are reported.

  18. Novel MGF-based expressions for the average bit error probability of binary signalling over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2014-04-01

    The main idea in the moment generating function (MGF) approach is to alternatively express the conditional bit error probability (BEP) in a desired exponential form so that possibly multi-fold performance averaging is readily converted into a computationally efficient single-fold averaging - sometimes into a closed-form - by means of using the MGF of the signal-to-noise ratio. However, as presented in [1] and specifically indicated in [2] and also to the best of our knowledge, there does not exist an MGF-based approach in the literature to represent Wojnar\\'s generic BEP expression in a desired exponential form. This paper presents novel MGF-based expressions for calculating the average BEP of binary signalling over generalized fading channels, specifically by expressing Wojnar\\'s generic BEP expression in a desirable exponential form. We also propose MGF-based expressions to explore the amount of dispersion in the BEP for binary signalling over generalized fading channels.

  19. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  20. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  1. Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Robert; Geier, Barbara [Graz Centre for Electron Microscopy, Graz (Austria); Plank, Harald [Graz Centre for Electron Microscopy, Graz (Austria); Graz University of Technology, Institute for Electron Microscopy and Nanoanalysis, Graz (Austria)

    2014-12-15

    The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications. (orig.)

  2. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Ying-Bing; Abbas, Khawar; Ghasemi Baboly, Mohammadhosein; Anjum, D. H.; Chaieb, S.; Leseman, Zayd C.

    2015-02-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  3. Energy distribution of secondary particles in ion beam deposition process of Ag: experiment, calculation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C.; Feder, R.; Lautenschlaeger, T.; Neumann, H. [Leibniz-Institute of Surface Modification, Leipzig (Germany)

    2015-12-15

    Ion beam sputter deposition allows tailoring the properties of the film-forming, secondary particles (sputtered target particles and backscattered primary particles) and, hence, thin film properties by changing ion beam (ion energy, ion species) and geometrical parameters (ion incidence angle, polar emission angle). In particular, the energy distribution of secondary particles and their influence on the ion beam deposition process of Ag was studied in dependence on process parameters. Energy-selective mass spectrometry was used to measure the energy distribution of sputtered and backscattered ions. The energy distribution of the sputtered particles shows, in accordance with theory, a maximum at low energy and an E{sup -2} decay for energies above the maximum. If the sum of incidence angle and polar emission angle is larger than 90 , additional contributions due to direct sputtering events occur. The energy distribution of the backscattered primary particles can show contributions by scattering at target particles and at implanted primary particles. The occurrence of these contributions depends again strongly on the scattering geometry but also on the primary ion species. The energy of directly sputtered and backscattered particles was calculated using equations based on simple two-particle-interaction whereas the energy distribution was simulated using the well-known Monte Carlo code TRIM.SP. In principal, the calculation and simulation data agree well with the experimental findings. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques

    Indian Academy of Sciences (India)

    Nishat Arshi; Junqing Lu; Chan Gyu Lee; Jae Hong Yoon; Bon Heun Koo; Faheem Ahmed

    2013-10-01

    This paper reports effect of thickness on the properties of titanium (Ti) film deposited on Si/SiO2 (100) substrate using two different methods: d.c. magnetron sputtering and electron beam (e-beam) evaporation technique. The structural and morphological characterization of Ti film were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD pattern revealed that the films deposited using d.c. magnetron sputtering have HCP symmetry with preferred orientation along (002) plane, while those deposited with e-beam evaporation possessed fcc symmetry with preferred orientation along (200) plane. The presence of metallic Ti was also confirmed by XPS analysis. FESEM images depicted that the finite sized grains were uniformly distributed on the surface and AFM micrographs revealed roughness of the film. The electrical resistivity measured using four-point probe showed that the film deposited using d.c. magnetron sputtering has lower resistivity of ∼13 cm than the film deposited using e-beam evaporation technique, i.e. ∼60 cm. The hardness of Ti films deposited using d.c. magnetron sputtering has lower value (∼7.9 GPa) than the film deposited using e-beam technique (∼9.4 GPa).

  5. Cobalt-based magnetic nanostructures grown by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Begun, Evgeniya; Schwenk, Johannes; Porrati, Fabrizio; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, D-60438 Frankfurt am Main (Germany)

    2011-07-01

    The fabrication of magnetic nanostructures by means of the direct-writing technique focused-electron-beam-induced deposition (FEBID) is an alternative to more conventional lithographic methods. We have grown magnetic cobalt structures by FEBID using the precursor dicobaltoctacarbonyl Co{sub 2}(CO){sub 8}. The obtained structures have a large metal content of about 85 at.% as compared to other metal-based deposits grown by the same technique, such as tungsten-based structures with 34 at.% maximum tungsten content and platin-based structures with about 24 at.% maximum platin content. We present a growth strategy for cobalt structures with tunable metal content. In particular, we show the influence of different combinations of electron-beam energy and current, the dwell time and the refresh time on the deposit composition, which was determined by energy-dispersive X-ray spectroscopy (EDX) at 5 keV. First results of magnetotransport measurements on these cobalt-based structures are presented.

  6. Controlled growth of few-layer hexagonal boron nitride on copper foils using ion beam sputtering deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Meng, Junhua; Yin, Zhigang; Liu, Xin; Zhao, Yajuan; Zhang, Liuqi

    2015-04-01

    Ion beam sputtering deposition (IBSD) is used to synthesize high quality few-layer hexagonal boron nitride (h-BN) on copper foils. Compared to the conventional chemical vapor deposition, the IBSD technique avoids the use of unconventional precursors and is much easier to control, which should be very useful for the large-scale production of h-BN in the future.

  7. Intense laser-driven proton beam energy deposition in compressed and uncompressed Cu foam

    Science.gov (United States)

    McGuffey, Christopher; Krauland, C. M.; Kim, J.; Beg, F. N.; Wei, M. S.; Habara, H.; Noma, S.; Ohtsuki, T.; Tsujii, A.; Yahata, K.; Yoshida, Y.; Uematsu, Y.; Nakaguchi, S.; Morace, A.; Yogo, A.; Nagatomo, H.; Tanaka, K.; Arikawa, Y.; Fujioka, S.; Shiraga, H.

    2016-10-01

    We investigated transport of intense proton beams from a petawatt laser in uncompressed or compressed Cu foam. The LFEX laser (1 kJ on target, 1.5 ps, 1053 nm, I >2×1019 W/cm2) irradiated a curved C foil to generate the protons. The foil was in an open cone 500 μm from the tip where the focused proton beam source was delivered to either of two Cu foam sample types: an uncompressed cylinder (1 mm L, 250 µm ϕ) , and a plastic-coated sphere (250 µm ϕ) that was first driven by GXII (9 beams, 330 J/beam, 1.3 ns, 527 nm) to achieve similar ρϕ to the cylinder sample's ρL as predicted by 2D radiation hydrodynamic simulations. Using magnetic spectrometers and a Thomson parabola, the proton spectra were measured with and without the Cu samples. When included, they were observed using Cu K-shell x-ray imaging and spectroscopy. This paper will present comparison of the experimentally measured Cu emission shape and proton spectrum changes due to deposition in the Cu with particle-in-cell simulations incorporating new stopping models. This work was made possible by laser time Awarded by the Japanese NIFS collaboration NIFS16KUGK107 and performed under the auspices of the US AFOSR YIP Award FA9550-14-1-0346.

  8. Optical properties of Cr3+ in fluorite-structure hosts and in MgF*2

    Science.gov (United States)

    Payne, Stephen A.; Chase, L. L.; Krupke, William F.

    1987-03-01

    We have examined the optical properties of Cr3+ in MgF2 and in the fluorite-structure hosts: CdF2, CaF2, SrF2, and BaF2. The properties of Cr3+ in MgF2 are similar to those observed for other fluoride crystals that have octahedral substitutional metal sites. Interestingly, Cr3+ is also found to be sixfold coordinated in the fluorite hosts, despite the fact that the metal sites of these crystal lattices are eightfold coordinated. The smaller ionic radius of Cr3+ compared to, say, Ca2+, undoubtedly results in considerable relaxation at the metal site. However, the crystal field stabilization energy present in the 4A2(d3) ground state also provides for the energetic preference of sixfold vs eightfold coordination. The similarity of the observed absorption spectra of Cr3+ in MgF2 and in fluorite give evidence that the ground state is octahedrally coordinated in all of these hosts. The reduction of this electronic stabilization energy in the 4T2(d3) excited state is considered to produce a configurational shift relative to the ground state. This shift may be the reason why Cr3+ luminesces effectively in MgF2 whereas it is largely quenched in the fluorite-structure materials.

  9. Ion beam assisted deposition of organic molecules: a physical way to realize OLED structures

    Science.gov (United States)

    Moliton, André; Antony, Rémi; Troadec, David; Ratier, Bernard

    2000-05-01

    We demonstrate how the quantum efficiency of an organic light-emitting diode can be improved by a physical way based on the ion beam assisted deposition: the recombination current can be increased by an enhancement of the minority carrier injection while the total current can be decreased by generation of electron traps which reduced the majority current. The quantum efficiency of fluorescence can be also improved by a layer densification with a limitation of the nonradiative centers. As a result, the quantum efficiency of the structure ITO/Helium assisted Alq3/unassisted Alq3/Ca/Al is improved (by around a factor 10) in relation with a virgin structure.

  10. Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Jordan, E.H.; Barber, B.; Gell, M. [Univ. of Connecticut, Storrs, CT (United States)

    1998-10-09

    Elastic-plastic finite element models are used to define the thermal/residual stress state responsible for the observed failure behavior of an electron beam physical vapor deposited yttria stabilized zirconia thermal barrier coating on a Pt-Al bond coat. The failures were observed to start at grain boundary ridges, some of which evolved into oxide filled cavities. Finite element models are made of the actual interface geometries through the use of metallographic sectioning and imaging processing. There is a one to one correspondence of calculated tension in the oxide layer and the observed localized damage. Purely elastic analysis failed to show some important tensile regions associated with the observed failure.

  11. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  12. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Wei; MA Zhong-Quan; WANG Ye; WANG De-Ming

    2006-01-01

    The deposited energy during film growth with ion bombardment, correlated to the atomic displacement on the surface monolayer and the underlying bulk, has been calculated by a simplified ion-solid interaction model under binary collision approximation. The separated damage energies caused by Ar ion, different for the surface and the bulk, have been determined under the standard collision cross section and a well-defined surface and bulk atom displacement threshold energy of titanium nitride (TiN). The optimum energy scope shows that the incident energy of Ar+ around 110eV for TiN (111) and 80eV for TiN (200) effectively enhances the mobility of adatom on surface but excludes the damage in underlying bulk. The theoretical prediction and the experimental result are in good agreement in low energy ion beam-assisted deposition.

  13. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  14. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition

    Science.gov (United States)

    Pablo-Navarro, Javier; Magén, César; María de Teresa, José

    2016-07-01

    Functional nanostructured materials often rely on the combination of more than one material to confer the desired functionality or an enhanced performance of the device. Here we report the procedure to create nanoscale heterostructured materials in the form of core-shell nanowires by focused electron beam induced deposition (FEBID) technologies. In our case, three-dimensional (3D) nanowires (nanostructures to demonstrate that the morphology of the shell is conserved during Pt coating, the surface oxidation is suppressed or confined to the Pt layer, and the average magnetization of the core is strengthened up to 30%. The proposed approach paves the way to the fabrication of 3D FEBID nanostructures based on the smart alternate deposition of two or more materials combining different physical properties or added functionalities.

  15. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  16. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  17. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  18. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Ran; Meng Lingguo; Zhang Xijian; Hyung-Suk Jung; Cheol Seong Hwang

    2012-01-01

    Atomic layer deposition ofan Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates.Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3.Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite.This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

  19. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M. [Argonne National Lab., IL (United States); Lin, Y.P. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science; Schultz, J.A. [Ionwerks, Inc., Houston, TX (United States); Schmidt, H. [Schmidt Instruments, Inc., Houston, TX (United States); Liu, Y.L. [Argonne National Lab., IL (United States)]|[Wisconsin Univ., Milwaukee, WI (United States). Dept. of Materials Science; Auciello, O. [Microelectronics Center of North Carolina, Research Triangle Park, NC (United States); Barr, T. [Wisconsin Univ., Milwaukee, WI (United States). Dept. of Materials Science; Chang, R.P.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science

    1992-08-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described.

  20. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  1. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    Science.gov (United States)

    Batra, Nitin M.; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L.; Costa, Pedro M. F. J.

    2015-11-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  2. Synthesis of photocatalytic TiO{sub 2} nano-coatings by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fraters, Bindikt D. [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Cavaliere, Emanuele [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy); Mul, Guido [Photo Catalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gavioli, Luca, E-mail: luca.gavioli@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics (i-Lamp), Università Cattolica del Sacro Cuore, Via dei Musei 41, Brescia 25121 (Italy)

    2014-12-05

    Graphical abstract: - Highlights: • Synthesis of well-defined TiO{sub 2} coatings by supersonic cluster beam deposition. • Morphology is studied for samples annealed at 500, 650 and 800 °C by HR-SEM. • Anatase (500, 650 °C) and Rutile (800 °C) are observed by Raman spectroscopy. • Quartz support improved the coating activity by factor 4–6 compared to Si-wafer. • Silicon is detrimental for photocatalytic activity promoting charge recombination. - Abstract: In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO{sub 2} nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Raman spectroscopy, and the morphology by High Resolution-Scanning Electron Microscopy. SCBD deposition in the presence of oxygen enables the in situ synthesis of TiO{sub 2} layers of amorphous NP at room temperature. Adapting the deposition temperature to 500 °C or 650 °C leads to Anatase crystals of variable size ranges, and layers showing significant porosity. At 800 °C mainly Rutile is formed. Post annealing by wafer heating of the amorphous NP prepared at room temperature results in comparable temperature dependent phases and morphologies. Photocatalytic activity in propane oxidation was dependent on the morphology of the samples: the activity decreases as a function of increasing particle size. The presence of water vapor in the propane feed generally increased the activity of the wafer-heated samples, suggesting OH groups are not profoundly present on SCBD synthesized layers. In addition, a remarkable effect of the substrate (Si or Quartz) was observed: strong interaction between Si and TiO{sub 2} is largely detrimental for photocatalytic activity. The consequences of these findings for the application of SCBD to synthesize samples for fundamental (spectroscopic) study of photocatalysis are

  3. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.

    Science.gov (United States)

    Wu, H M; Stern, L A; Chen, J H; Huth, M; Schwalb, C H; Winhold, M; Porrati, F; Gonzalez, C M; Timilsina, R; Rack, P D

    2013-05-03

    The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) μΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) μΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

  4. Electron postgrowth irradiation of platinum-containing nanostructures grown by electron-beam-induced deposition from Pt(PF3)4

    NARCIS (Netherlands)

    Botman, A.; Hagen, C.W.; Li, J.; Thiel, B.L.; Dunn, K.A.; Mulders, J.J.L.; Randolph, S.; Toth, M.

    2009-01-01

    The material grown in a scanning electron microscope by electron beam-induced deposition (EBID) using Pt(PF3)4 precursor is shown to be electron beam sensitive. The effects of deposition time and postgrowth electron irradiation on the microstructure and resistivity of the deposits were assessed by t

  5. Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures.

    Science.gov (United States)

    Belić, Domagoj; Shawrav, Mostafa M; Gavagnin, Marco; Stöger-Pollach, Michael; Wanzenboeck, Heinz D; Bertagnolli, Emmerich

    2015-02-04

    Three-dimensional gold (Au) nanostructures offer promise in nanoplasmonics, biomedical applications, electrochemical sensing and as contacts for carbon-based electronics. Direct-write techniques such as focused-electron-beam-induced deposition (FEBID) can provide such precisely patterned nanostructures. Unfortunately, FEBID Au traditionally suffers from a high nonmetallic content and cannot meet the purity requirements for these applications. Here we report exceptionally pure pristine FEBID Au nanostructures comprising submicrometer-large monocrystalline Au sections. On the basis of high-resolution transmission electron microscopy results and Monte Carlo simulations of electron trajectories in the deposited nanostructures, we propose a curing mechanism that elucidates the observed phenomena. The in situ focused-electron-beam-induced curing mechanism was supported by postdeposition ex situ curing and, in combination with oxygen plasma cleaning, is utilized as a straightforward purification method for planar FEBID structures. This work paves the way for the application of FEBID Au nanostructures in a new generation of biosensors and plasmonic nanodevices.

  6. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology

    Science.gov (United States)

    Shi, Tuo; Lu, Bingheng; Shi, Shihong; Meng, Weidong; Fu, Geyan

    2017-02-01

    In this study, a hollow-laser beam with internal powder feeding (HLB-IPF) head is applied to achieve non-horizontal cladding and deposition of overhanging structure. With the features of this head such as uniform scan energy distribution, thin and straight spraying of the powder beam, the deposition in spatial variable orientation is conducted using a 6-axis robot. During the deposition process the head keeps tangential to the growth direction of the part. In the experiment, a "vase" shaped metal part with overhanging structure is successfully deposited, and the largest overhanging angle achieves 80° to the vertical direction. The "step effect" between cladding layers is completely eliminated with the best surface roughness of Ra=3.864 μm. Cross section of cladding layers with unequal height are deposited for angle change. Test results indicate that the formed part has uniform wall thickness, fine microstructure and high microhardness.

  7. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    Science.gov (United States)

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  8. Electron beam deposition and characterization of thin film Ti-Ni for shape memory applications

    Institute of Scientific and Technical Information of China (English)

    NOH Hae-Yong; JEE Kwang-Koo; LEE Kyu-Hwan; LEE Young-Kook

    2006-01-01

    Thin film of Ti-Ni alloy has a potential to perform the microactuation functions required in the microelectromechanical system (MEMS).It is essential, however, to have good uniformity in both chemical composition and thickness to realize its full potential as an active component of MEMS devices.Electron beam evaporation technique was employed in this study to fabricate the thin films of Ti-Ni alloy on different substrates.The targets used for the evaporation were first prepared by electron beam melting.The uniformity of composition and microstructure of the thin films were characterized by electron probe microanalysis (EPMA), Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM).The mechanical property of the thin films was evaluated by the nano-indentation test.The martensitic transformation temperature was measured by differential scanning calorimetry (DSC).It is confirmed that the chemical composition of deposited thin films is identical to that of the target materials.Furthermore, results from depth profiling of the chemical composition variation reveal that the electron beam evaporation process yields better compositional homogeneity than other conventional methods such as sputtering and thermal evaporation.Microstructural observation by TEM shows that nanometer size precipitates are preferentially distributed along the grain boundaries of a few micron size grains.The hardness and elastic modulus of thin films decreases with an increase in Ti contents.

  9. Ion beam sputter deposition of Ge films: Influence of process parameters on film properties

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Feder, R. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany); Wunderlich, R.; Teschner, U.; Grundmann, M. [Universität Leipzig, Fakultät für Physik und Geowissenschaften, Institut für Experimentelle Physik II, Linnéstrasse 5, 04103 Leipzig (Germany); Neumann, H. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstrasse 15, 04318 Leipzig (Germany)

    2015-08-31

    Several sets of Ge films were grown by ion beam sputter deposition under systematic variation of ion beam parameters (ion species and ion energy) and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, mass density, structural properties and composition. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and the average mass density was found to be (4.3 ± 0.2) g/cm{sup 3}, without a systematic relation to ion energy and geometrical parameters. Slightly higher mass densities were found for Ge films grown by sputtering with Xe than for sputtering with Ar. The Ge films contain a fraction of inert gas atoms from backscattered primary particles. This fraction is found to be higher for sputtering with Ar than for sputtering with Xe. The fraction of inert gas atoms increases with increasing polar emission angle and increasing ion incidence angle. Raman scattering experiments revealed also systematic shifts of the characteristic Raman mode. The shifts are tentatively assigned to the change of the Ge particle densities caused by the incorporation of inert gas particles. There seem to be also slight changes in short range ordering. The experimental data are discussed with respect to the known energy and angular distributions of the sputtered and backscattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters • Thickness, growth rate, mass density, composition, structure, phonon properties • All germanium films are amorphous with small variations in mass density. • Incorporation of considerable amount of inert process gas • Vibrational properties correlate with composition.

  10. Ion beams application to modification of surface layer of solids with particular regard to IBAD method - ion beam assisted deposition realized in the INP; Zastosowanie wiazek jonowych do modyfikowania warstwy wierzchniej cial stalych, ze szczegolnym uwzglednieniem metody IBAD - Ion Beam Assisted Deposition, realizowanej w IFJ

    Energy Technology Data Exchange (ETDEWEB)

    Drwiega, M.; Lipinska, E.

    1992-12-31

    The different trends in ion engineering such as: dynamic ion mixing, ionized cluster beam deposition and ion beam assisted deposition are described. Some examples of properties of surface coatings are given and their applications are presented. The future of ion engineering is described. 48 refs, 12 figs, 4 tabs.

  11. Influence of deposition rate on the properties of ZrO2 thin films prepared in electron beam evaporation method

    Institute of Scientific and Technical Information of China (English)

    Dongping Zhang(张东平); Meiqiong Zhan(占美琼); Ming Fang(方明); Hongbo He(贺洪波); Jianda Shao(邵建达); Zhengxiu Fan(范正修)

    2004-01-01

    ZrO2 thin films were prepared in electron beam thermal evaporation method. And the deposition rate changed from 1.3 to 6.3 nm/s in our study. X-ray diffractometer and spectrophotometer were employed to characterize the films. X-ray diffraction (XRD) spectra pattern shows that films structure changed from amorphous to polycrystalline with deposition rate increasing. The results indicate that internal stresses of the films are compressive in most case. Thin films deposited in our study are inhomogeneous, and the inhomogeneity is enhanced with the deposition rate increasing.

  12. Structural transitions in electron beam deposited Co–carbonyl suspended nanowires at high electrical current densities

    Directory of Open Access Journals (Sweden)

    Gian Carlo Gazzadi

    2015-06-01

    Full Text Available Suspended nanowires (SNWs have been deposited from Co–carbonyl precursor (Co2(CO8 by focused electron beam induced deposition (FEBID. The SNWs dimensions are about 30–50 nm in diameter and 600–850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC and hexagonal close-packed (HCP Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM analysis and by energy-dispersive X-ray (EDX spectroscopy, respectively. Current (I–voltage (V measurements with current densities up to 107 A/cm2 determine different structural transitions in the SNWs, depending on the I–V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 107 A/cm2. The role played by resistive heating and electromigration in these transitions is discussed.

  13. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    Science.gov (United States)

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  14. Application of Taguchi Method to the Optimization of a-C:H Coatings Deposited Using Ion Beam Assisted Physical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    W. H. Kao

    2015-02-01

    Full Text Available The Taguchi design method is used to optimize the adhesion, hardness, and wear resistance properties of a-C:H coatings deposited on AISI M2 steel substrates using the ion beam assisted physical vapor deposition method. The adhesion strength of the coatings is evaluated by means of scratch tests, while the hardness is measured using a nanoindentation tester. Finally, the wear resistance is evaluated by performing cyclic ball-on-disc wear tests. The Taguchi experimental results show that the optimal deposition parameters are as follows: a substrate bias voltage of 90 V, an ion beam voltage of 1 kV, an acetylene flow rate of 21 sccm, and a working distance of 7 cm. Given these optimal processing conditions, the a-C:H coating has a critical load of 99.8 N, a hardness of 25.5 GPa, and a wear rate of 0.4 × 10−6 mm3/Nm.

  15. Results of the studies on energy deposition in IR6 superconducting magnets from continuous beam loss on the TCDQ system

    CERN Document Server

    Bracco, C; Presland, A; Redaelli, S; Sarchiapone, L; Weiler, T

    2007-01-01

    A single sided mobile graphite diluter block TCDQ, in combination with a two-sided secondary collimator TCS and an iron shield TCDQM, will be installed in front of the superconducting quadrupole Q4 magnets in IR6, in order to protect it and other downstream LHC machine elements from destruction in the event of a beam dump that is not synchronised with the abort gap. The TCDQ will be positioned close to the beam, and will intercept the particles from the secondary halo during low beam lifetime. Previous studies (1-4) have shown that the energy deposited in the Q4 magnet coils can be close to or above the quench limit. In this note the results of the latest FLUKA energy deposition simulations for Beam 2 are described, including an upgrade possibility for the TCDQ system with an additional shielding device. The results are discussed in the context of the expected performance levels for the different phases of LHC operation.

  16. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  17. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    Science.gov (United States)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  18. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

    Directory of Open Access Journals (Sweden)

    Rachel M. Thorman

    2015-09-01

    Full Text Available Focused electron beam induced deposition (FEBID is a single-step, direct-write nanofabrication technique capable of writing three-dimensional metal-containing nanoscale structures on surfaces using electron-induced reactions of organometallic precursors. Currently FEBID is, however, limited in resolution due to deposition outside the area of the primary electron beam and in metal purity due to incomplete precursor decomposition. Both limitations are likely in part caused by reactions of precursor molecules with low-energy (3, Pt(PF34, Co(CO3NO, and W(CO6. Through these case studies, it is evident that this combination of studies can provide valuable insight into potential mechanisms governing deposit formation in FEBID. Although further experiments and new approaches are needed, these studies are an important stepping-stone toward better understanding the fundamental physics behind the deposition process and establishing design criteria for optimized FEBID precursors.

  19. Characterisation of molecular thin films grown by organic molecular beam deposition

    CERN Document Server

    Bayliss, S M

    2000-01-01

    This work concerns the growth and characterisation of molecular thin films in an ultra high vacuum regime by organic molecular beam deposition (OMBD). Films of three different molecular materials are grown, namely free base phthalocyanine (H sub 2 Pc), perylene 3,4,9,10-tetracarboxylic dianhydride (PTCDA) and aluminium tris-8-hydroxyquinoline (Alq sub 3). The relationship between the growth parameters such as film thickness, growth rate, and substrate temperature during and after growth, and the structural, optical and morphological properties of the film are investigated. These investigations are carried out using various ex-situ techniques. X-ray diffraction, Raman spectroscopy and electronic absorption spectroscopy are used to probe the bulk film characteristics, whilst Nomarski microscopy and atomic force microscopy are used to study the surface morphology. Three different levels of influence of the growth parameters on the film properties are observed. In the case of H sub 2 Pc, two crystal phases are fo...

  20. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhan, E-mail: yw9ep@virginia.edu; Kittiwatanakul, Salinporn; Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Comes, Ryan B. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wolf, Stuart A. [Department of Materials Science and Engineering and Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2015-03-15

    Epitaxial NbO{sub 2} thin films were synthesized on Al{sub 2}O{sub 3} (0001) substrates via reactive bias target ion beam deposition. X-ray diffraction and Raman spectra were used to confirm the tetragonal phase of pure NbO{sub 2}. Through XPS, it was found that there was a ∼1.3 nm thick Nb{sub 2}O{sub 5} layer on the surface and the bulk of the thin film was NbO{sub 2}. The epitaxial relationship between the NbO{sub 2} film and the substrate was determined. Electrical transport measurement was measured up to 400 K, and the conduction mechanism was discussed.

  1. Towards a single step process to create high purity gold structures by electron beam induced deposition at room temperature

    Science.gov (United States)

    Mansilla, C.; Mehendale, S.; Mulders, J. J. L.; Trompenaars, P. H. F.

    2016-10-01

    Highly pure metallic structures can be deposited by electron beam induced deposition and they have many important applications in different fields. The organo-metallic precursor is decomposed and deposited under the electron beam, and typically it is purified with post-irradiation in presence of O2. However, this approach limits the purification to the surface of the deposit. Therefore, ‘in situ’ purification during deposition using simultaneous flows of both O2 and precursor in parallel with two gas injector needles has been tested and verified. To simplify the practical arrangements, a special concentric nozzle has been designed allowing deposition and purification performed together in a single step. With this new device metallic structures with high purity can be obtained more easily, while there is no limit on the height of the structures within a practical time frame. In this work, we summarize the first results obtained for ‘in situ’ Au purification using this concentric nozzle, which is described in more detail, including flow simulations. The operational parameter space is explored in order to optimize the shape as well as the purity of the deposits, which are evaluated through scanning electron microscope and energy dispersive x-ray spectroscopy measurements, respectively. The observed variations are interpreted in relation to other variables, such as the deposition yield. The resistivity of purified lines is also measured, and the influence of additional post treatments as a last purification step is studied.

  2. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  3. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  4. Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1999-02-01

    The spallation failure of a commercial thermal barrier coating (TBC), consisting of a single-crystal RENE N5 superalloy, a platinum aluminide (Pt-Al) bond coat, and an electron beam-deposited 7 wt pct yttria-stabilized zirconia ceramic layer (7YSZ), was studied following cyclic furnace testing. In the uncycled state and prior to deposition of the ceramic, the Pt-Al bond-coat surface contains a cellular network of ridges corresponding to the underlying bond-coat grain-boundary structure. With thermal cycling, the ridges and associated grain boundaries are the sites of preferential oxidation and cracking, which results in the formation of cavities that are partially filled with oxide. Using a fluorescent penetrant dye in conjunction with a direct-pull test, it is shown that, when specimens are cycled to about 80 pct of life, these grain-boundary regions show extensive debonding. The roles of oxidation and cyclic stress in localized grain boundary region spallation are discussed. The additional factors leading to large-scale TBC spallation are described.

  5. Structural and magnetic studies of thin Fe57 films formed by ion beam assisted deposition

    Science.gov (United States)

    Lyadov, N. M.; Bazarov, V. V.; Vagizov, F. G.; Vakhitov, I. R.; Dulov, E. N.; Kashapov, R. N.; Noskov, A. I.; Khaibullin, R. I.; Shustov, V. A.; Faizrakhmanov, I. A.

    2016-08-01

    Thin Fe57 films with the thickness of 120 nm have been prepared on glass substrates by using the ion-beam-assisted deposition technique. X-ray diffraction, electron microdiffraction and Mössbauer spectroscopy studies have shown that as-deposited films are in a stressful nanostructured state containing the nanoscaled inclusions of α-phase iron with the size of ∼10 nm. Room temperature in-plane and out-of-plane magnetization measurements confirmed the presence of the magnetic α-phase in the iron film and indicated the strong effect of residual stresses on magnetic properties of the film as well. Subsequent thermal annealing of iron films in vacuum at the temperature of 450 °C stimulates the growth of α-phase Fe crystallites with the size of up to 20 nm. However, electron microdiffraction and Mössbauer spectroscopic data have shown the partial oxidation and carbonization of the iron film during annealing. The stress disappeared after annealing of the film. The magnetic behaviour of the annealed samples was characterized by the magnetic hysteresis loop with the coercive field of ∼10 mT and the saturation magnetization decreased slightly in comparison with the α-phase Fe magnetization due to small oxidation of the film.

  6. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    Science.gov (United States)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  7. Mechanisms of spallation of electron beam physical vapor deposited thermal barrier coatings with and without platinum aluminide bond coat ridges

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, K.; Gell, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Metallurgy; Jordan, E. [Dept. Mechanical Engineering, University of Connecticut, CT-06269, Storrs (United States)

    2000-11-01

    Grain boundary ridges, that form on the surface of platinum aluminide [(Ni,Pt)Al] bond coats prior to the deposition of the yttria stabilized zirconia ceramic layer by the electron beam physical vapor deposition (EB-PVD) process, were shown to be the sites for spallation damage initiation in (Ni,Pt)Al/EB-PVD thermal barrier coatings. When these ridges are removed prior to deposition of the ceramic layer, a 3 x life improvement is achieved. This study compares the spallation mechanisms in specimens with and without bond coat ridges, in order to explain the improvement in spallation life. (orig.)

  8. NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Science.gov (United States)

    Martínez-Pérez, M. J.; Müller, B.; Schwebius, D.; Korinski, D.; Kleiner, R.; Sesé, J.; Koelle, D.

    2017-02-01

    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2Cu3O7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows us to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with a typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T \\lt {μ }0H\\lt 1 T) and temperature (0.3 K \\lt T\\lt 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1-30) × {10}6 {μ }{{B}}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets.

  9. High-purity 3D nano-objects grown by focused-electron-beam induced deposition

    Science.gov (United States)

    Córdoba, Rosa; Sharma, Nidhi; Kölling, Sebastian; Koenraad, Paul M.; Koopmans, Bert

    2016-09-01

    To increase the efficiency of current electronics, a specific challenge for the next generation of memory, sensing and logic devices is to find suitable strategies to move from two- to three-dimensional (3D) architectures. However, the creation of real 3D nano-objects is not trivial. Emerging non-conventional nanofabrication tools are required for this purpose. One attractive method is focused-electron-beam induced deposition (FEBID), a direct-write process of 3D nano-objects. Here, we grow 3D iron and cobalt nanopillars by FEBID using diiron nonacarbonyl Fe2(CO)9, and dicobalt octacarbonyl Co2(CO)8, respectively, as starting materials. In addition, we systematically study the composition of these nanopillars at the sub-nanometer scale by atom probe tomography, explicitly mapping the homogeneity of the radial and longitudinal composition distributions. We show a way of fabricating high-purity 3D vertical nanostructures of ˜50 nm in diameter and a few micrometers in length. Our results suggest that the purity of such 3D nanoelements (above 90 at% Fe and above 95 at% Co) is directly linked to their growth regime, in which the selected deposition conditions are crucial for the final quality of the nanostructure. Moreover, we demonstrate that FEBID and the proposed characterization technique not only allow for growth and chemical analysis of single-element structures, but also offers a new way to directly study 3D core-shell architectures. This straightforward concept could establish a promising route to the design of 3D elements for future nano-electronic devices.

  10. Structure and electrical properties of quaternary Cr–Si–Ni–W films prepared by ion beam sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y., E-mail: wxy@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Ma, J.X.; Li, C.G. [School of Electronic Information Engineering, Tianjin University, Tianjin 300072 (China); Shao, J.Q. [BDS Electronics Co., Ltd., Bengbu 233010 (China)

    2014-08-01

    Highlights: • Quaternary Cr–Si–Ni–W thin film was prepared by IBSD. • As-deposited Cr–Si–Ni–W films show nanocrystalline state in XRD analysis. • Big massive particles in Cr–Si–Ni–W films are mainly formed in deposition process. • Conduction mechanism was discussed based on microscopic analysis. - Abstract: Si-rich Cr–Si–Ni–W films were deposited by ion beam sputter deposition (IBSD) using a mother alloy target on polished Al{sub 2}O{sub 3} substrates. Effects of ion beam voltage, annealing temperature and deposition time on sheet resistance and TCR of Cr–Si–Ni–W films were studied. Experimental results reveal that the as-deposited Cr–Si–Ni–W films obtained by IBSD show a crystalline state because of a high mobility of deposition atoms and molecules with more energy obtained from high energy ions. XRD and AFM analysis show that the big massive particles mainly composed of Si and CrSi{sub 2} in Cr–Si–Ni–W films are formed in the process of IBSD rather than in post-annealing stage. Long deposition time is significantly important to a decrease of the number and size of gaps between big particles in Cr–Si–Ni–W films and to an improvement of the continuity and compactness of film structure, influencing resistivity and TCR of deposition film. The conduction mechanism was discussed based on microscopic analysis and the conductive model proposed for Cr–Si–Ni–W films mainly composed of big particles.

  11. Structural and magnetic properties of magnetoelectric oxide heterostructures deposited by molecular beam epitaxy

    Science.gov (United States)

    Sterbinsky, George Evan

    There is considerable interest in incorporating magnetic materials into electronic devices to achieve new functions such as nonvolatile memories. Electric field control of magnetism is of much interest for new low power electronic devices because it eliminates the need to apply magnetic fields. One approach to achieving electrical control of magnetism is to exploit magnetoelastic effects in composites of ferromagnetic and ferroelectric materials. Application of an electric field to the composite will induce a strain through the piezo-electric effect, and the strain will alter the magnetization of the ferromagnetic constituent through the magnetoelastic effect. In this work, we examine the relationships between growth, strain, and magnetic properties of epitaxial ferrimagnetic Fe3O4 (magnetite) and ferroelectric BaTiO3 thin film heterostructures. We find that altering the strain state of a magnetite layer deposited on a BaTiO3 substrate has a profound effect on its magnetization. Here, we demonstrate the interaction between strain and magnetization is mediated by magnetic anisotropy and the magnetic domains structure of the films. Epitaxial magnetite films were deposited on MgO, BaTiO3, and SrTiO3 substrates by molecular beam epitaxy between temperatures of 573 and 723 K. Examination of the morphologies of Fe3O 4 films indicates that island growth is favored. Films exhibit in-plane magnetic isotropy and reduced saturation magnetizations with respect to the bulk material, as demonstrated by superconducting quantum interference device magnetometry. Magnetic hysteresis measurements suggest that these differences originate from antiphase boundary defects within the films. The strain in magnetite films deposited on BaTiO3 single crystal substrates was measured by x-ray diffraction. Measurements reveal a dependence of magnetization (M) on strain (epsilon) with discontinuities in magnetization versus temperature curves resulting from changes in the domain structure of the

  12. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    Science.gov (United States)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  13. Fabrication of multilayer Laue lenses by a combination of pulsed laser deposition and focused ion beam.

    Science.gov (United States)

    Liese, Tobias; Radisch, Volker; Krebs, Hans-Ulrich

    2010-07-01

    X-ray diffractive techniques using Fresnel zone plate lenses of various forms are of great technical interest because of their ability to form images at very high spatial resolution, but the zone plates are unfortunately very hard to produce by lithography. Alternatively, multilayer Laue lenses (MLLs) and multilayer zone plates are used due to the higher and easily adjustable aspect ratio necessary for different wavelengths. In this paper, the fabrication of a MLL by a combination of pulsed laser deposition and focused ion beam machining is described. All steps of the production of a Ti/ZrO(2) microlens test structure with focal length of 220 microm (for a wavelength of 2.88 nm in the "water window" regime) are explained in detail. It is shown that this combination of two powerful techniques is very effective for the fabrication of MLL. All steps can be done in a very precise and controlled way without introducing damage to the grown multilayer structures.

  14. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  15. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  16. MGF approach to the capacity analysis of Generalized Two-Ray fading models

    KAUST Repository

    Rao, Milind

    2015-09-11

    We propose a class of Generalized Two-Ray (GTR) fading channels that consists of two line of sight (LOS) components with random phase and a diffuse component. Observing that the GTR fading model can be expressed in terms of the underlying Rician distribution, we derive a closed-form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) of this model. We then employ this approach to compute the ergodic capacity with receiver side information. The impact of the underlying phase difference between the LOS components on the average SNR of the signal received is also illustrated. © 2015 IEEE.

  17. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  18. High-Q MgF$_2$ whispering gallery mode resonators for refractometric sensing in aqueous environment

    CERN Document Server

    Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G L

    2014-01-01

    We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF$_2$) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF$_2$ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent decay and the sensitivity of mm-sized MgF$_2$ whispering gallery mode resonators immersed in water. They show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above $1 \\times 10^...

  19. The Post—deposition Anneal Effects on the Electrical Properties of HfO2 Gate Dielectric Deposited by Ion Beam Sputtering at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    KANGJinfeng; LIUXiaoyan; TIANDayu; WANGWei; LIANGuijun; XIONGGuangcheng; HANRuqi

    2003-01-01

    HfO2 high K gate dielectric films were fab-ricated on p-Si(100) substrates by ion beam sputtering at room temperature followed by a post-deposition anneal-ing (PDA). The PDA effects on the electrical properties of HfO2 gate dielectric films were studied. High quality HfO2 gate dielectric with small equivalent oxide thickness (EOT = 2.3nm), small hystereis (△VFB<50mV), and lowleakage current (< 1× 10-4A/cm2@lV) was fabricated.The studies of PDA effects on the electrical properties in-dicate that the PDA process in nitrogen ambient will be necessary for the HfO2 gate dielectric films deposited by ion beam sputtering the sintered target at room temper-ature in order to obtain small equivalent oxide thickness and low leakage currents, whereas a PDA in oxygen ambi-ent will be not required. The results also means that there is less oxygen vacancy defect produced in the HfO2 gate dielectric films during the deposition at room temperature.

  20. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    Science.gov (United States)

    2007-11-02

    the ion beam. Immersed in the beam is a heated tungsten filament which emits electrons to neutralize the positive charge of the beam. The sources...inadequate, indicating a temperature far below actual, and was replaced by a fine-gauge thermocouple inserted into a bronze shoe riding in contact with the...filaments lasted only about an hour when the source was operated at high power due to erosion of the tungsten wire. New filaments draw about 6 A at high beam

  1. Synthesis of Large-Sized Single-Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition.

    Science.gov (United States)

    Wang, Haolin; Zhang, Xingwang; Liu, Heng; Yin, Zhigang; Meng, Junhua; Xia, Jing; Meng, Xiang-Min; Wu, Jinliang; You, Jingbi

    2015-12-22

    Large-sized single-crystal h-BN domains with a lateral size up to 100 μm are synthesized on Ni foils by ion-beam sputtering deposition. The nucleation density of h-BN is dramatically decreased by reducing the concentrations of both active sites and species on the Ni surface through a brief in situ pretreatment of the substrate and optimization of the growth parameters, enabling the growth of large-sized domains.

  2. Structural and growth aspects of electron beam physical vapor deposited NiO-CeO{sub 2} nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kuanr, Sushil Kumar; K, Suresh Babu, E-mail: sureshbabu.nst@pondiuni.edu.in [Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605 014 (India)

    2016-03-15

    Deposition of composite materials as thin film by electron beam physical vapor deposition technique (EB-PVD) still remains as a challenge. Here, the authors report the deposition of NiO-CeO{sub 2} (30/70 wt. %) composites on quartz substrate by EB-PVD. Two NiO-CeO{sub 2} nanocomposite targets—one as green compact and the other after sintering at 1250 °C—were used for the deposition. Though the targets varied with respect to physical properties such as crystallite size (11–45 nm) and relative density (44% and 96%), the resultant thin films exhibited a mean crystallite size in the range of 20–25 nm underlining the role of physical nature of deposition. In spite of the crystalline nature of the targets and similar elemental concentration, a transformation from amorphous to crystalline structure was observed in thin films on using sintered target. Postannealing of the as deposited film at 800 °C resulted in a polycrystalline structure consisting of CeO{sub 2} and NiO. Deposition using pure CeO{sub 2} or NiO as target resulted in the preferential orientation toward (111) and (200) planes, respectively, showing the influence of adatoms on the evaporation and growth process of NiO-CeO{sub 2} composite. The results demonstrate the influence of electron beam gun power on the adatom energy for the growth process of composite oxide thin films.

  3. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  4. Investigation of chemical vapour deposition diamond detectors by X- ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    CERN Document Server

    Olivero, P; Vittone, E; Fizzotti, F; Paolini, C; Lo Giudice, A; Barrett, R; Tucoulou, R

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the Large Hadron Collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro- beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitati...

  5. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    LI ShuaiHui; SHU YongHua; FAN Jing

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present wor0k employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  6. Thickness and component distributions of yttrium-titanium alloy films in electron-beam physical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

  7. The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

    Directory of Open Access Journals (Sweden)

    Yaser M. Abdulraheem

    2013-01-01

    Full Text Available Titanium dioxide thin films were deposited on crystalline silicon substrates by electron beam physical vapor deposition. The deposition was performed under vacuum ranging from 10−5 to 10−6 Torr without process gases, resulting in homogeneous TiO2-x layers with a thickness of around 100 nm. Samples were then annealed at high temperatures ranging from 500°C to 800°C for 4 hours under nitrogen, and their structural and optical properties along with their chemical structure were characterized before and after annealing. The chemical and structural characterization revealed a substoichiometric TiO2-x film with oxygen vacancies, voids, and an interface oxide layer. It was found from X-ray diffraction that the deposited films were amorphous and crystallization to anatase phase occurred for annealed samples and was more pronounced for annealing temperatures above 700°C. The refractive index obtained through spectroscopic ellipsometry ranged between 2.09 and 2.37 in the wavelength range, 900 nm to 400 nm for the as-deposited sample, and jumped to the range between 2.23 and 2.65 for samples annealed at 800°C. The minimum surface reflectance changed from around 0.6% for the as-deposited samples to 2.5% for the samples annealed at 800°C.

  8. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    Science.gov (United States)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ˜160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  9. Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    CERN Document Server

    Haverkamp, Caspar; Jäckle, Sara; Manzoni, Anna; Christiansen, Silke

    2016-01-01

    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most no...

  10. High-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    章宁琳; 万青; 宋志棠; 沈勤我; 祝向荣; 林成鲁

    2002-01-01

    Zirconium oxide films were deposited on p-type Si(l00) substrates using high vacuum electron beam evaporation (HVEBE) at room temperature. X-ray photoelectric spectroscopy shows that the dominant chemical state of zirconia thin films is in the fully oxidized state of Zr4+, no matter whether annealed in oxygen. The structural information from x-ray diffraction shows that zirconia thin films deposited at room temperature by HVEBEwere completely amorphous before and after the annealing. The spreading resistance profile indicates that ZrO2 thin films have excellent insulation property (with a resistance of more than 10s Ω) and the thickness is 800A.After thermal treatment at 600°C in O2 ambient, the root-mean-square roughness changed from 8.09 A of the as-deposited film to 13.8A across an area of i × 1μm2.

  11. Improved Performance of Organic Light-Emitting Diodes with MgF2 as the Anode Buffer Layer

    Institute of Scientific and Technical Information of China (English)

    XIE Jing; ZHANG De-Qiang; WANG Li-Duo; DUAN Lian; QIAO Juan; QIU Yong

    2006-01-01

    @@ Organic light-emitting diodes (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) and tris (8-hydroxyquinoline) aluminium (Alq3) are improved by using a thin MgF2 buffer layer sandwiched between the indium tin oxide (ITO) anode and hole transporting layer (HTL) of NPB.

  12. Growth of doped silicon nanowires by pulsed laser deposition and their analysis by electron beam induced current imaging

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, B; Berger, A; Christiansen, S [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Zhang, D; Clavel, R [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, CH-1015 Lausanne (Switzerland); Michler, J, E-mail: bjoern.eisenhawer@ipht-jena.de [Mechanics of Materials and Nanostructures Laboratory, EMPA-Materials Science and Technology, Feuerwerkstrasse 39, CH-3602 Thun (Switzerland)

    2011-02-18

    Doped silicon nanowires (NWs) were epitaxially grown on silicon substrates by pulsed laser deposition following a vapour-liquid-solid process, in which dopants together with silicon atoms were introduced into the gas phase by laser ablation of lightly and highly doped silicon target material. p-n or p{sup ++}-p junctions located at the NW-silicon substrate interfaces were thus realized. To detect these junctions and visualize them the electron beam induced current technique and two-point probe current-voltage measurements were used, based on nanoprobing individual silicon NWs in a scanning electron microscope. Successful silicon NW doping by pulsed laser deposition of doped target material could experimentally be demonstrated. This doping strategy compared to the commonly used doping from the gas phase during chemical vapour deposition is evaluated essentially with a view to potentially overcoming the limitations of chemical vapour deposition doping, which shows doping inhomogeneities between the top and bottom of the NW as well as between the core and shell of NWs and structural lattice defects, especially when high doping levels are envisaged. The pulsed laser deposition doping technique yields homogeneously doped NWs and the doping level can be controlled by the choice of the target material. As a further benefit, this doping procedure does not require the use of poisonous gases and may be applied to grow not only silicon NWs but also other kinds of doped semiconductor NWs, e.g. group III nitrides or arsenides.

  13. Ion beam sputter deposition of Ag films: Influence of process parameters on electrical and optical properties, and average grain sizes

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C., E-mail: carsten.bundesmann@iom-leipzig.de; Feder, R.; Gerlach, J.W.; Neumann, H.

    2014-01-31

    Ion beam sputter deposition is used to grow several sets of Ag films under systematic variation of ion beam parameters, such as ion species and ion energy, and geometrical parameters, such as ion incidence angle and polar emission angle. The films are characterized concerning their thickness by profilometry, their electrical properties by 4-point-probe-measurements, their optical properties by spectroscopic ellipsometry, and their average grain sizes by X-ray diffraction. Systematic influences of the growth parameters on film properties are revealed. The film thicknesses show a cosine-like angular distribution. The electrical resistivity increases for all sets with increasing emission angle and is found to be considerably smaller for Ag films grown by sputtering with Xe ions than for the Ag films grown by sputtering with Ar ions. Increasing the ion energy or the ion incidence angle also increases the electrical resistivity. The optical properties, which are the result of free charge carrier absorption, follow the same trends. The observed trends can be partly assigned to changes in the average grain size, which are tentatively attributed to different energetic and angular distributions of the sputtered and back-scattered particles. - Highlights: • Ion beam sputter deposition under systematic variation of process parameters. • Film characterization: thickness, electrical, optical and structural properties. • Electrical resistivity changes considerably with ion species and polar emission angle. • Electrical and optical data reveal a strong correlation with grain sizes. • Change of film properties related to changing properties of film-forming particles.

  14. Energy deposition of H and He ion beams in hydroxyapatite films: A study with implications for ion-beam cancer therapy

    Science.gov (United States)

    Limandri, Silvina; de Vera, Pablo; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Mello, Alexandre; Garcia-Molina, Rafael; Behar, Moni; Abril, Isabel

    2014-02-01

    Ion-beam cancer therapy is a promising technique to treat deep-seated tumors; however, for an accurate treatment planning, the energy deposition by the ions must be well known both in soft and hard human tissues. Although the energy loss of ions in water and other organic and biological materials is fairly well known, scarce information is available for the hard tissues (i.e., bone), for which the current stopping power information relies on the application of simple additivity rules to atomic data. Especially, more knowledge is needed for the main constituent of human bone, calcium hydroxyapatite (HAp), which constitutes 58% of its mass composition. In this work the energy loss of H and He ion beams in HAp films has been obtained experimentally. The experiments have been performed using the Rutherford backscattering technique in an energy range of 450-2000 keV for H and 400-5000 keV for He ions. These measurements are used as a benchmark for theoretical calculations (stopping power and mean excitation energy) based on the dielectric formalism together with the MELF-GOS (Mermin energy loss function-generalized oscillator strength) method to describe the electronic excitation spectrum of HAp. The stopping power calculations are in good agreement with the experiments. Even though these experimental data are obtained for low projectile energies compared with the ones used in hadron therapy, they validate the mean excitation energy obtained theoretically, which is the fundamental quantity to accurately assess energy deposition and depth-dose curves of ion beams at clinically relevant high energies. The effect of the mean excitation energy choice on the depth-dose profile is discussed on the basis of detailed simulations. Finally, implications of the present work on the energy loss of charged particles in human cortical bone are remarked.

  15. Properties of high k gate dielectric gadolinium oxide deposited on Si (1 0 0) by dual ion beam deposition (DIBD)

    Science.gov (United States)

    Zhou, Jian-Ping; Chai, Chun-Lin; Yang, Shao-Yan; Liu, Zhi-Kai; Song, Shu-Lin; Li, Yan-Li; Chen, Nuo-Fu

    2004-09-01

    Gadolinium oxide thin films have been prepared on silicon (1 0 0) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation (4 bar 0 2) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (2 0 2), and finally, the cubic structure appeared at the substrate temperature of 700 °C, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented.

  16. MGF Approach to the Analysis of Generalized Two-Ray Fading Models

    KAUST Repository

    Rao, Milind

    2015-01-01

    We analyze a class of Generalized Two-Ray (GTR) fading channels that consist of two line of sight (LOS) components with random phase plus a diffuse component. We derive a closedform expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly simplifies its analysis. This expression arises from the observation that the GTR fading model can be expressed in terms of a conditional underlying Rician distribution. We illustrate the approach to derive simple expressions for statistics and performance metrics of interest such as the amount of fading, the level crossing rate, the symbol error rate, and the ergodic capacity in GTR fading channels. We also show that the effect of considering a more general distribution for the phase difference between the LOS components has an impact on the average SNR.

  17. Processing for optically active erbium in silicon by film co-deposition and ion-beam mixing

    Energy Technology Data Exchange (ETDEWEB)

    Abedrabbo, S., E-mail: sxa0215@yahoo.com [Department of Physics, University of Jordan, Amman 11942 (Jordan); Mohammed, Q. [Tadawul Shares and Bonds Mediation L.L.C., Dubai (United Arab Emirates); Fiory, A.T. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07901 (United States)

    2009-02-01

    Techniques of film deposition by co-evaporation, ion-beam assisted mixing, oxygen ion implantation, and thermal annealing were been combined in a novel way to study processing of erbium-in-silicon thin-film materials for optoelectronics applications. Structures with erbium concentrations above atomic solubility in silicon and below that of silicide compounds were prepared by vacuum co-evaporation from two elemental sources to deposit 200-270 nm films on crystalline silicon substrates. Ar{sup +} ions were implanted at 300 keV. Oxygen was incorporated by O{sup +}-ion implantation at 130 keV. Samples were annealed at 600 deg. C in vacuum. Concentration profiles of the constituent elements were obtained by Rutherford backscattering spectrometry. Results show that diffusion induced by ion-beam mixing and activated by thermal annealing depends on the deposited Si-Er profile and reaction with implanted oxygen. Room temperature photoluminescence spectra show Er{sup 3+} transitions in a 1480-1550 nm band and integrated intensities that increase with the oxygen-to-erbium ratio.

  18. Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2015-06-01

    We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV-5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1-1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the

  19. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis.

  20. Double-beam pulsed laser deposition for the growth of Al-incorporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, AP 70-186, C.P. 04510 México D.F., México (Mexico); Bizarro, M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-186, C.P. 04510 México D.F., México (Mexico)

    2014-05-01

    Pulsed laser deposition in a delayed-double beam configuration is used to incorporate in situ Al in ZnO thin films. In this configuration, two synchronized pulsed-laser beams are employed to ablate independently a ZnO and an Al target. We investigated the effects of relative time delay of plasma plumes on the composition of the films with the aim of evaluating the performance of this technique to produce doped materials. Relative delay between plumes was found to control the incorporation of Al in the film in the range from 14% to 30%. However, to produce low impurity concentration of Al-doped ZnO (with Al incorporation less than 2%) the fluence used to produce the plasmas has more influence over the film composition than the relative plume delay. The minimum incorporation of Al corresponded to a relative delay of 0 μs, due to the interaction between plumes during their expansion.

  1. Atomic radical abatement of organic impurities from electron beam deposited metallic structures

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.

    2010-01-01

    Focused electron beam induced processing (FEBIP) of volatile organometallic precursors has become an effective and versatile method of fabricating metal-containing nanostructures. However, the electron stimulated decomposition process responsible for the growth of these nanostructures traps much of

  2. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    Scanned electron beam treatment is used to improve the physical properties of certain polymers, such as shrinkable plastic tubing and insulated wire and cable. Tubing or wires are passed at high speed under the beam scanner, and the material is irradiated to absorbed doses of several Mrad...... as uniformly as possible, usually by means of a multipass arrangement. In the present study, using irradiation by a scanned 0.4 MeV electron beam, measurements were made of high-resolution distributions of absorbed dose in polyethylene tubing and copper wire coated with polyethylene, nylon, or polyvinyl...... chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  3. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Rao, C.V.S.; Raole, Prakash M.; Vala, Sudhirsinh; Jakhar, Shrichand; Basu, T.K.; Abhangi, Mitul; Makwana, Rajinikant J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-04-15

    Graphical abstract: The specular FIR reflectivity of the W{sub 1}, W{sub 2}, W{sub 3} and W{sub 4} mirrors before and after 8 keV Hydrogen ion beam irradiation. Highlights: Black-Right-Pointing-Pointer Mirror like W thin films were obtained via PLD. Black-Right-Pointing-Pointer The maximum thickness of the Tungsten thin film was {approx}324 nm. Black-Right-Pointing-Pointer Effect of H-ion beam irradiation on the quality of PLD W mirror is reported. Black-Right-Pointing-Pointer Post exposure reflectivity of Tungsten thin films was hardly changed by 2%. - Abstract: The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  4. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  5. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Monica de, E-mail: desimone@tasc.infm.it [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Snidero, Elena [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, c/o Laboratorio TASC Area Science Park Basovizza, 34149 Trieste (Italy); Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Bongiorno, Gero [Fondazione Filarete, v.le Ortles 22/4, 20139 Milano (Italy); Giorgetti, Luca [Istituto Europeo di Oncologia, Dip. di Oncologia Sperimentale, Via Adamello 16, 20139, Milano (Italy); Amati, Matteo [Sincrotrone Trieste ScpA, Area Science Park Basovizza, 34149 Trieste (Italy); Cepek, Cinzia [CNR-IOM Laboratorio TASC, Area Science Park Basovizza, 34149 Trieste (Italy)

    2012-05-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti{sup 3+} is the first oxidation state observed, followed by Ti{sup 4+}, whereas Ti{sup 2+} is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  6. Analysis on Residual Stress in Electron Beam-Physical Vapor Deposited Thermal Barrier Coating using Hard Synchrotron X-Rays

    OpenAIRE

    鈴木, 賢治; 松本, 一秀; 久保, 貴博; 町屋, 修太郎; 田中, 啓介; 秋庭, 義明; SUZUKI, Kenji; MATSUMOTO, Kazuhide; Kubo, Takahiro; Machiya, Syutaro; Tanaka, Keisuke; Akiniwa, Yoshiaki

    2005-01-01

    The distribution of the residual stress in the thermal barrier coating, which was made by an electron beam-physical vapor deposition (EB-PVD) method, was determined using X-ray stress measurements. As the bond coating, NiCoCrAlY was low-pressure plasma sprayed on the substrate of austenitic stainless steel. The 8 mass% Y_2O_3-ZrO_2 was coated on the bond coating using the EB-PVD method as the top coating. The top coating had the preferred orientation with the axis direction perpendicular to ...

  7. Microstructure and photoluminescence of Er-doped SiOx films synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    Duan Shu-Qing; Tan Na; Zhang Qing-Yu

    2005-01-01

    Er-doped Sio_ films were synthesized at 500℃ by ion beam assisted deposition technique and annealed at 800 and 1100℃ for 2h in the air atomosphere. The analysis by using energy dispersive x-ray spectroscopy showed that the ratio of Si to O decreased from 3 in the as-deposited films to about 1 in the annealed films. The investigation by using transmission electron microscopy and x-ray diffraction inducated that annealing induces a microstructure change from amorphous to crystlline. The grain sizes in the films were about 10 and 40nm when annealed at 800 and 1100℃, respectively. The films annealed at temperatures of 800 and 1100℃ exhibited a sharp photoluminescence (PL) at 1.533μm from the Er centres when pumped by 980nm laser. The influence of microstructure and grain size on the PL from Er-doped Sio_ films has been studies and discussed.

  8. Microstructural characterization of electron beam-physical vapor deposition thermal barrier coatings through high-resolution computed microtomography

    Science.gov (United States)

    Kulkarni, Anand; Herman, Herbert; Decarlo, Francesco; Subramanian, Ramesh

    2004-07-01

    Thermal barrier coatings (TBCs), deposited using the electron beam-physical vapor deposition (EB-PVD) process, comprise a unique architecture of porosity capable of bridging the technological gap between insulation/life extension and prime reliance. The TBC microstructures consist of columnar structure, nucleated via vapor condensation, along with a high degree of intercolumnar porosity, thus providing enhanced stress relief on thermomechanical loading and also accommodating misfit stresses resulting from CTE mismatch. In this article, we report the characterization of these coatings using high-resolution synchrotron-based X-ray computed microtomography (XMT) at 1.3- µm resolution. Experiments focused on quantitative characterization/visualization of imperfections in these coatings and on the relative changes in microstructural features upon isothermal annealing. The influence of time/temperature of exposure was investigated and the results were correlated with elastic modulus.

  9. Properties of ZnO thin films grown at room temperature by using ionized cluster beam deposition

    CERN Document Server

    Whangbo, S W; Kim, S G; Cho, M H; Jeong, K H; Whang, C N

    2000-01-01

    ZnO films with a thickness of 120 nm were deposited on Si(100) at room temperature by using the reactive-ionized cluster beam deposition technique. The effects of the acceleration voltage (V sub a) on the properties, such as the crystallinity, the induced film strain, the surface roughness, and the electrical and the optical properties of the films, were investigated. The ZnO films had only a (002) crystalline orientation and uniformly composed through the whole thickness. As the V sub a increased, more strain was induced in the film, and the packing density caused by the structural imperfection was lowered. The films prepared under the optimum condition (V sub a = 3 kV) on a glass substrate showed good optical transmittance, and the band-gap of the film was evaluated to be 3.32 eV.

  10. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  11. Graphitic carbon grown on fluorides by molecular beam epitaxy.

    Science.gov (United States)

    Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun

    2013-01-03

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.

  12. Fabrication of single TiO2 nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition

    Science.gov (United States)

    Lee, Mingun; Cha, Dongkyu; Huang, Jie; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    Device fabrication using nanostructured materials, such as nanotubes, requires appropriate metal interconnections between nanotubes and electrical probing pads. Here, electron-beam-assisted deposition (EBAD) and ion-beam-assisted deposition (IBAD) techniques for fabrication of Pt interconnections for single TiO2 nanotube devices are investigated. IBAD conditions were optimized to reduce the leakage current as a result of Pt spreading. The resistivity of the IBAD-Pt was about three orders of magnitude less than that of the EBAD-Pt, due to low carbon concentration and Ga doping, as indicated by X-ray photoelectron spectroscopy analysis. The total resistances of single TiO2 nanotube devices with EBAD- or IBAD-Pt interconnections were 3.82 × 1010 and 4.76 × 108 Ω, respectively. When the resistivity of a single nanotube is low, the high series resistance of EBAD-Pt cannot be ignored. IBAD is a suitable method for nanotechnology applications, such as photocatalysis and biosensors.

  13. AMORPHIZATION IN Nb-M (M=Fe, Co, Ni) BINARY METAL SYSTEMS INDUCED BY ION BEAM ASSISTED DEPOSITION (IBAD)

    Institute of Scientific and Technical Information of China (English)

    F. Pan; F. Zeng; B. Zhao

    2002-01-01

    Ion beam assisted deposition technique (IBAD) was utilized to systematically studyamorphization in binary metal systems of Nb-magnetic element, i.e., Nb-M (M=Fe,Co or Ni). The glass forming range terned as Nb fraction of Nb-Fe system was about34at.% to 56at.%, that of Nb-Co system was about 32at.% to 72at.% and that of Nb-Ni about 20at.% to 80at.%. Similar percolation patterns were found in amorphousalloy films. The fractal dimensions of the percolation patterns approach to 2, whichindicates 2-D layer growth for amorphous phases. It is regarded that the assistedAr+ ion beam duringthe deposition process plays important role for the 2-D layergrowth. Some metastable crystalline phases were obtained in these three systems byIBAD, e.g., bcc supersaturated solid solutions in Nb-Fe and Nb-Co systems, fcc andhcp phases in Nb-Co and Nb-Ni systems. The formation and competing between theamorphous and the metastable crystalline phases were determined by both the phases'thermodynamic states in binary metal systems and kinetics during IBAD process.

  14. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Science.gov (United States)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  15. Evaluation of Beam Losses and Energy Depositions for a Possible Phase II Design for LHC Collimation

    CERN Document Server

    Lari, L; Bracco, C; Brugger, M; Cerutti, F; Doyle, E; Ferrari, A; Keller, L; Lundgren, S; Keller, L; Mauri, M; Redaelli, S; Sarchiapone, L; Smith, J; Vlachoudis, V; Weiler, T

    2008-01-01

    The LHC beams are designed to have high stability and to be stored for many hours. The nominal beam intensity lifetime is expected to be of the order of 20h. The Phase II collimation system has to be able to handle particle losses in stable physics conditions at 7 TeV in order to avoid beam aborts and to allow correction of parameters and restoration to nominal conditions. Monte Carlo simulations are needed in order to evaluate the behavior of metallic high-Z collimators during operation scenarios using a realistic distribution of losses, which is a mix of the three limiting halo cases. Moreover, the consequences in the IR7 insertion of the worst (case) abnormal beam loss are evaluated. The case refers to a spontaneous trigger of the horizontal extraction kicker at top energy, when Phase II collimators are used. These studies are an important input for engineering design of the collimation Phase II system and for the evaluation of their effect on adjacent components. The goal is to build collimators that can ...

  16. An MGF-based unified framework to determine the joint statistics of partial sums of ordered random variables

    KAUST Repository

    Nam, Sungsik

    2010-11-01

    Order statistics find applications in various areas of communications and signal processing. In this paper, we introduce an unified analytical framework to determine the joint statistics of partial sums of ordered random variables (RVs). With the proposed approach, we can systematically derive the joint statistics of any partial sums of ordered statistics, in terms of the moment generating function (MGF) and the probability density function (PDF). Our MGF-based approach applies not only when all the K ordered RVs are involved but also when only the Ks(Ks < K) best RVs are considered. In addition, we present the closed-form expressions for the exponential RV special case. These results apply to the performance analysis of various wireless communication systems over fading channels. © 2006 IEEE.

  17. Low-energy ion beam-based deposition of gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  18. Low-energy ion beam-based deposition of gallium nitride.

    Science.gov (United States)

    Vasquez, M R; Wada, M

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  19. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    Science.gov (United States)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  20. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF2-MgO Carriers

    Directory of Open Access Journals (Sweden)

    Magdalena Bonarowska

    2016-11-01

    Full Text Available Pd/MgO, Pd/MgF2 and Pd/MgO-MgF2 catalysts were investigated in the reaction of CCl4 hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF2-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C2-C5 hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF2 is beneficial for shaping high activity of palladium catalysts. The MgO-MgF2 support characterized by stronger Lewis acidity than MgF2 contributes to very good catalytic activity for a relatively long reaction period (~5 h but subsequent neutralization of stronger acid centers (by coking eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  1. Intranasal, siRNA Delivery to the Brain by TAT/MGF Tagged PEGylated Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Meenakshi Malhotra

    2013-01-01

    Full Text Available Neurodegeneration is characterized by progressive loss of structure and function of neurons. Several therapeutic methods and drugs are available to alleviate the symptoms of these diseases. The currently used delivery strategies such as implantation of catheters, intracarotid infusions, surgeries, and chemotherapies are invasive in nature and pose a greater risk of postsurgical complications, which can have fatal side effects. The current study utilizes a peptide (TAT and MGF tagged PEGylated chitosan nanoparticle formulation for siRNA delivery, administered intranasally, which can bypass the blood brain barrier. The study investigates the optimal dose, duration, biodistribution, and toxicity, of the nanoparticle-siRNA formulation, in-vivo. The results indicate that 0.5 mg/kg of siRNA is delivered successfully to the hippocampus, thalamus, hypothalamus, and Purkinje cells in the cerebellum after 4 hrs of post intranasal delivery. The results indicate maximum delivery to the brain in comparison to other tissues with no cellular toxic effects. This study shows the potential of peptide-tagged PEGylated chitosan nanoparticles to be delivered intranasally and target brain tissue for the treatment of neurological disorders.

  2. MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain

    Science.gov (United States)

    Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar

    2017-04-01

    A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF2) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree‑1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree‑1.

  3. Hyperthermal Pulsed-Laser Ablation Beams for Film Deposition and Surface Microstructural Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D.H.

    1999-11-08

    This paper presents an overview of pulsed-laser ablation for film deposition and surface microstructure formation. By changing the ambient gas pressure from high vacuum to several Torr (several hundred Pa) and by selecting the pulsed-laser wavelength, the kinetic energy of ablated atoms/ions can be varied from several hundred eV down to {approximately}0.1 eV and films ranging from superhard to nanocrystalline may be deposited. Furthermore, cumulative (multi-pulse) irradiation of a semiconductor surface (e.g. silicon) in an oxidizing gas (0{sub 2}, SF{sub 6}) et atmospheric pressure can produce dense, self-organized arrays of high-aspect-ratio microcolumns or microcones. Thus, a wide range of materials synthesis and processing opportunities result from the hyperthermal flux and reactive growth conditions provided by pulsed-laser ablation.

  4. Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam

    Science.gov (United States)

    Radek, Norbert; Bartkowiak, Konrad

    The work presented in this paper determines the influence of the laser treatment process on the properties of electrospark coatings. The properties after laser treatment were examined by microstructure analysis, microhardness, roughness and adhesion tests. The studies were conducted using WC-Co-Al2O3 electrodes produced by sintering nanostructural powders. The anti-wear coatings were first deposited by an EIL-8A apparatus on C45 carbon steel and then laser melted within various process parameters. In this case Nd:YAG laser (BLS 720 model) was applied. The electro-spark deposited coatings are very promising to improve abrasive wear resistance of tools and machine parts, which was indicated by tribological tests.

  5. Adherence of ion beam sputter deposited metal films on H-13 steel

    Science.gov (United States)

    Mirtich, M. J.

    1980-01-01

    An electron bombardment argon ion source sputter deposited 17 metals and metal oxides on H-13 steel. The films ranged 1 to 8 micrometers in thickness and their adherence was generally greater than the capacity of the measuring device; adherence quality depended on proper precleaning of the substrate before deposition. N2 or air was introduced for correct stoichiometry in metallic compounds. Au, Ag, MgO, and Ta5Si3 films 8 microns thick have bond strength equal to 1 micron coatings; the bond strength of pure metallic films up to 5 microns thick was greater than the epoxy to film bond (8000 psi). The results of exposures of coated material to temperatures up to 700 C are presented.

  6. CORROSION BEHAVIOR OF Cu-Nb AND Ni-Nb AMORPHOUS FILMS PREPARED BY ION BEAM ASSISTED DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    B. Zhao; F. Zeng; D.M. Li; F. Pan

    2003-01-01

    The Cu25Nb75 and Ni45Nb55 amorphous films with about 500nm thickness were prepared by ion beam assisted deposition (IBAD). Potentiodynamic polarization measurement was adopted to investigate the corrosion resistance of samples and the tests were carried out respectively in 1mol/L H2SO4 and NaOH aquatic solution. The corrosion performance of the amorphous films was compared with that of multilayered and pure Nb films. Experimental results indicated that the corrosion resistance of amorphous films was better than that of the corresponding multilayers and pure Nb films for both Ni-Nb system with negative heat of formation and Cu-Nb system with positive heat of formation.

  7. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  8. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q. D., E-mail: qgao@swip.ac.cn [Southwestern Institute of Physics, Chengdu 610041 (China); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  9. Thermally induced formation of metastable nanocomposites in amorphous Cr-Zr-O thin films deposited using reactive ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Rafaja, David, E-mail: rafaja@ww.tu-freiberg.de [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Wüstefeld, Christina [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Braeunig, Stefan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Baehtz, Carsten [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Hanzig, Florian; Dopita, Milan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Gemming, Sibylle [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Institute of Physics, Technische Universität Chemnitz, D-09126 Chemnitz (Germany)

    2016-08-01

    Successive crystallization of amorphous Cr-Zr-O thin films, formation of the (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites and the thermally induced changes in the hexagonal crystal structure of metastable (Cr,Zr){sub 2}O{sub 3} were investigated by means of in situ high-temperature synchrotron diffraction experiments up to 1100 °C. The thin films were deposited at room temperature by using reactive ion beam sputtering, and contained 3–15 at.% Zr. At low Zr concentrations, chromium-rich (Cr,Zr){sub 2}O{sub 3} crystallized first, while the crystallization of zirconium-rich (Zr,Cr)O{sub 2} was retarded. Increasing amount of zirconium shifted the onset of crystallization in both phases to higher temperatures. For 3 at.% of zirconium in amorphous Cr-Zr-O, (Cr,Zr){sub 2}O{sub 3} crystallized at 600 °C. At 8 at.% Zr in the films, the crystallization of (Cr,Zr){sub 2}O{sub 3} started at 700 °C. At 15 at.% Zr, the Cr-Zr-O films remained amorphous up to the annealing temperature of 1000 °C. Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodated up to ~ 3 at.% Zr. Excess of zirconium formed tetragonal zirconia, which was stabilized by chromium. - Highlights: • Amorphous Cr-Zr-O thin films were deposited using reactive ion beam sputtering. • After annealing in vacuum, metastable (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites form. • The crystallization temperature depends strongly on the Zr concentration. • Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodates up to 3.2 at.% of zirconium. • Zirconium oxide crystallizes in tetragonal form, as it is stabilized by chromium.

  10. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    Science.gov (United States)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  11. Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating

    Science.gov (United States)

    Wu, Qing; Zhang, Xiaoping; Sun, Shuwei; Wan, Ning; Pan, Du; Bai, Ying; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng

    2015-09-01

    A spinel LiMn1.5Ni0.5O4 (LMNO) cathode material synthesized by a sol-gel method is modified by MgF2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF2-coated LMNO demonstrates the best reversibility, with a capacity retention of 89.9% after 100 cycles, much higher than that of the pristine material, 69.3%. The dQ/dV analysis and apparent Li+ diffusion coefficient calculation prove that the kinetic properties are enhanced after MgF2 surface modification, which partly explains the improved electrochemical performances. Electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) data confirm that the MgF2 coating layer helps in suppressing the fast growth of the solid electrolyte interface (SEI) film in repeated cycling, which effectively stabilizes the spinel structure. Additionally, differential scanning calorimetry (DSC) tests show that the MgF2 nano-coating layer also helps in enhancing the thermal stability of the LMNO cathode.A spinel LiMn1.5Ni0.5O4 (LMNO) cathode material synthesized by a sol-gel method is modified by MgF2 nano-coating via a wet coating strategy. The results of X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) showed that the MgF2 nano-coating layers do not physically change the bulk structure of the pristine material. Compared with the pristine compound, the MgF2-coated LMNO electrodes display enhanced cycling stabilities. Particularly, the 5 wt% MgF2-coated LMNO demonstrates the best reversibility

  12. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    Science.gov (United States)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  13. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  14. Classical simulation of atomic beam focusing and deposition for atom lithography

    Institute of Scientific and Technical Information of China (English)

    Xianzhong Chen(陈献忠); Hanmin Yao(姚汉民); Xunan Chen(陈旭南)

    2004-01-01

    We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion. The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method. Simulation results have shown that source imperfection, especially beam spread, plays an important role in broadening the feature width, and the focus depth of atom lens for real atomic source is longer than that for perfect source. The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.

  15. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  16. Nanopatterning on fragile or 3D surfaces with sterol-based vapor-deposited electron beam resist

    Science.gov (United States)

    Legario, Ron R.; Kelkar, Prasad S.; Beauvais, Jacques; Lavallee, Eric; Drouin, Dominique; Cloutier, Melanie; Turcotte, David; Yang, Pan; Mun, Lau K.; Awad, Yousef; Lafrance, Pierre J.

    2004-05-01

    A novel and effective approach to nano-fabrication lithography is the vapour deposition of the negative tone electron beam resists QSR-5 and QSR-15 (Quantiscript"s sterol based resist) onto a substrate. Vapour deposition is especially conducive for patterning thin delicate membranes (e.g. advanced masks for X-ray lithography - XRL, and Low Energy Electron Proximity Projection Lithography - LEEPL), that are susceptible to breakage during the spin coating process. With the capability for depositing highly uniform thin layers (optical fibre with the goal of improving the coupling of diode laser emission into the fiber. This application clearly shows the capabilities of this process for producing nano-scale patterns on very small area surfaces that are completely unsuitable for spin-coating of the resist. A second demonstration of the resist's capabilities is the patterning of optical diffractive elements directly on the facet of a semiconductor laser. This opens the way to direct patterning on laser diode facets in order to control the emission profile from the device. It has also proven capabilities in the manufacture of delicate photo masks. In their natural state, QSR-5 and QSR-15 are solids at room temperature and are sterol based heterocyclic compounds, with unsaturated bonding capable of cross linking. On their own merit, QSR-5 and QSR-15 are capable of cross linking under electron beam exposure and are comparable in certain properties to conventional spin-coated resists such as PMMA. When cross linked, their heterocyclic structure gives it excellent selective resistance to solvent based developers (such as alcohols and ketones) for pattern formation. They have also been shown to be highly resistant to etching solutions, even when working with thin high resolution layers on the order of 30 nm. They are highly stable and have a relatively long shelf life, greater than one year. Compared to conventional resists utilizing complex, toxic, and expensive resin systems

  17. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  18. Flux pinning properties of MgB{sub 2} thin films on Al tape substrates deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K., E-mail: kenji@st.cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T.; Sueyoshi, T. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555 (Japan); Doi, T.; Nishikawa, T. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan)

    2011-11-15

    MgB{sub 2} thin films were deposited on Al tape substrates by EBE. The MgB{sub 2} thin films on Al tapes show much higher J{sub c} values compared to those of MgB{sub 2} wires fabricated by PIT method. The MgB{sub 2} thin films on Al tapes have c-axis correlated pinning centers. The scaling analysis of macroscopic pinning force indicates that a main pinning center is grain boundary. Flux pinning properties have been investigated in two kinds of MgB{sub 2} thin films deposited on Al tapes by electron beam evaporation: One is a stoichiometric composition and the other is a slightly B-rich composition. The values of critical current density J{sub c} in both MgB{sub 2} thin films on Al tape substrates at 10 K in the magnetic field parallel to the c-axis are higher than those in MgB{sub 2} thin films on Si and Al{sub 2}O{sub 3} substrates prepared by the same method. Both the MgB{sub 2} thin films on Al tapes show the large peaks for a magnetic field, B//c in the field-angular dependence of J{sub c}. This result indicates that the MgB{sub 2} thin films have the c-axis correlated pinning centers. Scaling analysis in the reduced macroscopic pinning force density versus the reduced magnetic field at 20 K implies that a main pinning center in both the MgB{sub 2} thin films is grain boundaries. In addition, it was suggested that a nonstoichiometric MgB{sub 2} thin film has additional pinning centers which act effectively in a high magnetic field.

  19. Preparation and characterization of BaMgAl10O17:Eu phosphor coated with MgF2 by sol-gel process

    Institute of Scientific and Technical Information of China (English)

    LI Feng; WANG Yu-hua

    2005-01-01

    In order to prevent BaMgAl10 O17 : Eu (BAM) phosphor from thermal degradation, MgF2-coatings on the surface of BAM were prepared by a sol-gel process. The coatings were characterized by X-ray photoelectron spectroscopy and scanning electron microscopy. The results indicate that BAM is successfully coated with homogenous, close MgF2 coatings. The photoluminescence and anti-thermal degradation properties of coated BAM were investigated under 254 and 147 nm excitations. The optimum anti-thermal degradation properties are obtained at the mass ratio of MgF2 to BAM 0. 2% under 254 nm excitation and 0. 5% under 147 nm excitation, respectively. It is considered that trace MgO formed after baked would cause different optimum coating thicknesses under 254 and 147 nm excitations.

  20. Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties

    Science.gov (United States)

    Bundesmann, C.; Lautenschläger, T.; Thelander, E.; Spemann, D.

    2017-03-01

    Several sets of TiO2 films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  1. Direct growth of Ge quantum dots on a graphene/SiO2/Si structure using ion beam sputtering deposition.

    Science.gov (United States)

    Zhang, Z; Wang, R F; Zhang, J; Li, H S; Zhang, J; Qiu, F; Yang, J; Wang, C; Yang, Y

    2016-07-29

    The growth of Ge quantum dots (QDs) using the ion beam sputtering deposition technique has been successfully conducted directly on single-layer graphene supported by SiO2/Si substrate. The results show that the morphology and size of Ge QDs on graphene can be modulated by tuning the Ge coverage. Charge transfer behavior, i.e. doping effect in graphene has been demonstrated at the interface of Ge/graphene. Compared with that of traditional Ge dots grown on Si substrate, the positions of both corresponding photoluminescence (PL) peaks of Ge QDs/graphene hybrid structure undergo a large red-shift, which can probably be attributed to the lack of atomic intermixing and the existence of surface states in this hybrid material. According to first-principles calculations, the Ge growth on the graphene should follow the so-called Volmer-Weber mode instead of the Stranski-Krastanow one which is observed generally in the traditional Ge QDs/Si system. The calculations also suggest that the interaction between Ge and graphene layer can be enhanced with the decrease of the Ge coverage. Our results may supply a prototype for fabricating novel optoelectronic devices based on a QDs/graphene hybrid nanostructure.

  2. Comparison of TiO2 and ZrO2 Films Deposited by Electron-Beam Evaporation and by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    YAO Jian-Ke; LI Hai-Yuan; FAN Zheng-Xiu; TANG Yong-Xing; JIN Yun-Xia; ZHAO Yuan-An; HE Hong-Bo; SHAO Jian-Da

    2007-01-01

    TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel films have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the film, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.

  3. Thickness Dependence of Optoelectrical Properties of Mo-Doped In2O3 Films Deposited on Polyethersulfone Substrates by Ion-Beam-Assisted Evaporation

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2010-01-01

    Full Text Available Indium molybdenum oxide (IMO films were deposited onto the polyethersulfone (PES substrates by ion-beam-assisted evaporation (IBAE deposition at low temperature in this study. The effects of film thickness on their optical and electrical properties were investigated. The results show that the deposited IMO films exhibit a preferred orientation of B(222. The electrical resistivity of the deposited film initially reduces then subsequently increases with film thickness. The IMO film with the lowest resistivity of 7.61 × 10−4 ohm-cm has been achieved when the film thickness is 120 nm. It exhibits a satisfactory surface roughness pv of 8.75 nm and an average visible transmittance of 78.7%.

  4. Muscle expressions of MGF, IGF-IEa, and myostatin in intact and hypophysectomized rats: effects of rhGH and testosterone alone or combined.

    Science.gov (United States)

    Rigamonti, A E; Locatelli, L; Cella, S G; Bonomo, S M; Giunta, M; Molinari, F; Sartorio, A; Müller, E E

    2009-01-01

    Myostatin and mechano-growth factor (MGF), an isoform of insulin-like growth factor-I (IGF-I), are two important regulators of muscle hypertrophy. The aim of the present study was to investigate the effects of recombinant human growth hormone (rhGH) and/or testosterone on muscle MGF/IGF-IEa/myostatin expression in intact and hypophysectomized rats treated for 15 d with 1) saline or rhGH, 2) sesame oil or testosterone, 3) saline+sesame oil, or rhGH+testosterone (first experiment) or for 7 d with saline or rhGH (second experiment). Animals were killed by decapitation 24 h or 4 d after the last injection (first or second experiment, respectively). Muscle expressions of MGF, IGF-IEa, and myostatin were determined by RT-PCR. A significant increase in the weight of gastrocnemius muscle was observed only in hypophysectomized rats treated with rhGH alone or in combination with testosterone. Administration of rhGH to hypophysectomized rats caused a marked increase in both MGF and IGF-IEa muscle mRNA levels (without any change in the muscle expression of myostatin), an effect that was abolished when testosterone was combined with rhGH. Conversely, in intact rats rhGH increased myostatin muscle mRNA levels without affecting those of MGF and IGF-IEa. Testosterone, alone or combined with rhGH, induced an inhibition of myostatin expression in the muscle of intact rats, but did not change muscle paradigms of hypophysectomized rats. In conclusion, rhGH and/or testosterone anabolic effects in the muscle are mediated by a different expression of MGF/IGF-IEa/myostatin, which is related to the pituitary function.

  5. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  6. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    Science.gov (United States)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  7. Superconductivity and metallic behavior in Pb{sub x}C{sub y}O{sub δ} structures prepared by focused electron beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Winhold, M., E-mail: winhold@Physik.uni-frankfurt.de; Weirich, P. M.; Schwalb, C. H.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-10-20

    Focused electron beam induced deposition as a direct-write approach possesses great potential to meet the demands for superconducting nanostructure fabrication especially regarding its 3D patterning capabilities combined with the high resolution in the nanometer regime. So far, however, it was not possible to fabricate superconducting structures with this technique. In this work, we present a lead-based superconductor prepared by focused electron beam induced deposition by dissociation of the precursor tetraethyllead. The as-grown structures exhibit metallic behavior and a minimum resistivity in the normal state of ρ = 16 μΩcm at T = 9 K followed by a superconducting transition at T{sub c} = 7.2 K.

  8. Dielectric spectroscopy of electron beam deposited yttrium oxide films examined in metal–insulator–metal sandwich type structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiktorczyk, Tadeusz, E-mail: Tadeusz.Wiktorczyk@pwr.wroc.pl; Biegański, Piotr

    2014-01-31

    This report describes the dielectric properties of electron-beam deposited Y{sub 2}O{sub 3} thin films examined in metal–insulator–metal-type structures fabricated onto quartz substrates. The dielectric measurements have been carried out in the frequency domain from 10 mHz to 10 MHz, with a frequency response analyser. Frequency characteristics of the complex capacitance, as well as Cole–Cole and Nyquist graphs, have been presented and discussed for the temperature range 398–523 K. The results have been analyzed in terms of equivalent circuit models containing resistance–capacitance and constant phase elements (CPE). We have determined the values of the resistance, capacitance and CPE, which characterize the Y{sub 2}O{sub 3} film and near-electrode regions. It has been shown that for high frequencies/low temperatures the dielectric properties are connected with Y{sub 2}O{sub 3} film, while for low frequencies/high temperatures the dielectric response is dominated by the near-electrode regions. In the frequency range 0.1–10 MHz the important contribution of series resistance of electrodes and leads has been observed. - Highlights: • We examine the Al/Y{sub 2}O{sub 3}/Al thin film capacitors for frequency range 10 mHz–10 MHz. • The dielectric data are assigned to Y{sub 2}O{sub 3} and to metal/insulator interfaces. • The capacitance, resistance and constant phase elements describe their properties. • The values of these elements are estimated for temperatures from 398 K to 523 K.

  9. Study of structure and antireflective properties of LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 trilayers for UV applications

    Science.gov (United States)

    Marszalek, K.; Jaglarz, J.; Sahraoui, B.; Winkowski, P.; Kanak, J.

    2015-01-01

    The aim of this paper is to study antireflective properties of the tree-layer systems LaF3/HfO2/SiO2 and LaF3/HfO2/MgF2 deposited on heated optical glass substrates. The films were evaporated by the use two deposition techniques. In first method oxide films were prepared by means of e-gun evaporation in vacuum of 5 × 10-5 mbar in the presence of oxygen. The second was used for the deposition of fluoride films. They were obtained by means of thermal source evaporation. Simulation of reflectance was performed for 1M2H1L (Quarter Wavelength Optical Thickness) film stack on an optical quartz glass with the refractive index n = 1.46. The layer thickness was optimized to achieve the lowest light scattering from glass surface covered with dioxide and fluoride films. The values of the interface roughness were determined through atomic force microscopy measurements. The essence of performed calculation was to find minimum reflectance of light in wide ultraviolet region. The spectral dispersion of the refractive index needed for calculations was determined from ellipsometric measurements using the spectroscopic ellipsometer M2000. Additionally, the total reflectance measurements in integrating sphere coupled with Perkin Elmer 900 spectrophotometer were performed. These investigations allowed to determine the influence of such film features like surface and interface roughness on light scattering.

  10. Structure, electronic properties and vibrational spectra of (MgF2)n clusters through a combination of genetic algorithm and DFT-based approach

    Science.gov (United States)

    Ganguly Neogi, Soumya; Chaudhury, Pinaki

    2015-12-01

    In this article, we look at the option of using a stochastic optimisation technique, namely genetic algorithm (GA) in association with density functional theory (DFT) to find out the global minimum structures of (MgF2)n clusters with the range of n being between 2 and 10. To confirm whether the structures are indeed the acceptable ones, we go on to evaluate several properties like IR spectroscopic modes, vertical excitation energy, cluster formation energy, vertical ionisation potential and the HOMO-LUMO gap. We stress on the fact that an initial estimation of structure using GA, on two empirical potentials (with and without inclusion of polarisation), leads to a very quick convergence to structures which are quite close to the structures obtained from quantum chemical calculations done from the outset, such as using a DFT calculation. The general structural trend of these systems to form three-dimensional networks is also clear from our study. The lowest energy isomers of these clusters show preference for four-membered Mg2F2 and six-membered Mg3F3 rings. In the IR spectra of (MgF2)n clusters, a blueshift of the Mg-F symmetric stretch and a redshift of asymmetric Mg-F stretching as n increases are obtained.

  11. Dielectric thin-films by ion-beam sputtering deposition for III-V based infrared optoelectronic imaging

    Science.gov (United States)

    Nguyen, Jean

    The growing technological industry is demanding the development of powerful and smaller devices. Dielectric thin-films can play an important role to help push towards achieving these goals. However, their advantage of high-quality material and low material costs compared to bulk can only be achieved with consideration of the technique, conditions, and parameters. The sensitivity makes every step in the process extremely important, beginning from substrate preparation to the first initial layers of growth and ending with the testing/modeling of the devices. Further, not all applications want bulk-like properties, so the ability to adjust and fine tune the material characteristics opens up a wide range of opportunities with the advancements and can drive the power of the devices to an ultimate level. This work provides the motivation, theoretical basis, and experimental results for performance enhancement of optoelectronic devices through the use of high-quality dielectric thin-films by ion-beam sputtering deposition (IBSD). The advantages and disadvantages to this technique are demonstrated and compared to others. The optimization processes, relationships, and motivation of using seven different thin-film materials have been detailed and provided. Using IBSD, the performance improvements were demonstrated on infrared lasers and detectors. For lasers, a 170% increase in maximum output power was achieved using near-0% percent anti-reflection coatings (AR) and near-100% high-reflection (HR) coatings. Following, wide tunability was achieved by using the structures in an external cavity laser system, showing nearly a three-fold improvement in tuning range. Also, structurally robust lasers were achieved with a custom-tailored HR structure designed for damage resistance to high output power density operation, showing over 14W of peak output power for MOCVD lasers. For infrared photodetectors, over a 4 orders of magnitude decrease in current density and zero-bias resistance

  12. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  13. Cupric and cuprous oxide by reactive ion beam sputter deposition and the photosensing properties of cupric oxide metal–semiconductor–metal Schottky photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min-Jyun; Lin, Yong-Chen; Chao, Liang-Chiun, E-mail: lcchao@mail.ntust.edu.tw; Lin, Pao-Hung; Huang, Bohr-Ran

    2015-08-15

    Highlights: • CuO and Cu{sub 2}O were deposited by reactive ion beam sputter deposition. • Single phase CuO thin film is obtained with Ar:O{sub 2} = 2:1. • CuO MSM PD shows photoresponse from 400 nm to 1.30 μm. • CuO MSM PD is RC limited with a decay time less than 1 μs. - Abstract: Cupric (CuO) and cuprous (Cu{sub 2}O) oxide thin films have been deposited by reactive ion beam sputter deposition at 400 °C with an Ar:O{sub 2} ratio from 2:1 to 12:1. With an Ar:O{sub 2} ratio of 2:1, single phase polycrystalline CuO thin films were obtained. Decreasing oxygen flow rate results in CuO + Cu{sub 2}O and Cu{sub 2}O + Cu mixed thin films. As Ar:O{sub 2} ratio reaches 12:1, Cu{sub 2}O nanorods with diameter of 250 nm and length longer than 1 μm were found across the sample. Single phase CuO thin film exhibits an indirect band gap of 1.3 eV with a smooth surface morphology. CuO metal–semiconductor–metal (MSM) Schottky photodiodes (PD) were fabricated by depositing Cu interdigitated electrodes on CuO thin films. Photosensing properties of the CuO PD were characterized from 350 to 1300 nm and a maximum responsivity of 43 mA/W was found at λ = 700 nm. The MSM PD is RC limited with a decay time constant less than 1 μs.

  14. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    Science.gov (United States)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  15. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  16. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    OpenAIRE

    M. Rigana Begam; N. Madhusudhana Rao; S. Kaleemulla; M. Shobana; N. Sai Krishna; M. Kuppan

    2013-01-01

    Nanocrystalline Cadmium Telluride (CdTe) thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111) preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decre...

  17. Effect of Substrate Temperature on Structural and Optical Properties of Nanocrystalline CdTe Thin Films Deposited by Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    M. Rigana Begam

    2013-07-01

    Full Text Available Nanocrystalline Cadmium Telluride (CdTe thin films were deposited onto glass substrates using electron beam evaporation technique. The effect of substrate temperature on the structural, morphological and optical properties of CdTe thin films has been investigated. All the CdTe films exhibited zinc blende structure with (111 preferential orientation. The crystallite size of the films increased from 35 nm to 116 nm with the increase of substrate temperature and the band gap of the films decreased from 2.87 eV to 2.05 eV with the increase of the crystallite size.

  18. Ion beam and complementary SEM and XRD characterization of YBa{sub 2}Cu{sub 3}O{sub 7-x} films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Branescu, Maria [National Institute for R and D of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)]. E-mail: maria_branescu@yahoo.com; Thome, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, 91406 Orsay Cedex (France); Pantelica, D. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania); Ward, I. [CEA, 810 Kifer Road, Sunnyvale, CA 94086 (United States); Vailionis, A. [Stanford University, Stanford, CA 94305 (United States); Ionescu, P. [' Horia Hulubei' National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania)

    2006-08-15

    We report two ion beam analysis techniques, elastic recoil detection analysis (ERDA) and Rutherford backscattering (RBS), to characterize YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films, obtained in situ by pulsed laser deposition (PLD). Initially, ERDA measurements were performed on a thin film to evaluate the PLD rate. RBS measurements correlated with complementary scanning electron microscopy and X-ray diffraction measurements were performed afterwards on a good quality thick YBCO film to determine its stoichiometry, thickness, crystalline structure and surface morphology.

  19. The Influences of Thickness on the Optical and Electrical Properties of Dual-Ion-Beam Sputtering-Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2011-01-01

    Full Text Available The thickness of transparent conductive oxide (TCO layer significantly affects not only the optical and electrical properties, but also its mechanical durability. To evaluate these influences on the molybdenum-doped zinc oxide layer deposited on a flexible polyethersulfone (PES substrate by using a dual-ion-beam sputtering system, films with various thicknesses were prepared at a same condition and their optical and electrical performances have been compared. The results show that all the deposited films present a crystalline wurtzite structure, but the preferred orientation changes from (002 to (100 with increasing the film thickness. Thicker layer contains a relative higher carrier concentration, but the consequently accumulated higher internal stress might crack the film and retard the carrier mobility. The competition of these two opposite trends for carrier concentration and carrier mobility results in that the electrical resistivity of molybdenum-doped zinc oxide first decreases with the thickness but suddenly rises when a critical thickness is reached.

  20. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jian-ping [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Fu, Zhi-qiang, E-mail: fuzq@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Xiao-peng [Department of Energy Material and Technology, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Yue, Wen; Wang, Cheng-biao [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-10-30

    Highlights: • AlN films were fabricated by dual ion beam sputtering. • Chemical bond status and phase composition of the films were studied by XPS and XRD. • Optical constants were measured by spectroscopic ellipsometry. • Influence of ion/atom arrival ratio on the films was studied. - Abstract: In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV–vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  1. The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-Hao, E-mail: chlee@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yu-Sheng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Liu, Li-Jung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Huang, J.C.A. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    An epitaxial L1{sub 0} FePt thin film grown from an [Fe(10 Å)/Pt(10 Å)]{sub 15} multilayer with the orientation of (001) was prepared by an ion beam sputtering deposition method without buffer layer. From the measurement data of X-ray diffraction and X-ray reflectivity, the multilayer structure was totally disappeared and a uniform FePt alloy thin film was formed at temperatures higher than 600 °C. For the as-deposited thin film grown at 100 °C, the multilayer already possesses an epitaxial structure. The epitaxial relation is FePt(001)[100]//MgO(001)[100] and this epitaxial relation persists after sequential high temperature annealing. An epitaxial L1{sub 0} ordered FePt(001) film with order parameter of 0.95 was obtained when the annealing temperature reached 650 °C. The ordered FePt(001) thin film has a perpendicular magnetic anisotropy with a squareness of 0.95 ± 0.03 on the magnetic hysteresis loop. This experiment demonstrates that the low energy ion beam sputtering deposition will preserve the epitaxial relation with no buffer layer between multilayer and substrate. - Highlights: • The Fe/Pt films using ion sputtering deposition with no buffer layer is epitaxial. • Multilayer structure was totally disappeared at temperatures higher than 600 °C. • Order parameter reach 0.95 after annealing at 650 °C. • Interfacial epitaxial FePt alloy already formed at 100 °C.

  2. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    Science.gov (United States)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  3. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Boniardi, Mattia; Redaelli, Andrea [Micron Semiconductor Italia S.r.l., Via C. Olivetti, 2, 20864, Agrate Brianza, MB (Italy)

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  4. Fabrication of Ag:TiO2 Nanocomposite Thin Films by Sol-Gel Followed by Electron Beam Physical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Manish Kumar

    2013-01-01

    Full Text Available Ag:TiO2 nanocomposite films have been synthesized by sol-gel method followed by electron beam physical vapour deposition. Targets for this deposition were prepared by a hydraulic press using a powder containing Ag and TiO2 prepared by sol-gel technique. Microstructure, surface, and plasmonic properties of nanocomposite films were studied using glancing angle X-ray diffractometer, atomic force microscopy, field emission secondary electron microscopy, and UV-Vis spectroscopy. Microstructural study reveals that Ag nanoparticles are embedded in TiO2 matrix consisting of mixed phases of anatase and rutile. Size estimation using Scherrer formula reveals that average crystallite size of Ag nanoparticles is 23 nm. Surface morphological studies indicate that deposited films are uniform and intact to the substrate and have very low value of root mean square roughness. Optical studies exhibit a surface plasmon resonance induced absorption band in visible region, which is the characteristic feature of Ag nanoparticles. The intensity of this absorption band is found to increase with the increase in deposition time. Multiple peaks observed in absorption band were explained using the concepts of extended Mie scattering. Preliminary experiments also suggested that these nanocomposite films exhibit promising photocatalytic properties, which can be used for water treatment.

  5. High Performance Photocathodes based on Molecular Beam Epitaxy Deposition for Next Generation Photo Detectors and Light Sources

    CERN Document Server

    Xie, Junqi; Wagner, Robert

    2013-01-01

    The development of high-performance photocathodes is a key challenge for future accelerator and particle physics applications. In this paper photocathode growth through molecular beam epitaxy is introduced as a promising technique to obtain robust, highly efficient alkali-antimonide based photocathodes. Recent research shows that the quantum efficiency of photocathodes can be significantly enhanced through control of the photocathode crystallinity. Molecular beam epitaxy allows for cost-effective growth of large-area photocathodes with excellent control of the stoichiometry and crystallinity, making photocathodes with peak quantum efficiencies exceeding 35% routine.

  6. Superconductivity in the system Mo{sub x}C{sub y}Ga{sub z}O{sub δ} prepared by focused ion beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, P. M., E-mail: p.weirich@Physik.uni-frankfurt.de; Schwalb, C. H.; Winhold, M.; Huth, M. [Physikalisches Institut, Goethe-University, 60438 Frankfurt am Main (Germany)

    2014-05-07

    We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By an in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.

  7. Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM fabricated by electron-beam-induced deposition of platinum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason, E-mail: jason.brown@physics.ox.ac.uk [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Kocher, Paul; Ramanujan, Chandra S; Sharp, David N [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Torimitsu, Keiichi [NTT Basic Research Laboratories, NTT Corporation, Atsugi, 243-0198 (Japan); Ryan, John F [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2013-10-15

    We report on the fabrication of electrically conducting, ultra-sharp, high-aspect ratio probes for atomic force microscopy by electron-beam-induced deposition of platinum. Probes of 4.0 ±1.0 nm radius-of-curvature are routinely produced with high repeatability and near-100% yield. Contact-mode topographical imaging of the granular nature of a sputtered gold surface is used to assess the imaging performance of the probes, and the derived power spectral density plots are used to quantify the enhanced sensitivity as a function of spatial frequency. The ability of the probes to reproduce high aspect-ratio features is illustrated by imaging a close-packed array of nanospheres. The electrical resistance of the probes is measured to be of order 100 kΩ. - Highlights: • Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM with radius-of-curvature 4.0±±1.0 nm. • AFM probe fabrication by electron-beam-induced deposition of platinum. • Enhanced spatial resolution demonstrated through AFM of sputtered gold grains. • AFM imaging of deep clefts and recesses on a close-packed array of nanospheres.

  8. Effects of Additional Oxygen Flow on the Optical and Electrical Properties of Ion Beam Sputtering Deposited Molybdenum-Doped Zinc Oxide Layer

    Directory of Open Access Journals (Sweden)

    Chin-Chiuan Kuo

    2012-01-01

    Full Text Available The transparent conductive molybdenum-doped zinc oxide (MZO was deposited onto a flexible polyethersulfone (PES substrate by using an ion beam sputtering system. An argon ion beam was used to sputter an MZO target at constant pressure of 0.67 Pa and substrate temperature of 130∘C with varying the oxygen flow rate from 0 to 12 sccm. The influences of additional oxygen flow on the microstructure, optical, and electrical properties of films were investigated. The obtained MZO films present a crystalline structure. With increasing the oxygen flow rate, their electrical resistivity increases, and the optical band gap decreases from 3.46 to 3.20 eV. The film deposited in the atmosphere without introducing oxygen exhibits the best optical transmittance of 82.9% at 550 nm wavelength, electrical resistivity of 8.32 × 10−3 Ω cm, carrier concentration of 6.82 × 1020 cm−3, and carrier mobility of 2.45 cm2/Vs.

  9. Hydrogen Charging Effects in Pd/Ti/TiO2/Ti Thin Films Deposited on Si(111 Studied by Ion Beam Analysis Methods

    Directory of Open Access Journals (Sweden)

    K. Drogowska

    2012-01-01

    Full Text Available Titanium and titanium dioxide thin films were deposited onto Si(111 substrates by magnetron sputtering from a metallic Ti target in a reactive Ar+O2 atmosphere, the composition of which was controlled by precision gas controllers. For some samples, 1/3 of the surface was covered with palladium using molecular beam epitaxy. Chemical composition, density, and layer thickness of the layers were determined by Auger electron spectroscopy (AES and Rutherford backscattering spectrometry (RBS. The surface morphology was studied using high-resolution scanning electron microscopy (HRSEM. After deposition, smooth, homogenous sample surfaces were observed. Hydrogen charging for 5 hours under pressure of 1 bar and at temperature of 300°C results in granulation of the surface. Hydrogen depth profile was determined using secondary ion mass spectrometry (SIMS and nuclear Reaction Analysis (N-15 method, using a 15N beam at and above the resonance energy of 6.417 MeV. NRA measurements proved a higher hydrogen concentration in samples with partially covered top layers, than in samples without palladium. The highest value of H concentration after charging was about 50% (in the palladium-covered part and about 40% in titanium that was not covered by Pd. These values are in good agreement with the results of SIMS measurements.

  10. Construction and properties of a two-circuit plasma beam source for the direct plasma beam deposition on hard-material layers and its application at the example of cubic boron nitride

    CERN Document Server

    Haag, M

    2003-01-01

    In the present work a two-circuit plasma beam source for the direct plasma beam deposition of highly insulating thin films was developed and tested using the technologically very interesting system boron nitride as an example. In the utilized source a nitrogen plasma is excited electrodeless via electron cyclotron wave resonance (ECWR). The source plasma is superimposed by a second radio frequency circuit capacitively coupled and operated at variable frequency (v sub c sub a sub p =5..125Mhz) - the so-called extraction circuit. This circuit consists of a coupling electrode carrying a sputter target made from hexagonal boron nitride and a grounded substrate holder. By the self-bias potential between plasma and coupling electrode plasma ions are accelerated towards the target. They sputter the target and thus provide the boron component for the desired film growth. The corresponding self-bias potential on the substrate side ensures the ion bombardment of the film growing on the substrate. The incident ion beam ...

  11. Excited-state absorption spectra of V2+ in KMgF3 and MgF2

    Science.gov (United States)

    Payne, Stephen A.; Chase, L. L.; Wilke, Gary D.

    1988-01-01

    We have measured the excited-state absorption spectra of V2+ in KMgF3 and MgF2. The observed absorption bands can be identified as being due to the 4T2--> 4T1a and 4T1b transitions. The position and shape of the 4T2--> 4T1b transition are determined primarily by the displacement in the a1g mode while the coupling of the orbital triplet states to eg distortions is found to have a substantial influence on the nature of the 4T2--> 4T1a transition. In fact, this transition is observed as a broad band rather than as a sharp line, as is predicted solely on the basis of the a1g coordinate. The 4T2--> 4T1a transition is shifted up in energy relative to its predicted position and significantly overlaps the emission spectrum, thereby providing an explanation for the poor lasing efficiency reported for V2+ lasers.

  12. Development of Self Fire Retardant Melamine-Animal Glue Formaldehyde (MGF) Resin for the Manufacture of BWR Ply Board

    Science.gov (United States)

    Khatua, Pijus Kanti; Dubey, Rajib Kumar; Roymahapatra, Gourisankar; Mishra, Anjan; Shahoo, Shadhu Charan; Kalawate, Aparna

    2016-06-01

    Wood is one of the most sustainable, naturally growing materials that consist mainly of combustible organic carbon compounds. Since plywood are widely used nowadays especially in buildings, furniture and cabinets. Too often the fire behavior of ply-board may be viewed as a drawback. Amino-plastic based thermosetting resin adhesives are the important and most widely used in the plywood panel industries. The fire retardant property of wood panel products by adding animal glue as an additive in the form of MGF resin and used as substitute of melamine for manufacture of plywood. Environment concerns and higher cost of petroleum based resins have resulted in the development of technologies to replace melamine partially by biomaterials for the manufacturing of resin adhesive. Natural bio-based materials such as tannin, CNSL (cardanol), lignin, soya etc. are used as partial substitution of melamine. This article presents the development of melamine-animal glue formaldehyde resin as plywood binder. About 30 % melamine was substituted by animal glue and optimized. The different physico-mechanical and fire retardant property properties tested as per IS: 1734-1983 and IS: 5509-2000 respectively are quite satisfactory. The production of adhesive from melamine with compatible natural proteinous material is cost effective, eco-friendly and enhance the fire retardant property.

  13. Evidence of room temperature ferromagnetism in argon/oxygen annealed TiO{sub 2} thin films deposited by electron beam evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P. [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kabiraj, D. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mandal, R.K. [Department of Metallurgical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kulriya, P.K. [Inter University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sinha, A.S.K. [Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rath, Chandana, E-mail: chandanarath@yahoo.com [School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2014-04-15

    TiO{sub 2} thin films deposited by electron beam evaporation technique annealed in either O{sub 2} or Ar atmosphere showed ferromagnetism at room temperature. The pristine amorphous film demonstrates anatase phase after annealing under Ar/O{sub 2} atmosphere. While the pristine film shows a super-paramagnetic behavior, both O{sub 2} and Ar annealed films display hysteresis at 300 K. X-ray photo emission spectroscopy (XPS), Raman spectroscopy, Rutherford’s backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to refute the possible role of impurities/contaminants in magnetic properties of the films. The saturation magnetization of the O{sub 2} annealed film is found to be higher than the Ar annealed one. It is revealed from shifting of O 1s and Ti 2p core level spectra as well as from the enhancement of high binding energy component of O 1s spectra that the higher magnetic moment is associated with higher oxygen vacancies. In addition, O{sub 2} annealed film demonstrates better crystallinity, uniform deposition and smoother surface than that of the Ar annealed one from glancing angle X-ray diffraction (GAXRD) and atomic force microscopy (AFM). We conclude that although ferromagnetism is due to oxygen vacancies, the higher magnetization in O{sub 2} annealed film could be due to crystallinity, which has been observed earlier in Co doped TiO{sub 2} film deposited by pulsed laser deposition (Mohanty et al., 2012 [10]). - Highlights: • TiO{sub 2} films were deposited by e-beam evaporation technique and post annealed under O{sub 2}/Ar at 500 °C. • The pristine film shows SPM behavior where as O{sub 2} and Ar annealed films demonstrate RTFM. • The presence of magnetic impurities has been discarded by various characterization techniques. • The magnetic moment is found to be higher in O{sub 2} annealed film than the Ar annealed one. • The higher M{sub s} in O{sub 2

  14. Microstructural analysis and Transport Properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition

    Science.gov (United States)

    Makise, Kazumasa; Mitsuishi, Kazutaka; Shimojo, Masayuki; Shinozaki, Bunju

    2014-07-01

    By electron-beam-induced deposition, we have succeeded in the direct fabrication of nanowires of molybdenum oxide (MoOx) and molybdenum carbide (MoC) on a SiO2 substrate set in a scanning electron microscope. In order to prepare MoOx specimens of high purity, a precursor gas of molybdenum hexacarbonyl [Mo(CO)6] is used, mixed with oxygen gas. On the other hand, MoC is grown by mixing H2O gas with the precursor gas. The electrical transport properties of the nanowires are investigated by the DC four-terminal method. A highly resistive MoOx nanowire prepared from an as-deposited specimen by annealing in air shows nonlinear current-voltage characteristics and a high photoconductivity. The resistivity ρ of an as-deposited amorphous MoC (a-MoC) nanowire takes its maximum at a temperature T ~ 10 K and decreases to ~ 0 with decreasing temperature. This behavior of ρ(T) indicates the possible occurrence of superconductivity in a-MoC nanowires. The characteristic of ρ(T) below the superconducting transition temperature Tc ~ 4 K can be well explained by the quantum phase-slip model with a coherence length ξ(0) ~ 8 nm at T = 0.

  15. Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures.

    Science.gov (United States)

    Spencer, Julie A; Wu, Yung-Chien; McElwee-White, Lisa; Fairbrother, D Howard

    2016-07-27

    Using mechanistic data from surface science studies on electron-induced reactions of organometallic precursors, cis-Pt(CO)2Cl2 (1) was designed specifically for use in focused electron beam induced deposition (FEBID) of Pt nanostructures. Electron induced decomposition of adsorbed 1 under ultrahigh vacuum (UHV) conditions proceeds through initial CO loss as determined by in situ X-ray photoelectron spectroscopy and mass spectrometry. Although the Pt-Cl bonds remain intact during the initial decomposition step, larger electron doses induce removal of the residual chloride through an electron-stimulated desorption process. FEBID structures created from cis-Pt(CO)2Cl2 under steady state deposition conditions in an Auger spectrometer were determined to be PtCl2, free of carbon and oxygen. Coupled with the electron stimulated removal of chlorine demonstrated in the UHV experiments, the Auger deposition data establish a route to FEBID of pure Pt. Results from this study demonstrate that structure-activity relationships can be used to design new precursors specifically for FEBID.

  16. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathy, P. Vijai [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Nataraj, D., E-mail: de.natraj@gmail.com [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Chu, Paul K.; Wang, Huaiyu [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Kiran, M.S.R.N. [School of Physics, University of Hyderabad, Hyderabad, Andra Pradesh (India); Silvestre-Albero, J. [Laboratorio de Materiales Avanzados, Departmento de Quimica Inorganica, Universidad de Alicante, Ap 99, E-03080 Alicante (Spain); Mangalaraj, D. [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India)

    2010-10-15

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp{sup 3}/sp{sup 2} hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  17. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  18. Characterization of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films deposited by electron-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H; Parlak, M [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Kaleli, M, E-mail: parlak@metu.edu.t [Department of Physics, Sueleyman Demirel University, 32260 Isparta (Turkey)

    2009-08-21

    AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were deposited onto a quartz substrate by the electron-beam technique. For the investigation of the annealing effect on structural, optical and electrical properties of deposited films, samples were annealed in the temperature range 300-775 {sup 0}C. The composition analyses of the deposited films carried out by energy dispersive x-ray analysis measurements have shown that the deposited AgGa{sub 0.5}In{sub 0.5}Se{sub 2} films were indium- and gallium-rich but selenium- and slightly silver-deficient and there was a remarkable change in composition with annealing. As a result of x-ray diffraction measurements, the as-deposited films were found to have an amorphous structure and after annealing at 300 {sup 0}C a polycrystalline structure with different phases was observed. However, subsequent annealing resulted in the formation of single phase AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin film at about 775 {sup 0}C. The absorption coefficient of the films was determined from the transmission spectra and the band gap values were calculated and found to vary between 1.57 and 2.43 eV following annealing in the temperature range 300-775 {sup 0}C. The refractive index (n) and extinction coefficient (k) of the films were evaluated by applying the envelope method to the transmission spectra. The spectral distributions of these quantities for both as-deposited and annealed films were determined in detail and it was observed that there has been a remarkable influence of annealing on these quantities. The electrical properties of AgGa{sub 0.5}In{sub 0.5}Se{sub 2} thin films were also investigated by means of temperature dependent conductivity measurements in the temperature range 100-460 K. The resistivity of the samples depending on the annealing temperature varied between 6.5 x 10{sup 5} and 16 {Omega} cm. As a result of the hot-probe method it was observed that the as-deposited films have indicated an n-type behaviour, while all the

  19. A combined molecular dynamics and kinetic Monte Carlo calculation to study sputter erosion and beam assisted deposition

    CERN Document Server

    Betz, G

    2002-01-01

    To extend the time scale in molecular dynamics (MD) calculations of sputtering and ion assisted deposition we have coupled our MD calculations to a kinetic Monte Carlo (KMC) calculation. In this way we have studied surface erosion of Cu(1 0 0) under 200-600 eV Cu ion bombardment and growth of Cu on Cu(1 0 0) for deposition at thermal energies up to energies of 100 eV per atom. Target temperatures were varied from 100 to 400 K. The coupling of the MD calculation to a KMC calculation allows us to extend our calculations from a few ps, a time scale typical for MD, to times of up to seconds until the next Cu particle will impinge/be deposited on the crystal surface of about 100 nm sup 2 in size. The latter value of 1 s is quite realistic for a typical experimental sputter erosion or deposition experiment. In such a calculation thermal diffusion processes at the surface and annealing of the surface after energetic ion bombardment can be taken into account. To achieve homo-epitaxial growth of a film the results cle...

  20. Molecular beam deposition of high-permittivity polydimethylsiloxane for nanometer-thin elastomer films in dielectric actuators

    DEFF Research Database (Denmark)

    M. Weiss, Florian; Madsen, Frederikke Bahrt; Töpper, Tino;

    2016-01-01

    To realize low-voltage dielectric elastomer actuators (DEAs) for artificial muscles, a high-permittivity elastomer and a related thin-film deposition technique must be selected. For polydimethylsiloxane, fillers or functionalized crosslinkers have been incorporated into the elastomer to improve...

  1. Computer simulation of transient layer chemical composition in Cr-N films obtained by ion beam assisted deposition

    CERN Document Server

    Marchenko, I G

    2001-01-01

    The computer simulation of Cr-N film deposition by IBAD method was carried out. The implanted nitrogen content in the growing film is calculated, values of the radiation defect formation in the film are obtained. The variation of the implanted nitrogen relationship to the defect distribution in the growing film depth is analyzed.

  2. 生物医用钛合金表面离子束辅助沉积氧化钛膜层%Titanium Oxide Layer on Biomedical Titanium Alloy Deposited by Ion Beam Enhanced Deposition

    Institute of Scientific and Technical Information of China (English)

    司红羚; 田林海; 李晓红; 付涛

    2005-01-01

    为改善钛合金(Ti6Al4V)的生物相容性,采用离子束辅助沉积(Ion beam enhanced deposition,IBED)技术制备了氧化钛膜层.结果表明:钛合金上的膜层涂覆均匀,基体的铝和钒元素已经探测不到,膜层为含氮和沿(111)面取向的TiO相;膜层划痕实验的临界载荷为16.8 N,膜层以塑性变形的方式破坏.

  3. Interface controlled growth of nanostructures in discontinuous Ag and Au thin films fabricated by ion beam sputter deposition for plasmonic applications

    Indian Academy of Sciences (India)

    R Brahma; M Ghanashyam Krishna

    2012-08-01

    The growth of discontinuous thin films of Ag and Au by low energy ion beam sputter deposition is reported. The study focuses on the role of the film–substrate in determining the shape and size of nanostructures achieved in such films. Ag films were deposited using Ar ion energy of 150 eV while the Au films were deposited with Ar ion energies of 250–450 eV. Three types of interfaces were investigated in this study. The first set of film–substrate interfaces consisted of Ag and Au films grown on borosilicate glass and carbon coated Cu grids used as substrates. The second set of films was metallic bilayers in which one of the metals (Ag or Au) was grown on a continuous film of the other metal (Au or Ag). The third set of interfaces comprised of discontinuous Ag and Au films deposited on different dielectrics such as SiO2, TiO2 and ZrO2. In each case, a rich variety of nanostructures including self organized arrays of nanoparticles, nanoclusters and nanoneedles have been achieved. The role of the film–substrate interface is discussed within the framework of existing theories of thin film nucleation and growth. Interfacial nanostructuring of thin films is demonstrated to be a viable technique to realize a variety of nanostructures. The use of interfacial nanostructuring for plasmonic applications is demonstrated. It is shown that the surface Plasmon resonance of the metal nanostructures can be tuned over a wide range of wavelengths from 400 to 700 nm by controlling the film–substrate interface.

  4. Superconducting YBa sub 2 Cu sub 3 O sub 7 thin films grown in-situ by ion beam CO-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.K.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D. (Inst. of Micro and Optoelectronics, Dept. of Physics, Federal Inst. of Tech., Lausanne (Switzerland))

    1989-12-01

    Superconducting YBCO thin films have been grown in-situ by three ion beam co-deposition sputtering. Both metal and oxide targets of Cu and Y and BaF{sub 2} and BaCO{sub 3} targets have been investigated. Film composition was determined by RBS and AES analysis. Films grown using BaF{sub 2} show fluorine contamination, whereas the carbon concentration in films grown using BaCO{sub 3} is beneath the Auger detection limit. Superconducting films have been grown on SrTiO{sub 3} (T{sub co}=78K) and on Si with SiO{sub 2} or Y{sub 2}O{sub 3} buffer layers (T{sub co}=35K). (orig.).

  5. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    Science.gov (United States)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the

  6. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs.

    Science.gov (United States)

    Yoon, Heun-Joo; Song, Ji-Eun; Um, Yoo-Jung; Chae, Gyung Joon; Chung, Sung-Min; Lee, In-Seop; Jung, Ui-Won; Kim, Chang-Sung; Choi, Seong-Ho

    2009-08-01

    The aim of this study was to evaluate the healing of self-contained coronal defects on a sand-blasted, large-grit, acid-etched (SLA) surface implant, which had a calcium phosphate (CaP) coating applied by ion-beam-assisted deposition (IBAD). We also evaluated the effect of heating the coating to different temperatures. The CaP-coated SLA implants exhibited a slightly larger bone healing capacity in the self-contained coronal defect than SLA implants, indicating that combining SLA surface implants and a CaP coating by the IBAD method had synergistic effects on bone healing. There was no difference in the healing capacity between 350 degrees C and 450 degrees C heat treatment of the coating layer.

  7. Vertical transport through AlGaN barriers in heterostructures grown by ammonia molecular beam epitaxy and metalorganic chemical vapor deposition

    Science.gov (United States)

    Browne, David A.; Fireman, Micha N.; Mazumder, Baishakhi; Kuritzky, Leah Y.; Wu, Yuh-Renn; Speck, James S.

    2017-02-01

    The results of vertical transport through AlGaN heterobarriers are presented for ammonia molecular beam epitaxy (NH3-MBE) on c-plane GaN on sapphire templates and on m-plane bulk GaN substrates, as well as by metalorganic chemical vapor deposition (MOCVD) on m-plane bulk GaN substrates. Experiments were performed to determine the role of the AlGaN alloy as an effective barrier to vertical transport, which is an essential component of both optoelectronic and power electronic devices. The alloy composition, thickness, and doping levels of the AlGaN layers, as well as substrate orientation, were systematically varied to examine their influence on electron transport. Atom probe tomography (APT) was used to directly determine the alloy composition at the atomic scale to reveal the presence of random alloy fluctuations which provides insight into the nature of the observed transport.

  8. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Heun-Joo; Song, Ji-Eun; Um, Yoo-Jung; Chae, Gyung Joon; Jung, Ui-Won; Kim, Chang-Sung; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Chung, Sung-Min [Dentium Co., Seoul (Korea, Republic of); Lee, In-Seop, E-mail: shchoi726@yuhs.a [Institute of Physics and Applied Physics, Atomic-scale Surface Science Research Center, Yonsei University, Seoul (Korea, Republic of)

    2009-08-15

    The aim of this study was to evaluate the healing of self-contained coronal defects on a sand-blasted, large-grit, acid-etched (SLA) surface implant, which had a calcium phosphate (CaP) coating applied by ion-beam-assisted deposition (IBAD). We also evaluated the effect of heating the coating to different temperatures. The CaP-coated SLA implants exhibited a slightly larger bone healing capacity in the self-contained coronal defect than SLA implants, indicating that combining SLA surface implants and a CaP coating by the IBAD method had synergistic effects on bone healing. There was no difference in the healing capacity between 350 deg. C and 450 deg. C heat treatment of the coating layer.

  9. Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO{sub 2} thin films deposited by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhongdan [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Jiang Xiaohong, E-mail: jiangxh24@mail.njust.edu.cn [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Zhou Bing; Wu Xiaodong; Lu Lude [Key Lab of Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2011-10-01

    Transparent Si-doped TiO{sub 2} thin films (Si-TiO{sub 2}) were deposited on quartz glasses using electron beam evaporation (EBE) and annealed at different temperature in an air atmosphere. The structure and morphology of these films were analyzed by X-ray diffraction (XRD), Raman microscopy (Raman), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Meanwhile the photocatalytic activity of the films has also been evaluated on the basis of the degradation degree of rhodamine B in aqueous solution. Our experimental results suggest that the annealing temperature impact a strong effect on the structure, morphology and photocatalytic activity of Si-TiO{sub 2} thin films. Furthermore the enhanced thermal stability of Si-TiO{sub 2} films enabled them to elevate the phase transformation temperature of TiO{sub 2} from anatase to rutile and enhanced the photocatalytic efficiency.

  10. Structural effects due to the incorporation of Ar atoms in the lattice of ZrO sub 2 thin films prepared by ion beam assisted deposition

    CERN Document Server

    Holgado, J P; Veen, A V; Schut, H; Hosson, J T M; González-Elipe, A R

    2002-01-01

    Two sets of ZrO sub 2 thin films have been prepared at room temperature by ion beam induced chemical vapour deposition and subsequently annealed up to 1323 K. The two sets of samples have been prepared by using either O sub 2 sup + or mixtures of (O sub 2 sup + +Ar sup +) ions for the decomposition of a volatile metallorganic precursor of zirconium. The structure and microstructure of these two sets of samples have been determined by means of X-ray diffraction, Fourier transform infrared spectroscopy and positron beam analysis (PBA). The samples were very compact and dense and had a very low-surface roughness. After annealing in air at T>=573 K both sets of films were transparent and showed similar refraction indexes. For the (O sub 2 sup + +Ar sup +)-ZrO sub 2 thin films it is shown by X-ray photoelectron spectroscopy and Rutherford back scattering that a certain amount of incorporated Ar (5-6 at.%) remains incorporated within the oxide lattice. No changes were detected in the amount of incorporated Ar even ...

  11. Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

    2013-12-02

    Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

  12. Ion beam sputter deposition of low-defect EUV mask blanks on 6-in. LTEM substrates in a real production environment

    Science.gov (United States)

    Becker, Hans W.; Aschke, Lutz; Schubert, Birgit; Krieger, Juergen; Lenzen, Frank; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-07-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. Beside optimal optical properties it is also necessary to improve the heat stability of the layer system. The absorber stack which consists of a buffer and an absorber layer is next. Here a minimum absorption of EUV light of 99 percent is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the PTB reflectometer at BESSY II, Berlin, Germany.

  13. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  14. Temperature dependence of the momentum distribution of positronium in MgF2, SiO2, and H2O

    DEFF Research Database (Denmark)

    Nagai, Y.; Kakimoto, M.; Hyodo, T.;

    2000-01-01

    Temperature dependence of the momentum distribution of delocalized Bloch-positronium in solids is studied. The momentum distribution of the positronium, which is proportional to the energy integration of the spectral function weighted with the Bose distribution, is expressed in terms...... of the effective mass and the deformation potential of the crystal for positronium. A simple formula for the shape of the positronium peak in the 1D-ACAR spectrum is derived and applied to the analysis of the experimental data for MgF2, SiO2, and H2O in wide temperature ranges. An extraordinary broadening...

  15. Damage evolution in an electron beam physical vapor deposited thermal barrier coating as a function of cycle temperature and time

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Swetha [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Xie, Liangde [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Jordan, Eric H. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269 (United States)]. E-mail: jordan@engr.uconn.edu; Gell, Maurice [Department of Metallurgy and Materials Engineering, University of Connecticut, Storrs, CT 06269 (United States); Murphy, K.S. [Howmet Research Corporation, Howmet Castings, Whitehall, MI 49461 (United States)

    2005-02-25

    Failure of thermal barrier coatings (TBCs) deposited on a single-crystal superalloy with a grit-blasted platinum modified nickel aluminide [{beta}-(Ni, Pt) Al] bond coat has been studied as a function of thermal cycling temperature and time. One-hour cyclic furnace tests were conducted at 1100 deg. C, 1121 deg. C and 1151 deg. C, and 24-h tests were run at 1121 deg. C. It was found that all the samples tested in the 1-h cycle failed in the TBC, near the TBC/TGO interface, due to progressive cracking beginning at {approx}20% life fraction. In contrast, the 24-h cyclic test samples failed at the TGO/bond coat interface. Thus, a life prediction for this TBC will ultimately require the use of two independent damage mechanisms and failure will be predicted on the basis of whichever occurs first during the TBC cyclic life. A single-valued relation was found between the rumpling amplitudes and the oxide thickness, independent of temperature and cycle time, consistent with oxidation being rate controlling.

  16. Microstructural characterization of Ti-C-N thin films prepared by reactive crossed beam pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Escobar-Alarcon, L., E-mail: luis.escobar@inin.gob.mx [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Medina, V.; Camps, Enrique; Romero, S. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Fernandez, M. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Solis-Casados, D. [Centro Conjunto de Investigacion en Quimica Sustentable, Facultad de Quimica UAEMex, km. 14.5 carr. Toluca-Atlacomulco (Mexico)

    2011-08-15

    In this work, Raman spectroscopy has been used to characterize Ti-C-N thin films in order to obtain information about the microstructure of the deposited materials, and in particular to study the effects due to the carbon incorporation into the TiN lattice. Ti-C-N thin films were prepared using a crossed plasma configuration in which the ablation of two different targets, titanium and carbon, in a reactive atmosphere was performed. With this configuration, the carbon content in the films was varied in an easy way from 5.0 at% to 40.0 at%. Thin film composition was determined from Non-Rutherford Backscattering Spectroscopy (NRBS) measurements. X-ray photoelectron spectroscopy and X-Ray diffraction measurements were also carried out in order to characterize the films in more detail, with this being used to give support to the interpretation of the Raman spectra. The Raman results revealed that at lower carbon concentrations a solid solution Ti(C, N) is formed, whilst at higher carbon concentrations a nanocomposite, consisting of nanocrystalline TiCN and TiC immersed in an amorphous carbon matrix is obtained.

  17. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Science.gov (United States)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  18. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    Science.gov (United States)

    Butt, M. A.; Fomchenkov, S. A.; Ullah, A.; Verma, P.; Khonina, S. N.

    2016-08-01

    We report a design for creating a multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 & 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging.

  19. Effects of a high magnetic field on structure evolution and properties of the molecular beam vapor deposited Fe{sub 60}Ni{sub 40} nanoparticles thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yongze [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Guojian; Du, Jiaojiao [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Xiaoguang [Huaxun Vacuum Technology Limited Company, Shenyang 110168 (China); He, Jicheng [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2014-12-15

    The Fe{sub 60}Ni{sub 40} (in atomic %) nanoparticles (NPs) thin films with 90 nm thickness were prepared on 25 and 400 °C quartz substrates by using the molecular beam vapor deposition (MBVD) method under a 6 T high magnetic field (HMF). The effects of a HMF on the structure evolution and properties of Fe–Ni thin films were studied by using X-ray diffraction, atomic force microscopy, transmission electron microscopy, vibrating sample magnetometer and four-point probe method. The results show that the crystallinity of thin films is enhanced by a 6 T HMF, and a 6 T HMF changes phase composition of thin films on 25 °C substrate. It is found that the nanoparticle size decreases; the nanoparticle size distribution becomes narrow, and the root mean square (rms) roughness of thin films decreases under a 6 T HMF relative to that without HMF. These lead to the decrease of coercive force, and the increase of in-plane remanence ratio under a 6 T HMF.

  20. Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Luis A. Rodríguez

    2015-06-01

    Full Text Available Iron nanostructures grown by focused electron beam induced deposition (FEBID are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and determination of the coercive field (HC, which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85%, thus giving a high ferromagnetic signal. Magneto-optical Kerr characterization indicates that HC decreases for increasing thickness and width, providing a route to control the magnetization reversal field through the modification of the nanowire dimensions. Transmission electron microscopy experiments indicate that these wires have a bell-type shape with a surface oxide layer of about 5 nm. Such features are decisive in the actual value of HC as micromagnetic simulations demonstrate. These results will help to make appropriate designs of magnetic nanowires grown by FEBID.

  1. Optimization of TiO2/Cu/TiO2 multilayers as a transparent composite electrode deposited by electron-beam evaporation at room temperature

    Institute of Scientific and Technical Information of China (English)

    孙洪涛; 王小平; 寇志起; 王丽军; 王金烨; 孙义清

    2015-01-01

    Highly transparent indium-free composite electrodes of TiO2/Cu/TiO2 are deposited by electron-beam evaporation at room temperature. The effects of Cu thickness and annealing temperature on the electrical and optical properties of the multilayer film are investigated. The critical thickness of Cu mid-layer to form a continuous conducting layer is found to be 11 nm. The multilayer with a mid-Cu thickness of 11 nm is optimized to obtain a resistivity of 7.4×10−5 Ω·cm and an average optical transmittance of 86%in the visible spectral range. The figure of merit of the TiO2/Cu(11 nm)/TiO2 multilayer annealed at 150 ◦C reaches a minimum resistivity of 5.9×10−5 Ω·cm and an average optical transmittance of 88%in the visible spectral range. The experimental results indicate that TiO2/Cu/TiO2 multilayers can be used as a transparent electrode for solar cell and other display applications.

  2. Electrical characteristics of mixed Zr-Si oxide thin films prepared by ion beam induced chemical vapor deposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, F.J., E-mail: fjferrer@us.e [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Frutos, F. [E.T.S. de Ingenieria Informatica, Avda. Reina Mercedes s/n, E-41012 Sevilla (Spain); Garcia-Lopez, J. [Centro Nacional de Aceleradores (CSIC - U. Sevilla), Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Jimenez, C. [Laboratoire de Materiaux et de Genie Physique, BP 257 - INPGrenoble Minatec - 3 parvis Louis Neel - 38016 Grenoble (France); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC - U. Sevilla), c/ Americo Vespucio 49, E-41092 Sevilla (Spain)

    2009-07-31

    Mixed Zr-Si oxide thin films have been prepared at room temperature by ion beam decomposition of organometallic volatile precursors. The films were flat and amorphous. They did not present phase segregation of the pure single oxides. A significant amount of impurities (-C-, -CH{sub x}, -OH, and other radicals coming from partially decomposed precursors) remained incorporated in the films after the deposition process. This effect is minimized if the Ar content in the O{sub 2}/Ar bombarding gas is maximized. Static permittivity and breakdown electrical field of the films were determined by capacitance-voltage and current-voltage electrical measurements. It is found that the static permittivity increases non-linearly from {approx} 4 for pure SiO{sub 2} to {approx} 15 for pure ZrO{sub 2}. Most of the dielectric failures in the films were due to extrinsic breakdown failures. The maximum breakdown electrical field decreases from {approx} 10.5 MV/cm for pure SiO{sub 2} to {approx} 45 MV/cm for pure ZrO{sub 2}. These characteristics are justified by high impurity content of the thin films. In addition, the analysis of the conduction mechanisms in the formed dielectrics is consistent to Schottky and Poole-Frenkel emission for low and high electric fields applied, respectively.

  3. Effects of N2 Pressure on the Structural and Electrical Properties of TiN Films Deposited by Laser Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    FU Yueehun; XIE Shangsheng; MENG Xianghai; He Huan; SHEN Xiaoming

    2011-01-01

    Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE),and their properties of structure and resistivity with varying N2 pressure were investigated.The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates,and (200) was the preferred orientation.With the increasing of N2 pressure,the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle.At pressure of 0.1 Pa,stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane.All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion,while the stoichiometric TiN film depicted the minimum resistivity,around 19 μΩ · cm.

  4. Atomic Diffusion in Cu/Si (111) and Cu/SiO2/Si (111) Systems by Neutral Cluster Beam Deposition

    Institute of Scientific and Technical Information of China (English)

    CAO Bo; LI Gong-Ping; CHEN Xi-Meng; CHO Seong-Jin; KIM Hee

    2008-01-01

    @@ The Cu films are deposited on two kinds of p-type Si (111) substrates by ionized cluster beam (ICB) technique.The interface reaction and atomic diffusion of Cu/Si (111) and Cu/SiO2/Si (111) systems are studied at different annealing temperatures by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results are obtained: For the Cu/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs when annealed at 230℃. The diffusion coefficients of the samples annealed at 230℃and 500℃ are 8.5 × 10-15 cm2.s-1 and 3.0 × 10-14 cm2.s-1, respectively. The formation of the copper-silicide phase is observed by XRD, and its intensity becomes stronger with the increase of annealing temperature. For the Cu/SiO2/Si (111) samples prepared by neutral clusters, the interdiffusion of Cu and Si atoms occurs and copper silicides are formed when annealed at 450℃. The diffusion coefficients of Cu in Si are calculated to be 6.0 × 10-16 cm2.s-1 at 450℃, due to the fact that the existence of the SiO2 layer suppresses the interdiffusion of Cu and Si.

  5. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu; Park, Kwangwook; Kim, Ci-Hyun; Lee, Dong-Seon; Jho, Young-Dahl; Bae, Si-Young; Lee, Yong-Tak

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the other hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.

  6. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    Science.gov (United States)

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  7. SiO{sub 2}/TiO{sub 2} thin films with variable refractive index prepared by ion beam induced and plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Yubero, F. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Holgado, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Espinos, J.P. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain); Gonzalez-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla) and Dpt. Q. Inorganica, Avda. Americo Vespucio s/n, 41092 Sevilla (Spain)]. E-mail: arge@icmse.csic.es; Girardeau, T. [Laboratoire de Metallurgie Physique de Poitiers, UMR 6630 CNRS, Bat SP2MI BP 30179, 86962-Futuroscope-Chasseneuil Cedex (France)

    2006-04-03

    SiO{sub 2}/TiO{sub 2} optical thin films with variable compositions have been prepared by ion beam induced and plasma enhanced chemical vapour deposition (IBICVD and PECVD). While the films obtained by IBICVD were very compact, the PECVD ones with a high content of Ti presented a columnar microstructure. The formation of Si-O-Ti bonds and a change in the environment around titanium from four- to six-coordinated has been proved by vibrational and X-ray absorption spectroscopies. The refractive index increased with the titanium content from 1.45 to 2.46 or 2.09 for, respectively, the IBICVD and PECVD films. Meanwhile, the band gap decreased, first sharply and then more smoothly up to the value of pure TiO{sub 2}. It is concluded that the optical properties of SiO{sub 2}/TiO{sub 2} thin films can be properly tailored by using these two procedures.

  8. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  9. Effect of deposition distance on thickness and microstructure of silicon thin film produced by electron beam evaporation; Efeito da distancia de deposicao na espessura e microestrutura de filme fino obtido por evaporacao por feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, T.F.; Ramanery, F.P.; Branco, J.R.T. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte, MG (Brazil)], e-mail: thalitaqui@yahoo.com.br; Cunha, M.A. [Acos Especiais Itabira S.A. (Acesita), Belo Horizonte, MG (Brazil)

    2006-07-01

    The interest for materials with new characteristics and properties made thin films an area of highest research interest. Silicon thin films have been widely used in solar cells, being the main active layer. In this work, the effect of deposition distance on thickness and microstructure of silicon films was investigated. The electron beam evaporation technique with argon plasma assistance was used to obtain films on stainless steel 304, Fe-Si alloy and soda lime glass. The experiments were made varying electron beam current and deposition pressure. The results are discussed based on Hertz-Knudsen's law and thin films microstructure evolution models. The samples were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction and profilometer. (author)

  10. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  11. MgF2 as a material exhibiting all-angle negative refraction and subwavelength imaging due to the phonon response in the far infrared

    Science.gov (United States)

    Macêdo, R.; Rodrigues da Silva, R.; Dumelow, T.; da Costa, J. A. P.

    2014-01-01

    We consider the possibility of using MgF2 crystals as a suitable material for achieving all-angle negative refraction at far infrared frequencies. This possibility is associated with the highly anisotropic nature of the phonon response, leading to dielectric tensor components of opposing signs. The results show that this phenomenon should occur at somewhat lower frequencies than that of quartz, which has previously been investigated experimentally, but with relatively high efficiency. We also simulate subwavelength imaging, through canalization, at 247 cm-1, corresponding to the frequency of a transverse optical phonon polarized perpendicular to the extraordinary axis. Our simulations show that the Fabry-Pérot condition (use of a slab of thickness equal to an integral number of half-wavelengths) is not necessarily helpful in achieving subwavelength resolution.

  12. Composite films prepared by plasma ion-assisted deposition (IAD) for design and fabrication of antireflection coatings in visible and near-infrared spectral regions

    Science.gov (United States)

    Tsai, Rung-Ywan; Ho, Fang C.

    1994-11-01

    Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.

  13. 镁合金化学镀镍层的生长过程%Deposition process of electroless nickel plating on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    邵忠财; 李建中; 康凤娣; 田彦文

    2005-01-01

    The initial nickel deposition for the direct electroless nickel plating on non-catalytically active magnesium alloy is critical. The surface morphology and composition of the initial nickel plating coating are obtained by means of the scanning electron microscopy (SEM) and the energy dispersive X-ray (EDS). In addition, the mass gain/loss in the initial nickel deposition process was measured by using the electrobalance. The results showed that the MgO coating was gradually corroded by the plating solution, at the same time, MgF2 produced by F , H+ and MgO was deposited on the substrate during the initial electroless plating process. The nickel of the initial electroless plating was mostly growing on the boundary between the MgF2 coating and the MgO coating of the activation substrate, and then came to two sides. After that, the Ni-P coating growth rate to cover with the MgF2 coating was prior to the MgO coating. The electroless plating was in company with the substrate corrosion, but the electroless plating rate catalyzed by the exchanged nickel was more than the substrate corrosion rate.

  14. Microstructure Evolution of Electron Beam Physical Vapour Deposited Ni-23.5Cr-2.66Co-1.44Al Superalloy Sheet During Annealing at 600 °C

    Directory of Open Access Journals (Sweden)

    Li Mingwei

    2013-02-01

    Full Text Available Microstructure evolution of electron beam physical vapour deposited (EB-PVD Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the locations of diffraction peaks were still the same. The (220 diffraction peak of the deposition side increased with annealing time. The sheet on deposited side had a tendency toward forming (220 texture during post-annealing. No obvious texture was observed at as-deposited and annealed sheet at 600 °C in substrate side. The count and size of "voids" decreased with time. The size of grains increased obviously with annealing time. The ultimate tensile strength of EB-PVD Ni-23.5Cr-2.66Co-1.44Al alloy sheet increased from 641 MPa to 829 MPa after annealing at 600 °C for 30 hours.

  15. Comparison of the dose deposited between the OBI system and the Varian TrueBeam Imaging system; Comparacion de la dosis depositada entre el sistem OBI y el truebeam Imaging system de Varian

    Energy Technology Data Exchange (ETDEWEB)

    Pino, F.; Navarro, D.; Sancho, I.; Lizuain, M. C.

    2011-07-01

    The use of imaging systems for positioning kilovoltage radiotherapy treatments has experienced a peak in recent years. Techniques such as IMRT, these systems are applied to a large number of sessions to ensure accurate positioning. This makes it increased the interest to know the dose deposited in the patient. Companies involved in developing new designs focus their efforts on reducing the dose due to these positioning systems. The aim of this study is to compare the dose delivered by the OBI image guidance system with the new system image TrueBeam, both of Varian, both planar imaging as CT (CBCT).

  16. Effect of negative substrate bias on the microstructure and mechanical properties of Ti-Si-N films deposited by a hybrid filtered cathodic arc and ion beam sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yujuan, E-mail: cnzhangyujuan@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China); Yang Yingze; Zhai Yuhao; Zhang Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-07-01

    A hybrid cathodic arc and ion beam sputtering method was employed to synthesize Ti-Si-N films. The influence of negative substrate bias on the structure and mechanical properties was investigated by using XRD, XPS, HRTEM, nanoindentor and so on. With the increasing of negative bias there is a decrease in the TiN crystallite size from 36 nm to 10 nm. Negative substrate bias promoted the conformation of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite structure with complete phase separation and uniform crystallite size. Superhard TiSiN films with a maximum hardness of 46 GPa were successfully synthesized under 100 V negative bias. Severe oxidation occurred in films deposited under 200 V and 300 V negative substrate bias due to the decreasing of deposition rate, which led to the hardness of films reduced to the value of 26 GPa and 22 GPa respectively.

  17. Ferroelectric and ferromagnetic properties of epitaxial BiFeO{sub 3}-BiMnO{sub 3} films on ion-beam-assisted deposited TiN buffered flexible Hastelloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, J., E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Matias, V.; Jia, Q. X. [Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Tao, B. W.; Li, Y. R. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-05-07

    Growth of multifunctional thin films on flexible substrates is of great technological significance since such a platform is needed for flexible electronics. In this study, we report the growth of biaxially aligned (BiFeO{sub 3}){sub 0.5}:(BiMnO{sub 3}){sub 0.5} [BFO-BMO] films on polycrystalline Hastelloy by using a biaxially aligned TiN as a seed layer deposited by ion-beam-assisted deposited and a La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) as a buffer layer deposited by pulsed laser deposition. The LSMO is used not only as a buffer layer but also as the bottom electrode of the BFO-BMO films. X-ray diffraction showed that the BFO-BMO films are biaxially oriented along both in-plane and out-of-plane directions. The BFO-BMO films on flexible metal substrates showed a polarization of 22.9 μC/cm{sup 2}. The magnetization of the BFO-BMO/LSMO is 62 emu/cc at room temperature.

  18. Review of 1064-nm damage tests of electron-beam deposited Ta/sub 2/O/sub 5//SiO/sub 2/ antireflection coatings

    Energy Technology Data Exchange (ETDEWEB)

    Milam, D.; Rainer, F.; Lowdermilk, W.H.; Swain, J.E.; Carniglia, C.K.; Hart, T.T.

    1981-12-18

    Damage tests of Ta/sub 2/O/sub 5//SiO/sub 2/ antireflection films deposited under a variety of conditions showed that thresholds of films deposited at 175/sup 0/C were greater than thresholds of films deposited at either 250/sup 0/C or 325/sup 0/C. Deposition at high rate and low oxygen pressure produced highly absorptive films with low thresholds. Thresholds did not correlate with film reflectivity or net stress in the films, and correlated with film absorption only when the film absorption was greater than 10/sup 4/ ppM. Baking the films for four hours at 400/sup 0/C reduced film absorption, altered net film stress, and produced an increase in the average damage threshold.

  19. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co73Si12B15 thin films prepared by Dual-Ion beam assisted deposition

    Science.gov (United States)

    Zhang, Yu; Wang, San-sheng; Hu, Teng; He, Tong-fu; Chen, Zi-yu; Yi, Zhong; Meng, Li-Fei

    2017-03-01

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co73Si12B15 thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co73Si12B15 thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co73Si12B15 thin films.

  20. Different Influences Between Long-term Treated IGF- Ⅰ and MGF About Glycometabolism in Mice%IGF-Ⅰ和MGF长期基因治疗对小鼠血糖代谢的影响

    Institute of Scientific and Technical Information of China (English)

    李传宝; 华甜; 杜宏武

    2012-01-01

    为研究IGF-Ⅰ和MGF长期基因治疗对哺乳动物血糖代谢的生理影响,首先构建了包含MGF和IGF-Ⅰ全长编码基因的真核表达载体,然后使用活体基因导入仪将其导入小鼠的左侧股四头肌,每2周一次共导入3次,首次导入15周后进行糖耐量测定实验.实验证实IGF-Ⅰ的长期持续表达会导致小鼠的糖代谢能力降低,血糖最高值可达到12.07±1.35mmol/L比对照(10.15±0.87mmol/L)和MGF组(10.58±0.61 mmol/L)有显著性的升高(P<0.05),MGF单独存在情况下在糖代谢方面则没有上述作用,但是IGF-Ⅰ和MGF共同导入的小鼠的血糖调节能力更明显减弱,其最高值( 16.30±2.69mmol/L)明显高于其它3组(P<0.001).因此推测与胰岛素进行拮抗作用的主要是IGF-Ⅰ的N段序列,而产生与糖代谢相关功能的则为暴露的IGF-Ⅰ C段序列;另一种可能是MGF促进了肌肉细胞对外源DNA的吸收和表达因此其可以作为基因导入的佐剂.%To investigate the long term effect of glucose metabolism in gene therapy by using IGF- I and MGF, the MGF and IGF- I eukaryotic expression vector were constructed, and then imported into the left quadriceps of mice every 2 weeks. The sugar tolerance of these mice was tested at the 15th week after the first injection by Yicheng blood glucose meter (JPS-5). It was found that the balance of glucose tolerance was broken when IGF- I gene were injected into mice, the blood glucose could reach 12. 07+ 1. 35mmol / L, which is significantly higher than the control group (10. 15+0.87mmol/L) and the MGF group (10.58 + 0.61mmol/L). At the same time, the combine injection of both MGF and IGF- I could significant reduce the ability of regulating blood sugar, the value (16.30 + 2. 69mmol / L) was rank highest in all of the tested group (P <0.001). Long-term presence of IGF- I may antagonize insulin in vivo and then reduce the ability of glycometabolism, however, MGF does not show this function. Integrating the

  1. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  2. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 1 This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag,...

  3. High critical current density under magnetic fields in as-grown MgB{sub 2} thin films deposited by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Haruta, M [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Fujiyoshi, T [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kihara, S [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Sueyoshi, T [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Miyahara, K [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Harada, Y [Iwate Industry Promotion Centre, Iioka-shinden 3-35-2, Morioka, Iwate 020-0852 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Takahashi, T [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Iriuda, H [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Oba, T [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka, Iwate 020-8551 (Japan); Awaji, S [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Watanabe, K [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Miyagawa, R [Kumamoto Industrial Research Institute, 3-11-38 Higashi-machi, Kumamoto 862-0901 (Japan)

    2007-01-15

    As-grown MgB{sub 2} thin films were prepared by a MBE method under the conditions of low temperature, low deposition rate and high vacuum for applications in electric devices. The MgB{sub 2} thin films deposited on MgO and Ti buffered ZnO substrates have considerably higher J{sub c} under magnetic fields among MgB{sub 2} thin films reported before. The value of J{sub c} for the MgB{sub 2} thin film deposited on Ti buffered ZnO has been 5.8 x 10{sup 5} A cm{sup -2} at 10 K, 5 T in the magnetic field applied parallel to the c axis. In the angular dependence of J{sub c}, the peak of J{sub c} attributable to c-axis-correlated pinning centres has been observed when the magnetic field was applied parallel to the c axis. (rapid communication)

  4. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  5. The Effects of Annealing and Discharging on the Characteristics of MgO Thin Films Prepared by Ion Beam-Assisted Deposition as a Protective Layer of AC-PDP

    Institute of Scientific and Technical Information of China (English)

    YU Zhinong; SUN Jian; XUE Wei; ZHENG Dexiu

    2007-01-01

    This study investigated the effects of annealing and discharging on the characteristics of MgO thin films prepared by ion beam-assisted deposition as a protective layer of AC-PDP. By an annealing process at a temperature of 450 °C for more than three hours, the crystallinity of the deposited MgO films was improved, but the surface of the (200)-oriented MgO thin films in the vicinity of the discharge electrodes, especially on the inner sides of the electrodes, was subjected to crack formation. The failure mechanism of the (200)-oriented MgO films was due to the compressive stress of MgO films plus the additional compressive stress induced by the differences in the coefficient of thermal expansion between the electrode and the dielectric layer. In the discharging process, all MgO films were eroded unevenly, and the serious erosion occurred near the edges of the discharge electrodes. ATM(atomic force microscopy) images show that the eroded surface of the (200)-oriented MgO thin film is smoother than that of the (lll)-oriented film. Also, the (200)-oriented MgO thin film shows an improved ability to resist ion erosion compared to the (lll)-oriented film.

  6. Optical investigation of electron-beam-deposited tungsten-tellurite (TeO2)100- x (WO3) x amorphous films

    Science.gov (United States)

    Emam-Ismail, M.; Shaaban, E. R.; El-Hagary, M.; Shaltout, I.

    2010-09-01

    Amorphous films of (100 - x)TeO2-xWO3 with compositions 7.5 ≥ x ≤ 40 mol. % were prepared by electron-beam evaporation. The compositional dependence of the optical properties of the prepared films was analyzed by the Swanepoel envelope method, which revealed that the refractive index increases with increasing tungsten oxide content. The Wemple-DiDomenico dispersion model was used to explain the refractive index increase in terms of the formation of W-O-Te bonds, which have a higher energy than that of Te-O-Te bonds. A fitting of the spectral dependence of the absorption coefficient to the Tauc relation allowed a determination of the optical band gap, ? , which is found to decrease linearly with increasing tungsten oxide percentage.

  7. RIA Fragmentation Line Beam Dumps

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W

    2003-08-08

    The Rare Isotope Accelerator project involves generating heavy-element ion beams for use in a fragmentation target line to produce beams for physics research. The main beam, after passing through the fragmentation target, may be dumped into a beam dump located in the vacuum cavity of the first dipole magnet. For a dump beam power of 100 kW, cooling is required to avoid excessive high temperatures. The proposed dump design involves rotating cylinders to spread out the energy deposition and turbulent subcooled water flow through internal water cooling passages to obtain high, nonboiling, cooling rates.

  8. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    Science.gov (United States)

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-01

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  9. Atomic scale modelling of nanosize Ni sub 3 Al cluster beam deposition on Al, Ni and Ni sub 3 Al (1 1 1) surfaces

    CERN Document Server

    Kharlamov, V S; Hou, M

    2002-01-01

    The slowing down of Ni sub 3 Al clusters on a Al, Ni and Ni sub 3 Al (1 1 1) surfaces is studied by atomic scale modelling. The semi-grand canonical metropolis Monte Carlo is used for the preparation of isolated clusters at thermodynamic equilibrium. The cluster deposition on the surface is studied in detail by classical Molecular Dynamics simulations that include a model to account for electron-phonon coupling. Long- and short-range orders in the cluster are evaluated as functions of temperature in an impact energy range between 0 and 1.5 eV/atom. The interaction between the Ni sub 3 Al cluster and an Al surface is characterised low short range (chemical) disorder. No sizeable epitaxy is found, subsequent to the impact. In contrast, in the case of Ni and Ni sub 3 Al substrates, which are harder materials than aluminium, the chemical disorder is higher and epitaxial accommodation is possible. With these substrates, chemical disorder in the cluster is an increasing function of the impact energy, as well as of ...

  10. Measurement of HL-2A NBI Beam Profile and Beam Power

    Institute of Scientific and Technical Information of China (English)

    LIU He; CAO Jianyong; JIANG Shaofeng; LUO Cuiwen; TANG Lixin; LEI Guangjiu; RAO Jun; LI Bo

    2009-01-01

    To optimize the operation parameters of the beam line of NBI on HL-2A,features of the beam line,including the beam profile and the power deposited on components and injected into the tokamak plasma,were measured.The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power,and the transmission efficiency of the NBI injected power was therefore increased.A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.

  11. Characteristics of Nd:Y3Al5O12 thin film prepared by electron beam evaporation deposition%电子束蒸发制备掺钕钇铝石榴石薄膜特性研究

    Institute of Scientific and Technical Information of China (English)

    任豪; 曾群; 庞振华; 周应恒; 梁锡辉

    2012-01-01

    硅基光电集成技术是当代高速信息化的重要发展方向之一.为了研究制备在硅衬底上的新型发光材料,突破Nd∶YAG固体激光工作物质主要是晶体、透明陶瓷等固体形态的限制,采用电子束蒸发沉积工艺,在硅(100)衬底上制备了Nd∶ YAG薄膜,并对Nd∶YAG薄膜的表面形貌、晶体结构、光学特性进行了测试.X射线和扫描电子显微镜测试结果显示,Nd∶YAG薄膜经1100℃真空高温退火处理1h后有效结晶,采用钛蓝宝石激光器输出808nm激光激发,液氮冷却的InGaAs阵列探测器室温下得到Nd∶YAG薄膜的1064nm主荧光峰的荧光光谱.结果表明,采用电子束蒸发沉积和后续高温退火工艺可以在硅衬底上制备Nd∶YAG晶体薄膜.%Si-based optoelectronic integration technology is one of the main study topics and development directions for the high-speed information. New Si-based luminescent materials were developed to break the limits of Nd: YAG solid laser material, which was confined by two main solid states: single crystal and transparent ceramics. Nd: YAG thin film was prepared on Si (100) substrates by electron beam evaporation deposition. The surface morphology, crystalline phase and optical properties of Nd:YAG thin film were characterized by X-ray diffraction, scanning electron microscopy and spectrophotometer. The crystallization of Nd:YAG thin film was improved after annealing at ll00'C for lh in the vacuum, photoluminescent spectra of Nd:YAG thin film were measured at room temperature, with 808nm radiation from a Ti: sapphire laser, and photoluminescent spectrum in the region of 1064nm peak was detected by a liquid nitrogen cooled InGaAs detector array. The results showed thai Nd: YAG crystalline thin film was grown on Si substrates for the first time by means of electron beam evaporation deposition and subsequent high temperature annealing process.

  12. Magnetic properties and structure of Ni80Fe20/Ni48Fe12Cr40 bilayer films deposited on SiO2/Si(100) by electron beam evaporation

    Institute of Scientific and Technical Information of China (English)

    WU Ping; GAO Yanqing; QIU Hong; PAN Liqing; TIAN Yue; Wang Fengping

    2007-01-01

    Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40underlayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.

  13. Enhancement of negative capacitance effect in (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Koltunowicz, T.N., E-mail: t.koltunowicz@pollub.pl [Lublin University of Technology, 20-618 Lublin (Poland); Zhukowski, P., E-mail: p.zhukowski@pollub.pl [Lublin University of Technology, 20-618 Lublin (Poland); Bondariev, V. [Lublin University of Technology, 20-618 Lublin (Poland); Saad, A. [Al Balqa Applied University, Physics Department, P.O. Box 4545, Amman 11953 (Jordan); Fedotova, J.A. [National Center for Particles and High Energy Physics of Belarusian State University, 220040 Minsk (Belarus); Fedotov, A.K. [Belarusian State University, 220030 Minsk (Belarus); Milosavljević, M. [VINČA Institute of Nuclear Sciences, Belgrade University, P.O. Box 522, 11001 Belgrade (Serbia); Kasiuk, J.V. [National Center for Particles and High Energy Physics of Belarusian State University, 220040 Minsk (Belarus)

    2014-12-05

    Highlights: • (FeCoZr){sub x}(CaF{sub 2}){sub (100−x)} nanomaterals deposited in oxygen-containing atmosphere (Ar + O{sub 2}). • FeCoZr “cores” covered with FeCo-oxide “shells” embedded into nonoxygen dielectric matrix. • On σ(T{sub p}) are two minima related to the crossing zero line values of Θ{sub 1} = 90° and of Θ{sub 2} = −90°. - Abstract: The paper presents frequency f and temperature T{sub p} dependences of phase shift angle Θ, admittance σ and capacitance C{sub p} for the as-deposited and annealed (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films deposited by ion-beam sputtering of a compound target in a mixed argon–oxygen gas atmosphere in vacuum chamber. The studied films presented metallic FeCoZr “cores” covered with FeCo-based oxide “shells” embedded into oxygen-free dielectric matrix (fluorite). It was found for the metallic phase content within the range of 52.2 at.% ⩽ x ⩽ 84.3 at.% in low-f region that Θ values were negative, while in the high-f region we observed the Θ < 0{sup o}. It was obtained that the f-dependences of capacitance module displayed minimum at the corresponding frequency when the Θ(f) crossed its zero line Θ = 0{sup o}. It was also observed that the σ(T{sub p}) dependence displayed the occurrence of two minima that were related to the values of Θ{sub 1} = 90° (the first minimum) and of Θ{sub 2} = −90° (the second one). Some possible reasons of such behavior of (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films are discussed.

  14. High-permitivity cerium oxide prepared by molecular beam deposition as gate dielectric and passivation layer and applied to AlGaN/GaN power high electron mobility transistor devices

    Science.gov (United States)

    Chiu, Yu Sheng; Liao, Jen Ting; Lin, Yueh Chin; Chien Liu, Shin; Lin, Tai Ming; Iwai, Hiroshi; Kakushima, Kuniyuki; Chang, Edward Yi

    2016-05-01

    High-κ cerium oxide (CeO2) was applied to AlGaN/GaN high-electron-mobility transistors (HEMTs) as a gate insulator and a passivation layer by molecular beam deposition (MBD) for high-power applications. From capacitance-voltage (C-V) measurement results, the dielectric constant of the CeO2 film was 25.2. The C-V curves showed clear accumulation and depletion behaviors with a small hysteresis (20 mV). Moreover, the interface trap density (D it) was calculated to be 5.5 × 1011 eV-1 cm-2 at 150 °C. A CeO2 MOS-HEMT was fabricated and demonstrated a low subthreshold swing (SS) of 87 mV/decade, a high ON/OFF drain current ratio (I ON/I OFF) of 1.14 × 109, and a low gate leakage current density (J leakage) of 2.85 × 10-9 A cm-2 with an improved dynamic ON-resistance (R ON), which is about one order of magnitude lower than that of a conventional HEMT.

  15. Ion Beam Analysis, structure and corrosion studies of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite coatings deposited by sputtering on AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    García, J. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C.E. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rodríguez, E.; Jiménez, O. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Solis, C.; Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, México, D.F. 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, México, D.F. 07738 (Mexico)

    2014-07-15

    In this work, nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4}, were deposited on AISI 316L stainless steel substrate by a DC and RF reactive magnetron co-sputtering technique using an Ar–N{sub 2} plasma. The structure of the coatings was characterized by means of XRD (X-ray Diffraction). The substrate and coating corrosion resistance were evaluated by potentiodynamic polarization using a Ringer solution as electrolyte. Corrosion tests were conducted with the purpose to evaluate the potential of this coating to be used on biomedical alloys. IBA (Ion Beam Analysis) techniques were applied to measure the elemental composition profiles of the films and, XPS (X-ray Photoelectron Spectroscopy) were used as a complementary technique to obtain information about the compounds present in the films. The nanocomposite coatings of nc-TiN/a-Si{sub 3}N{sub 4} show crystalline (TiN) and amorphous (Si{sub 3}N{sub 4}) phases which confer a better protection against the corrosion effects compared with that of the AISI 316L.

  16. The Changes in Skeletal Muscle Ultrasructure and MGF during and after Exhaustive Exercise in Rat%大负荷运动及其恢复期间大鼠骨骼肌超微结构及MGF的变化

    Institute of Scientific and Technical Information of China (English)

    潘同斌; 王晓雪; 唐芳; 左伟; 刘跃兵; 温慧霞

    2012-01-01

    Objective The purpose of this paper was to study the changes in skeletal muscle ultrasructure and mechano growth factors (MGF) during and after exhaustive exercise in rat. Methods Thirty six 8-week-old healthy male SD rats were randomly and equally divided into following 6 groups: sedentary control group (C);immediately after exhaustive exercise group(E0);12 hours after exhaustive exercise group (E12);24 hours after exhaustive exercise (E24);48 hours after exhaustive exercise group (E48);and 72 hours after exhaustive exercise group (E72). Rats in all exhaustive exercise groups underwent tail-loaded(3% of body weight) swimming once a day for seven days. Rats in respective groups were killed immediately,and at 12,24,48 and 72 hours after the last exhaustive exercise. The protein expression of MGF in gastrocnemius and serum was measured by ELISA, and the ultrastructural changes in rat rectus femoris were observed by electron microscopy. Results After a week of heavy-load swimming , (1 )widened muscle gap, slight deformation of endoplasmic reticulum and mitochondria, loose and thin myofibrils, and distorted Z lines revealed in all exhaustive exercise groups, especially in groups EO and E24; (2)the MGF increased significantly in all exhaustive exercise groups,especially in group E24 (P < 0.01) ;and MGF in group EO was significantly different from group C (P < 0.01). Conclusion Exhaustive swimming could cause micro-injury of skeletal muscles to a certain extent, and the increased MGF in skeletal muscle and serum after the exercise probably related to the repair process of the micro-injury.%目的:观察大负荷运动及其恢复期间大鼠骨骼肌超微结构及机械生长因子(MGF)的变化.方法:36只8周龄健康雄性SD大鼠随机分为6组,每组6只:安静对照组(C组)和力竭运动后即刻组(E0组)、12h组(E12组)、24h组(E24组)、48h组(E48组)、72h组(E72组).各力竭运动组尾部负重为3%体重,进行1周负

  17. Photoluminescence and compositional-structural properties of ion-beam sputter deposited Er-doped TiO{sub 2−x}N{sub x} films: Their potential as a temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Scoca, D., E-mail: dlsscoca@ifi.unicamp.br; Morales, M.; Merlo, R.; Alvarez, F. [Instituto de Física Gleb Wataghin, UNICAMP, Campinas, São Paulo (Brazil); Zanatta, A. R. [Instituto de Física de São Carlos, USP, São Carlos, São Paulo (Brazil)

    2015-05-28

    Er-doped TiO{sub 2−x}N{sub x} films were grown by Ar{sup +} ion-beam sputtering a Ti + Er target under different N{sub 2} + O{sub 2} high-purity atmospheres. The compositional-structural properties of the samples were investigated after thermal annealing the films up to 1000 °C under a flow of oxygen. Sample characterization included x-ray photoelectron spectroscopy, grazing incidence x-ray diffraction, Raman scattering, and photoluminescence experiments. According to the experimental data, both composition and atomic structure of the samples were very sensitive to the growth conditions and annealing temperature. In the as-deposited form, the N-rich TiO{sub 2−x}N{sub x} films presented TiN crystallites and no photoluminescence. As the thermal treatments proceed, the films were transformed into TiO{sub 2} and Er{sup 3+}-related light emission were observed in the visible and near-infrared ranges at room-temperature. Whereas the development of TiO{sub 2} occurred due to the insertion-diffusion of oxygen in the films, light emission originated because of optical bandgap widening and/or structural-chemical variations in the vicinity of the Er{sup 3+} ions. Finally, the photoluminescence results in the visible range suggested the potential of the present samples in producing an optically based temperature sensor in the ∼150–500 K range.

  18. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070291 Gong Ping (Northern Fujian Geological Party, Shaozou 354000) Discussion on Geological Characteristics and Control Factors of the Shimen Au-polymetallic Deposit in Zhenghe County, Fujian Province (Geology of Fujian, ISSN1001-3970, CN38-1080/P, 25(1), 2006, p.18-24, 2 illus., 2 tables, 1 ref.) Key words: gold deposits, polymetallic deposits, Fujian Province

  19. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 2This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al, Au,...

  20. Denton E-beam Evaporator #2

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: E-Beam Evap 2 This is an electron gun evaporator for the deposition of metals and dielectrics thin films. Materials available are: Ag, Al,...

  1. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  2. Microstructure and magneto-resistor of Co/Ru multimembranes fabricated by electron beam vapor deposition metheod%电子束蒸发法制备Co/Ru多层膜的微观结构与磁电阻

    Institute of Scientific and Technical Information of China (English)

    郝安林

    2014-01-01

    The Co/Ru multimembranes with different thickness of Co layer were prepared by electron beam vapor deposition. XRD, HRTEM and TEM were employed to investigate the microstructure of the multimembranes. The effect of microstructure on magnetic properties and the magneto-resistor origin mechanism of Co/Ru multimembranes were discussed. The results show that the thickness of Co layer has great effect on the microstructure and magneto-resisitor properties of the multimembranes. When the thickness of Co layer is more than 0.8 nm, the growth of multimembranes follows Frank-van der Merwe mode while the crystallinity is better with the thickness of the Co layer increase, and the multimembranes show negative magneto-resistance effect;when the thickness of Co layer is less than 0.5 nm, the growth of multimembranes follows Volmer-Weber mode and the multimembranes show positive magneto-resistance effect due to the asymmetry interface.%采用电子束蒸发法制备具有不同Co层厚度的Co/Ru多层膜。采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、扫描电镜(TEM)等对多层膜的微观结构进行观察与分析,研究多层膜微观结构对多层膜磁阻性能的影响,并探讨多层膜磁阻的产生机理。结果表明:Co层的厚度tCo对于薄膜的微观结构和磁阻性能有很大影响,当tCo≥0.8 nm时Co/Ru多层膜以层状方式连续生长,且tCo越大,薄膜结晶越完整,薄膜呈现负磁阻效应;当tCo=0.5 nm时,Co/Ru多层膜为岛状生长,Co/Ru界面的不对称性使得薄膜出现正磁阻效应。

  3. Confined ion beam sputtering device and method

    Science.gov (United States)

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  4. Erratum to "Comparative study of crystal field effects for Ni ion in LiGaO, MgF and AgCl crystals" [J. Phys. Chem. Solid, In Press, Corrected Proof; doi:10.1016/j.jpcs.2008.01.004

    OpenAIRE

    Brik, M. G.; Avram, C.N.; Avram, N.M.

    2009-01-01

    Erratum to ?Comparative study of crystal field effects for Ni2+ ion in LiGa5O8, MgF2 and AgCl crystals? [J. Phys. Chem. Solid, In Press, Corrected Proof; doi:10.1016/j.jpcs.2008.01.004] correspondance: Corresponding author. (Avram, N.M.) (Avram, N.M.) Fukui Institute for Fundamental Chemistry--> , Kyoto University--> , 34?4--> , Takano Nishihiraki-cho--> , Sakyo- ku--> , Kyoto 60...

  5. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  6. Active Beam Spectroscopy

    Science.gov (United States)

    von Hellermann, M. G.; Delabie, E.; Jaspers, R. J. E.; Biel, W.; Marchuk, O.; Summers, H. P.; Whiteford, A.; Giroud, C.; Hawkes, N. C.; Zastrow, K. D.

    2008-03-01

    Charge eXchange Recombination Spectroscopy (CXRS) plays a pivotal role in the diagnostics of hot fusion plasmas and is implemented currently in most of the operating devices. In the present report the main features of CXRS are summarized and supporting software packages encompassing "Spectral Analysis Code CXSFIT", "Charge Exchange Analysis Package CHEAP", and finally "Forward Prediction of Spectral Features" are described. Beam Emission Spectroscopy (BES) is proposed as indispensable cross-calibration tool for absolute local impurity density measurements and also for the continuous monitoring of the neutral beam power deposition profile. Finally, a full exploitation of the `Motional Stark Effect' pattern is proposed to deduce local pitch angles, total magnetic fields and possibly radial electric fields. For the proposed active beam spectroscopy diagnostic on ITER comprehensive performance studies have been carried out. Estimates of expected spectral signal-to-noise ratios are based on atomic modelling of neutral beam stopping and emissivities for CXRS, BES and background continuum radiation as well as extrapolations from present CXRS diagnostic systems on JET, Tore Supra, TEXTOR and ASDEX-UG. Supplementary to thermal features a further promising application of CXRS has been proposed recently for ITER, that is a study of slowing-down alpha particles in the energy range up to 2 MeV making use of the 100 keV/amu DNB (Diagnostic Neutral Beam) and the 500 keV/amu HNB (Heating Neutral Beam). Synthetic Fast Ion Slowing-Down spectra are evaluated in terms of source rates and slowing-down parameters

  7. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102406 Chen Gang(China University of Geosciences,Beijing 100083,China);Li Fengming Discussion on Geological Characteristics and Genesis of Yuquanshan Graphite Deposit of Xinjiang(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,27(4),2009,p.325-329,4 illus.,4 tables,5 refs.)Key words:graphite deposit,XinjiangYuquanshan graphite deposit of Xinjiang occurs in mica-quartz schist of Xingeer Information which belongs to Xinditate Group of Lower Pt in Kuluketage Block of Tarim paleo-continent,and experiences two mineralizing periods of

  8. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140876 Gao Junbo(College of Resources and Environmental Engineering,Guizhou University,Guiyang 550025,China);Yang Ruidong Study on the Strontium Isotopic Composition of Large Devonian Barite Deposits from Zhenning,Guizhou Province(Geochimica,

  9. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122457 Cai Jianshe ( Fujian Institute of Geological Survey and Drawing,Fuzhou 350011,China ) On the Geologic Characteristics and Genesis of the Longtangsi Fluorite Deposit in Pucheng County,Fujian Province ( Geology of Fujian,ISSN1001-3970,CN35-1080 / P,30 ( 4 ), 2011,p.301-306,3illus.,1table,6 refs.,with English abstract ) Key words:fluorspar deposit,Fujian Province

  10. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  11. Pulsed laser deposition of fluoride glass thin films

    Science.gov (United States)

    Ganser, Dimitri; Gottmann, Jens; Mackens, Uwe; Weichmann, Ulrich

    2010-11-01

    The development of integrated waveguide lasers for different applications such as marking, illumination or medical technology has become highly desirable. Diode pumped planar waveguide lasers emitting in the green visible spectral range, e.g. thin films from praseodymium doped fluorozirconate glass matrix (called ZBLAN, owing to the main components ZrF 4, BaF 2, LaF 3, AlF 3 and NaF) as the active material pumped by a blue laser diode, have aroused great interest. In this work we have investigated the deposition of Pr:ZBLAN thin films using pulsed laser radiation of λ = 193 and λ = 248 nm. The deposition has been carried out on MgF 2 single crystal substrates in a vacuum chamber by varying both processing gas pressure and energy fluence. The existence of an absorption line at 210 nm in Pr:ZBLAN leads to absorption and radiative relaxation of the absorbed laser energy of λ = 193 nm preventing the evaporation of target material. The deposited thin films consist of solidified and molten droplets and irregular particulates only. Furthermore, X-ray radiation has been applied to fluoride glass targets to enhance the absorption in the UV spectral region and to investigate the deposition of X-ray treated targets applying laser radiation of λ = 248 nm. It has been shown that induced F-centres near the target surface are not thermally stable and can be easily ablated. Therefore, λ = 248 nm is not suitable for evaporation of Pr:ZBLAN.

  12. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110947 Chen Xinglong(Guizhou Bureau of Nonferrous Metal and Nuclear Geology,Guiyang 550005,China);Gong Heqiang Endowment Factors and Development & Utilization Strategy of Bauxite Resource in North Guizhou Province(Guizhou Geology,ISSN1000-5943,CN52-1059/P,27(2),2010,p.106-110,6 refs.,with English abstract)Key words:bauxite deposit,Guizhou Province20110948 Dang Yanxia(Mineral Resource & Reservoir Evaluation Center,Urumiq 830000,China);Fan Wenjun Geological Features and a Primary Study of Metallogenesis of the Wucaiwang Zeolite Deposit,Fuyun County(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,28(2),2010,p.167-170,2 illus.,1 table,5 refs.)Key words:zeolite deposit,Xinjiang Nearly all zeolite deposits in the world result from low-temperature-alteration of glass-bearing volcanic rocks.The southern slope of the Kalamali Mountain is one of the regions where medium to acid volcanics are major lithological type,thus it is a preferred area to look for zeolite deposit.The Wucaiwang zeolite ore district consists of mainly acid volcanic-clastic rocks.

  13. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  14. 车载Ad Hoc网络中基于移动网关的数据传输%MGF: Mobile Gateway Based Forwarding for Infrastructure-to-Vehicle Data Delivery in Vehicular Ad Hoc Networks

    Institute of Scientific and Technical Information of China (English)

    陈丽; 李治军; 姜守旭; 冯诚

    2012-01-01

    由于车载Ad hoc网络拓扑的动态变化及车载节点的快速移动,应用现有传输方法在其上进行Internet接入点向移动车辆(Infrastructure-to-Vehicle,I2V)数据传输时成功率较低,而且传输延迟高、延迟抖动大.为了解决这一问题,文中利用公交车路线固定、运行特征可预测、节点及线路分布稠密等特性,将公交车作为移动网关( Mobile Gateway,MG),提出了一种新的基于MG转发的I2V数据传输方法(Mobile Gateway based Forwarding,MGF).文中首先将公路网模型化为状态-空间图,再运用马尔可夫决策方法建立了一种基于MG转发的I2V数据传输优化模型,然后通过对模型求解得出I2V数据传输的最优转发决策,最优转发决策指的就是每个状态下对应的最优动作序列,最后在目的车辆行驶轨迹上选取满足传输成功率阈值,并使I2V传输延迟最小的路口节点作为数据包与目的车辆的最优汇聚节点,即目标节点.应用MGF方法,MG节点将以最优概率转发序列向目标节点转发数据包.文中利用模拟平台对MGF方法的传输性能进行了评估,结果表明该方法在满足传输成功率阈值前提下,能够获得最小传输延迟期望.理论分析同样也证明了该方法的有效性.%The highly dynamic topology and the rapid movement of destination node pose special challenges to Infrastructure-to-Vehicle (I2V) data delivery in Vehicular Ad Hoc Networks (VANET). Current data delivery methods are with the strong delay, the large jitter of delay and low delivery ratio for I2V data delivery. The paper investigates how to effectively utilize the prominent characteristic of buses, and proposes Mobile Gateway (MG) based Forwarding (MGF) that buses are installed as MG to forward data packet. To solve the problem that the paper models road network as a probabilistic state-space graph, in which applies the value iteration algorithm for the markov decision processing model to derive the

  15. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091594 Bao Yafan(The Third Geologic Survey of Jilin Province,Siping 136000,China);Liu Yanjun Relations between Bashenerxi Granite,West Dongkunlun and Baiganhu Tungsten-Tin Deposit(Jilin Geology,ISSN1001-2427,CN22-1099/P,27(3),2008,p.56-59,67,5 illus.,2 tables,7 refs.,with English abstract)Key words:tungsten ores,tin ores,monzogranite,Kunlun Mountains20091595 Chen Fuwen(Yichang Institute of Geology and Mineral Resources,China Geological Survey,Yichang 443003,China);Dai Pingyun Metallogenetic and Isotopic Chronological Study on the Shenjiaya Gold Deposit in Xuefeng Mountains,Hunan Province(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,82(7),2008,p.906-911,3 illus.,2 tables,30 refs.)Key words:gold ores,HunanThe Shenjiaya gold deposit is a representative one

  16. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111705 An Junbo(Team 603,Bureau of Nonferrous Metals Geological Exploration of Jilin Province,Hunchun 133300,China);Xu Renjie Geological Features and Ore Genesis of Baishilazi Scheelite Deposit in Yanbian Area(Jilin Geology,ISSN1001-2427,CN22-1099/P,29(3),2010,p.39-43,2 illus.,2 tables,7 refs.)Key words:tungsten ores,Jilin ProvinceThe Baishilazi scheelite deposit is located in contacting zone between the marble of the Late Palaeozoic Qinglongcun Group and the Hercynian biotite granite.The vein and lenticular major ore body is obviously controlled by NE-extending faults and con

  17. Effects of Combination of passive Stretching and Resistance Exercise on HGF and MGF mRNA of Rat's Gastrocnemius%抗阻和被动拉伸联合训练对大鼠腓肠肌卫星细胞激活相关因子基因表达的影响∗

    Institute of Scientific and Technical Information of China (English)

    吴国梁; 李娜

    2016-01-01

    Objective:To investigate the effect of the combination of passive stretching and resistance exercise on the activation of skeletal muscle satellite cell, through examine the expression of HGF、MGF mRNA of rat's gastrocnemius. Methods:32 a-dult SD rats were randomly divided into 4 groups:control group(group C,n=8),nothing were done;stretch group (group S, n=8), animals right gastrocnemius muscle was stretched repetitively for 2 seconds/time,15 times/min, 15min daily and 4 times/week under anesthesia; resistance group (group R, n =8), animals underwent 10 weeks(3 times/set, 2sets/day, 3days/week) climbing ladder training with weights (as 200% of their body weights) attached to the rats tails ;combination group( group C, n=8 ) , animals underwent both stretching and resistance trains for 10 weeks. After training, animal 's the right gastrocnemius were token respectively. The protein HGF、MGF were detected by the ELISA, RT-PCR was applied to detect the expression of HGF mRNA and MGF mRNA in gastrocnemius muscle. Results: After the combination of passive stretching and resistance exercise ,the weight of gastrocnemius muscle, the expression of HGF,MGF and mRNA was higher in group S,R,C than the group N(P<0. 05). Compare to the group N, the expression of HGF,MGF and their mRNA was most in the group C (P<0. 01). Compare to group R, the expression of HGF mRNA, MGF mRNA and MGF was high significant differences(P<0. 05). But compare to the group S, the expression of HGF mRNA of the group C was not significant differ-ences; Compare to the group R, the expression of HGF,MGF and their mRNA was high significant differences in group S. Conclusion:Both passive stretching and resistance exercise can effectively improve the expression level of the HGF,MGF and their mRNA, and activate the satellite ecll into the cell cycle to differentiation and proliferation. And the effect of them can be accumulated.%目的::通过大鼠运动实验模型,观察抗阻和被动拉伸训练后

  18. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20090243 Chen Zhibin (Hebei Institute of Geological Survey, Shijiazhuang 050081, China) Ore-Controlling Factors of the Beichagoumen Ag-Polymetallic Deposits in Northern Hebei Province (Geological Survey and Research, ISSN1672-4135, CN12-1353/P, 31(1), 2008, p.1-5, 3 illus., 10 refs.)

  19. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131565 Cai Lianyou(No.332 Geological Team,Bureau of Geology and Mineral Resources Exploration of Anhui Province,Huangshan 245000,China);Weng Wangfei Geological Characteristics and Genesis Analysis of Guocun Navajoite Deposit in South Anhui Province(Mineral Resources and Geology,

  20. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102341 Bao Peisheng(Institute of Geology,Chinese Academy of Geological Science,Beijing 100037,China)Further Discussion on the Genesis of the Podiform Chromite Deposits in the Ophiolites-Questioning about the Rock:Melt Interaction Metallogeny(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,28(12),2009,p.1741-1761

  1. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131601 Gao Junbo(College of Resources and Environmental Engineering,Guizhou University,Guiyang 550003,China);Yang Ruidong Hydrothermal Venting-Flowing Sedimentation Characteristics of Devonian Barite Deposits from Leji,Zhenning County,Guizhou Province(Acta Sedimentologica Sinica,ISSN1000-0550,CN62-1038/P,30(3),

  2. Using Stable Distributions to Characterize Proton Pencil Beams

    CERN Document Server

    Heuvel, Frank Van den; Schreuder, Niek; George, Ben

    2016-01-01

    Purpose: To introduce and evaluate the use of stable distributions as a means of describing the behavior of charged particle pencil beams in a medium, with specific emphasis on proton beam scanning (PBS). Methods: The proton pencil beams of a clinically commissioned proton treatment facility are replicated in a Monte Carlo simulation system (FLUKA). For each available energy the beam deposition in water medium is characterized by the dose deposition. Using an alpha--stable distribution methodology each beam with a nominal energy $E$ is characterized by the lateral spread at depth $z$: $S(z;\\alpha,\\gamma,E)$ and a total energy deposition $I_D(z)$. The beams are then described as a function of the variation of the parameters at depth. Finally, an implementation in a freely available open source dose calculation suite (matRad, DKFZ, Heidelberg, Germany) is proposed. Results: Quantitatively, the fit of the stable distributions, compared to those implemented in standard treatment planning systems, are equivalent. ...

  3. 等离子体激活电子束物理气相沉积NiCoCrAlY涂层的制备及微观组织结构研究%Microstructures of NiCoCrAlY Coatings Grown by Plasma Activated Electron Beam Physical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    常健; 郑蕾; 彭徽; 郭洪波; 宫声凯

    2012-01-01

    针对传统电子束物理气相沉积(EB-PVD)制备的柱状晶结构MCrAlY涂层存在线性缺陷的问题,本文建立了等离子体激活EB-PVD(PA EB-PVD)设备,并采用PA EB-PVD技术制备出了具有等轴晶结构的新型NiCoCrAlY涂层.结果表明,增大电弧放电电压和基板偏压均可以提高沉积粒子的能量.随着沉积粒子能量增强,涂层逐渐由柱状晶结构转变为致密等轴晶结构,晶粒尺寸增大;另一方面,涂层成份离析效应增强,主要体现在Al含量降低和Cr含量升高.%a novel technique - the plasma activated electron beam-physical vapor deposition (PAEB-PVD) - was developed by modifying the conventional electron beam physical vapor deposition (EB-PVD) to significantly reduce the columnar and linear defects of the NiCoCrAlY coatings, grown by EB-PVD. The high quality NiCoCrAlY coatings were deposited by the newly-developed technique. The impacts of the deposition conditions on microstructures and mechanical properties of the coating were evaluated, The results show that the energy of the impinging adatom strongly affects its microstructures . The energy of the adatom can be increased by increasing the arc discharge voltage and substrate bias. As the adatom energy increased, the columnar grains of the coating changed into the more compact equiaxial ones, accompanied with grain growth. Meanwhile, strong segregation was observed, resulting in an increased of Al content, a decreased Gr content, and an increase of plasticity.

  4. Silicon Holder For Molecular-Beam Epitaxy

    Science.gov (United States)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.

    1993-01-01

    Simple assembly of silicon wafers holds silicon-based charge-coupled device (CCD) during postprocessing in which silicon deposited by molecular-beam epitaxy. Attains temperatures similar to CCD, so hotspots suppressed. Coefficients of thermal expansion of holder and CCD equal, so thermal stresses caused by differential thermal expansion and contraction do not develop. Holder readily fabricated, by standard silicon processing techniques, to accommodate various CCD geometries. Silicon does not contaminate CCD or molecular-beam-epitaxy vacuum chamber.

  5. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110165 Chen Jiawei(The 3rd Geological Team,Henan Bureau of Geology and Mineral Resources,Xinyang 464000,China)Ore Control Conditions and Genetic Model for the Bodaoling Ag-Au Deposit in Guangshan,Henan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(1),2010,p.28-30,5 illus.,1 ref.,with English abstract)Key words:gold ores,Henan Province20110166 Chen Mingquan(Geological Team 306,Yunnan Bureau of Nonferrous Geology,Kunming 650216,Ch

  6. METALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122389 Cai Lianyou ( No.332 Geological Team,Bureau of Geology and Mineral Resources Exploration of Anhui Province,Huangshan 245000,China );Weng Wangfei Geologic Characteristic and Ore-Control Factors of the Nanshan W-Mo Polymetallic Ore Deposit in South Anhui Province ( Geological Survey and Research,ISSN1672-4135,CN12-1353 / P,34 ( 4 ), 2011,p.290-298,3 illus.,1table,14refs. ) Key words:tungsten ores,molybdenum ores,ore guide of prospecting,Anhui Province

  7. Atom Lithography with a Chromium Atomic Beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; LI Tong-Bao

    2006-01-01

    @@ Direct write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on the substrate. We design an experiment setup to fabricate chromium nanolines by depositing an atomic beam of 52 Cr through an off-resonant laser standing wave with the wavelength of 425.55 nm onto a silicon substrate. The resulting nanolines exhibit a period of 215 ± 3 nm with height of 1 nm.

  8. 光学相干断层扫描成像系统中消偏振分光膜的研制%Design and Fabrication of the Non-polarizing Beam Splitter Used in Optical Coherence Tomography Imaging System

    Institute of Scientific and Technical Information of China (English)

    陈童; 侯习平; 付秀华

    2015-01-01

    消偏振分束镜能够将光学相干断层扫描干涉成像系统中的信号光进行分束,是光学相干断层扫描成像系统中重要的组成器件。为了减小45度角入射时P光和S光造成的偏振分离,针对成像系统中分光棱镜的参数要求,选择Ti3O5、Al2O3和MgF2薄膜材料,借助Macleod膜系设计软件,结合Compact Design功能,运用Optimac和Needle Synthesis两种优化方法进行优化设计,选择电子束加热蒸发和离子源辅助沉积的方式镀制薄膜。根据实际镀膜结果,运用Independent Sensitivity功能对膜层敏感度进行分析,并采用Reverse Engineering模块进行逆向模拟分析,判断镀膜误差主要来源于不同监控波长的光控tooling值有细微的差距以及膜层的Final Swing值过大。通过改变不同监控波长的光控tooling值以及对敏感度较高的膜层进行重点监控,制备的消偏振分光膜经过测试,1310±50nm处P光平均透射比为51.47%,S光平均透射比为49.11%,偏振度为4.59%,满足成像系统的使用要求,并通过了环境测试。%Non-polarizing beam splitter is an important component which used in achieves optical coherence tomography Interference imaging system. It is able to split the light beam. In order to reduce the polarization separation between the P polarized light and the S polarized light in the incident angle of 45 degrees, analyses the parameters requirement in the beam splitter of imaging system,choose the Ti3O5,Al2O3 and MgF2 as the film materials,optimize the film de-sign by selecting the appropriate film materials and using Macleod coating design software. Choose electron beam heat-ing evaporation and ion assisted system for the thin film deposition. By using the function of independent sensitivity to analyses the layer sensitivities, and using the Reverse Engineer module simulate the coating result. Combined with the film sensitivities,analyze the causes of the monitoring error

  9. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  10. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  11. Simulation of dose deposition in heterogeneities in the human body, using the Penelope code for photons beams of energies of a linear accelerator; Simulacion de la deposicion de dosis en las heterogeneidades del cuerpo humano, usando el codigo Penelope para haces de fotones de energias de un acelerador lineal

    Energy Technology Data Exchange (ETDEWEB)

    Cardena R, A. R.; Vega R, J. L.; Apaza V, D. G., E-mail: cardroj@yahoo.es [Universidad Nacional de San Agustin, Av. Independencia s/n, Arequipa (Peru)

    2015-10-15

    The progress in cancer treatment systems in heterogeneities of human body has had obstacles by the lack of a suitable experimental model test. The only option is to develop simulated theoretical models that have the same properties in interfaces similar to human tissues, to know the radiation behavior in the interaction with these materials. In this paper we used the Monte Carlo method by Penelope code based solely on studies for the cancer treatment as well as for the calibration of beams and their various interactions in mannequins. This paper also aims the construction, simulation and characterization of an equivalent object to the tissues of the human body with various heterogeneities, we will later use to control and plan experientially doses supplied in treating tumors in radiotherapy. To fulfill the objective we study the ionizing radiation and the various processes occurring in the interaction with matter; understanding that to calculate the dose deposited in tissues interfaces (percentage depth dose) must be taken into consideration aspects such as the deposited energy, irradiation fields, density, thickness, tissue sensitivity and other items. (Author)

  12. Beam Scraping in the SPS for LHC Injection Efficiency and Robustness Studies

    CERN Document Server

    Letnes, Paul/LPA; Myrheim, Jan

    2008-01-01

    The Large Hadron Collider (LHC) at CERN will be the world's most powerful accelerator when it is commissioned in fall 2008. Operation of the LHC will require injection of very high intensity beams. Fast transverse beam scrapers have been installed in the Super Proton Synchrotron (SPS) injector to detect and, if necessary, remove transverse beam tails. This will help to both diagnose and prevent beam quenches in the LHC. Scraping of a high intensity beam at top energy can potentially damage the scraper jaws. This has been studied with Monte Carlo simulations to find energy deposition and limits for hardware damage. Loss maps from scraping have been generated both with machine studies and tracking simulations. Time dependent Beam Loss Monitor (BLM) measurements have shown several interesting details about the beam. An analytical model of time dependent losses is compared with beam measurements and demonstrates that beam scraping can be used to estimate the beam size. Energy deposition simulations also give the ...

  13. NONMETALS DEPOSITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111761 Chen Hua(115 Geological Party,Guizhou Bureau of Geology and Mineral Exploration & Development,Guiyang 551400,China);Deng Chao Analysis on the Metallogenic Environment of Maochang Bauxite in Guizhou Province(Guizhou Geology,ISSN1000-5943,CN52-1059/P,27(3),2010,p.198-201,2 illus.,1 table,8 refs.)Key words:bauxite deposit,Guizhou Province By long time physical and chemical process,the carbonate rock after Central Guizhou uplidft,becomes red clay,after further weathering,the red clay decomposed into the oxide,hydroxide of Al and Fe,in the dissolution hole and depression,it concentrates primary fragmentary tight and earthy karst bauxite ore.Because the variation of landform,it decomposes and cracks again,affords the material source

  14. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  15. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  16. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  17. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  18. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  19. Magnetic Force Microscopy Using Electron-Beam Fabricated Tips

    NARCIS (Netherlands)

    Rührig, M.; Porthun, S.; Lodder, J.C.

    1994-01-01

    We used a new concept of tip preparation for magnetic force microscopy (MFM) proposed recently based on coating electron beam deposited carbon needles with appropriate magnetic thin film materials. In combining the advantages of electron beam fabricated needles with those of already widely used thin

  20. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  1. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  2. Ion-assisted deposition of lanthanide trifluorides for VUV applications

    Science.gov (United States)

    Lingg, L. J.; Targove, J. D.; Lehan, J. P.; Macleod, H. A.

    1987-01-01

    The lanthanide trifluorides show promise as vacuum ultraviolet (VUV) coating materials. The optical properties of single-layer coatings vary with deposition temperature, and with ion-beam energy and current density. The optical constants, stoichiometry, durability, moisture adsorption, and crystallinity are studied for trifluoride films made under a variety of deposition conditions.

  3. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    OpenAIRE

    Kurosaki, T; Kawata, S.; Noguchi, K.; Koseki, S; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and s...

  4. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  5. Deposition of dielectric films on silicon using a fore-vacuum plasma electron source.

    Science.gov (United States)

    Zolotukhin, D B; Oks, E M; Tyunkov, A V; Yushkov, Yu G

    2016-06-01

    We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

  6. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  7. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  8. Beam Loss Detection at Radiation Source ELBE

    CERN Document Server

    Michel, P; Schurig, R; Langenhagen, H

    2003-01-01

    The Rossendorf superconducting Electron Linac of high Brilliance and low Emittance (ELBE) delivers an 40 MeV, 1 mA cw-beam for different applications such as bremsstrahlung production, electron channelling, free-electron lasers or secondary particle beam generation. In this energy region in case of collisions of the electron beam with the pipe nearly all beam power will be deposited into the pipe material. Therefore a reliable beam loss monitoring is essential for machine protection at ELBE. Different systems basing on photo multipliers, compton diodes and long ionization chambers were studied. The pros and cons of the different systems will be discussed. Ionization chambers based on air-isolated RF cables installed some cm away parallel to the beam line turned out to be the optimal solution. The beam shut-off threshold was adjusted to 1 μC integral charge loss during a 100 ms time interval. Due to the favourable geometry the monitor sensitivity varies less than ±50% along the beam line (di...

  9. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  10. Neutral beam dump with cathodic arc titanium gettering.

    Science.gov (United States)

    Smirnov, A; Krivenko, A S; Murakhtin, S V; Savkin, V Ya; Korepanov, S A; Putvinski, S

    2011-03-01

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 × 10(17) H∕(cm(2) s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is ∼0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  11. Radiation-hard Beam Position Detector for Use in the Accelerator Dump Lines

    CERN Document Server

    Degtiarenko, Pavel; Popov, Vladimir

    2005-01-01

    Proper transport of the electron beam with over 0.5MW of power to the beam dump is a prerequisite for operations at Jefferson Lab. Operations has relied on imaging the beam on a beam viewer located at the entrance to the beam dump. The large beam size at the dump entrance, due to beam scattering in the experimental target, sometimes results in no observable image on the view-screen. Chemical vapor deposited silicon carbide (CVD) material with its large thermal conductivity and high melting point is well suited for surviving the thermal effects of beam exposure with this power density. We are exploring the CVD properties and how it can be used as a robust beam position monitor. Results of some beam tests with 0.5MW beams will be presented.

  12. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  13. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    Science.gov (United States)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  14. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  15. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  16. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  17. Improved rate control for electron-beam evaporation and evaluation of optical performance improvements.

    Science.gov (United States)

    Gevelber, Michael; Xu, Bing; Smith, Douglas

    2006-03-01

    A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.

  18. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  19. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  20. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 12...

  1. Performance of the ATLAS Beam Diagnostic Systems

    CERN Document Server

    Macek, B; The ATLAS collaboration

    2010-01-01

    The beam diagnostic system of the ATLAS detector comprises two diamond sensor based devices. The innovative Beam Conditions Monitor (BCM) is aimed at resolving background from collision particles by sub-ns time-of-flight measurement. The Beam Loss Monitor (BLM) is a clone of the LHC machine BLM system, replacing ionization chambers with diamond sensors. BCM uses 16 1x1 cm2 0.5 mm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors arranged in 8 positions at a radius r ≈ 55 mm, ~1.9 m up- and down-stream the interaction point. Time measurements at 2.56 GHz sampling rate are performed to distinguish between collision and shower particles from beam incidents. A FPGA-based readout system performs real-time data analysis and interfaces the results to ATLAS and the LHC beam permit system. The diamond sensors, the detector modules and their readout system are described. Results of performance with LHC beams of increasing energy and intensity including timing separation of collisions from beam re...

  2. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  3. Surface modification using ionic liquid ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-15

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A{sup +}) or an anion (B{sup −}) was attached to an IL cluster (AB){sub n}, resulting in the formation of positive cluster ions (AB){sub n}A{sup +} or negative cluster ions (AB){sub n}B{sup −}, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF{sub 6} cluster ion beams.

  4. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process

    Science.gov (United States)

    Shim, Do-Sik; Baek, Gyeong-Yun; Seo, Jin-Seon; Shin, Gwang-Yong; Kim, Kee-Poong; Lee, Ki-Yong

    2016-12-01

    Direct energy deposition is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In laser-assisted metal deposition, the mechanical and metallurgical properties achieved are influenced by many factors. This paper addresses methods for selecting an appropriate layer thickness setting, which is an important parameter in layer-by-layer deposition manufacturing. A new procedure is proposed for determining the layer thickness setting for use in slicing of a part based on the single-layer height for a given depositing condition. This procedure was compared with a conventional method that uses an empirically determined layer thickness and with a feedback control method. The micro-hardness distribution, location of the melting pool, and microstructures of the deposited layers after deposition of a simple target shape were investigated for each procedure. The experimental results show that even though the feedback control method is the most effective method for obtaining the desired geometry, the deposited region was characterized by inhomogeneity of micro-hardness due to the time-variable depositing conditions involved. The largest dimensional error was associated with the conventional deposition procedure, which produced a rise in the melting zone due to over-deposition with respect to the slicing thickness, especially at the high laser power level considered. In contrast, the proposed procedure produced a stable melting zone position during deposition, which resulted in the deposited part having reasonable dimensional accuracy and uniform micro-hardness throughout the deposited region.

  5. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  6. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  7. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  8. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  9. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  10. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  11. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  12. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  13. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  14. Fast beam conditions monitor (BCM1F) for CMS

    CERN Document Server

    Hall-Wilton, Richard; Macpherson, Alick; Ryjov, Vladimir; Stone, Robert L; 10.1109/NSSMIC.2008.4775050

    2009-01-01

    The CMS Beam Conditions and Radiation Monitoring System (BRM) [1] is composed of different subsystems that perform monitoring of, as well as providing the CMS detector protection from, adverse beam conditions inside and around the CMS experiment. This paper presents the Fast Beam Conditions Monitoring subsystem (BCM1F), which is designed for fast flux monitoring based on bunch by bunch measurements of both beam halo and collision product contributions from the LHC beam. The BCM1F is located inside the CMS pixel detector volume close to the beam-pipe and provides real-time information. The detector uses sCVD (single-crystal Chemical Vapor Deposition) diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals.

  15. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  16. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  17. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  18. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  19. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  20. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  1. Electron Beam Ion Sources

    OpenAIRE

    Zschornacka, G.; Schmidt, M.; Thorn, A.

    2014-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviole...

  2. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  3. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  4. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  5. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  6. Cascadia Tsunami Deposit Database

    Science.gov (United States)

    Peters, Robert; Jaffe, Bruce; Gelfenbaum, Guy; Peterson, Curt

    2003-01-01

    The Cascadia Tsunami Deposit Database contains data on the location and sedimentological properties of tsunami deposits found along the Cascadia margin. Data have been compiled from 52 studies, documenting 59 sites from northern California to Vancouver Island, British Columbia that contain known or potential tsunami deposits. Bibliographical references are provided for all sites included in the database. Cascadia tsunami deposits are usually seen as anomalous sand layers in coastal marsh or lake sediments. The studies cited in the database use numerous criteria based on sedimentary characteristics to distinguish tsunami deposits from sand layers deposited by other processes, such as river flooding and storm surges. Several studies cited in the database contain evidence for more than one tsunami at a site. Data categories include age, thickness, layering, grainsize, and other sedimentological characteristics of Cascadia tsunami deposits. The database documents the variability observed in tsunami deposits found along the Cascadia margin.

  7. Halo formation from mismatched beam-beam interactions

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2003-05-23

    In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.

  8. Laser energy deposition and its dynamic uniformity for direct-drive capsules

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Wu, SiZhong; Zheng, WuDi [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-04-15

    The total laser energy deposition of multi-laser-beam irradiation is not only associated with the dynamic behavior of capsule but also the time-dependent angular distribution of the energy deposition of each beam around its axis. The dynamic behavior of laser energy deposition does not linearly respond to the dynamic behavior of laser irradiation. The laser energy deposition uniformity determines the symmetry of implosion. The dynamic behavior of laser energy deposition non-uniformity in OMEGA for laser with square beam shape intensity profile is investigated. In the case of smaller laser spot, the initial non-uniformity caused by laser beam overlap is very high. The shell asymmetry caused by the high initial laser irradiation non-uniformity is estimated by the extent of distortion of shock front which is not as severe as expected before the shock driven by main pulse arrives. This suggests that the large initial non-uniformity due to smaller laser spot is one of the elements that seed disturbance before the main pulse. The rms of laser energy deposition during the main pulse remains above 2%. Since the intensity of main driving pulse usually is several times higher than that of picket pulses, the non-uniformity in main pulse period may jeopardize the symmetrical implosion. When dynamic behavior of capsule is considered, the influence of beam pointing error, the target positioning error, and beam-to-beam power unbalance is quite different for the case of static capsule.

  9. Laser-Focused Atomic Deposition for Nanascale Grating

    Institute of Scientific and Technical Information of China (English)

    MA Yan; LI Tong-Bao; WU Wen; XIAO Yi-Li; ZHANG Ping-Ping; GONG Wei-Gang

    2011-01-01

    Laser-focused atomic deposition is a technique with which nearly resonant light is used to pattern an atom beam.To solve the problem that the result of laser-cooled atoms cannot be monitored during the 30-rmin depositing time,we present a three-hole mechanically precollimated aperture apparatus.A 425 nm laser light standing wave is used to focus a beam of chromium atoms to fabricate the nanoscale grating. The period of the grating is 213(+-)0.1 nm,the height is 4nm and the full width at half miximum is 64(+-)6nm.

  10. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  11. Hemocompatibility of DLC coatings synthesized by ion beam assisted deposition

    Institute of Scientific and Technical Information of China (English)

    LI; Dejun

    2001-01-01

    [1]Gallagher, J. J., Simpson, J. A., Search for trapped electrons and a magnetic moment at Mars by Mariner IV, Science, 1965, 149: 1233—1239.[2]Russell, C. T., The magnetic field of Mars: Mars 3 evidence reexamined, Geophys. Res. Lett., 1978, 5: 81—86.[3]Riedler, W., Schwingenschun, K., Lichtenegger, H. et al., Interaction of solar wind with the planet Mars: Phobos 2 magnetic field observations, Planet. Space Sci., 1991, 39: 75—81.[4]Gringauz, K. I., What was known about the Martian magnetosphere before Phobos-2 mission, Planet. Space Sci., 1991, 39: 73—74.[5]Acuna, M. H., Connerney, J. E. P., Wasilewski, P. et al., Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission, Science, 1998, 279: 1676—1680.[6]Mohlmann, D., Riedler. W., Rustenbuch, J. et al., The question of an internal Martian magnetic field, Planet. Space Sci., 1991, 39: 83—88.[7]Shi, J. K., Liu, Z. X., Zhang, T. L., A theoretical study on the O+ ions of the Martian magnetosphere, Chin Astron Astrophys., 1999, 23: 377—383.[8]Rosenbauer, H., Shutte, N., Apathy, I. et al., Ions of Martian origin and plasma sheet in the Martian magnetotail: Initial results of TAUS experiment, Nature, 1989, 341: 612—614.[9]Lundin, R., Zakharov, A., Pelinen, R. et al., ASPERA/Phobos measurements of the ion outflow from the Martian ionosphere, Geophy. Res. Lett., 1990, 17: 873—876.[10]Verigin, M. I., Shutte, N. M., Galeev, A. A. et al., Ions of planetary origin in the Martian magnetosphere (Phobos 2 / TAUS experiment), Planet. Space Sci., 1991, 39: 131—137.[11]Lundin, R., Zakharov, A., Pelinen, R. et al., First measurements of the ionospheric plasma escape from Mars, Nature, 1989, 341: 609—612.[12]Lammer, H., Bauer, S. J., Nonthermal atmospheric escape from Mars and Titan, J. Geophys. Res., 1991, 96: 1819—1826.[13]Haider, S. A., O+ escape in the polar ion exosphere of Mars, Adv. Space Res., 1995, 16: 49—55.[14]Shi. J. K., Liu, Z. X., Zhang, T. L. et al., The influence of the intrinsic magnetic field on the distribution of O+ in Martian magnetosphere, Chinese Science Bulletin (in Chinese), 1997, 42(23): 1898—1901.[15]Luhmann, J. G., Brace, L. H., Near-Mars space, Rev. Geophys., 1991, 29: 121—140.[16]Luhmann, J. G., Schwingenschuh, K., A model of the magnetic ion environment of Mars, J. Geophys. Res., 1990, 95: 939—945.[17]Slavin, J. A., Schwingenschuh, K., Reidler, W. et al., The solar wind interaction with Mars: Mariner-4, Mars-2,3,5, and Phobos-2 observation of bow shock position and shape, J. Geophys. Res., 1991, 96: 11235—11241.[18]Eviater, A., Lencheek, A. M., Singer, S. F., Distribution of density in an ion-exosphere of a nonrotating planet, Phys. Fluids, 1964, 7: 1775—1779.

  12. In Situ Studies of Energy Deposition by Ion Beams.

    Science.gov (United States)

    1985-06-14

    shift (anout t dB) over th, temperature range of -50 Celciuc to +Q0 -n rIs. Usi-- a somewhat different technique to measure attenuation Tharpe ir...implantation time. The low dose rate implantation time was about 50 tim -,es that of the high dose rate implantation (Fig. 6). Becaus;e of ’he lack of

  13. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  14. The effects of injection beam parameters and foil scattering for CSNS/RCS

    CERN Document Server

    Huang, Ming-Yang; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2012-01-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill large ring acceptance with the linac beam of small emittance. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS) of CSNS. The injection processes for different momentum spread, rms emittance of the injection beam, injection beam matching were simulated, then the beam losses, 99% and rms emittances were obtained and the optimized ranges of injection beam parameters were given. The interaction between the H- beam and the stripping foil was studied and the foil scattering was simulated. Then, the stripping efficiency was calculated and the suitable thickness of the stripping foil was obtained. The energy deposition on the foil and the beam losses due to the foil scattering were also studied.

  15. ION BEAM TECHNOLOGY IN MATERIALS SCIENCE

    Directory of Open Access Journals (Sweden)

    M.B. Dutt

    2009-07-01

    Full Text Available Ion beam processing of materials in general and semiconductors in particular, started with ion implantation in semiconductors; first used by Ohl at Bell Labs in 1952 toimprove the electrical characteristics of silicon point contact diodes by implanting H, He, N and Ar ions.The improvement was obvious but it was caused by surface damage and notthe ion implantation. However, in the process, ion implantation had an entry and slowly it became popular among the scientists and the technocrats. Thus, over the last six decades, demands continued for new and improved materials and devices that has pushed ion implanter to expand to ion beam technology. In the semiconductor industry alone, the processes have evolved so much so that in today’s world, there are morethan 4000 ion implanters in the IC fab lines apart from otherion beam-assisted processing machines. Ion beam deposition techniques, ion beam lithography, ion beam etching, ion beammilling are all ion beam beam-assisted techniques that arebeing extensively used in semiconductor industries. In this backdrop, it was thought that a compilation of uses of allthese techniques together with relevant tools of analysis toserve as a guide to the semiconductor scientists and technologists for a glimpse of the ongoing efforts being madein this direction. Fortunately enough, Indian research is not lagging in use of all these modern day technologies that will be evident as the reader will go from one article to the other of this special volume.Defence Science Journal, 2009, 59(4, pp.328-328, DOI:http://dx.doi.org/10.14429/dsj.59.1530

  16. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  17. Continuous wave infrared laser deposition of organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yaginuma, Seiichiro [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Yamaguchi, Jun [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Haemori, Masamitsu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Itaka, Kenji [Department of Advanced Materials Science, Graduate School of Frontier Sciences, Univesity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan); Matsumoto, Yuji [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Kondo, Michio [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503 (Japan); Koinuma, Hideomi [Department of Advanced Materials Science, Graduate School of Frontier Sciences, Univesity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)

    2007-04-15

    We developed a continuous-wave infrared laser molecular beam epitaxy (CW-IR-LMBE) optimized for the fabrication of organic semiconductor films. The crystal quality of these organic thin films deposited by CW-IR-LMBE was substantially the same as those deposited by thermal evaporation. Due to the possibility of quick switching of evaporation sources, CW-IR-LMBE is especially advantageous for rapid screening of composition, thickness, and fabrication parameters in materials and device optimization based on combinatorial technology.

  18. A closed loop controller for electron-beam evaporators

    Science.gov (United States)

    Band, Alan; Stroscio, Joseph A.

    1996-06-01

    A simple instrument for automatically controlling the deposition rate of an electron-beam evaporator is described. The design incorporates a commercially available, microprocessor based, proportional-integral-differential process controller that provides loop control and automatic determination of optimal proportional, integral, and differential loop constants. A logarithmic amplifier is used to linearize the overall loop response. The controller is used in conjunction with a compact electron-beam heated evaporator.

  19. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  20. Biomimetic thin film deposition

    Science.gov (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  1. Molecule-by-Molecule Writing Using a Focused Electron Beam

    DEFF Research Database (Denmark)

    Van Dorp, Willem F.; Zhang, Xiaoyan; Feringa, Ben L.;

    2012-01-01

    on graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated...... atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor...

  2. Bauxite Deposits in China

    Institute of Scientific and Technical Information of China (English)

    杨化洲

    1989-01-01

    Bauxite deposits in China,rangin in age from Late Paleozoic to Cenozoic ,are distributed mainly in Shanxi,Shandong Henan,Guizhou,Guangxi and Yunnan.Based on stratigraphic relations they can be clas-sified as 6 types:inter-system marine,inter-system continental,intra-system marine,intra-system continent-tal,weathering lateritic and weathering accumulation types.But in terms of depositional environments,only four types are distinguished,I.e.the marine deposits,continental deposits,lateritic deposits and weath-ering-accumulation deposits.These deposits have been formed in two steps:firstly,the depression of paraplatform or front basin margins in paleocontinents and secondly,the development of littoral-lagoons on the eroded surface of karstified carbonate bedrocks.The aluminum may have been derived from the carbonate rocks with which the ores are associated,or from adjacent aluminosilicate rocks.

  3. Reactive sputtering deposition of SiO2 thin films

    Directory of Open Access Journals (Sweden)

    IVAN RADOVIC

    2008-01-01

    Full Text Available SiO2 layers were deposited in a UHV chamber by 1 keV Ar+ ion sputtering from a high purity silicon target, using different values of the oxygen partial pressure (5×10-6–2×10-4 mbar and of the ion beam current on the target (1.67–6.85 mA. The argon partial pressure during operation of the ion gun was 1×10-3 mbar. The substrate temperature was held at 550 °C and the films were deposited to a thickness of 12.5–150 nm, at a rate from 0.0018–0.035 nm s-1. Structural characterization of the deposited thin films was performed by Rutherford backscattering spectrometry (RBS analysis. Reactive sputtering was proved to be efficient for the deposition of silica at 550 °C, an oxygen partial pressure of 2×10-4 mbar (ion beam current on the target of 5 mA or, at a lower deposition rate, ion beam current of 1.67 mA and an oxygen partial pressure of 6×10-5 mbar. One aspect of these investigations was to study the consumption of oxygen from the gas cylinder, which was found to be lower for higher deposition rates.

  4. Modeling the work piece charging during e-beam lithography

    Science.gov (United States)

    Alles, Benjamin; Cotte, Eric; Simeon, Bernd; Wandel, Timo

    2008-03-01

    Nowadays, high end photomasks are usually patterned with electron beam writers since they provide a superior resolution. However, placement accuracy is severely limited by the so-called charging effect: Each shot with the electron beam deposits charges inside the mask blank which deflect the electrons in the subsequent shots and therefore cause placement errors. In this paper, a model is proposed which allows to establish a prediction of the deflection of the beam and thus provide a method for improving pattern placement for photomasks.

  5. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  6. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  7. Hyperon beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, P.S.

    1996-03-01

    This report reviews the present status and recent results in hyperon physics concentrating on results from high energy hyperon beam experiments performed at Fermilab over the past several years. The report focuses on hyperon production polarization, precision hyperon magnetic moment measurements and radiative decay studies. Modern charged hyperon beam experiments are characterized by {approx}100m long apparatus and hyperon beams with {gamma}{sub Y}{approx}100 and hyperon fluxes in the 1-100 kHz range.

  8. Chilled beam application guidebook

    CERN Document Server

    Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

    2007-01-01

    Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

  9. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  10. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    Science.gov (United States)

    Kurennoy, Sergey

    2002-04-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two transversely separated beams in a common beam pipe in the splitter sections imposes certain requirements on beam diagnostics for these sections. We explore a two-beam system in a generic beam monitor and study the feasibility of resolving the transverse positions of the two beams with one diagnostics device. Effects of unequal beam currents and of finite transverse sizes of the beams are explored analytically for both the ultra relativistic case and the long-wavelength limit.

  11. Lithium ion beam driven hohlraums for PBFA II

    Energy Technology Data Exchange (ETDEWEB)

    Dukart, R.J.

    1994-05-06

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities.

  12. Medical beam monitor—Pre-clinical evaluation and future applications

    CERN Document Server

    Frais-Kölbl, H; Schreiner, T; Georg, D; Pernegger, H

    2007-01-01

    Future medical ion beam applications for cancer therapy which are based on scanning technology will require advanced beam diagnostics equipment. For a precise analysis of beam parameters we want to resolve time structures in the range of microseconds to nanoseconds. A prototype of an advanced beam monitor was developed by the University of Applied Sciences Wiener Neustadt and its research subsidiary Fotec in co-operation with CERN RD42, Ohio State University and the Jožef Stefan Institute in Ljubljana. The detector is based on polycrystalline Chemical Vapor Deposition (pCVD) diamond substrates and is equipped with readout electronics up to 2 GHz analog bandwidth. In this paper we present the design of the pCVD-detector system and results of tests performed in various particle accelerator based facilities. Measurements performed in clinical high energy photon beams agreed within 1.2% with results obtained by standard ionization chambers.

  13. Uncoupled thermoelasticity solutions applied on beam dumps

    Science.gov (United States)

    Ouzia, A.; Antonakakis, T.

    2016-06-01

    In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at energies of the order of TeV. In the event of a system failure or following collisions, the beam needs to be safely absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition. These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can be analytically modeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere. The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions, which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the potential formulation where the shear potential is assumed to be nil due to the source being a gradient and the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the compressive potential and optimized using standard analytical optimization methods. An alternative algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a case study concerning the proton synchrotron booster dump is presented where the aforementioned analytical solutions are used and the preceding assumptions

  14. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  15. ALFA beam halo

    CERN Document Server

    Komarek, Tomas

    2014-01-01

    This note serves as a final report about CERN Summer Student Programme 2014 project. The beam halo is an undesired phenomenon for physics analyses on particle accelerators. It surrounds the beam core and constitutes an important part of background for signal measurements on some detectors, eg. in the forward region. In this study, the data from the ALFA detector were used, specifically from the run 191373 ($\\beta^*=90\\unit{m}$) and the run 213268 ($\\beta^*=1\\unit{km}$). Using the ROOT framework, a software for beam halo events selection was created and beam halo properties were examined. In the run 213268, excessive beam halo is suspected to be the reason for multiple beam scrapings that occurred. A kinematic reconstruction of beam halo particles is attempted in order to understand beam halo properties in the interaction point. Some further simulations are employed to find constraints for beam halo particles in order to survive in the accelerator for a longer time/many revolutions. This work represents a st...

  16. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  17. (Pulsed electron beam precharger)

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  18. Iridium wire grid polarizer fabricated using atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Knez Mato

    2011-01-01

    Full Text Available Abstract In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  19. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  20. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  1. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  2. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  3. Effect of Substrate Temperature on Structure and Optical Properties of ZnS Thin Films Deposited by Electron-Beam Evaporation%衬底温度对电子束蒸发ZnS薄膜结构和光学特性的影响

    Institute of Scientific and Technical Information of China (English)

    付蕊; 化麒麟; 涂洁磊

    2013-01-01

    采用电子束蒸发法在不同衬底温度下,150℃、200℃、250℃和300℃,制备了ZnS薄膜;用X射线衍射仪、原子力显微镜、膜厚仪和紫外-可见光-近红外分光光度计分别表征ZnS薄膜的晶体结构、表面形貌和光学特性;并分析了不同衬底温度对薄膜的结构和光学特性的影响.结果表明:在硅衬底上制备的ZnS都为多晶薄膜,具有闪锌矿β-ZnS结构;随衬底温度升高呈(111)晶面高度择优取向,平均晶粒尺寸有所增大,内应力、位错密度、折射率和吸收系数有所减小,禁带宽度随之增大;衬底温度为300℃时制备的薄膜表面均匀致密,呈现较优的结构和光学性能.%ZnS thin films have been deposited on silicon substrates by electron-beam evaporation technique at different substrate temperatures.The crystal structure,surface morphology and optical properties of ZnS films were characterized by X-ray diffractometer (XRD),atomic force microscope (AFM),optical spectrophotometer and thickness gauge.The effects of substrate temperature on structure and optical properties of films were investigated.The results showed that the films grown at these temperatures exhibited zinc blende structure (β-ZnS).As the of substrate temperature increasing,the films were highly (111) preferred orientation,and grain size increased.In addition,intrinsic stress,dislocation density,refractive index and absorption coefficient decreased as substrate temperature increasing,while optical band gap increased.The surface morphology of ZnS thin film at 300 ℃ was uniform and compact,presenting the better structural and optical properties.

  4. ElectroSpark Deposition

    Science.gov (United States)

    2007-01-25

    ElectroSpark Deposition Hard Chrome Alternatives Team Joint Cadmium Alternatives Team Canadian Hard Chrome Alternatives Team Joint Group on Pollution...00-2007 to 00-00-2007 4. TITLE AND SUBTITLE ElectroSpark Deposition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Processes, Inc. ElectroSpark Deposition (ESD) Results of Materials Testing and Technology Insertion January 25, 2007 Advanced Surfaces And Processes, Inc. 3

  5. Three-dimensional defects in CdTe films obtained by pulsed laser deposition

    NARCIS (Netherlands)

    Sagan, P; Virt, IS; Zawislak, J; Rudyj, IO; Kuzma, M

    2004-01-01

    The quality of Cd chalcodenides epitaxial films can be enhanced seriously by applying a pulsed (electron beam or laser beam) method for ablation of targets. The structure of laser deposited CdTe layers was investigated by transmission high energy electron diffraction. This method is very useful for

  6. Epitaxial growth with pulsed deposition: Submonolayer scaling and Villain instability

    DEFF Research Database (Denmark)

    Hinnemann, Berit; Hinrichsen, H.; Wolf, D.E.

    2003-01-01

    It has been observed experimentally that under certain conditions, pulsed laser deposition (PLD) produces smoother surfaces than ordinary molecular beam epitaxy (MBE). So far, the mechanism leading to the improved quality of surfaces in PLD is not yet fully understood. In the present work, we...

  7. Resolving Two Beams in Beam Splitters with a Beam Position Monitor

    CERN Document Server

    Kurennoy, S S

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters [1]. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device.

  8. Effect of phonon-plasmon and surface plasmon polaritons on photoluminescence in quantum emitter and graphene deposited on polar crystals

    Science.gov (United States)

    Singh, Mahi R.; Brzozowski, Marek J.; Apter, Boris

    2016-09-01

    We investigate the light-matter interaction in a quantum emitter and metallic graphene flake (MGF) hybrid system deposited on a polar material. The coupling of surface plasmons in graphene and optical phonons in the polar material produces phonon-plasmon polaritons (PPPs). Similarly, couplings of photons with surface plasmons of graphene produce surface-plasmon polaritons (SPPs). Using the second quantized formulation for SPPs and PPPs interactions and density matrix method, we have calculated photoluminescence of the quantum emitters. It is found that when the exciton energy of the quantum emitter is in resonant with SPP and PPP energies, the photoluminescence in the quantum emitter are enhanced in the terahertz range. The enhancement is due to the transfer of SPP and PPP energies from the graphene flake to the quantum emitter. The energy transfer from graphene to the quantum emitter can be controlled by applying external pump lasers or stress and strain fields. These are interesting findings which can be used to fabricate switches and sensors.

  9. Effects of injection beam parameters and foil scattering for CSNS/RCS

    Science.gov (United States)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  10. Implementation of depolarization due to beam-beam effects in the beam-beam interaction simulation tool GUINEA-PIG++

    Science.gov (United States)

    Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.

    2009-12-01

    Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.

  11. PIXE analysis of nephrite minerals from different deposits

    Science.gov (United States)

    Zhang, Z. W.; Gan, F. X.; Cheng, H. S.

    2011-02-01

    External-beam PIXE was used to determine the major, minor and trace elements of 45 nephrite minerals from 14 different deposits, including China and other countries. Depending on the R∗ value (mole percent of Mg 2+/(Mg 2+ + Fe 2+(3+))) and content of Cr, Co and Ni, two types of nephrite minerals from dolomite and serpentinized ultramafic deposits can be more accurately distinguished. Besides, the nephrite minerals from Xiaomeiling and Wenchuan deposit can be distinguished with others from dolomite deposits, through the content of Sr and Mn/Fe value, respectively. Moreover, depending on the Sr content, clear evidence was given to prove that the raw materials of ancient nephrite artifacts from Liangzhu culture ruins are not from Xiaomeiling nephrite deposit. Furthermore, PIXE as a non-destructive method will be more used to study ancient nephrite artifacts, so these results can provide scientific basis for seeking the provenance of nephrite raw materials.

  12. PIXE analysis of nephrite minerals from different deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.W., E-mail: zwzhang@siom.ac.c [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Gan, F.X. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Information Science and Engineering, Fudan University, Shanghai 20043 (China); Cheng, H.S. [Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2011-02-15

    External-beam PIXE was used to determine the major, minor and trace elements of 45 nephrite minerals from 14 different deposits, including China and other countries. Depending on the R* value (mole percent of Mg{sup 2+}/(Mg{sup 2+} + Fe{sup 2+(3+)})) and content of Cr, Co and Ni, two types of nephrite minerals from dolomite and serpentinized ultramafic deposits can be more accurately distinguished. Besides, the nephrite minerals from Xiaomeiling and Wenchuan deposit can be distinguished with others from dolomite deposits, through the content of Sr and Mn/Fe value, respectively. Moreover, depending on the Sr content, clear evidence was given to prove that the raw materials of ancient nephrite artifacts from Liangzhu culture ruins are not from Xiaomeiling nephrite deposit. Furthermore, PIXE as a non-destructive method will be more used to study ancient nephrite artifacts, so these results can provide scientific basis for seeking the provenance of nephrite raw materials.

  13. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  14. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  15. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  16. ATLAS One of the first Heavy ions collisions with stable beams- Event Display - November 2015

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    One of the first heavy ions collisions with stable beams recorded by ATLAS in November 2015. Tracks reconstructed from hits in the inner tracking detector are shown as orange arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the Liquid Argon and Scintillating Tile calorimeters respectively. The beam pipe and the inner detectors are also shown.

  17. Entangled vector vortex beams

    Science.gov (United States)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  18. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  19. Muon Beam at the Fermilab Test Beam Area

    CERN Document Server

    Denisov, Dmitri; Lukić, Strahinja; Ujić, Predrag

    2016-01-01

    The intensities and profiles of the muon beam behind the beam dump of the Fermilab test beam area when the facility is running in the "pion" beam mode are measured and summarized in this note. This muon beam with momenta in the range 10 - 50 GeV/c provides an opportunity to perform various measurements in parallel with other users of the test beam area.

  20. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  1. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  2. Alfven eigenmode structure during off-axis neutral beam injection

    NARCIS (Netherlands)

    Tobias, B.; Bass, E. M.; Classen, I.G.J.; Domier, C.W.; Grierson, B. A.; Heidbrink, W. W.; N C Luhmann Jr.,; Nazikian, R.; Park, H. K.; Spong, D. A.; VanZeeland, M. A.

    2012-01-01

    The spatial structure of Alfven eigenmodes on the DIII-D tokamak is compared for contrasting fast ion deposition profiles resulting from on- and off-axis neutral beam injection (NBI). In both cases, poloidal mode rotation and eigenmode twist, or radial phase variation, are correlated with the direct

  3. Focused ion beam milling of photonic crystals in bulk silicon

    NARCIS (Netherlands)

    Hu, Wenbin; Ridder, de René M.; Tong, Xing-Lin

    2009-01-01

    Focused ion beam (FIB) direct milling was used to fabricate photonic crystals in bulk silicon. The milling requires the sidewalls as nearly perpendicular to the slab as possible and the top profile of the holes to be smooth. The re-deposition of milled material exaggerates the hole profiles. The eff

  4. The multilayer Fe/Hf studied with slow positron beam

    Science.gov (United States)

    Murashige, Y.; Tashiro, M.; Nakajyo, T.; Koizumi, T.; Kanazawa, I.; Komori, F.; Ito, Y.

    1997-04-01

    The positron annihilation parameter versus the incident positron energy is measured in the thin Fe films and the Fe/Hf bilayer on silica substrate, by means of the variable energetic slow-positron beam technique. We have analyzed the change in open-volume spaces and vacancy-type defects among the Fe microcrystals in these thin films with the deposition temperature.

  5. Monte Carlo simulation of electron beam air plasma characteristics

    Institute of Scientific and Technical Information of China (English)

    Deng Yong-Feng; Han Xian-Wei; Tan Chang

    2009-01-01

    A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.

  6. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  7. Solid on liquid deposition

    Energy Technology Data Exchange (ETDEWEB)

    Charmet, J., E-mail: jerome.charmet@he-arc.c [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Banakh, O.; Laux, E.; Graf, B.; Dias, F.; Dunand, A.; Keppner, H. [Institut des Microtechnologies Appliquees ARC, HES-SO Arc, Eplatures-Grise 17, 2300 La Chaux-de-Fonds (Switzerland); Gorodyska, G.; Textor, M. [BioInterface group, ETHZ, Wolfgang-Pauli-Strasse 10, ETH Hoenggerberg HCI H 525 8093 Zuerich (Switzerland); Noell, W.; Rooij, N.F. de [Ecole Polytechnique Federale de Lausanne, Institute of Microengineering, Sensors, Actuators and Microsystems laboratory, Rue Jaquet Droz 1, 2000 Neuchatel (Switzerland); Neels, A.; Dadras, M.; Dommann, A.; Knapp, H. [Centre Suisse d' Electronique et de Microtechnique SA, Rue Jacquet-Droz 1, 2002 Neuchatel (Switzerland); Borter, Ch.; Benkhaira, M. [COMELEC SA, Rue de la Paix 129, 2300 La Chaux-de-Fonds (Switzerland)

    2010-07-01

    A process for the deposition of a solid layer onto a liquid is presented. The polymer poly-di-chloro-para-xylylene, also known as Parylene C, was grown on low vapour pressure liquids using the conventional low pressure chemical vapour deposition process. A reactor was built and a process developed to enable the deposition of Parylene C at atmospheric pressure over high vapour pressure liquids. It was used to deposit Parylene C over water among others. In all cases Parylene C encapsulated the liquid without influencing its initial shape. The results presented here show also that the Parylene C properties are not affected by its growth on liquid templates and the roughness of the Parylene C surface in contact with the liquid during the deposition is extremely low.

  8. Optical properties and residual stress of YbF3 thin films deposited at different temperatures.

    Science.gov (United States)

    Wang, Ying; Zhang, Yue-guang; Chen, Wei-lan; Shen, Wei-dong; Liu, Xu; Gu, Pei-fu

    2008-05-01

    The influence of deposition temperature on the optical properties, microstructure, and residual stress of YbF(3) films, deposited by electron-beam evaporation, has been investigated. The increased refractive indices and surface roughness of YbF(3) films indicate that the film density and columnar structure size increase with deposition temperature. At the same time, higher packing density reduces absorption of moisture. The residual stress is related to deposition temperature and to substrate. For the samples deposited on BK7, the residual stress mainly comes from intrinsic stress, however, for those on fused silica, thermal stress is the dominant factor of total residual stress.

  9. Multi-Beam Optical Tweezers

    OpenAIRE

    Glückstad, Jesper; Eriksen, Rene Lynge; Hanson, Steen Grüner

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of ...

  10. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  11. Kinetic description of electron beams in the solar chromosphere

    Science.gov (United States)

    Gomez, Daniel O.; Mauas, Pablo J.

    1992-01-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate.

  12. Kinetic description of electron beams in the solar chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, D.O.; Mauas, P.J. (Hawaii Univ., Honolulu (United States) Arcetri Osservatorio Astrofisico, Florence (Italy))

    1992-10-01

    We formulate the relativistic Fokker-Plank equation for a beam of accelerated electrons interacting with a partially ionized plasma. In our derivation we conserved those terms contributing to velocity diffusion and found that this effect cannot be neglected a priori. We compute the terms accounting for elastic and inelastic collisions with neutral hydrogen and helium. Collisions with neutral hydrogen are found to be dominant throughout the chromosphere, except at the uppermost layers close to the transition region. As an application, we compute the loss of energy and momentum for a power-law beam impinging on the solar chromosphere, for a particular case in which the Fokker-Planck equation can be integrated analytically. We find that most of the beam energy is deposited in a relatively thin region of the chromosphere, a result which is largely insensitive to the theoretical method employed to compute the energy deposition rate. 26 refs.

  13. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  14. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Van Dorp, W.F.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.

    2010-01-01

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in t

  15. Electron beam joining of structural ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.

    1995-04-01

    Feasibility of ceramic joining using a high energy (10 MeV) electron beam. The experiments used refractory metals as bonding materials in buried interfaces between Si{sub 3}N{sub 4} pieces. Because the heat capacity of the metal bonding layer is much lower than the ceramic, the metal reaches much higher temperatures than the adjoining ceramic. Using the right combination of beam parameters allows the metal to be melted without causing the adjoining ceramics to melt or decompose. Beam energy deposition and thermal simulations were performed to guide the experiments. Joints were shear tested and interfaces between the metal and the ceramic were examined to identify the bonding mechanism. Specimens joined by electron beams were compared to specimens produced by hot-pressing. Similar reactions occurred using both processes. Reactions between the metal and ceramic produced silicides that bond the metal to the ceramic. The molybdenum silicide reaction products appeared to be more brittle than the platinum silicides. Si{sub 3}N{sub 4} was also joined to Si{sub 3} N{sub 4} directly. The bonding appears to have been produced by the flow of intergranular glass into the interface. Shear strength was similar to the metal bonded specimens. Bend specimens Of Si{sub 3}N{sub 4} were exposed to electron beams with similar parameters to those used in joining experiments to determine how beam exposure degrades the strength. Damage was macroscopic in nature with craters being tonned by material ablation, and cracking occurring due to excessive thermal stresses. Si was also observed on the surface indicating the Si{sub 3}N{sub 4} was decomposing. Bend strength after exposure was 62% of the asreceived strength. No obvious microstructural differences were observed in the material close to the damaged region compared to material in regions far away from the damage.

  16. Ion sputtered deposit analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, T.R.; Kraus, B.; Swann, P.R. (GATAN, Inc., Warrendale, PA (USA))

    1983-12-15

    The collected deposit formed by sputtering a specimen provides a permanent record of the elemental surface composition. For analysis by X-rays or energy loss in a transmission electron microscope, all the sputtered particles (both ions and neutrals) are collected on a carbon or SiO thin film. Surface analysis can be obtained by exposing different areas of the specimen to the ion beam. Information available in the angular distributions of sputtered particles is retained on the thin film substrate. Depth profiling can be performed by the sequential exposure of different areas of the thin film substrate to the sputtered specimen particles. Examples from stainless steels and silicon compounds are given. The advantage of this ion sputtered deposit analysis (ISDA) technique, apart from its collection efficiency, is its ability to store permanently all the elemental information obtained from a particular experiment. This information can then be processed in a parallel or serial fashion at any time after the sputtering experiment.

  17. Multi-Beam Optical Tweezers

    DEFF Research Database (Denmark)

    2003-01-01

    A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having an individually controlled polarization whereby the position and/or angular...... orientation of a plurality of micro-objects may be individually controlled.A set of multi-beam electromagnetic tweezers is provided comprising a multi-beam generator for emission of a plurality of electromagnetic beams, at least some of the electromagnetic beams intersecting each other, or, having...

  18. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  19. The cluster beam route to model catalysts and beyond.

    Science.gov (United States)

    Ellis, Peter R; Brown, Christopher M; Bishop, Peter T; Yin, Jinlong; Cooke, Kevin; Terry, William D; Liu, Jian; Yin, Feng; Palmer, Richard E

    2016-07-01

    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods.

  20. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  1. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  2. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  3. Relativistic Pair Beams from TeV Blazars: A Source of Reprocessed GeV Emission rather than IGM Heating

    CERN Document Server

    Sironi, Lorenzo

    2013-01-01

    The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the non-linear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors gamma_b>>1 and beam-to-plasma density ratios alpha 0.2 (as typically expected for blazar-induced beams), the fraction of beam energy deposited into the IGM is much smaller than ~10%. It follows that at least ~90% of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the Cosmic Microwave Background by the beam pairs.

  4. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  5. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  6. Effects of aberration on paraxial wave beams: beam tracing versus quasi-optical solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maj, O [Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau (Germany); Balakin, A A [Institute of Applied Physics RAS, Nizhny Novgorod (Russian Federation); Poli, E, E-mail: omaj@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, Garching bei Muenchen (Germany)

    2010-08-15

    This paper aims to clarify the role of aberration effects on the propagation and absorption of wave beams in inhomogeneous dispersive and dissipative media. We consider models in which aberration effects can be caused by the presence of either caustics or spatially dispersive absorption, with reference to the propagation near a cut-off or to the electron-cyclotron (EC) resonance, respectively. For such models, the standard beam tracing description of paraxial wave beams and the recently proposed quasi-optical method, which accounts for aberration, are compared and verified on the basis of the analytical exact solutions. We find that the presence of a cut-off implies no significant aberration of the beam, while significant aberration is found when dispersive absorption is so strong that different wavenumbers in the beam spectrum are damped at different locations. This phenomenon is well described by the quasi-optical method. Finally, an extrapolation of this simple two-dimensional model to the case of the ITER upper EC port is addressed with the result that the broadening of the power deposition profiles never exceeds 10%.

  7. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  8. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  9. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Esophageal Cancer Treatment Head and Neck Cancer Treatment Lung Cancer Treatment Prostate Cancer Treatment Brain Tumor Treatment Why is ... Radiation Oncology) Breast Cancer Treatment Esophageal Cancer Treatment Lung Cancer Treatment Images related to External Beam Therapy (EBT) Sponsored ...

  10. HIRENASD Beam FEM

    Data.gov (United States)

    National Aeronautics and Space Administration — This contains attempts to create BEAM FEM model. I have started a Blog to discuss this... please put your comments there and I will attempt to keep everything...

  11. Pulsed electron beam precharger

    Energy Technology Data Exchange (ETDEWEB)

    Finney, W.C. (ed.); Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  12. 氧分压对动态离子束辅助沉积合成的氧化钛膜的影响%Effect of O2 pressure on the synthesis of titanium oxide film by ion beam enhanced deposition

    Institute of Scientific and Technical Information of China (English)

    王向晖; 张峰; 李昌荣; 郑志宏; 陈莉芝; 王惠民; 柳襄怀

    2001-01-01

    采用离子束增强沉积的方法,改变氧分压,在硅基体表面制备出了不同组分及不同取向的氧化钛薄膜。采用XRD,掠角衍射以及XPS分析方法对薄膜的成分、结构和取向进行了分析,并通过RBS分析计算出了薄膜的O/Ti比。实验结果发现,所制备的氧化钛薄膜为具有一定择优取向的多晶膜,薄膜内TiO、Ti2O3和TiO2共同存在。当氧分压低于8.4×10-4Pa时,氧化钛薄膜的成分以TiO为主,且TiO的取向随氧分压的增加从(220)向(031)转变,氧分压对薄膜取向的影响较大。当氧分压高于8.6×10-4Pa时,氧化钛薄膜的成分以具有(100)择优取向的金红石型TiO2为主,含有少量其他结构的TiO2和低价Ti,其成分及取向相对较为稳定,对氧分压的变化不敏感。%A series of titanium oxide thin films have been synthesized on silicon wafers by ion beam en-hance deposition at different O2 pressure. X-ray Photo-electron Spectroscopy, X-ray diffraction (XRD), glancing angle diffraction and Rutherford backscattering spectroscopy(RBS) were used to analyse the composition, structure and orientation of the film. It was found that: 1) The film is polycrystal-line with Ti2+, Ti3+, Ti4+coexist. 2) When O2 pressure is lower than 8.4× 10-4 Pa, the main composition of the film is TiO that preferred orientation changed from (220) to (031) with the increase of O2 pressure. 3) When the O2 pressure is above 8.6× 10-4 Pa, rutile TiO2 with a preferred orientation of (100) is foundto be the major composition of the film.

  13. Speleothem (Cave Deposit) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, and other aspects of climate derived from mineral deposits found in caves. Parameter keywords describe what was measured...

  14. Podiform chromite deposits

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Location and characteristics of 1,124 individual mineral deposits of this type, with grade and tonnage models for chromium as well as several related elements.

  15. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  16. Alluvial Deposits in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage maps alluvial deposits throughout Iowa. This generally would include areas of alluvial soils associated with modern streams that are identified on...

  17. Chemically deposited tin sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Akkari, A., E-mail: anis.akkari@ies.univ-montp2.f [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis El Manar, Tunisie 2092 (Tunisia); Institut d' Electronique du Sud, Unite Mixte de Recherche 5214 UM2-CNRS (ST2i), Universite Montpellier 2, Place Eugene Bataillon, CC 082, 34095 Montpellier Cedex 5 (France); Guasch, C. [Institut d' Electronique du Sud, Unite Mixte de Recherche 5214 UM2-CNRS (ST2i), Universite Montpellier 2, Place Eugene Bataillon, CC 082, 34095 Montpellier Cedex 5 (France); Kamoun-Turki, N. [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences de Tunis El Manar, Tunisie 2092 (Tunisia)

    2010-02-04

    SnS thin films were deposited on glass substrates after multi-deposition runs by chemical bath deposition from aqueous solution containing 30 ml triethanolamine (TEA) (C{sub 6}H{sub 15}NO{sub 3}) (50%), 10 ml thioacetamide (CH{sub 3}CSNH{sub 2}), 8 ml ammonia (NH{sub 3}) solution and 10 ml of Sn{sup 2+}(0.1 M). These films were characterised with X-ray diffraction (XRD), with scanning electron microscopy, and with spectrophotometric measurements. The obtained thin films exhibit the zinc blend structure, the crystallinity seems to be improved as the film thickness increases and the band gap energy is found to be about 1.76 eV for film prepared after six depositions runs.

  18. SPIDER beam dump as diagnostic of the particle beam

    Science.gov (United States)

    Zaupa, M.; Dalla Palma, M.; Sartori, E.; Brombin, M.; Pasqualotto, R.

    2016-11-01

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  19. Measurement Error Effects of Beam Parameters Determined by Beam Profiles

    CERN Document Server

    Jang, Ji-Ho; Jeon, Dong-O

    2015-01-01

    A conventional method to determine beam parameters is using the profile measurements and converting them into the values of twiss parameters and beam emittance at a specified position. The beam information can be used to improve transverse beam matching between two different beam lines or accelerating structures. This work is related with the measurement error effects of the beam parameters and the optimal number of profile monitors in a section between MEBT (medium energy beam transport) and QWR (quarter wave resonator) of RAON linear accelerator.

  20. Transverse Beam Size Effects in Beam Position Monitors

    Science.gov (United States)

    Kurennoy, Sergey

    2001-04-01

    The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.