WorldWideScience

Sample records for beam delivery system

  1. The Superconducting Magnets of the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; /Brookhaven; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  2. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1997-11-11

    Beams of light ions (Z=1-8) have favourable physical and biological properties for their use in radiotherapy. Their advantages are best pronounced if the beam is delivered in a tumour-shape conformed way. The highest degree of conformity could be achieved by combination of a rotating gantry with an active pencil-beam scanning. Ion-optics considerations on such a gantry beam delivery system for light-ion cancer therapy are presented. A low-angle magnetic beam scanning in two perpendicular directions is included in the beam transport system of the gantry. The optical properties of the beam transport system are discussed. (orig.). 29 refs.

  3. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  4. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  5. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  6. Industrial fiber beam delivery system for ultrafast lasers: applications and recent advances

    Science.gov (United States)

    Eilzer, Sebastian; Funck, Max C.; Wedel, Björn

    2016-03-01

    Fiber based laser beam delivery is the method of choice for high power laser applications whenever great flexibility is required. For cw-lasers fiber beam delivery has long been established but has recently also become available for ultrafast lasers. Using micro-structured hollow core fibers that guide the laser beam mostly inside a hollow core, nonlinear effects and catastrophic damage that arise in conventional glass fibers can be avoided. Today, ultrafast pulses with several 100 μJ and hundreds of MW can be transmitted in quasi single mode fashion. In addition, the technology opens new possibilities for beam delivery systems as the pulse propagation inside the fiber can be altered on purpose. For example to shorten the pulse duration of picosecond lasers down into the femtosecond regime. We present a modular fiber beam delivery system for micromachining applications with industrial pico- and femtosecond lasers that is flexibly integrated into existing applications. Micro-structured hollow core fibers inside the sealed laser light cable efficiently guide high-power laser pulses over distances of several meters with excellent beam quality, while power, pulse duration and polarization are maintained. Robust and stable beam transport during dynamic operation as in robot or gantry systems will be discussed together with optional pulse compression.

  7. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon

    Science.gov (United States)

    Amako, J.; Fujii, E.

    2016-02-01

    We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy of<5 μm was achieved for a 12-mm-wide beam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.

  8. Novel beam delivery system for microvia drilling using holographic and refractive optics

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest P.

    2003-07-01

    The research and development of the optical system described was due in part to the virtual stalemate of current microvia dirlling technology within the High Density Interconnect market. The desire by industry to acquire faster processes for drilling microvias led to our research in the utilization of hybrid optical systems, where standard refractive and computer generated diffractive optics could be meshed to create a system that would out perform the current technology in the marketplace. The outcome of this work is covered in the following paper and will, at the outset, briefly cover the targeted market segment for which the beam delivery system was developed, as well as its general capabilities. The paper will cover the basic architecture and technology behind the laser optical beam delivery system, as well as the unique components that make up the assembly. Each of the optical elements within the system will be briefly described, and the CGH elements will be briefly explained, including a description of the software used. The laser beam characteristics at several points along the beam delivery will be discussed, as well as the final image formed at the target plane where the microvia is drilled. Specific performance details will be shared with regards to component efficiency, i.e. diffraction efficiency losses, as well as total system performance throughout the beam line. The final section will cover materials processing, including the remarkable process rate increases and microvia hole quality achieved.

  9. Design status of the NLC beam-delivery system and possible future studies

    International Nuclear Information System (INIS)

    The authors outline some highlights in the present design of the beam-delivery and removal system for the Next Linear Collider (NLC), and present a long list of possible or desirable future studies. On several of the listed items work has already been started since the Snowmass workshop. Other studies could be conducted, for example, in the framework of a conceptual design report (CDR)

  10. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Computer Science and Department of Surgery, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States)

    2010-12-15

    Purpose: The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. Methods: A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Results: Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins

  11. Beam delivery system for Ho:YLF and applications in endodontics

    International Nuclear Information System (INIS)

    The beam delivery systems, whether using fibers or articulated arms, are very important for the expansion of laser applications into life sciences. This work aims to couple an optical fiber to a home-made Er:Tm:Ho:LiYF4 laser. For this purpose the beam profile was studied using the beam quality factor M2 to achieve an homogeneous beam. To determine the M2 factor, the knife-edge technique was used, relating the laser energy eclipsed by the knife with its transversal position. The resonant cavity was made suitable in order to obtain a stable and homogeneous transversal beam profile, for the optical fiber coupling. It was used a 365 μm diameter core low OH- content fused silica optical fiber, with a proximal SMA-905 connection and a flat distal end. M2 factors for the Ho:YLF were between 3 and 8, with a non astigmatic beam, although it was observed a divergence asymmetry in the transversal sections. The coupling efficiency was 96%, and in a repeated operation without any adjustment, the new coupling were 82% and 81%. Lasers have being recently used as an adjunct to conventional endodontic preparation to reduce intracanal microbial, preventing reinfection. The knowledge of thermal profile in endodontic procedures is important to determine laser irradiation conditions avoiding periodontal damages. In this sense, the second scope of this work was to use the Ho:YLF system to register the thermal profile in vitro and to compare the results with those obtained with Nd:YAG and Er:YAG commercial lasers. The temperature was recorded in real time through a thermocouple probe at the root apex , resulting in maximum increase of 7 deg C. (author)

  12. Advances in intense beams, beam delivery, targetry, and radiochemistry at advanced cyclotron systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.R. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada)]. E-mail: djohnson@advancedcyclotron.com; Watt, R. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Kovac, B. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Zyuzin, A. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Van Lier, E. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Erdman, K.L. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Gyles, Wm. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); Sabaiduc, V. [Advanced Cyclotron Systems Inc., 7851 Alderbridge Way, Richmond, BC, V6X 2A4 (Canada); McQuarrie, S.A. [Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Wilson, J. [Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Backhouse, C. [Department of Electrical Engineering, University of Alberta, Edmonton, AB (Canada); Gelbart, Wm. [Advanced System Design, C22, S6, RR1, Garden Bay, BC, V0N 1S0 (Canada); Kuo, T. [4654 N. Larwin Ave., Concorde, CA 94521 United States (United States)

    2007-08-15

    The increasing demand for radionuclides for PET and SPECT has resulted in ACSI system improvements starting from the cyclotron and proceeding to the Radiochemistry Modules. With more TR30 cyclotrons installed and operating at full capacity, emphasis has been placed on improving the operational components to reduce both the incidence of failure and subsequent maintenance time. A cyclotron system has been developed that meets the needs of a regional radiopharmacy that supplies both positron and single photon emitters that would not otherwise be available. This new system has been named the TR24. In order to deal with some of the challenges of high currents, a method has been developed for passivating the entrance window foil during high current irradiation of a water target used to produce F-18. A method has been developed for passivating the entrance window foil to reduce unwanted chemical species that interfere with radiopharmaceutical production. Preliminary results for novel radioiodine production technique using the TR19/9 are also discussed.

  13. Gas delivery system and beamline studies for the test beam facility of the Collider Detector at Fermilab

    International Nuclear Information System (INIS)

    A fixed-target test beam facility has been designed and constructed at the Meson Test (MT) site to support studies of components of the Collider Detector at Fermi National Accelerator Laboratory (CDF). I assisted in the design and constuction of the test beam facility gas delivery system, and I conducted the initial studies to document the ability of the MT beamline to meet the needs of CDF. Analysis of the preliminary performance data on MT beamline components and beam tunes at required particle energies is presented. Preliminary studies show that the MT beamline has the necessary flexibility to satisfy most CDF requirements now

  14. The geometric calibration of cone-beam imaging and delivery systems in radiation therapy

    CERN Document Server

    Matsinos, E; Kaissl, Wolfgang; Matsinos, Evangelos

    2006-01-01

    We propose a method to achieve the geometric calibration of cone-beam imaging and delivery systems in radiation therapy; our approach applies to devices where an X-ray source and a flat-panel detector, facing each other, move in circular orbits around the irradiated object. In order to extract the parameters of the geometry from the data, we use a light needle phantom which is easy to manufacture. A model with ten free parameters (spatial lengths and distortion angles) has been put forth to describe the geometry and the mechanical imperfections of the units being calibrated; a few additional parameters are introduced to account for residual effects (small effects which lie beyond our model). The values of the model parameters are determined from one complete scan of the needle phantom via a robust optimisation scheme. The application of this method to two sets of five counterclockwise (ccw) and five clockwise (cw) scans yielded consistent and reproducible results. A number of differences have been observed be...

  15. Oblique gantry - an alternative solution for a beam delivery system for heavy-ion cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Marius

    1999-09-21

    Beams of protons and heavy ions have favorable physical and biological properties for their application in radiotherapy. Their advantages can be best exploited if the beam can be applied to the patient from any direction by a rotating gantry. The construction of a gantry is quite demanding for heavy ions due to the high magnetic rigidity of the therapy beams. In order to reduce the gantry size and weight, a novel gantry concept with an oblique 60 deg. output beam is proposed. This concept allows a very compact gantry design even for the isocentric layout and normal conducting magnets. The overall gantry radius is 2.8 m. The gantry is equipped with a two-directional magnetic scanning system and an achromatic beam transport system. The scanning system is located upstream to the last gantry dipole and combines a parallel scanning mode in one direction with a low-angle scanning mode in the other direction in order to reduce the vertical gap of the last dipole. The beam transport system is designed with a high degree of ion-optical flexibility which is used to form a narrow pencil-like beam with adjustable spot-size in the gantry isocentre. The design principles and ion-optical properties of the gantry beam transport and scanning systems are discussed. (author)

  16. X-Band Crab Cavities for the CLIC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.K.; Dexter, A.C.; Abram, T.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Dolgashev, V.; Tantawi, S.; /SLAC; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.

    2011-11-22

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC. Design of a crab cavity for CLIC is underway at the Cockcroft Institute in collaboration with SLAC. This effort draws on a large degree of synergy with the ILC crab cavity developed at the Cockcroft Institute and other deflecting structure development at SLAC. A study of phase and amplitude variations in the cavity suggests that the tolerances are very tight and require a 'beyond state of the art' LLRF control system. A study of cavity geometry and its effect on the cavity fields has been performed using Microwave studio. This study has suggested that for our cavity an iris radius between 4-5 mm is optimum with an iris thickness of 2-3 mm based on group velocity and peak fields. A study of the cavity wakefields show that the single bunch wakes are unlikely to be a problem but the short bunch spacing may cause the multi-bunch wakefields to be an issue. This will require some of the modes to be damped strongly so that the wake is damped significantly before any following bunch arrives. Various methods of damping have been investigated and

  17. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Science.gov (United States)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-03-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  18. Spin Transport and Polarimetry in the Beam Delivery System of the International Linear Collider

    CERN Document Server

    Beckmann, Moritz; Vauth, Annika; Vormwald, Benedikt

    2014-01-01

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model - and possibly beyond - the knowledge of the luminosity-weighted average beam polarisation at the $e^+e^-$ interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the inte...

  19. Spin transport and polarimetry in the beam delivery system of the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, M.; Vauth, A.; Vormwald, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; List, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-05-15

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model - and possibly beyond - the knowledge of the luminosity-weighted average beam polarisation at the e{sup +}e{sup -} interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the interpretation of the e{sup +}e{sup -} collision data.

  20. Spin transport and polarimetry in the beam delivery system of the international linear collider

    Science.gov (United States)

    Beckmann, M.; List, J.; Vauth, A.; Vormwald, B.

    2014-07-01

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model — and possibly beyond — the knowledge of the luminosity-weighted average beam polarisation at the e+e- interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the interpretation of the e+e- collision data.

  1. X-band crab cavities for the CLIC beam delivery system

    CERN Document Server

    Burt, G; Dexter, A C; Abram, T; Dolgashev, V; Tantawi, S; Jones, R M

    2009-01-01

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC.

  2. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  3. NEW DRUG DELIVERY SYSTEM

    OpenAIRE

    Sarkar Biresh K; Jain Devananda; Banerjee Angshu

    2011-01-01

    Incorporating an existing medicine into a new drug delivery system can significantly improve its performance in terms of efficacy, safety, and improved patient compliance. The need for delivering drugs to patients efficiently and with fewer side effects has prompted pharmaceutical companies to engage in the development of new drug delivery systems. Today, drug delivery companies are engaged in the development of multiple platform technologies for controlled release, delivery of large molecule...

  4. NEW DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sarkar Biresh K

    2011-05-01

    Full Text Available Incorporating an existing medicine into a new drug delivery system can significantly improve its performance in terms of efficacy, safety, and improved patient compliance. The need for delivering drugs to patients efficiently and with fewer side effects has prompted pharmaceutical companies to engage in the development of new drug delivery systems. Today, drug delivery companies are engaged in the development of multiple platform technologies for controlled release, delivery of large molecules, liposome, taste-masking, oral fast- dispersing dosage forms, technology for in- soluble drugs, and delivery of drugs through intranasal, pulmonary, transdermal, vaginal, colon, and transmucosal routes.

  5. Fiber laser coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  6. Health care delivery systems.

    OpenAIRE

    Stevens, F; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective, meaningful, and socially accepted. From a sociological point of view, the analysis of health care delivery systems implies recognition of their distinct history over time, their specific values an...

  7. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  8. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  9. Beam delivery system for Ho:YLF and applications in endodontics; Sistema de entrega de feixe para laser de Ho:YLF e aplicacoes em endodontia

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Luciano

    2000-07-01

    The beam delivery systems, whether using fibers or articulated arms, are very important for the expansion of laser applications into life sciences. This work aims to couple an optical fiber to a home-made Er:Tm:Ho:LiYF{sub 4} laser. For this purpose the beam profile was studied using the beam quality factor M{sup 2} to achieve an homogeneous beam. To determine the M{sup 2} factor, the knife-edge technique was used, relating the laser energy eclipsed by the knife with its transversal position. The resonant cavity was made suitable in order to obtain a stable and homogeneous transversal beam profile, for the optical fiber coupling. It was used a 365 {mu}m diameter core low OH{sup -} content fused silica optical fiber, with a proximal SMA-905 connection and a flat distal end. M{sup 2} factors for the Ho:YLF were between 3 and 8, with a non astigmatic beam, although it was observed a divergence asymmetry in the transversal sections. The coupling efficiency was 96%, and in a repeated operation without any adjustment, the new coupling were 82% and 81%. Lasers have being recently used as an adjunct to conventional endodontic preparation to reduce intracanal microbial, preventing reinfection. The knowledge of thermal profile in endodontic procedures is important to determine laser irradiation conditions avoiding periodontal damages. In this sense, the second scope of this work was to use the Ho:YLF system to register the thermal profile in vitro and to compare the results with those obtained with Nd:YAG and Er:YAG commercial lasers. The temperature was recorded in real time through a thermocouple probe at the root apex , resulting in maximum increase of 7 deg C. (author)

  10. Beam Delivery Simulation: BDSIM - Development & Optimization

    CERN Document Server

    Nevay, Laurence James; Garcia-Morales, H; Gibson, S M; Kwee-Hinzmann, R; Snuverink, J; Deacon, L C

    2014-01-01

    Beam Delivery Simulation (BDSIM) is a Geant4 and C++ based particle tracking code that seamlessly tracks particles through accelerators and detectors, including the full range of particle interaction physics processes from Geant4. BDSIM has been successfully used to model beam loss and background conditions for many current and future linear accelerators such as the Accelerator Test Facility 2 (ATF2) and the International Linear Collider (ILC). Current developments extend its application for use with storage rings, in particular for the Large Hadron Collider (LHC) and the High Luminosity upgrade project (HL-LHC). This paper presents the latest results from using BDSIM to model the LHC as well as the developments underway to improve performance.

  11. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  12. Beam Delivery Simulation - Recent Developments and Optimization

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles

    2015-01-01

    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.

  13. High power laser beam delivery monitoring for laser safety

    Science.gov (United States)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.; Freeland, C. M.; Myler, J. K.

    1997-07-01

    The output of high power lasers used for material processing presents extreme radiation hazards. In normal operation this hazard is removed by the use of local shielding to prevent accidental exposure and system design to ensure efficient coupling of radiation into the workpiece. Faults in laser beam delivery or utilization can give rise to hazardous levels of laser radiation. A passive hazard control strategy requires that the laser system be enclosed such that the full laser power cannot burn through the housing under fault conditions. Usually this approach is too restrictive. Instead, active control strategies can be used in which a fault condition is detected and the laser cut off. This reduces the requirements for protective housing. In this work a distinction is drawn between reactive and proactive strategies. Reactive strategies rely on detecting the effects of an errant laser beam, whereas proactive strategies can anticipate as well as detect fault conditions. This can avoid the need for a hazardous situation to exist. A proactive strategy in which the laser beam is sampled at the final turning mirror is described in this work. Two control systems have been demonstrated; the first checks that beam power is within preset limits, the second monitors incoming beam power and position, and the radiation reflected back from the cutting head. In addition to their safety functions the accurate monitoring of power provides an additional benefit to the laser user.

  14. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  15. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  16. MEMS: Enabled Drug Delivery Systems.

    Science.gov (United States)

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.

  17. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    Directory of Open Access Journals (Sweden)

    S A Yoganathan

    2015-01-01

    Full Text Available The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min and two respiratory motions (breathing period of 4s and 8s. Real-time position management (RPM system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %. Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.

  18. Nanovehicular intracellular delivery systems.

    Science.gov (United States)

    Prokop, Ales; Davidson, Jeffrey M

    2008-09-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  19. The dose delivery effect of the different Beam ON interval in FFF SBRT: TrueBEAM

    Science.gov (United States)

    Tawonwong, T.; Suriyapee, S.; Oonsiri, S.; Sanghangthum, T.; Oonsiri, P.

    2016-03-01

    The purpose of this study is to determine the dose delivery effect of the different Beam ON interval in Flattening Filter Free Stereotactic Body Radiation Therapy (FFF-SBRT). The three 10MV-FFF SBRT plans (2 half rotating Rapid Arc, 9 to10 Gray/Fraction) were selected and irradiated in three different intervals (100%, 50% and 25%) using the RPM gating system. The plan verification was performed by the ArcCHECK for gamma analysis and the ionization chamber for point dose measurement. The dose delivery time of each interval were observed. For gamma analysis (2%&2mm criteria), the average percent pass of all plans for 100%, 50% and 25% intervals were 86.1±3.3%, 86.0±3.0% and 86.1±3.3%, respectively. For point dose measurement, the average ratios of each interval to the treatment planning were 1.012±0.015, 1.011±0.014 and 1.011±0.013 for 100%, 50% and 25% interval, respectively. The average dose delivery time was increasing from 74.3±5.0 second for 100% interval to 154.3±12.6 and 347.9±20.3 second for 50% and 25% interval, respectively. The same quality of the dose delivery from different Beam ON intervals in FFF-SBRT by TrueBEAM was illustrated. While the 100% interval represents the breath-hold treatment technique, the differences for the free-breathing using RPM gating system can be treated confidently.

  20. Beam alignment system

    International Nuclear Information System (INIS)

    A patent is claimed for the invention of a beam alignment system. The aim of the invention is the obtention of an accurate monitoring of the beam position and direction. It is of great interest in the nuclear industry. The invention can be applied in an infrared laser beam for welding operations. An auxiliar radiation source is incorporated to the device. The system's configuration allows a simultaneous and separated utilisation of two beams. The description and the design of the proposed system are provided

  1. Optical diagnostics integrated with laser spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  2. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  3. Delivery methods for LVSD systems

    Science.gov (United States)

    Kasner, James H.; Brower, Bernard V.

    2011-06-01

    In this paper we present formats and delivery methods of Large Volume Streaming Data (LVSD) systems. LVSD systems collect TBs of data per mission with aggregate camera sizes in the 100 Mpixel to several Gpixel range at temporal rates of 2 - 60 Hz. We present options and recommendations for the different stages of LVSD data collection and delivery, to include the raw (multi-camera) data, delivery of processed (stabilized mosaic) data, and delivery of user-defined region of interest windows. Many LVSD systems use JPEG 2000 for the compression of raw and processed data. We explore the use of the JPEG 2000 Interactive Protocol (JPIP) for interactive client/server delivery to thick-clients (desktops and laptops) and MPEG-2 and H.264 to handheld thin-clients (tablets, cell phones). We also explore the use of 3D JPEG 2000 compression, defined in ISO 15444-2, for storage and delivery as well. The delivery of raw, processed, and region of interest data requires different metadata delivery techniques and metadata content. Beyond the format and delivery of data and metadata we discuss the requirements for a client/server protocol that provides data discovery and retrieval. Finally, we look into the future as LVSD systems perform automated processing to produce "information" from the original data. This information may include tracks of moving targets, changes of the background, snap shots of targets, fusion of multiple sensors, and information about "events" that have happened.

  4. TECHNOLOGIES FOR DELIVERY OF PROTON AND ION BEAMS FOR RADIOTHERAPY

    CERN Document Server

    Owen, H; Alonso, J; Mackay, R

    2014-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  5. Technologies for Delivery of Proton and Ion Beams for Radiotherapy

    CERN Document Server

    Owen, Hywel; Alonso, Jose; MacKay, Ranald

    2013-01-01

    Recent developments for the delivery of proton and ion beam therapy have been significant, and a number of technological solutions now exist for the creation and utilisation of these particles for the treatment of cancer. In this paper we review the historical development of particle accelerators used for external beam radiotherapy and discuss the more recent progress towards more capable and cost-effective sources of particles.

  6. The precision of respiratory-gated delivery of synchrotron-based pulsed beam proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsunashima, Yoshikazu; Vedam, Sastry; Dong Lei; Balter, Peter; Mohan, Radhe [Department of Radiation Physics, Unit 94, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 (United States); Umezawa, Masumi, E-mail: ytsunash@mdanderson.or [Accelerator System Group Medical System Project, Hitachi, Ltd, Energy and Environmental Systems Laboratory, 2-1, Omika-cho 7-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)

    2010-12-21

    A synchrotron-based proton therapy system operates in a low repetition rate pulsed beam delivery mode. Unlike cyclotron-based beam delivery, there is no guarantee that a synchrotron beam can be delivered effectively or precisely under the respiratory-gated mode. To evaluate the performance of gated synchrotron treatment, we simulated proton beam delivery in the synchrotron-based respiratory-gated mode using realistic patient breathing signals. Parameters used in the simulation were respiratory motion traces (70 traces from 24 patients), respiratory gate levels (10%, 20% and 30% duty cycles at the exhalation phase) and synchrotron magnet excitation cycles (T{sub cyc}) (fixed T{sub cyc} mode: 2.7, 3.0-6.0 s and each patient breathing cycle, and variable T{sub cyc} mode). The simulations were computed according to the breathing trace in which the proton beams were delivered. In the shorter fixed T{sub cyc} (<4 s), most of the proton beams were delivered uniformly to the target during the entire expiration phase of the respiratory cycle. In the longer fixed T{sub cyc} (>4 s) and the variable T{sub cyc} mode, the proton beams were not consistently delivered during the end-expiration phase of the respiratory cycle. However we found that the longer and variable T{sub cyc} operation modes delivered proton beams more precisely during irregular breathing.

  7. Specialty flat-top beam delivery fibers with controlled beam parameter product

    Science.gov (United States)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  8. TRANSDERMAL DRUG DELIVERY SYSTEM: A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Pandey Deepika

    2012-05-01

    Full Text Available The human skin is a readily accessible surface for drug delivery. Skin of an average adult body covers a surface of approximately 2 m2 and receives about one-third of the blood circulating through the body. Over the past decades, developing controlled drug delivery has become increasingly important in the pharmaceutical industry. The human skin surface is known to contain, on an average, 10- 70 hair follicles and 200-250 sweat ducts on every square centimeters of the skin area. It is one of the most readily accessible organs of the human body. There is considerable interest in the skin as a site of drug application both for local and systemic effect. However, the skin, in particular the stratum corneum, poses a formidable barrier to drug penetration thereby limiting topical and transdermal bioavailability. Skin penetration enhancement techniques have been developed to improve bioavailability and increase the range of drugs for which topical and transdermal delivery is a viable option. During the past decade, the number of drugs formulated in the patches has hardly increased, and there has been little change in the composition of the patch systems. Modifications have been mostly limited to refinements of the materials used. The present review article explores the overall study on transdermal drug delivery system (TDDS which leads to novel drug delivery system (NDDS.

  9. Novel central nervous system drug delivery systems.

    Science.gov (United States)

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  10. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A;

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  11. Data delivery system for MAPPER using image compression

    Science.gov (United States)

    Yang, Jeehong; Savari, Serap A.

    2013-03-01

    The data delivery throughput of electron beam lithography systems can be improved by applying lossless image compression to the layout image and using an electron beam writer that can decode the compressed image on-the-fly. In earlier research we introduced the lossless layout image compression algorithm Corner2, which assumes a somewhat idealized writing strategy, namely row-by-row with a raster order. The MAPPER system has electron beam writers positioned in a lattice formation and each electron beam writer writes a designated block in a zig-zag order. We introduce Corner2-MEB, which redesigns Corner2 for MAPPER systems.

  12. BUCCAL DRUG DELIVERY SYSTEM: THE CURRENT INTEREST

    Directory of Open Access Journals (Sweden)

    Patel Mitul

    2011-12-01

    Full Text Available This review highlights the several advantages of buccal drug delivery system (BDDS over the conventional and systemic formulation majorly. It helps to enhance bioavailability through bypassing the first pass metabolism. On this drug delivery system the formulation keeps in contact with the mucosal surface resulting in better absorption and prolonged resident time. Though all drugs are not suitable for this drug delivery system yet is useful for most of the drugs. Bioadhesive polymers roles a major part in this drug delivery system because the extent of Mucoadhesion is a very important phenomena for the buccal drug delivery system. This review covers merits and demerits of buccal drug delivery system, anatomy of oral mucosa, mechanism of drug permeation, polymers and permeation enhancer used in buccal drug delivery system. This review also covers available marketed product as buccal drug delivery system and future aspects of buccal drug delivery system.

  13. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  14. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  15. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  16. 软调制双散射质子治疗束流配送系统%A Soft-Modulating and Double-Scattering Beam Delivery System for Proton Therapy

    Institute of Scientific and Technical Information of China (English)

    郁庆长; 徐韬光

    2001-01-01

    The proton therapy is a new developing method in the radiation oncology. The superior dose localization capabilities of proton beams suggest the possibility of depositing a higher dose into the cancer while reducing the unwanted radiation damage in surrounding normal tissues. The merit can be realized with the aid of the beam delivery system, whose functions are energy adjustment, energy modulation, beam spreading and collimation. In this paper a new soft-modulating and double-scattering beam delivery system is proposed. It uses a program-controlled modulator to change proton energy and thereby the proton range in the body so that the Bragg peak is spread out. Moreover, a larger treatment field can be obtained with two scatterers. The delivery system has high reliability and flexibility, and is especially good for conformal therapy.%质子治疗是一种新兴的放射治疗方法,它的主要优点是剂量分布特性优良,可以使高辐射剂量集中于肿瘤部位,减少对周围正常组织的损伤. 这一优点的实现主要依靠束流配送系统,它包含质子能量调节与调制、束流扩展和准直等功能. 现提出一种新的软调制双散射质子治疗束流配送系统. 其特点是利用程序控制质子能量变化以改变质子在体内的射程从而展宽Bragg峰,同时利用两次散射获得较大面积的均匀照射野. 它的优点是运行可靠、调节灵活,并特别有利于实现适形治疗.

  17. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  18. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Virendra Yadav

    2012-01-01

    Transdermal drug delivery system (TDDS) are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. By this constant concentration of drug remain in blood for long time. Polymer matrix, drug, permeation enhancers are the main components of TDDS; polymers includes Zein, Shellac (as a natural) to syntheti...

  19. VESICULAR DRUG DELIVERY SYSTEM: A NOVEL APPROACH

    OpenAIRE

    KALPESH CHHOTALAL ASHARA; Jalpa S. Paun; M. M. Soniwala; J.R.CHAVDA; S. V. NATHAWANI; NITIN M. MORI; Mendapara, Vishal P.

    2014-01-01

    A novel drug delivery system is that delivers drug at predetermined rate decided as per the requirement, pharmacological aspects, drug profile, physiological conditions of body etc. In current conditions not a single novel drug delivery system behaves ideally those high goals with fewer side effects. A Vesicular drug delivery system (VDDS) is the system in which encapsulation of active moieties in vesicular structure, which bridges gap between ideal and available of novel drug delivery system...

  20. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Directory of Open Access Journals (Sweden)

    Jonathan Dale Shephard

    2015-04-01

    Full Text Available The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included.High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications.In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical

  1. Mucoadhesive vaginal drug delivery systems.

    Science.gov (United States)

    Acartürk, Füsun

    2009-11-01

    Vaginal delivery is an important route of drug administration for both local and systemic diseases. The vaginal route has some advantages due to its large surface area, rich blood supply, avoidance of the first-pass effect, relatively high permeability to many drugs and self-insertion. The traditional commercial preparations, such as creams, foams, gels, irrigations and tablets, are known to reside in the vaginal cavity for a relatively short period of time owing to the self-cleaning action of the vaginal tract, and often require multiple daily doses to ensure the desired therapeutic effect. The vaginal route appears to be highly appropriate for bioadhesive drug delivery systems in order to retain drugs for treating largely local conditions, or for use in contraception. In particular, protection against sexually-transmitted diseases is critical. To prolong the residence time in the vaginal cavity, bioadhesive therapeutic systems have been developed in the form of semi-solid and solid dosage forms. The most commonly used mucoadhesive polymers that are capable of forming hydrogels are synthetic polyacrylates, polycarbophil, chitosan, cellulose derivatives (hydroxyethycellulose, hydroxy-propylcellulose and hydroxypropylmethylcellulose), hyaluronic acid derivatives, pectin, tragacanth, carrageenan and sodium alginate. The present article is a comprehensive review of the patents related to mucoadhesive vaginal drug delivery systems. PMID:19925443

  2. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M;

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  3. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  4. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Harnish Patel

    2012-04-01

    Full Text Available Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable controlled drug delivery systems and could be employed as oral drug delivery systems. Various patents available for osmotic drug delivery system like Rose-Nelson pump, Higuchi leeper pump, Higuchi Theeuwes pump, Elementary Osmotic pump etc. ODDS are useful for poorly soluble drug, for pulsatile drug release, zero order release. Various techniques available for preparation of ODDS include push pull osmotic Pump, osmotic Brusting osmotic pump, liquid oral osmotic system, sandwiched osmotic tablets , delayed delivery osmotic device, monolithic osmotic System and controlled porosity osmotic Pump. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active agents. These systems can be utilized for systemic as well as targeted delivery of drugs. The release of drugs from osmotic systems is governed by various formulation factors such as solubility and osmotic pressure of the core components, size of the delivery orifice, and nature of the rate-controlling membrane. In this Paper mainly focused on the Osmotic System with example, the basic component of osmotic system and evaluation parameter of the osmotic drug delivery system.

  5. WE-D-17A-03: Improvement of Accuracy of Spot-Scanning Proton Beam Delivery for Liver Tumor by Real-Time Tumor-Monitoring and Gating System: A Simulation Study

    International Nuclear Information System (INIS)

    Purpose: To improve the accuracy of spot-scanning proton beam delivery for target in motion, a real-time tumor-monitoring and gating system using fluoroscopy images was developed. This study investigates the efficacy of this method for treatment of liver tumors using simulation. Methods: Three-dimensional position of a fiducial marker inserted close to the tumor is calculated in real time and proton beam is gated according to the marker's distance from the planned position (Shirato, 2012). The efficient beam delivery is realized even for the irregular and sporadic motion signals, by employing the multiple-gated irradiations per operation cycle (Umezawa, 2012). For each of two breath-hold CTs (CTV=14.6cc, 63.1cc), dose distributions were calculated with internal margins corresponding to freebreathing (FB) and real-time gating (RG) with a 2-mm gating window. We applied 8 trajectories of liver tumor recorded during the treatment of RTRT in X-ray therapy and 6 initial timings. Dmax/Dmin in CTV, mean liver dose (MLD), and irradiation time to administer 3 Gy (RBE) dose were estimated assuming rigid motion of targets by using in-house simulation tools and VQA treatment planning system (Hitachi, Ltd., Tokyo). Results: Dmax/Dmin was degraded by less than 5% compared to the prescribed dose with all motion parameters for smaller CTV and less than 7% for larger CTV with one exception. Irradiation time showed only a modest increase if RG was used instead of FB; the average value over motion parameters was 113 (FB) and 138 s (RG) for smaller CTV and 120 (FB) and 207 s (RG) for larger CTV. In RG, it was within 5 min for all but one trajectory. MLD was markedly decreased by 14% and 5–6% for smaller and larger CTVs respectively, if RG was applied. Conclusions: Spot-scanning proton beam was shown to be delivered successfully to liver tumor without much lengthening of treatment time. This research was supported by the Cabinet Office, Government of Japan and the Japan Society

  6. VESICULAR DRUG DELIVERY SYSTEM: A NOVEL APPROACH

    Directory of Open Access Journals (Sweden)

    KALPESH CHHOTALAL ASHARA

    2014-08-01

    Full Text Available A novel drug delivery system is that delivers drug at predetermined rate decided as per the requirement, pharmacological aspects, drug profile, physiological conditions of body etc. In current conditions not a single novel drug delivery system behaves ideally those high goals with fewer side effects. A Vesicular drug delivery system (VDDS is the system in which encapsulation of active moieties in vesicular structure, which bridges gap between ideal and available of novel drug delivery system.Varrious types of vesicular drug delivery system like liposome, niosome, archeosome, transferosome etc. were developed. Advances have since been made in vesicular drug delivery system. Focus of this review is to bring about a brief of vesicular drug delivery system as novel approach.

  7. Description of laser transport and delivery system for the FETS laserwire emittance scanner

    CERN Document Server

    Bosco, A; Emery, S; Gibson, S M; Pozimski, J K; Savage, P; Letchford, A P; Gabor, C; Hofmann, T

    2013-01-01

    A beam emittance monitor for H- beams based on laserinduced ions neutralization is being developed at the Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL). In this paper we present a full account of the laser system that will be used for the photodetachment experiment, the optical transport system and the final delivery assembly. All the relevant measurements such as power, spatial and temporal characteristics of the laser, fiber coupling efficiency and final delivery laser beam parameters will be reported.

  8. UNIQUE ORAL DRUG DELIVERY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Raphael M. Ottenbrite; ZHAO Ruifeng; Sam Milstein

    1995-01-01

    An oral drug delivery system using proteinoid microspheres is discussed with respect to its unique dependence on pH. It has been found that certain drugs such as insulin and heparin can be encapsulated in proteinoid spheres at stomach pH's (1-3). These spheres also dissemble at intestinal pH's (6-7) releasing the drug for absorption. Using this technique low molecular weight heparin and human growth hormone have been orally delivered successfully to several animal species. Future work has been proposed to study the interaction and binding of the specific drugs with synthesized oligopeptides.

  9. Beam alignment system for laser welding system

    International Nuclear Information System (INIS)

    The patent describes a beam alignment system for laser welding work pieces, such as fuel rod grids for nuclear fuel assemblies. The apparatus for performing various laser-machining comprises a beam alignment system including alignment target means, as well as means for emitting, directing and focusing the laser beam. (U.K.)

  10. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    Directory of Open Access Journals (Sweden)

    Virendra Yadav

    2012-01-01

    Full Text Available Transdermal drug delivery system (TDDS are topically administered medicaments in the form of patches that deliver drugs for systemic effects at a predetermined and controlled rate. It works very simply in which drug is applied inside the patch and it is worn on skin for long period of time. By this constant concentration of drug remain in blood for long time. Polymer matrix, drug, permeation enhancers are the main components of TDDS; polymers includes Zein, Shellac (as a natural to synthetic ones (Polybutadiene, Polysiloxane, Polyvinyl chloride, Polyvinyl alcohol etc.. TDDS are of many types varying from single layer drug in adhesive to multi layer drug in adhesive and others are reservoir and the matrix systems. The market value of TDDS products are increasing with rapid rate, more than 35 products have now been approved for sale in US, and approximately 16 active ingredients are approved globally for use as a TDDS. Transdermal drug delivery is a recent technology which promises a great future it has a potential to limit the use of needles for administering wide variety of drugs but cost factor is a important thing to consider since developing nations like INDIA have second highest population, but due to higher cost TDDS are the hidden part of therapy used in general population.

  11. Microemulsion: As Excellent Drug Delivery System

    OpenAIRE

    Pathan Maksud; Zikriya Abrar; Quazi Aamer

    2012-01-01

    Today though the oral drug delivery system is dominant still it is found to be need of ideal transdermal drug delivery system. “A micro emulsion is a system of water, oil and an amphiphile which is a single optically isotropic and thermodynamically stable liquid solution”. Microemulsions offer several advantages as drug delivery systems as these are thermodynamically stable and stability allows for self emulsification of the system with microemulsion acting as supersolvent of the drugs which...

  12. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    OpenAIRE

    S. R. Tajane et al.

    2012-01-01

    The purpose for this review on pulsatile drug delivery systems (PDDS) is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a ...

  13. BUCCAL DRUG DELIVERY SYSTEM: THE CURRENT INTEREST

    OpenAIRE

    Patel Mitul; Karigar Asif; Savaliya Pratik; Ramana MV; Dubal Ashwini

    2011-01-01

    This review highlights the several advantages of buccal drug delivery system (BDDS) over the conventional and systemic formulation majorly. It helps to enhance bioavailability through bypassing the first pass metabolism. On this drug delivery system the formulation keeps in contact with the mucosal surface resulting in better absorption and prolonged resident time. Though all drugs are not suitable for this drug delivery system yet is useful for most of the drugs. Bioadhesive polymers roles a...

  14. Viral and nonviral delivery systems for gene delivery

    Directory of Open Access Journals (Sweden)

    Nouri Nayerossadat

    2012-01-01

    Full Text Available Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection and (chemical: Cationic lipids, different cationic polymers, lipid polymers. In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.

  15. NOVEL DRUG DELIVERY SYSTEMS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    R.R. Bhagwat* and I.S. Vaidhya

    2013-03-01

    Full Text Available ABSTRACT: Evolution of an existing drug molecule from a conventional form to a novel delivery system can significantly improve its performance in terms of patient compliance, safety and efficacy. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. An appropriately designed Novel Drug Delivery System can be a major advance for solving the problems related towards the release of the drug at specific site with specific rate. The need for delivering drugs to patients efficiently and with fewer side effects has prompted pharmaceutical companies to engage in the development of new drug delivery system. This article covers the basic information regarding Novel Drug Delivery Systems and also different types of the same.

  16. Beam Cleaning and Collimation Systems

    CERN Document Server

    Redaelli, S

    2016-01-01

    Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.

  17. Magnetically Modulated Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Vidyavati S, Koppisetti

    2011-03-01

    Full Text Available Magnetic drug delivery is a novel approach to delivery drug using engineered ’smart’ micro carriers which appears to overcome a number of limitations facing current methods of delivering medicines. The drug and a suitable ferrofluid are formulated into a pharmaceutically stable formulation which is usually injected through the artery that supplies the target organ or tumor in the presence of an external magnetic field. Depending on the fabrication method, particle size and nature they are named as magnetic microspheres, magnetic nanoparticles, magnetic liposomes etc. This review gives the information regarding the all possible formulations that can be designed using magnetism as the drug delivery mode.

  18. Multifunctional Delivery Systems for Cancer Gene Therapy

    OpenAIRE

    McErlean, Emma M.; McCrudden, Cian M; McCarthy, Helen O.

    2015-01-01

    This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies hig...

  19. Starch Applications for Delivery Systems

    Science.gov (United States)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  20. Magnetically Modulated Drug Delivery Systems

    OpenAIRE

    Vidyavati S, Koppisetti; Sahiti. B

    2011-01-01

    Magnetic drug delivery is a novel approach to delivery drug using engineered ’smart’ micro carriers which appears to overcome a number of limitations facing current methods of delivering medicines. The drug and a suitable ferrofluid are formulated into a pharmaceutically stable formulation which is usually injected through the artery that supplies the target organ or tumor in the presence of an external magnetic field. Depending on the fabrication method, particle size and nature they are nam...

  1. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    Science.gov (United States)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  2. PHARMACOSOMES: A POTENTIAL VESICULAR DRUG DELIVERY SYSTEM

    OpenAIRE

    De Pintu Kumar; De, Arnab

    2012-01-01

    Pharmacosome is a potential approach in the vesicular drug delivery system which exhibit several advantages over conventional vesicular drug delivery systems. Pharmacosomes are amphiphilic lipid vesicular system possessing phospholipid complexes of drugs. Drugs bearing active hydrogen atom can be esterified to the lipid. This type of vesicular system improves permeation of drugs across the biomembranes and thus results in an improvement in the bioavailability and can also improve the pharmaco...

  3. Multi-channel gas-delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  4. Organized Athletics as a Leisure Delivery System.

    Science.gov (United States)

    Kidd, Thomas R.; Mendell, Ron

    1980-01-01

    Athletic programs are leisure time delivery systems for the athletes, spectators, and the local community as long as scholarships and extensive media coverage are not involved. College administration should make sure that sports and athletics do not become a delivery sytem for public relations and finance. (CJ)

  5. Lipid Based Vesicular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shikha Jain

    2014-01-01

    Full Text Available Vesicular drug delivery system can be defined as highly ordered assemblies consisting of one or more concentric bilayers formed as a result of self-assembling of amphiphilic building blocks in presence of water. Vesicular drug delivery systems are particularly important for targeted delivery of drugs because of their ability to localize the activity of drug at the site or organ of action thereby lowering its concentration at the other sites in body. Vesicular drug delivery system sustains drug action at a predetermined rate, relatively constant (zero order kinetics, efficient drug level in the body, and simultaneously minimizes the undesirable side effects. It can also localize drug action in the diseased tissue or organ by targeted drug delivery using carriers or chemical derivatization. Different types of pharmaceutical carriers such as polymeric micelles, particulate systems, and macro- and micromolecules are presented in the form of novel drug delivery system for targeted delivery of drugs. Particulate type carrier also known as colloidal carrier system, includes lipid particles, micro- and nanoparticles, micro- and nanospheres, polymeric micelles and vesicular systems like liposomes, sphingosomes, niosomes, transfersomes, aquasomes, ufasomes, and so forth.

  6. New Delivery Systems and Propellants

    Directory of Open Access Journals (Sweden)

    Myrna Dolovich

    1999-01-01

    Full Text Available The removal of chlorofluorocarbon (CFC propellants from industrial and household products has been agreed to by over 165 countires of which more than 135 are developing countries. The timetable for this process is outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer document and in several subsequent amendments. Pressured metered dose inhalers (pMDIs for medical use have been granted temporary exemptions until replacement formulations, providing the same medication via the same route, and with the same efficacy and safety profiles, are approved for human use. Hydrofluoroalkanes (HFAs are the alternative propellants for CFCs-12 and -114. Their potential for damage to the ozone layer is nonexistent, and while they are greenhouse gases, their global warming potential is a fraction (one-tenth of that of CFCs. Replacement formulations for almost all inhalant respiratory medications have been or are being produced and tested; in Canada, it is anticipated that the transition to these HFA or CFC-free pMDIs will be complete by the year 2005. Initially, an HFA pMDI was to be equivalent to the CFC pMDI being replaced, in terms of aerosol properties and effective clinical dose. However, this will not necessarily be the situation, particularly for some corticosteroid products. Currently, only one CFC-free formulation is available in Canada – Airomir, a HFA salbutamol pMDI. This paper discusses the in vitro aerosol characteristics, in vivo deposition and clinical data for several HFA pMDIs for which there are data available in the literature. Alternative delivery systems to the pMDI, namely, dry powder inhalers and nebulizers, are briefly reviewed.

  7. Antiproton source beam position system

    International Nuclear Information System (INIS)

    The TeV I Beam Position Monitor (BPM) system is designed to provide a useful diagnostic tool during the commissioning and operational phases of the antiproton source. Simply stated the design goal is to provide single turn position information for intensities of > 1x109 particles, and multi-turn (clocked orbit) information for beam intensities of > 1x107 particles, both with sub-millimeter resolution. It is anticipated that the system will be used during commissioning for establishing the first turn through the Debuncher and Accumulator, for aligning injection orbits, for providing information necessary to correct closed orbits, and for measuring various machine parameters (e.g. tunes, dispersion, aperture, chromaticity). During normal antiproton operation the system will be used to monitor the beam position throughout the accumulation process

  8. Gastro Retentive Drug Delivery System: A Review

    Directory of Open Access Journals (Sweden)

    Patel Harshna

    2012-12-01

    Full Text Available IN recent years several advancement has been made in research and development of Oral Drug Delivery System. Concept of Novel Drug Delivery System arose to overcome the certain aspect related to physicochemical properties of drug molecule and the related formulations. Purpose of this review is to compile the recent literature with special focus on various gastro retentive approaches that have recently become leading methodologies in the field of site-specific orally administered controlled release drug delivery. Technological attempts have been made in the research and development of ratecontrolled oral drug delivery systems to overcome physiological adversities, such as short gastric residence times (GRT and unpredictable gastric emptying times (GET. Therefore, gastro retentive drug delivery systems (GRDDS have been developed, which prolong the gastric emptying time. Several techniques such as floating drug delivery system, low density systems, raft systems, mucoadhesive systems, high density systems, super porous hydro gels and magnetic systems, have been employed. This review on GRDDS attempts to compile the available information with all the possible mechanism used to achieve gastric retention.

  9. PULSATILE DRUG DELIVERY SYSTEM: A REVIEW

    OpenAIRE

    Jamil Faraz; Singh Arjun; Kumar Sunil; Sharma Ritika

    2012-01-01

    The purpose for this review on pulsatile drug delivery systems (PDDS) is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis,attention deficit syndrome in children, and hypercholesterolemia. PDDS can be classified into time...

  10. The ELENA Beam Diagnostics Systems

    CERN Document Server

    Tranquille, G

    2013-01-01

    The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...

  11. FLOATING DRUG DELIVERY SYSTEM: A REVIEW

    Directory of Open Access Journals (Sweden)

    Kataria Sahil

    2011-09-01

    Full Text Available The recent scientific and patented literature concluded that an increased interest in novel dosage forms which retained in the stomach for prolong and predictable period of time has been shown. Various technological attempts have been made in the research and development of rate-controlled oral drug delivery systems to overcome physiological diversities, as short gastric residence times and unpredictable gastric emptying times using gastro retentive drug delivery system. It is a well known fact that differences in gastric physiology, such as, gastric pH and motility exhibit both intra as well as inter-subject variability demonstrating significant impact on gastric retention time and drug delivery behavior. Various attempts have been made to develop Gastro retentive delivery systems. Several approaches are currently utilized in the prolongation of the GRT, including floating drug delivery systems, swelling and expanding systems, polymeric bio adhesive systems, high-density systems, modified-shape systems and other delayed gastric emptying devices. Floating dosage forms are emerging as a promising dosage forms. Floating dosage form can be prepared as tablets, capsules by adding suitable ingredients as well as by adding gas generating agent. In this review various techniques used in floating dosage forms along with current & recent developments of stomach specific floating drug delivery system for gastro retention are discussed.

  12. Hydrogen storage and delivery system development

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Wally, K.; Raber, T.N. [Sandia National Labs., Livermore, CA (United States)

    1995-09-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. The purpose of this project is to develop a platform for the engineering evaluation of hydrogen storage and delivery systems with an added focus on lightweight hydride utilization. Hybrid vehicles represent the primary application area of interest, with secondary interests including such items as existing vehicles and stationary uses. The near term goal is the demonstration of an internal combustion engine/storage/delivery subsystem. The long term goal is optimization of storage technologies for both vehicular and industrial stationary uses. In this project an integrated approach is being used to couple system operating characteristics to hardware development. A model has been developed which integrates engine and storage material characteristics into the design of hydride storage and delivery systems. By specifying engine operating parameters, as well as a variety of storage/delivery design features, hydride bed sizing calculations are completed. The model allows engineering trade-off studies to be completed on various hydride material/delivery system configurations. A more generalized model is also being developed to allow the performance characteristics of various hydrogen storage and delivery systems to be compared (liquid, activated carbon, etc.). Many of the features of the hydride storage model are applicable to the development of this more generalized model.

  13. Delivery systems for intradermal vaccination.

    Science.gov (United States)

    Kim, Y C; Jarrahian, C; Zehrung, D; Mitragotri, S; Prausnitz, M R

    2012-01-01

    Intradermal (ID) vaccination can offer improved immunity and simpler logistics of delivery, but its use in medicine is limited by the need for simple, reliable methods of ID delivery. ID injection by the Mantoux technique requires special training and may not reliably target skin, but is nonetheless used currently for BCG and rabies vaccination. Scarification using a bifurcated needle was extensively used for smallpox eradication, but provides variable and inefficient delivery into the skin. Recently, ID vaccination has been simplified by introduction of a simple-to-use hollow microneedle that has been approved for ID injection of influenza vaccine in Europe. Various designs of hollow microneedles have been studied preclinically and in humans. Vaccines can also be injected into skin using needle-free devices, such as jet injection, which is receiving renewed clinical attention for ID vaccination. Projectile delivery using powder and gold particles (i.e., gene gun) have also been used clinically for ID vaccination. Building off the scarification approach, a number of preclinical studies have examined solid microneedle patches for use with vaccine coated onto metal microneedles, encapsulated within dissolving microneedles or added topically to skin after microneedle pretreatment, as well as adapting tattoo guns for ID vaccination. Finally, technologies designed to increase skin permeability in combination with a vaccine patch have been studied through the use of skin abrasion, ultrasound, electroporation, chemical enhancers, and thermal ablation. The prospects for bringing ID vaccination into more widespread clinical practice are encouraging, given the large number of technologies for ID delivery under development. PMID:21472533

  14. Gastro Retentive Drug Delivery System: A Review

    OpenAIRE

    Patel Harshna; Solanki N S

    2012-01-01

    IN recent years several advancement has been made in research and development of Oral Drug Delivery System. Concept of Novel Drug Delivery System arose to overcome the certain aspect related to physicochemical properties of drug molecule and the related formulations. Purpose of this review is to compile the recent literature with special focus on various gastro retentive approaches that have recently become leading methodologies in the field of site-specific orally administered controlled rel...

  15. FLOATING DRUG DELIVERY SYSTEM: A REVIEW

    OpenAIRE

    Kataria Sahil; Middha Akanksha; Bhardwaj Sudeep; Sandhu Premjeet

    2011-01-01

    The recent scientific and patented literature concluded that an increased interest in novel dosage forms which retained in the stomach for prolong and predictable period of time has been shown. Various technological attempts have been made in the research and development of rate-controlled oral drug delivery systems to overcome physiological diversities, as short gastric residence times and unpredictable gastric emptying times using gastro retentive drug delivery system. It is a well known fa...

  16. Emulsomes: An emerging vesicular drug delivery system

    OpenAIRE

    Bhawandeep Gill; Jatinder Singh; Vikas Sharma; S L Hari Kumar

    2012-01-01

    The oral route is the easiest, cost effective, and most vital method for drug administration. Therefore, improvement of dosage forms mainly for the prolonged release purpose has been a challenge for scientists. Vesicular drug delivery systems are developed with a purpose to overcome problems coupled with the drugs such a poor bioavailability, protection from harsh gastric environment, and from gastric enzymes, which degrade the drug. Vesicular drug delivery systems such as liposomes, emulsion...

  17. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  18. TRANSCUTANEOUS DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW

    OpenAIRE

    Sandhu Premjeet; Kataria Sahil; Bilandi Ajay; Jain Sonam; Rathore Devashish

    2011-01-01

    Conventional drug delivery systems are often not suitable for new protein based and other Therapeutic compounds produced by modern technology. Therefore an alternative Approach to deliver these drugs can be achieved through the skin in the form of transcutaneous drug delivery system. Modern medicine has responded with the development of methods to deliver drug transcutanously (through) the skin for therapeutic use as an alternative to traditional route including oral, intravascular, intramusc...

  19. Cyclodextrins in delivery systems: Applications

    Directory of Open Access Journals (Sweden)

    Gaurav Tiwari

    2010-01-01

    Full Text Available Cyclodextrins (CDs are a family of cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. CD molecules are relatively large with a number of hydrogen donors and acceptors and, thus in general, they do not permeate lipophilic membranes. In the pharmaceutical industry, CDs have mainly been used as complexing agents to increase aqueous solubility of poorly soluble drugs and to increase their bioavailability and stability. CDs are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current CD-based therapeutics is described and possible future applications are discussed. CD-containing polymers are reviewed and their use in drug delivery is presented. Of specific interest is the use of CD-containing polymers to provide unique capabilities for the delivery of nucleic acids. Studies in both humans and animals have shown that CDs can be used to improve drug delivery from almost any type of drug formulation. Currently, there are approximately 30 different pharmaceutical products worldwide containing drug/CD complexes in the market.

  20. PULSATILE DRUG DELIVERY SYSTEM: A REVIEW

    Directory of Open Access Journals (Sweden)

    Jamil Faraz

    2012-07-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis,attention deficit syndrome in children, and hypercholesterolemia. PDDS can be classified into time controlled systems wherein the drug release is controlled primarily by the delivery system; stimuli induced PDDS in which release is controlled by the stimuli, like the pH or enzymes present in the Intestinal tract or enzymes present in the drug delivery system and externally regulated system where release is programmed by external stimuli like magnetism, ultrasound, electrical effect and irradiation. Marketed product like Pulsicap®, Ritalin® and Pulsys® are based on pulsatile release system. The aim of this review is to describe several types of drug delivery systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  1. AN OVERVIEW ON VARIOUS APPROACHES TO ORAL CONTROLLED DRUG DELIVERY SYSTEM VIA GASTRORETENTIVE DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Bhalla.Neetika

    2012-04-01

    Full Text Available In recent years scientific and technological advancements have been made in the research and development of oral drug delivery system. Oral sustained drug delivery system is complicated by limited gastric residence times (GRTs. In order to understand various physiological difficulties to achieve gastric retention, we have summarized important factors controlling gastric retention. To overcome these limitations, various approaches have been proposed to increase gastric residence of drug delivery systems in the upper part of the gastrointestinal tract includes floating drug dosage systems (FDDS, swelling or expanding systems , mucoadhesive systems , magnetic systems, modified-shape systems, high density system and other delayed gastric emptying devices.

  2. Emulsomes: An emerging vesicular drug delivery system

    Directory of Open Access Journals (Sweden)

    Bhawandeep Gill

    2012-01-01

    Full Text Available The oral route is the easiest, cost effective, and most vital method for drug administration. Therefore, improvement of dosage forms mainly for the prolonged release purpose has been a challenge for scientists. Vesicular drug delivery systems are developed with a purpose to overcome problems coupled with the drugs such a poor bioavailability, protection from harsh gastric environment, and from gastric enzymes, which degrade the drug. Vesicular drug delivery systems such as liposomes, emulsions, niosomes, proniosomes, solid lipid-nano particles, ethosomes, nanoparticles, and pharmacosomes, etc have gained much attention, but emulsomes have rouse as system, which bypasses many disadvantages associated with other systems, developed as novel lipoidal vesicular system with internal solid fat core surrounded by phospholipid bilayer. This technology is designed to act as vehicle for poorly soluble drugs. The drug is enclosed in the emulsomes and provide prolong existence of drug in systemic circulation. Furthermore, emulsomal-based formulations of genetic drugs such as antisense oligonucleotides and plasmids for gene therapy that have clear potential for systemic utility are increasingly available. This review addresses the concept of emulsomal drug delivery system, summarizes the success of emulsomes for the delivery of small molecules, and special attention has been paid to its formulation design, advantages, biopharmaceutical aspects, stability aspects, and various aspects related to drug delivery including future aspects.

  3. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  4. Maximum uptime and minimum focus shift in high-power 1μm laser beam delivery

    Science.gov (United States)

    Kugler, T.

    2012-03-01

    High Power (3kW to 20kW) 1um lasers can show problems related to thermal focus shift, optical contamination, and subsequent optical damage if not designed and maintained properly in production. Other issues are related to correct optical assembly and optic orientation in the beam delivery system. Even low to medium power lasers can have problems where the power density on the optics becomes excessive, especially where single mode lasers are employed. This paper discusses methods and hardware developed to minimize thermal focus shift in medium and high power beam delivery by first analyzing the standard issues and measuring improvements by the use of proper designs with reflective and transmissive systems by employing seals, active purge, optimized layouts, and direct-cooled optics.

  5. Proton beam therapy control system

    Science.gov (United States)

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. RECENT TRENDS IN DENTAL DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sharma Nishu

    2013-07-01

    Full Text Available Controlled release local drug delivery systems offer advantages compared to systemic dosage forms for many dental diseases like gingivitis, periodontitis. The objective of this literature survey was to gain knowledge about various dental drug delivery systems for targeted delivery of the drug. The polymer ethyl cellulose was used in the formulation of dental films. The dental film was then evaluated for various parameters like thickness, folding endurance and weight variation and content uniformity, in vitro and in vivo study. There has been a great attention in using iontophoretic technique for the transdermal drug delivery of medications, both ionic and non ionic. This technique of facilitated movement of ions across a membrane under the influence of an externally applied electric potential difference is one of the most promising physical skin penetrations enhancing method. Another novel approach is the use of lasers in dentistry. Lasers can be used in both hard and soft tissue applications including laser bleaching, frenectomy, gingivectomy, caries removal etc. Drugs delivery via the buccal routs using bio adhesive dosage forms offers such a novel route of drugs administration. This route has been used successfully for the systematic delivery of number of drugs candidates. Problems such as high first pass metabolisms and drugs degradation in the gastrointestinal tract can be circumvented by administrating the drug buccal routes.

  7. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. R. Tajane et al.

    2012-01-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  8. Goals for Postsecondary Instructional Delivery Systems.

    Science.gov (United States)

    Knapp, Stuart E.; Valentine, Carol A.

    Extrapolating from the trends in postsecondary instructional delivery systems identified by Brown, Lewis and Harcleroad, this report attempts to identify how these trends might be implemented in Oregon. Separating the systems into technology-centered and people-centered, the report proposes future applications of dial access systems, self learning…

  9. OPTIMIZATION TECHNIQUES IN TRANSDERMAL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Shikha Deshwal et al

    2012-08-01

    Full Text Available Transdermal drug technology specialists are continuing to search for new methods that can effectively and painlessly deliver larger molecules in therapeutic quantities to overcome the difficulties associated with the oral route. Transdermal Drug Delivery System (TDDS is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Skin is an effective medium from which absorption of the drug takes place and enters in to circulatory system. Various types of transdermal patches are used to incorporate the active ingredients into the circulatory system via skin. The patches have been proved effective because of its large advantages over other controlled drug delivery systems. This review article covers a brief outline of various components of transdermal patch, applications of transdermal patch, their advantages, disadvantages, when the transdermal patch are used and when their use should be avoided, types of transdermal patch, recent techniques for enhancing TDDS

  10. Microemulsion: As Excellent Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Pathan Maksud

    2012-09-01

    Full Text Available Today though the oral drug delivery system is dominant still it is found to be need of ideal transdermal drug delivery system. “A micro emulsion is a system of water, oil and an amphiphile which is a single optically isotropic and thermodynamically stable liquid solution”. Microemulsions offer several advantages as drug delivery systems as these are thermodynamically stable and stability allows for self emulsification of the system with microemulsion acting as supersolvent of the drugs which are poorly or insoluble in water. They are preferred more as compared to conventional emulsions due stability. The dispersed phase mainly acts as the solvent for the water insoluble drug. Microemulsions have been proved to increase the cutaneous absorption of both lipophilic and hydrophilic API’s when compared to conventional vehicles.

  11. Pulsatile drug delivery systems: An approach for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Arora Shweta

    2006-01-01

    Full Text Available Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery and increasing patient compliance. These systems are designed according to the circadian rhythm of the body. The principle rationale for the use of pulsatile release is for the drugs where a constant drug release, i.e., a zero-order release is not desired. The release of the drug as a pulse after a lag time has to be designed in such a way that a complete and rapid drug release follows the lag time. Various systems like capsular systems, osmotic systems, single- and multiple-unit systems based on the use of soluble or erodible polymer coating and use of rupturable membranes have been dealt with in the article. It summarizes the latest technological developments, formulation parameters, and release profiles of these systems. Products available as once-a-daily formulation based on Pulsatile release like Pulsincap ®, Ritalin ®, and Pulsys ® are also covered in the review. These systems are beneficial for the drugs having chronopharmacological behaviour where night time dosing is required and for the drugs having high first-pass effect and having specific site of absorption in GIT. Drugs used in asthmatic patients and patients suffering from rheumatoid arthritis are also discussed along with many other examples.

  12. Delivery systems for gene therapy

    Directory of Open Access Journals (Sweden)

    Shrikant Mali

    2013-01-01

    Full Text Available The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  13. KTeV beam systems design report

    Energy Technology Data Exchange (ETDEWEB)

    Bocean, V.; Childress, S.; Coleman, R. [and others

    1997-09-01

    The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.

  14. Aerial Delivery Systems and Technologies (Review Paper

    Directory of Open Access Journals (Sweden)

    Balraj Gupta

    2010-03-01

    Full Text Available Aerial Delivery Research & Development Establishment (ADRDE was started at Kanpur during latter part of 1950's consisting of two Aerial Delivery Sections primarily for the indigenisation of Parachutes and related equipment for Para-dropping of men and materials. Today, the charter of ADRDE includes design & development of parachutes, Aerostat Systems, Aircraft Arrester Barrier Systems and Heavy-Drop Systems for both military and civilian applications. The technological competence built in Aeronautical, Textile, Mechanical and Electronics engineering has imparted ADRDE, a unique combination of know-how and capabilities to evolve new solutions in these fields, with emphasis on quality assurance. This paper highlights the design and development of technologies developed by ADRDE to stengthen the India's aerial delivery system and its future plans.Defence Science Journal, 2010, 60(2, pp.124-136, DOI:http://dx.doi.org/10.14429/dsj.60.326

  15. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    Science.gov (United States)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  16. Pharmacosomes: A Potential Vesicular Drug Delivery System

    Directory of Open Access Journals (Sweden)

    D. Nagasamy Venkatesh

    2014-04-01

    Full Text Available Lipid based drug delivery systems have been examined in various studies and exhibited their potential in controlled and targeted drug delivery. Pharmacosomes, a novel vesicular drug delivery system, offering a unique advantage over liposomes and niosomes, and serve as potential alternative to these conventional vesicles. They constitute an amphiphilic phospholipid complex with drug bearing an active hydrogen atom covalently that bind to phospholipids. They provide an efficient delivery of drug required at the site of action, which ultimately reduces the drug toxicity with reduced adverse effects and also reduces the cost of therapy by imparting better biopharmaceutical properties to the drug, resulting in increases bioavailability, especially in case of poorly soluble drugs. As the system is formed by binding the drug (pharmakon to carrier (soma, they are termed as pharmacosomes. Depending upon the chemical structure of the drug lipid complex they may exist as ultrafine vesicular, micellar and hexagonal aggregate. Drug having active hydrogen group such as carboxyl, hydroxyl group can be esterified to lipids, resulting in amphiphilic compound. Pharmacosomes are widely used as carriers for various non-steroidal anti-inflammatory drugs, proteins, cardiovascular and antineoplastic drugs. The release of drug from pharmacosomes is generally governed by the process of enzymatic reaction and acid hydrolysis. Here, in the present review paper we have discussed the potential of pharmacosomes as a controlled and targeted drug delivery system and highlighted the method of preparation and characterization.

  17. Servir: an automated document delivery system

    International Nuclear Information System (INIS)

    SERVIR, an automated document delivery system developed by CIN/CNEN, is described. Parametric procedures for reading bibliographic data bases and requesting documents from libraries through computer are specified. Statistical procedures, accounting system and the on-line fulfillment of requests are presented. (Author)

  18. FLOATING DRUG DELIVERY SYSTEM - CHRONOTHERAPEUTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Vishal Kalal

    2011-04-01

    Full Text Available The purpose of writing this review on the floating drug delivery systems (FDDS was to compile the recent literature with special focus on the principal mechanism of floatation to achieve gastric retention. FDDS is one of the approaches in chronotherapeutic drug delivery. In the past reviews of FDDS the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, their classification and formulation aspects have been covered. This review summarizes the special focus on chronotherapeutics, diseases affected by biological rhythm, its importance, advantages, various approaches in Chronotherapeutic drug delivery and applications of FDDS. These systems are useful for several problems encountered during the development of a pharmaceutical dosage forms.

  19. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  20. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  1. NOVEL APPROACH: MICROSPONGE DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Shyam Sunder Mandava et al.

    2012-04-01

    Full Text Available Transdermal drug delivery system (TDS is not practically for delivery of materials whose final target is skin itself. Application topical agents generally offer many problems such as rashes, skin irritancy and burning sensation etc due to higher percutaneous absorption of drugs on the skin. Some conventional dosage e.g., gels and ointments. Which are often aesthetically unappealing, greasiness and stickiness etc. that often result into lack of patient compliance. For reduce this side effects, microsponge technology offers many advantage over the conventional drug delivery. The microsponge based drug delivery system is a unique technology for controlled release and enhanced drug deposition in the skin while minimizing transdermal penetration of topically active agents. Drug loaded microsponge consist of microporous beads, typically 10-25 μm in diameter. Microsponge delivery system (MDS can provide increased efficacy for topically active agents with enhanced safety, extended product stability, enhanced formulation flexibility, reduced side effects and improved aesthetic properties in an efficient and novel manner. In addition these are non-irritating, non-allergenic, non-mutagenic, and non-toxic. MDS technology is being used currently in cosmetics, over-the-counter skin care, sunscreen and prescription products.

  2. Brain drug delivery systems for neurodegenerative disorders.

    Science.gov (United States)

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2012-09-01

    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson's, Alzheimer's and Huntington's disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment. PMID:23016644

  3. Transdermal Patches: A Complete Review on Transdermal Drug Delivery System

    OpenAIRE

    Patel DS; Patel MV; Patel KN; Patel BA; Patel PA

    2012-01-01

    Today about 70% of drugs are taken orally and are found not to be as effective as desired. To improvesuch characters transdermal drug delivery system was emerged. Transdermal drug delivery system(TDDS) provides a means to sustain drug release as well as reduce the intensity of action and thusreduce the side effects associated with its oral therapy and differs from traditional topical drug delivery.Transdermal Drug Delivery System is the system in which the delivery of the active ingredients o...

  4. RECENT ADVANCES IN NOVEL DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manivannan Rangasamy

    2010-12-01

    Full Text Available Drug delivered can have significant effect on its efficacy. Some drugs have an optimum concentration range with in which maximum benefit is derived and concentrations above (or below the range can be toxic or produce no therapeutic effect. Various drug delivery and drug targeting systems are currently under development. The main goal for developing such delivery systems is to minimize drug degradation and loss, to prevent harmful side effects and to increase bioavailability. Targeting is the ability to direct the drug loaded system to the site of interest. Among drug carrier one can name soluble polymers, microparticles made of insoluble (or biodegradable natural and synthetic polymers, microcapsules, cells, cell ghosts, lipoproteins, liposomes and micelles. Two major mechanisms can be distinguished for addressing the desired sites for drug release, (a Passive and (b Active targeting. Controlled drug carrier systems such as micellar solutions, vescicles and liquid crystal dispersions, as well as nanoparticle dispersions consisting of small particles of 10 – 400 nm show great promise as drug delivery systems. Hydrogels are three dimensional, hydrophilic, polymer networks capable of imbibing large amounts of water or biological fluids. Buckyballs, a novel delivery system with 60 carbon atoms formed in the shape of hollow ball. They are other type’s namely bucky babies, fuzzy balls, gadofullereness, and giant fullerenes. Nanoparticles can be classified as nano tubes, nano wires, nano cantilever, nanoshells, quantum dots, nano pores. Researchers at north western university using gold particles to develop ultra sensitive detection systems for DNA and protein markers associated with many forms of cancer, including breast and prostrate cancer. Drug loaded erythrocytes is one of the growing and potential systems for delivery of drugs and enzymes.

  5. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  6. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  7. LHC beam instrumentation detectors and acquisition systems

    International Nuclear Information System (INIS)

    An overview of some of the detectors and acquisition systems being developed for measuring and controlling beam parameters in the LHC. The two largest systems concern the measurement of beam position, with over 1000 monitors, and beam loss, with over 3000 monitors. For the beam position system a novel wide band time normaliser has been developed to allow bunch-by-bunch 40MHz acquisitions with a dynamic range greater than 30dB and an overall linearity of better than 1%. Also mentioned will be the acquisition system for the fast beam current transformers and the development of CdTe detectors for luminosity monitoring. [author

  8. PHARMACOSOMES: A POTENTIAL VESICULAR DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    De Pintu Kumar

    2012-03-01

    Full Text Available Pharmacosome is a potential approach in the vesicular drug delivery system which exhibit several advantages over conventional vesicular drug delivery systems. Pharmacosomes are amphiphilic lipid vesicular system possessing phospholipid complexes of drugs. Drugs bearing active hydrogen atom can be esterified to the lipid. This type of vesicular system improves permeation of drugs across the biomembranes and thus results in an improvement in the bioavailability and can also improve the pharmacokinetic and pharmacodynamic properties of various types of drug molecules.This vesicular system can be characterized by surface morphology, solubility study, differential scanning calorimrtry, x-ray powder diffraction, in vitro dissolution study. Pharmacosomes are suitable for incorporating both hydrophilic and lipophilic drugs.Preparations of pharmacosomes are basically performed for various non-steroidal anti-inflammatory drugs, proteins, cardiovascular and antineoplastic drugs.

  9. NOVEL PARADIGMS IN MUCOADHESIVE DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Deepak Sharma et al

    2012-08-01

    Full Text Available Mucoadhesion is a field of current interest in the design of drug delivery systems. Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Mucoadhesive drug delivery system may be designed to enable prolonged residence time of the dosage form at the site of application or absorption and facilitate an intimate contact of the dosage form with the underline absorption surface. Extending the residence time of a dosage form at a particular site and controlling the release of drug from the dosage form are useful especially for achieving controlled plasma level of the drug as well as improving bioavailability. Application of these dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The present review describes mucoadhesion, mucoadhesive polymers and use of these polymers in designing different types of mucoadhesive gastrointestinal, nasal, ocular, vaginal and rectal drug delivery systems. The research on mucoadhesives, however, is still in its early stage, and further advances need to be made for the successful translation of the concept into practical application in controlled drug delivery.

  10. Systemic delivery of artemether by dissolving microneedles.

    Science.gov (United States)

    Qiu, Yuqin; Li, Chun; Zhang, Suohui; Yang, Guozhong; He, Meilin; Gao, Yunhua

    2016-07-11

    Dissolving microneedles (DMNs) based transdermal delivery is an attractive drug delivery approach with minimal invasion. However, it is still challenging to load poorly water-soluble drugs in DMNs for systemic delivery. The aim of the study was to develop DMNs loaded with artemether (ARM) as a model drug, to enable efficient drug penetration through skin for systemic absorption and distribution. The micro-conduits created by microneedles were imaged by confocal laser scanning microscopy (CLSM), and the insertion depth was suggested to be about 270μm. The maximum amount of ARM delivered into skin was 72.67±2.69% of the initial dose loaded on DMNs preparation. Pharmacokinetics study in rats indicated a dose-dependent profile of plasma ARM concentrations, after ARM-loaded DMNs treatment. In contrast to intramuscular injection, DMNs application resulted in lower peak plasma levels, but higher plasma ARM concentration at 8h after administration. There were no significant difference in area under the curve and bioavailability between DMNs group and intramuscular group (P>0.05). Pharmacodynamics studies performed in collagen-induced arthritis (CIA) rats showed that ARM-loaded DMNs could reverse paw edema, similar to ARM intramuscular injection. In conclusion, developed DMNs provided a potential minimally invasive route for systemic delivery of poorly water-soluble drugs. PMID:27150946

  11. A wireless actuating drug delivery system

    Science.gov (United States)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s-1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  12. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s−1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  13. AN OVERVIEW ON VARIOUS APPROACHES TO ORAL CONTROLLED DRUG DELIVERY SYSTEM VIA GASTRORETENTIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Bhalla.Neetika; Deep Arsh; Goswami Manish

    2012-01-01

    In recent years scientific and technological advancements have been made in the research and development of oral drug delivery system. Oral sustained drug delivery system is complicated by limited gastric residence times (GRTs). In order to understand various physiological difficulties to achieve gastric retention, we have summarized important factors controlling gastric retention. To overcome these limitations, various approaches have been proposed to increase gastric residence of drug deli...

  14. Hydrogen storage and delivery system development: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L.; Malinowski, M.E.; Wally, K. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  15. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  16. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  17. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative co

  18. Recent Advances in Ocular Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Shinobu Fujii

    2011-01-01

    Full Text Available Transport of drugs applied by traditional dosage forms is restricted to the eye, and therapeutic drug concentrations in the target tissues are not maintained for a long duration since the eyes are protected by a unique anatomy and physiology. For the treatment of the anterior segment of the eye, various droppable products to prolong the retention time on the ocular surface have been introduced in the market. On the other hand, direct intravitreal implants, using biodegradable or non-biodegradable polymer technology, have been widely investigated for the treatment of chronic vitreoretinal diseases. There is urgent need to develop ocular drug delivery systems which provide controlled release for the treatment of chronic diseases, and increase patient’s and doctor’s convenience to reduce the dosing frequency and invasive treatment. In this article, progress of ocular drug delivery systems under clinical trials and in late experimental stage is reviewed.

  19. FAST DISSOLVING DRUG DELIVERY SYSTEM - A REVIEW

    OpenAIRE

    Sharma Ritika; Rajput Meenu; Prakash Pawan; Sharma Saurabh

    2011-01-01

    Tablet is the most popular among all dosage forms existing today because of its convenience of self administration, compactness and easy manufacturing; however in many cases immediate onset of action is required than conventional therapy. To overcome these drawbacks, immediate release pharmaceutical dosage form has emerged as alternative oral dosage forms. There are novel types of dosage forms that act very quickly after administration. Drug delivery systems are becoming sophisticated day by ...

  20. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by −0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery

  1. TRANSCUTANEOUS DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Sandhu Premjeet

    2011-12-01

    Full Text Available Conventional drug delivery systems are often not suitable for new protein based and other Therapeutic compounds produced by modern technology. Therefore an alternative Approach to deliver these drugs can be achieved through the skin in the form of transcutaneous drug delivery system. Modern medicine has responded with the development of methods to deliver drug transcutanously (through the skin for therapeutic use as an alternative to traditional route including oral, intravascular, intramuscular, subcutaneous, and sublingual. Transcutaneous drug delivery has many theoretic and practical advantage and disadvantages, and such issues are often a concern for both clinicians and patients. Transcutaneous patches are flexible pharmaceutical preparations of varying sizes, containing one or more active ingredient, intended to be applied to the unbroken skin in order to deliver the active ingredient to the systemic circulation after passing through the skin barriers. A Transcutaneous patch or skin patch is a medicated adhesive patch that is placed on the skin to deliver a specific dose of medication through the skin and into the bloodstream. Often, this promotes healing to an injured area of the body. In this method, the drug enters the bloodstream directly through skin and it avoid first pass effect. Characterization of Transcutaneous patch are necessary because check it’s quality, size, time of onset & duration, adhesive property, thickness, weight of patch, moisture of content, uniformity & cutaneous toxicological studies. Their requirements for evaluation are HPLC, U.V. spectrophotometer, screw gauge, digital balance, desiccators, thin layer chromatography & K.C. Cell used.

  2. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  3. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  4. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    Science.gov (United States)

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  5. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    Science.gov (United States)

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems. PMID:26898739

  6. Transdermal drug delivery system: An overview

    Directory of Open Access Journals (Sweden)

    Vaibhav Rastogi

    2012-01-01

    Full Text Available Transdermal drug delivery system (TDDS is one of the systems lying under the category of controlled drug delivery, in which the aim is to deliver the drug through the skin in a predetermined and controlled rate. It has various advantages, like prolonged therapeutic effect, reduced side-effects, improved bioavailability, better patient compliance and easy termination of drug therapy. The stratum corneum is considered as the rate limiting barrier in transdermal permeation of most molecules. There are three main routes of drug penetration, which include the appendageal, transcellular and intercellular routes. Skin age, condition, physicochemical factors and environmental factors are some factors that are to be considered while delivering drug through this route. Basic components of TDDS include polymer matrix, membrane, drug, penetration enhancers, pressure-sensitive adhesives, backing laminates, release liner, etc. Transdermal patches can be divided into various systems like reservoir system, matrix system and micro-reservoir system, which are used to incorporate the active ingredients into the circulatory system via the skin. After preparation of transdermal patches, consistent methodology are adopted to test the adhesion properties, physicochemical properties, in vitro drug release studies, in vitro skin permeation studies, skin irritation studies and stability studies. According to the duration of therapy, various drugs are commercially available in the form of transdermal patches.

  7. Ultrasound-mediated nail drug delivery system.

    Science.gov (United States)

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative. PMID:22124008

  8. SELF EMULSIFYING DRUG DELIVERY SYSTEM: A REVIEW

    Directory of Open Access Journals (Sweden)

    Tayal Ayushi

    2012-05-01

    Full Text Available Oral route still remains the favorite route of drug administration in many diseases and till today it is the first wayinvestigated in the development of new dosage forms. Approximately 40 per cent of new drug candidates have poor water solubility and the oral delivery ofsuch drugs is frequently associated with implications of low bioavailability, high intra and inter-subjectvariability, and lack of dose proportionality. Bioavailability problem of lipophillic drugs can be solved byformation of Self Emulsifying Drug Delivery System (SEDDS. SEDDS are isotropicmixtures of oil, surfactant, co-surfactant and drug with a unique ability to form fine oil in water microemulsion upon mild agitation following dilution with aqueous phase. The principal characteristic of thesesystems is their ability to form fine oil-in-water (o/w emulsions or micro-emulsions upon mild agitation followingdilution by an aqueous phase. For lipophilic drugs, which have dissolution rate-limited absorption, SEDDS may be apromising strategy to improve the rate and extent of oral absorption.This review article explains how self-emulsifying drug delivery systems can increase the solubility and bioavailability ofpoorly soluble drug.

  9. Ultrasound-mediated nail drug delivery system.

    Science.gov (United States)

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative.

  10. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  11. MICROENCAPSULATION: AN INDISPENSABLE TECHNOLOGY FOR DRUG DELIVERY SYSTEM

    OpenAIRE

    Malakar Jadupati; Das Tanmay; Ghatak Souvik

    2012-01-01

    In this review, the various new and well established technologies relevant to the controlled and targeted drug delivery systems have been precisely discussed. A perfectly designed controlled drug delivery system can be of huge advantage towards solving problems concerning to the targeting of drug to a specific organ or tissue and controlling the rate of drug delivery at the target site. Novel drug delivery systems have various advantages over other conventional drug therapy. In which microenc...

  12. Neutral beam data systems at ORNL

    International Nuclear Information System (INIS)

    A control system for neutral injection beam lines has been designed, implemented, and used with much success. Despite the problems with very high power levels this system is very successful in relieving the operators burdens of slow conditioning, data recording, and mode switching. The use of computer control with multiple beam lines now appears very promising

  13. A Review: Transdermal Drug Delivery System: A Tool For Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    NIKHIL SHARMA

    2011-06-01

    Full Text Available The human skin is a readily accessible surface for drug delivery. Skin of an average adult body covers a surface of approximately 2 m2 and receives about one-third of the blood circulating through the body. Over the past decades, developing controlled drug delivery has become increasingly important in the pharmaceutical industry. The human skin surface is known to contain, on an average, 10- 70 hair follicles and 200-250 sweat ducts on every square centimeters of the skin area. It is one of the most readily accessible organs of the human body. There is considerable interest in the skin as a site of drug application both for local and systemic effect. However, the skin, in particular the stratum corneum, poses a formidable barrier to drug penetration thereby limiting topical and transdermal bioavailability. Skin penetration enhancement techniques have been developed to improve bioavailability and increase the range of drugs for which topical and transdermal delivery is a viable option. During the past decade, the number of drugs formulated in the patches has hardly increased, and there has been little change in the composition of the patch systems. Modifications have been mostly limited to refinements of the materials used. The present review article explores the overall study on transdermal drug delivery system (TDDS which leads to novel drug delivery system (NDDS.

  14. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored. PMID:25466399

  15. 42 CFR 457.490 - Delivery and utilization control systems.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Delivery and utilization control systems. 457.490... State Plan Requirements: Coverage and Benefits § 457.490 Delivery and utilization control systems. A... targeted low-income children, including a description of the proposed methods of delivery and...

  16. Low energy beam transport system developments

    Science.gov (United States)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  17. Gamma beam system at ELI-NP

    Energy Technology Data Exchange (ETDEWEB)

    Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  18. Multifunctional non-viral delivery systems based on conjugated polymers.

    Science.gov (United States)

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  19. Liposomes as delivery systems for antineoplastic drugs

    Science.gov (United States)

    Medina, Luis Alberto

    2014-11-01

    Liposome drug formulations are defined as pharmaceutical products containing active drug substances encapsulated within the lipid bilayer or in the interior aqueous space of the liposomes. The main importance of this drug delivery system is based on its drastic reduction in systemic dose and concomitant systemic toxicity that in comparison with the free drug, results in an improvement of patient compliance and in a more effective treatment. There are several therapeutic drugs that are potential candidates to be encapsulated into liposomes; particular interest has been focused in therapeutic and antineoplastic drugs, which are characterized for its low therapeutic index and high systemic toxicity. The use of liposomes as drug carriers has been extensively justified and the importance of the development of different formulations or techniques to encapsulate therapeutic drugs has an enormous value in benefit of patients affected by neoplastic diseases.

  20. Mucoadhesive drug delivery system: An overview

    Directory of Open Access Journals (Sweden)

    Bindu M Boddupalli

    2010-01-01

    Full Text Available Mucoadhesive drug delivery systems interact with the mucus layer covering the mucosal epithelial surface, and mucin molecules and increase the residence time of the dosage form at the site of absorption. The drugs which have local action or those which have maximum absorption in gastrointestinal tract (GIT require increased duration of stay in GIT. Thus, mucoadhesive dosage forms are advantageous in increasing the drug plasma concentrations and also therapeutic activity. In this regard, this review covers the areas of mechanisms and theories of mucoadhesion, factors influencing the mucoadhesive devices and also various mucoadhesive dosage forms.

  1. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  2. FAST DISSOLVING DRUG DELIVERY SYSTEM - A REVIEW

    Directory of Open Access Journals (Sweden)

    Sharma Ritika

    2011-11-01

    Full Text Available Tablet is the most popular among all dosage forms existing today because of its convenience of self administration, compactness and easy manufacturing; however in many cases immediate onset of action is required than conventional therapy. To overcome these drawbacks, immediate release pharmaceutical dosage form has emerged as alternative oral dosage forms. There are novel types of dosage forms that act very quickly after administration. Drug delivery systems are becoming sophisticated day by day as pharmaceutical scientists has acquired a better understanding of the physicochemical and biochemical parameters of drugs and excipients. Over the past three decades, fast disintegrating tablets (FDTs have gained considerable attention and is one of the most widely employed commercial product which is preferred alternative to conventional tablets and capsules especially for the pediatric and geriatric patients and for the patients who are bedridden, those having hand tremors, motion sickness, disphagia and who may not have access to water during traveling or who are uncooperative, on reduced liquid intake plan and also preferred in sudden episodes of allergic attack. Fast-dissolving drug delivery systems may offer a solution for these problems.

  3. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    OpenAIRE

    Ravi Kant Upadhyay

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations insi...

  4. Coacervate delivery systems for proteins and small molecule drugs

    OpenAIRE

    Johnson, Noah R.; Wang, Yadong

    2014-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates.

  5. Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the ability of a prototype Compton camera (CC) to measure prompt gamma rays (PG) emitted during delivery of clinical proton pencil beams for prompt gamma imaging (PGI) as a means of providing in vivo verification of the delivered proton radiotherapy beams.A water phantom was irradiated with clinical 114 MeV and 150 MeV proton pencil beams. Up to 500 cGy of dose was delivered per irradiation using clinical beam currents. The prototype CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data (2D) images of the PG emission were reconstructed. (1D) profiles were extracted from the PG images and compared to measured depth dose curves of the delivered proton pencil beams.The CC was able to measure PG emission during delivery of both 114 MeV and 150 MeV proton beams at clinical beam currents. 2D images of the PG emission were reconstructed for single 150 MeV proton pencil beams as well as for a 5   ×   5 cm mono-energetic layer of 114 MeV pencil beams. Shifts in the Bragg peak (BP) range were detectable on the 2D images. 1D profiles extracted from the PG images show that the distal falloff of the PG emission profile lined up well with the distal BP falloff. Shifts as small as 3 mm in the beam range could be detected from the 1D PG profiles with an accuracy of 1.5 mm or better. However, with the current CC prototype, a dose of 400 cGy was required to acquire adequate PG signal for 2D PG image reconstruction.It was possible to measure PG interactions with our prototype CC during delivery of proton pencil beams at clinical dose rates. Images of the PG emission could be reconstructed and shifts in the BP range were detectable. Therefore PGI with a CC for in vivo range verification during proton treatment delivery is feasible. However, improvements in the prototype CC detection efficiency and reconstruction algorithms are necessary to

  6. Nanoemulsion: A new concept of delivery system

    Directory of Open Access Journals (Sweden)

    Nitin Sharma

    2010-01-01

    Full Text Available Nanoemulsion has been identified as a promising delivery system for various drugs including biopharmaceuticals. Nanoemulsion is a heterogeneous system composed of one immiscible liquid dispersed as droplets within another liquid. The droplets size of nano emulsion is between 20 to 500 nm. Diameter and surface properties of droplets of nanoemulsion plays an important role in the biological behavior of the formulation. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase. In this paper various aspects of nanoemulsion have been discussed including advantages, disadvantages and methods of preparation. Furthermore new approaches of stability of formulation, effect of types and concentration of surfactant, process variables and method are also discussed to improve the stability of nanoemulsion formulation

  7. Performance of the ATLAS Beam Diagnostic Systems

    CERN Document Server

    Macek, B; The ATLAS collaboration

    2010-01-01

    The beam diagnostic system of the ATLAS detector comprises two diamond sensor based devices. The innovative Beam Conditions Monitor (BCM) is aimed at resolving background from collision particles by sub-ns time-of-flight measurement. The Beam Loss Monitor (BLM) is a clone of the LHC machine BLM system, replacing ionization chambers with diamond sensors. BCM uses 16 1x1 cm2 0.5 mm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors arranged in 8 positions at a radius r ≈ 55 mm, ~1.9 m up- and down-stream the interaction point. Time measurements at 2.56 GHz sampling rate are performed to distinguish between collision and shower particles from beam incidents. A FPGA-based readout system performs real-time data analysis and interfaces the results to ATLAS and the LHC beam permit system. The diamond sensors, the detector modules and their readout system are described. Results of performance with LHC beams of increasing energy and intensity including timing separation of collisions from beam re...

  8. Recent development in novel drug delivery systems of herbal drugs

    Directory of Open Access Journals (Sweden)

    Mayank Chaturvedi

    2011-01-01

    Full Text Available Novel technologies have been developed recently for drug delivery systems. The use of herbal formulations for novel drug delivery systems is more advantageous and has more benefits compared to others. The use of liposome, ethosome, phytosomes, emulsion, microsphere, solid lipid nanoparticles of herbal formulation has enhanced the therapeutic effects of plant extracts. With the use of all these, targeted delivery of the formulation is achieved, due to which the formulation demonstrates effect on the site, and the bioavailability of the formulation is also increased. With these novel drug delivery systems, the actives and extracts which are used in herbal formulations demonstrate enhancement in stability, sustained release of formulation, protection from toxicity and improved therapeutic efficacy. The main purpose of developing alternative drug delivery technologies is to increase efficiency of drug delivery and safety in the process of drug delivery and provide more convenience for the patient. The present paper includes information about novel formulations of herbal formulations.

  9. Transdermal Patches: A Complete Review on Transdermal Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Patel DS

    2012-03-01

    Full Text Available Today about 70% of drugs are taken orally and are found not to be as effective as desired. To improvesuch characters transdermal drug delivery system was emerged. Transdermal drug delivery system(TDDS provides a means to sustain drug release as well as reduce the intensity of action and thusreduce the side effects associated with its oral therapy and differs from traditional topical drug delivery.Transdermal Drug Delivery System is the system in which the delivery of the active ingredients of thedrug occurs by means of skin. Several important advantages of transdermal drug delivery are limitationof hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steadyplasma level of the drug. Various types of transdermal patches are used to incorporate the activeingredients into the circulatory system via skin. This review article covers a brief outline of theprinciples of transdermal permeation, various components of transdermal patch, approaches oftransdermal patch, evaluation of transdermal system, its application with its limitation.

  10. RECENT ADVANCES IN GASTRO RETENTIVE DRUG DELIVERY SYSTEM: A REVIEW

    OpenAIRE

    DASH ALOK KUMAR; MISHRA JHANSEE

    2013-01-01

    Several controlled oral drug delivery systems with prolonged gastric residence time have been reported recently. Gastro retentive drug delivery system is an approach to prolong gastric residence time, thereby targeting site-specific drug release in upper gastro intestinal tract improving the oral sustained delivery of drug that have an absorption window in a particular region of the gastrointestinal tract. These systems help in continuously releasing the drug before it reaches the absorption ...

  11. ROLE OF NATURAL POLYMERS USED IN FLOATING DRUG DELIVERY SYSTEM

    OpenAIRE

    Singh Amit Kumar; Dubey Vivek; Arora Vandana

    2012-01-01

    Floating drug delivery system is the form of gastro-retentive drug delivery system that controls the kinetic release rate of a drug to a specific site for its pharmacological action. These are achieved by use of various polymeric substance including natural polymers such as Guar Gum, Xanthan Gum, Gellan Gum etc. This delivery system prolongs the retention time of the drug in the stomach as compared to conventional dosage forms. The present article highlights the use of polymers for the formul...

  12. DESIGN OF GASTRO RETENTIVE DRUG DELIVERY SYSTEM OF DILTIAZEM HYDROCHLORIDE

    OpenAIRE

    L. K. Omray

    2014-01-01

    Gastro retentive drug delivery system of diltiazem hydrochloride was designed and evaluated for its effectiveness for the management of mild to moderate hypertension. Gastro retentive drug delivery system were prepared using polyvinyl alcohol and sodium carboxy methyl cellulose as the polymers and sodium bicarbonate as a gas generating agent for the reduction of floating lag time. Gastro retentive drug delivery system tablets were prepared by wet granulation method by compression in tablet co...

  13. Unique beam delivery and processing tools for high power solid state laser processing

    Science.gov (United States)

    Ryba, Tracey; Havrilla, David; Holzer, Marco; Bea, Martin

    2012-03-01

    The continued advances in high power, high brightness solid state laser has necessitated new tools for use with laser material processing. Some of the challenges of higher power lasers have been met with Reflective Focusing Optic to combat Thermal focus shift and new fiber optic cables to more efficiently deliver the higher power. Conversely the improved brightness has led to new opportunities with patented dual core fibers, advances in remote scanner welding devices and calibration devices for them. This paper will explain recent advances in beam delivery and processing optics for high power, high brightness solid state lasers.

  14. Hollow-core photonic crystal fibre for high power laser beam delivery

    Institute of Scientific and Technical Information of China (English)

    Yingying; Wang; Meshaal; Alharbi; Thomas; D.Bradley; Coralie; Fourcade-Dutin; Benot; Debord; Benot; Beaudou; Frdric; Ger??me; Fetah; Benabid

    2013-01-01

    We review the use of hollow-core photonic crystal fibre(HC-PCF)for high power laser beam delivery.A comparison of bandgap HC-PCF with Kagome-lattice HC-PCF on the geometry,guidance mechanism,and optical properties shows that the Kagome-type HC-PCF is an ideal host for high power laser beam transportation because of its large core size,low attenuation,broadband transmission,single-mode guidance,low dispersion and the ultra-low optical overlap between the core-guided modes and the silica core-surround.The power handling capability of Kagome-type HC-PCF is further experimentally demonstrated by millijoule nanosecond laser spark ignition and~100μJ sub-picosecond laser pulse transportation and compression.

  15. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  16. Proniosomes: A Superior Drug Delivery System

    Directory of Open Access Journals (Sweden)

    D. Nagasamy Venkatesh

    2014-07-01

    Full Text Available Proniosomes are solid colloidal particles which may be hydrated immediately before use to yield aqueous niosomes dispersions similar to those produced by more cumbersome conventional methods. The proniosomes minimize the problems associated with niosomes in terms of its physical stability such as aggregation, fusion and leaking. They also offer an additional convenience in transportation, distribution, storage, and dosing. The proniosomes derived niosomes are better than conventional niosomes in terms of their morphology, particle size, particle size distribution, and drug release. A slurry method was commonly used to produce proniosomes using maltodextrin as carrier. The time required to produce proniosomes by this simple method is independent of the ratio of surfactant solution to carrier material and appears to be a scalable process. The encapsulation efficiency of proniosomes is depends upon the amount of maltodextrin used in the process. The present review describes the method of preparation, characterization, applications of proniosomes as a potential drug delivery system.

  17. ROLE OF NATURAL POLYMERS USED IN FLOATING DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Singh Amit Kumar

    2012-06-01

    Full Text Available Floating drug delivery system is the form of gastro-retentive drug delivery system that controls the kinetic release rate of a drug to a specific site for its pharmacological action. These are achieved by use of various polymeric substance including natural polymers such as Guar Gum, Xanthan Gum, Gellan Gum etc. This delivery system prolongs the retention time of the drug in the stomach as compared to conventional dosage forms. The present article highlights the use of polymers for the formulation of the floating drug delivery system especially with natural polymers.

  18. Radiation synthesis of stimuli-responsive hydrogels and the application to intelligent drug delivery systems

    International Nuclear Information System (INIS)

    Radiation-prepared synthetic and natural polyelectrolyte and polyampholite hydrogels were applied to the intelligent drug delivery systems (DDS). The intelligent membranes and chips were prepared by nano-porous fabrication with Eximalaser and ion-beam irradiations and the coating of stimuli-responsive hydrogels. This coating was efficiently carried out by curing processing with conveyer system. Computer programming control of intelligent drug releases was studied for the design of DDS chips to carry out the multiple drug delivery in response to multiple environmental changes. (author)

  19. Dextran-based microspheres as controlled delivery systems for proteins

    NARCIS (Netherlands)

    Vlugt-Wensink, K.D.F.

    2007-01-01

    Dextran-based microspheres as controlled delivery systems for proteins Dextran based microspheres are investigated as controlled delivery system for proteins. Microspheres were prepared by polymerization of dex-HEMA in an aqueous two-phase system of dex-HEMA and PEG. Protein loaded microspheres are

  20. Dermal delivery of ascorbyl palmitate: the potential of colloidal delivery systems

    OpenAIRE

    Gosenca, Mirjam; GAŠPERLIN, MIRJANA

    2015-01-01

    This study examined the suitability of various colloidal systems for ascorbyl palmitate (AP) skin delivery. First, a pseudoternary phase diagram for Tween 80/lecithin/butanol, isopropyl myristate (IPM), and water was constructed and regions of lipophilic (w/o) or hydrophilic (o/w) microemulsions (MEs), and emulsions (EMs) were identified. Afterwards, various phase transition systems on the selected dilution line, as well as liquid crystal (LC) as a delivery system on the same dilution line (b...

  1. Modified Approaches for Colon Specific Drug Delivery System: A Review

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar1*, Amrish Chandra2, Pawan Kumar Gautam3

    2013-09-01

    Full Text Available The colon is a site where both local and systemic delivery of drugs can take place. Local delivery allows topicaltreatment of inflammatory bowel disease. However, treatment can be made effective if the drugs can be targeteddirectly into the colon, thereby reducing the systemic side effects. This review mainly describes the primaryapproaches for CDDS (Colon Specific Drug Delivery namely prodrugs, pH and time dependent systems, andmicrobially triggered systems, which achieved limited success and had limitations as compared with newer CDDSnamely pressure controlled colonic delivery capsules. Oral administration of different dosage forms is the mostcommonly used method due to flexibility in design of dosage form and high patient acceptance, but thegastrointestinal tract presents several formidable barriers to drug delivery. In oral colon-specific drug deliverysystem, colon has a large amount of lymphoma tissue (facilitates direct absorption in to the blood, negligible brushboarder membrane activity, and much less pancreatic enzymatic activity as compared with the small intestine.Colon-specific drug delivery has gained increased importance not just for the delivery of the drugs for treatment oflocal diseases associated with the colon but also for its potential for the delivery of proteins and therapeutic peptides.Different approaches are designed based on prodrug formulation, pH-sensitivity, time-dependency (lag time,microbial degradation and osmotic pressure etc to formulate the different dosage forms like tablets, capsules,multiparticulates, microspheres, liposomes for colon targeting. The delivery of drugs to the colon has a number oftherapeutic implications in the field of drug delivery. In the recent times, the colon specific delivery systems are alsogaining importance not only for local drug delivery of drugs but also for the systemic delivery of protein and peptidedrugs. This review updated the research on different approaches formulation and

  2. RECENT ADVANCES IN GASTRO RETENTIVE DRUG DELIVERY SYSTEM: A REVIEW

    Directory of Open Access Journals (Sweden)

    DASH ALOK KUMAR

    2013-01-01

    Full Text Available Several controlled oral drug delivery systems with prolonged gastric residence time have been reported recently. Gastro retentive drug delivery system is an approach to prolong gastric residence time, thereby targeting site-specific drug release in upper gastro intestinal tract improving the oral sustained delivery of drug that have an absorption window in a particular region of the gastrointestinal tract. These systems help in continuously releasing the drug before it reaches the absorption window, thus ensuring optimal bioavailability. Various approaches for gastric retention are Floating system, Swelling and expanding system, Bioadhesive systems, Modified-shape systems, High density systems etc.

  3. MICROENCAPSULATION: AN INDISPENSABLE TECHNOLOGY FOR DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Malakar Jadupati

    2012-04-01

    Full Text Available In this review, the various new and well established technologies relevant to the controlled and targeted drug delivery systems have been precisely discussed. A perfectly designed controlled drug delivery system can be of huge advantage towards solving problems concerning to the targeting of drug to a specific organ or tissue and controlling the rate of drug delivery at the target site. Novel drug delivery systems have various advantages over other conventional drug therapy. In which microencapsulation is one approach for achieving the novel drug delivery dosage forms such as sustained release and controlled release, though the development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and focus the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. Our objective is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to elucidate the application of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  4. Importance of novel drug delivery systems in herbal medicines

    Directory of Open Access Journals (Sweden)

    V Kusum Devi

    2010-01-01

    Full Text Available Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. Our country has a vast knowledge base of Ayurveda whose potential is only being realized in the recent years. However, the drug delivery system used for administering the herbal medicine to the patient is traditional and out-of-date, resulting in reduced efficacy of the drug. If the novel drug delivery technology is applied in herbal medicine, it may help in increasing the efficacy and reducing the side effects of various herbal compounds and herbs. This is the basic idea behind incorporating novel method of drug delivery in herbal medicines. Thus it is important to integrate novel drug delivery system and Indian Ayurvedic medicines to combat more serious diseases. For a long time herbal medicines were not considered for development as novel formulations owing to lack of scientific justification and processing difficulties, such as standardization, extraction and identification of individual drug components in complex polyherbal systems. However, modern phytopharmaceutical research can solve the scientific needs (such as determination of pharmacokinetics, mechanism of action, site of action, accurate dose required etc. of herbal medicines to be incorporated in novel drug delivery system, such as nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, solid lipid nanoparticles and so on. This article summarizes various drug delivery technologies, which can be used for herbal actives together with some examples.

  5. Laser beam modeling in optical storage systems

    Science.gov (United States)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  6. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  7. REVIEW ON ADVANCES IN COLON TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sunena Sethi, SL Harikumar* and Nirmala

    2012-09-01

    Full Text Available The colon is the terminal part of the GIT which has gained in recent years as a potential site for delivery of various novel therapeutic drugs, i.e. peptides. However, colon is rich in microflora which can be used to target the drug release in the colon. Colon is a site where both local and systemic drug delivery can take place. Local delivery allows the topical treatment of inflammatory bowel disease. If drug can be targeted directly into the colon, treatment can become more effective and side effects can be minimized. These systemic side effects can be minimized by primary approaches for CDDS (Colon specific drug delivery namely prodrugs, pH and time dependent systems and microbially triggered system which gained limited success and have limitations as compared with recently new CDDS namely pressure controlled colon delivery capsules (PCDCS, CODESTM (Novel colon targeted delivery system osmotic controlled drug delivery system, Pulsincap system, time clock system, chronotropic system. This review is to understand the pharmaceutical approaches to colon targeted drug delivery systems for better therapeutic action without compromising on drug degradation (or its low bioavailability.

  8. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  9. TH-C-BRD-07: Minimizing Dose Uncertainty for Spot Scanning Beam Proton Therapy of Moving Tumor with Optimization of Delivery Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Zhang, X; Zhu, X [M.D. Anderson Cancer Center, Houston, TX (United States); Li, Y [Varian Medical Systems, Palo Alto, CA (United States)

    2014-06-15

    Purpose: Intensity modulated proton therapy (IMPT) has been shown to be able to reduce dose to normal tissue compared to intensity modulated photon radio-therapy (IMRT), and has been implemented for selected lung cancer patients. However, respiratory motion-induced dose uncertainty remain one of the major concerns for the radiotherapy of lung cancer, and the utility of IMPT for lung patients was limited because of the proton dose uncertainty induced by motion. Strategies such as repainting and tumor tracking have been proposed and studied but repainting could result in unacceptable long delivery time and tracking is not yet clinically available. We propose a novel delivery strategy for spot scanning proton beam therapy. Method: The effective number of delivery (END) for each spot position in a treatment plan was calculated based on the parameters of the delivery system, including time required for each spot, spot size and energy. The dose uncertainty was then calculated with an analytical formula. The spot delivery sequence was optimized to maximize END and minimize the dose uncertainty. 2D Measurements with a detector array on a 1D moving platform were performed to validate the calculated results. Results: 143 2D measurements on a moving platform were performed for different delivery sequences of a single layer uniform pattern. The measured dose uncertainty is a strong function of the delivery sequence, the worst delivery sequence results in dose error up to 70% while the optimized delivery sequence results in dose error of <5%. END vs. measured dose uncertainty follows the analytical formula. Conclusion: With optimized delivery sequence, it is feasible to minimize the dose uncertainty due to motion in spot scanning proton therapy.

  10. Advanced Drug Delivery Systems - a Synthetic and Biological Applied Evaluation

    DEFF Research Database (Denmark)

    Bjerg, Lise Nørkjær

    Specific delivery of drugs to diseased sites in the body is a major topic in the development of drug delivery system today. Especially, the field of cancer treatment needs improved drug delivery systems as the strong dose-limiting side effects of chemotherapy today often present a barrier....... The results were encouraging and proved the large potential of radiolabeled liposomes as candidates for revealing the biodistribution of drug delivery systems. Chapter four deals with one of the large dilemmas, when using liposomes as drug delivery agents. The presence of a shielding polymer layer...... for an effective cure. Liposomes have attracted much attention since they were first proposed as potential drug carrier agents in the 1970s. Chapter one gives an introduction to the strategies used in liposomal drug delivery today. The important issues as enhanced specific uptake in diseased tissue and effective...

  11. NASAL IN SITU GEL: A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Dhrupesh panchal

    2012-06-01

    Full Text Available Over the past few decades, advances in the in situ gel technologies have spurred development in manymedical and biomedical applications including controlled drug delivery. Many novel in situ gel baseddelivery matrices have been designed and fabricated to fulfill the ever increasing needs of thepharmaceutical and medical fields. In situ gelling systems are liquid at room temperature but undergogelation when in contact with body fluids or change in pH. In situ gel forming drug delivery is a type ofmucoadhesive drug delivery system. The formation of gel depends on factors like temperaturemodulation, pH change, presence of ions and ultraviolet irradiation from which the drug gets released ina sustained and controlled manner. Nasal delivery is a promising drug delivery option where commondrug administrations such as intravenous, intramuscular or oral are inapplicable. Recently, it has beenshown that many drugs have better bioavailability by nasal route than the oral route. This has beenattributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled withavoidance of hepatic first-pass elimination, gut wall metabolism and/or destruction in thegastrointestinal tract. The physiology of the nose presents obstacles but offers a promising route for noninvasivesystemic delivery of numerous therapies and debatably drug delivery route to the brain. Thusthis review focuses on nasal drug delivery, various aspects of nasal anatomy and physiology, nasal drugabsorption mechanisms, various nasal drug delivery systems and their applications in drug delivery.

  12. Nanoemulsion: A new concept of delivery system

    Directory of Open Access Journals (Sweden)

    G T Kulkarni

    2010-03-01

    Full Text Available

    Nanoemulsion has been identified as a promising delivery system for various drugs including biopharmaceuticals. Nanoemulsion is a heterogeneous system composed of one immiscible liquid dispersed as droplets within another liquid. The droplets size of nano emulsion is between 20 to 500 nm. Diameter and surface properties of droplets of nanoemulsion plays an important role in the biological behavior of the formulation. Small droplet sizes lead to transparent emulsions so that product appearance is not altered by the addition of an oil phase.  In this paper various aspects of nanoemulsion have been discussed including advantages, disadvantages and methods of preparation. Furthermore new approaches of stability of formulation, effect of types and concentration of surfactant, process variables and method are also discussed to improve the stability of nanoemulsion formulation

  13. The Liquisolid Technique: Based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Izhar Ahmed Syed

    2012-04-01

    Full Text Available The “Liquisolid” technique is a novel and capable addition towards such an aims for solubility enhancement and dissolution improvement, thereby it increases the bioavailability. It contains liquid medications in powdered form. This technique is an efficient method for formulating water insoluble and water soluble drugs. This technique is based upon the admixture of drug loaded solutions with appropriate carrier and coating materials. The use of non-volatile solvent causes improved wettability and ensures molecular dispersion of drug in the formulation and leads to enhance solubility. By using hydrophobic carriers (non-volatile solvents one can modify release (sustained release of drugs by this technique. Liquisolid system is characterized by flow behavior, wettability, powder bed hydrophilicity, saturation solubility, drug content, differential scanning calorimetry, Fourier transform infra red spectroscopy, powder X-ray diffraction, scanning electron microscopy, in-vitro release and in-vivo evaluation. By using this technique, solubility and dissolution rate can be improved, sustained drug delivery systems be developed for the water soluble drugs.

  14. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  15. siRNA delivery with lipid-based systems

    DEFF Research Database (Denmark)

    Foged, Camilla

    2012-01-01

    in vivo, toxicity and non-specific stimulation of the immune system. To optimally design and tailor the lipidic systems for siRNA delivery, better insight is needed into the mechanisms of cell delivery. More specifically, further clarification is need regarding the nature of cell surface interactions...

  16. Micro- and nano-fabricated implantable drug-delivery systems

    OpenAIRE

    Meng, Ellis; Hoang, Tuan

    2012-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted.

  17. Guidelines for Psychological Practice in Health Care Delivery Systems

    Science.gov (United States)

    American Psychologist, 2013

    2013-01-01

    Psychologists practice in an increasingly diverse range of health care delivery systems. The following guidelines are intended to assist psychologists, other health care providers, administrators in health care delivery systems, and the public to conceptualize the roles and responsibilities of psychologists in these diverse contexts. These…

  18. Vesicular system: Versatile carrier for transdermal delivery of bioactives.

    Science.gov (United States)

    Singh, Deependra; Pradhan, Madhulika; Nag, Mukesh; Singh, Manju Rawat

    2015-01-01

    The transdermal route of drug delivery has gained immense interest for pharmaceutical researchers. The major hurdle for diffusion of drugs and bioactives through transdermal route is the stratum corneum, the outermost layer of the skin. Currently, various approaches such as physical approach, chemical approach, and delivery carriers have been used to augment the transdermal delivery of bioactives. This review provides a brief overview of mechanism of drug transport across skin, different lipid vesicular systems, with special emphasis on lipid vesicular systems including transfersomes, liposomes, niosomes, ethosomes, virosomes, and pharmacosomes and their application for the delivery of different bioactives. PMID:24564350

  19. Controlled drug delivery systems: past forward and future back.

    Science.gov (United States)

    Park, Kinam

    2014-09-28

    Controlled drug delivery technology has progressed over the last six decades. This progression began in 1952 with the introduction of the first sustained release formulation. The 1st generation of drug delivery (1950-1980) focused on developing oral and transdermal sustained release systems and establishing controlled drug release mechanisms. The 2nd generation (1980-2010) was dedicated to the development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was largely focused on studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role in the 2nd generation of drug delivery technologies, and it will continue playing a leading role in the next generation. The best path towards a productive 3rd generation of drug delivery technology requires an honest, open dialog without any preconceived ideas of the past. The drug delivery field needs to take a bold approach to designing future drug delivery formulations primarily based on today's necessities, to produce the necessary innovations. The JCR provides a forum for sharing the new ideas that will shape the 3rd generation of drug delivery technology.

  20. ORAL MULTIPARTICULATE PULSATILE DRUG DELIVERY SYSTEMS: A REVIEW

    OpenAIRE

    Shaji Jessy; Shinde Amol B

    2011-01-01

    Pulsatile drug delivery aims to release drugs in a planned pattern i.e. at appropriate time and/or at a suitable site of action. Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. However, in recent pharmaceutical applications involving pulsatile delivery, multiparticulate dosage forms are gaining much favour over single-unit dosage forms because of their potential benefits like pred...

  1. The Beam Inhibit System for TTF II

    CERN Document Server

    Nölle, D; Neumann, R; Pugachov, D; Wittenburg, K; Wendt, M; Werner, M; Schlarb, H; Staack, M

    2003-01-01

    The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF II and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This paper will give an overview over the different protection systems currently under construction for TTF II. The very fast systems, based on transmission measurements and distributed loss detection monitors, will be described in detail. This description will include the fast electronics to collect and to transmit the different interlock signals.

  2. Water delivery in the Early Solar System

    CERN Document Server

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  3. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  4. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  5. Recent advancements in erythrocytes, platelets, and albumin as delivery systems.

    Science.gov (United States)

    Xu, Peipei; Wang, Ruju; Wang, Xiaohui; Ouyang, Jian

    2016-01-01

    In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.

  6. Mucoadhesive and thermogelling systems for vaginal drug delivery.

    Science.gov (United States)

    Caramella, Carla M; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria Cristina; Sandri, Giuseppina

    2015-09-15

    This review focuses on two formulation approaches, mucoadhesion and thermogelling, intended for prolonging residence time on vaginal mucosa of medical devices or drug delivery systems, thus improving their efficacy. The review, after a brief description of the vaginal environment and, in particular, of the vaginal secretions that strongly affect in vivo performance of vaginal formulations, deals with the above delivery systems. As for mucoadhesive systems, conventional formulations (gels, tablets, suppositories and emulsions) and novel drug delivery systems (micro-, nano-particles) intended for vaginal administration to achieve either local or systemic effect are reviewed. As for thermogelling systems, poly(ethylene oxide-propylene oxide-ethylene oxide) copolymer-based and chitosan-based formulations are discussed as thermogelling systems. The methods employed for functional characterization of both mucoadhesive and thermogelling drug delivery systems are also briefly described.

  7. The LITA Drill and Sample Delivery System

    Science.gov (United States)

    Paulsen, G.; Yoon, S.; Zacny, K.; Wettergreeng, D.; Cabrol, N. A.

    2013-12-01

    The Life in the Atacama (LITA) project has a goal of demonstrating autonomous roving, sample acquisition, delivery and analysis operations in Atacama, Chile. To enable the sample handling requirement, Honeybee Robotics developed a rover-deployed, rotary-percussive, autonomous drill, called the LITA Drill, capable of penetrating to ~80 cm in various formations, capturing and delivering subsurface samples to a 20 cup carousel. The carousel has a built-in capability to press the samples within each cup, and position target cups underneath instruments for analysis. The drill and sample delivery system had to have mass and power requirements consistent with a flight system. The drill weighs 12 kg and uses less than 100 watt of power to penetrate ~80 cm. The LITA Drill auger has been designed with two distinct stages. The lower part has deep and gently sloping flutes for retaining powdered sample, while the upper section has shallow and steep flutes for preventing borehole collapse and for efficient movement of cuttings and fall back material out of the hole. The drill uses the so called 'bite-sampling' approach that is samples are taken in short, 5-10 cm bites. To take the first bite, the drill is lowered onto the ground and upon drilling of the first bite it is then retracted into an auger tube. The auger with the auger tube are then lifted off the ground and positioned next to the carousel. To deposit the sample, the auger is rotated and retracted above the auger tube. The cuttings retained on the flutes are either gravity fed or are brushed off by a passive side brush into the cup. After the sample from the first bite has been deposited, the drill is lowered back into the same hole to take the next bite. This process is repeated until a target depth is reached. The bite sampling is analogous to peck drilling in the machining process where a bit is periodically retracted to clear chips. If there is some fall back into the hole once the auger has cleared the hole, this

  8. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  9. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo;

    medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate......In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...

  10. Development of beam flattening system using non-linear beam optics at J-PARC/JSNS

    International Nuclear Information System (INIS)

    As increasing in the beam power, the damage of the target becomes serious. Especially for a target for high power short pulse spallation neutron source, the damage due to the proton beam on the target vessel for liquid metal target such as mercury is reported to be proportional of 4th power of the peak intensity of the proton beam. Reduction of the peak intensity is important for the beam injection system. At the JSNS, beam profile can be described by the clear Gaussian functions. To reduce peak intensity, we have developed a beam transport system by non-linear beam optics using octupole magnets. (author)

  11. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  12. An Overview on Osmotic Controlled Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Thummar A

    2013-06-01

    Full Text Available This paper reviews constructed drug delivery systems applying osmotic principles for controlled drugrelease from the formulation. Osmotic devices which are tablets coated with walls of controlled porosityare the most promising strategy based systems for controlled drug delivery. In contrast to commontablets, these pumps provide constant (zero order drug release rate. When these systems are exposed towater, low levels of water soluble additive is leached from polymeric material i.e. semipermeablemembrane and drug releases in a controlled manner over an extended period of time. The main clinicalbenefits of oral osmotic drug delivery system are their ability to improve treatment tolerability andpatient compliance. These advantages are mainly driven by the capacity to deliver drugs in a sustainedmanner, independent of the drug chemical properties, of the patient’s physiological factors or followingfood intake. This review brings out the theoretical concept of drug delivery, history, advantages anddisadvantages of the delivery systems, types of oral osmotic drug delivery systems, factors affecting thedrug delivery system and marketed products.

  13. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  14. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system. PMID:19209604

  15. K130 beam current measurement system

    Science.gov (United States)

    Gustafsson, J.; Kotilainen, P.; Hänninen, V.; Liukkonen, E.; Kaski, K.

    1994-03-01

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyväskylä, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC.

  16. K130 beam current measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, J. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Kotilainen, P. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Haenninen, V. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Liukkonen, E. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Kaski, K. (Microelectronics Lab., Tampere Univ. of Technology (Finland))

    1994-03-22

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyvaeskylae, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC. (orig.)

  17. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  18. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  19. NIOSOMES: A ROLE IN TARGETED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Soumya Singh

    2013-02-01

    Full Text Available Niosomes are non-ionic surfactant vesicles inclosing an aqueous phase and a wide range of molecules could be encapsulated within aqueous spaces of lipid membrane vesicles. They are microscopic lamellar structures formed on the admixture of a non-ionic surfactant, cholesterol and phosphate with subsequent hydration in aqueous media. Niosomes belongs to novel drug delivery system which offers a large number of advantages over other conventional and vesicular delivery systems. Namely they are the targeted drug delivery system which showing reduction of dose, stability and compatibility of non-ionic surfactants, easy modification, delayed clearance, suitability for a wide range of Active Pharmaceutical Agents.

  20. A mechanical valve assembly for xenon 133 gas delivery systems

    International Nuclear Information System (INIS)

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply 133Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced 133Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients

  1. FLOATING MULTI-PARTICULATE ORAL DRUG DELIVERY SYSTEM: A REVIEW

    OpenAIRE

    Jaimini Manish; Joshi Vishalkumar

    2012-01-01

    The purpose of this review on floating drug delivery systems is the recent literature with mechanism to achieve gastric retention by floatation. Gastroretentive drug delivery system have advantages besides providing better bioavailability to poorly absorbed drugs and a required release profile thus attracting interest of pharmaceutical formulation. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form. The objectives of the review disc...

  2. THEORIES AND FACTORS AFFECTING MUCOADHESIVE DRUG DELIVERY SYSTEMS: A REVIEW

    OpenAIRE

    Alexander Amit; Sharma Sharad; Ajazuddin,; Khan Mohammed Junaid; Swarna

    2011-01-01

    Bioadhesion is an interfacial phenomenon in which two materials, at least one of which is biological, are held together by means of interfacial forces. When the associated biological system is mucous, it is called mucoadhesion. This property of certain polymeric systems have got place in the drug delivery research in order to prolong contact time in the various mucosal route of drug administration, as the ability to maintain a delivery system at a particular location for an extended period of...

  3. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal;

    2015-01-01

    Background. Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam...

  4. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    Stifter, Kelly

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...

  5. Development of KSTAR Neutral Beam Heating System

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)

    2007-10-15

    The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.

  6. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  7. REVIEW ON FLOATING DRUG DELIVERY SYSTEMS: AN APPROACH TO ORAL CONTROLLED DRUG DELIVERY VIA GASTRIC RETENTION

    OpenAIRE

    Kadam Shashikant M; Kadam.S.R; Patil.U.S; Ratan G N; Jamkandi.V.G.

    2011-01-01

    Controlled release (CR) dosage forms have been extensively used to improve therapy with many important drugs. Several approaches are currently utilized in prolongation of gastric residence time, including floating drug delivery system, swelling and expanding system, polymeric bioadhesive system, modified shape system, high density system and other delayed gastric emptying devices. However, the development processes are faced with several physiological difficulties such as the inability to res...

  8. Microneedles as a Delivery System for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Wei eChen

    2016-05-01

    Full Text Available Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs, which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy.

  9. AN OVERVIEW OF GASTRORETENTIVE DRUG DELIVERY SYSTEM RESEARCH

    Directory of Open Access Journals (Sweden)

    Lahoti S.R.

    2011-11-01

    Full Text Available The reason of writing this research article on gastro retentive drug delivery systems was to gather the recent literature with special focus on various gastro retentive approaches that have recently become leading methodologies in the field of site-specific orally administered controlled release drug delivery. In order to identify with various physiological difficulties to achieve gastric retention, we have summarized important factors controlling gastric retention. Afterwards, we have reviewed various gastro retentive approaches designed and developed until now, i.e. microspheres, microcapsules, floating gel beads, floating matrix tablets and in-situ gel, with advantages and limitations of gastro retentive drug delivery systems in detail.

  10. Variable Delivery Systems for Peer Associated Token Reinforcement

    Science.gov (United States)

    Edwards, Clifford H.

    1975-01-01

    This study focused on normal junior high school students in the natural school environment. Its purpose was to determine if different token delivery systems would differentially affect the disruptive behavior patterns of students in the normal classroom. (Author/RK)

  11. DIII-D Neutral Beam control system operator interface

    International Nuclear Information System (INIS)

    A centralized graphical user interface has been added to the DIII-D Neutral Beam (NB) control systems for status monitoring and remote control applications. This user interface provides for automatic data acquisition, alarm detection and supervisory control of the four NB programmable logic controllers (PLC) as well as the Mode Control PLC. These PLCs are used for interlocking, control and status of the NB vacuum pumping, gas delivery, and water cooling systems as well as beam mode status and control. The system allows for both a friendly user interface as well as a safe and convenient method of communicating with remote hardware that formerly required interns to access. In the future, to enable high level of control of PLC subsystems, complete procedures is written and executed at the touch of a screen control panel button. The system consists of an IBM compatible 486 computer running the FIX DMACS trademark for Windows trademark data acquisition and control interface software, a Texas Instruments/Siemens communication card and Phoenix Digital optical communications modules. Communication is achieved via the TIWAY (Texas Instruments protocol link utilizing both fiber optic communications and a copper local area network (LAN). Hardware and software capabilities will be reviewed. Data and alarm reporting, extended monitoring and control capabilities will also be discussed

  12. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  13. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    Science.gov (United States)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. PMID:26595774

  14. SELF EMULSIFYING DRUG DELIVERY SYSTEM: HITHERTO AND RECENT ADVANCES

    OpenAIRE

    Taksande Jayshree B; Trivedi Rashmi V; Mahore Jayashri G; Wadher Kamlesh J; Umekar Milind J.

    2011-01-01

    Oral delivery of poorly water-soluble drugs creates critical problem for their formulation as 35- 40% of new active pharmaceutical ingredients have poor water solubility and frequently associated with low bioavailability. Recently much attention has been given to lipid-based formulation with particular emphasis on self emulsifying drug delivery system (SEDDS) to improve the oral bioavailability. These can exist in either liquid or solid states. Self-emulsifying system formulation mainly depen...

  15. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    OpenAIRE

    Reshmy Rajan; Shoma Jose; V P Biju Mukund; Deepa T Vasudevan

    2011-01-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes a...

  16. A REVIEW ON FLOATING TYPE GASTRORETENTIVE DRUG DELIVERY SYSTEM

    OpenAIRE

    Pallavi Pal; Vijay Sharma; Lalit Singh

    2012-01-01

    Oral controlled release delivery systems are programmed to deliver the drug in predictable time frame that will increase the efficacy and minimize the adverse effects and increase the bioavailability of drugs. Oral route is considered mostnatural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance, and cost-effective manufacturing process.Floating Drug delivery system are designed to prolong the gastric residence time after oral administration, at particu...

  17. Customer participation in service production and delivery system

    OpenAIRE

    M.S. Sridhar

    1998-01-01

    Highlights significance of designing service delivery system, explains the integral role of customer in service production process, stresses the importance of customer-organisation interface, lists important ingredients of service package to be considered while designing customer interface, enumerates various dimensions of customer interface which can be positively made use of in design of service production and delivery system, discusses various ways and means of inducing and enhancing custo...

  18. SELF EMULSIFYING DRUG DELIVERY SYSTEM: A REVIEW

    OpenAIRE

    Tayal Ayushi; Jamil Faraz; Sharma Ritika; Sharma Saurabh

    2012-01-01

    Oral route still remains the favorite route of drug administration in many diseases and till today it is the first wayinvestigated in the development of new dosage forms. Approximately 40 per cent of new drug candidates have poor water solubility and the oral delivery ofsuch drugs is frequently associated with implications of low bioavailability, high intra and inter-subjectvariability, and lack of dose proportionality. Bioavailability problem of lipophillic drugs can be solved byformation of...

  19. Cyclodextrin-based gene delivery systems

    OpenAIRE

    Ortiz-Mellet, Carmen; García Fernández, José M.; Benito, Juan M.

    2011-01-01

    Cyclodextrin (CD) history has been largely dominated by their unique ability to form inclusion complexes with guests fitting in their hydrophobic cavity. Chemical funcionalization was soon recognized as a powerful mean for improving CD applications in a wide range of fields, including drug delivery, sensing or enzyme mimicking. However, 100 years after their discovery, CDs are still perceived as novel nanoobjects of undeveloped potential. This critical review provides an overview of different...

  20. Preparation of Fiber Optics for the Delivery of High-Energy High-Beam-Quality Nd:YAG Laser Pulses.

    Science.gov (United States)

    Kuhn, A; French, P; Hand, D P; Blewett, I J; Richmond, M; Jones, J D

    2000-11-20

    Recent improvements in design have made it possible to build Nd:YAG lasers with both high pulse energy and high beam quality. These lasers are particularly suited for percussion drilling of holes of as much as 1-mm diameter thick (a few millimeters) metal parts. An example application is the production of cooling holes in aeroengine components for which 1-ms duration, 30-J energy laser pulses produce holes of sufficient quality much more efficiently than with a laser trepanning process. Fiber optic delivery of the laser beam would be advantageous, particularly when one is processing complex three-dimensional structures. However, lasers for percussion drilling are available only with conventional bulk-optic beam delivery because of laser-induced damage problems with the small-diameter (approximately 200-400-mum) fibers that would be required for preserving necessary beam quality. We report measurements of beam degradation in step-index optical fibers with an input beam quality corresponding to an M(2) of 22. We then show that the laser-induced damage threshold of 400-mum core-diameter optical fibers can be increased significantly by a CO(2) laser treatment step following the mechanical polishing routine. This increase in laser-induced damage threshold is sufficient to propagate 25-J, 1-ms laser pulses with a 400-mum core-diameter optical fiber and an output M(2) of 31.

  1. Ion beam figuring system in NUDT

    Science.gov (United States)

    Zhou, Lin; Xie, Xuhui; Dai, Yifan; Jiao, Changjun; Li, Shengyi

    2007-12-01

    Ion beam figuring (IBF) is an optical fabrication technique that provides highly deterministic process to correct surface figure error of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Recently, an ion beam figuring system KDIFS-500 has been designed and built in National University of Defense Technology (NUDT) of the P.R. China. KDIFS-500 is capable of processing workpiece up to Φ500mm. Line scanning process was discussed in detail for estimating the parameters of the beam removal function (BRF) in process. Experiments were conducted to demonstrate that the BRF increases gradually in process and by employing a stability control, the BRF can be kept stable in process. Finally, a Φ95 mm plano optical sample of CVD coated SiC substrate has been figured in two process iterations for demonstrating the correction capability of the KDIFS-500. Their figure convergence ratios reached 5.8 and 2.1 respectively. The actual figure residual errors were basically consistent with the predicted error. These consistencies indicated that the IBF processes on KDIFS-500 are predictable deterministic processes.

  2. Simulation model for the WIPP transportation and delivery system

    International Nuclear Information System (INIS)

    Simulation modelling is a powerful analysis tool used to evaluate complex systems or processes. The modeling concept was utilized to evaluate the performance of the Waste Isolation Pilot Plant (WIPP) transportation and delivery system. The model will assist in analyzing the responsiveness of the components in the system to the variations in waste generation schedule, system failures, and material handling options. (author)

  3. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  4. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  5. Recent Advances In Ndds (Nov el Drug Delivery System For Delivery Of Anti- Hypertensive Drugs

    Directory of Open Access Journals (Sweden)

    Kumar Vikas

    2011-03-01

    Full Text Available Novel drug delivery systems present an opportunity for formulation scientists to overcome the many challenges associated with antihypertensive drug therapy, thereby improving the management of patients with hypertension. Currently available Anti-hypertensive drugs can be classified into these categories: ACE inhibitors, angiotensin antagonist, calcium channel blocker, diuretics, central sympathomimetics, á- adernergic blocker, vasodilator, â-adernergic blocker. Most of these drugs bear some significant drawbacks such as relatively short half-life, low bioavailability, poor permeability and undesirable side effects. Efforts have been made to design drug delivery systems for anti hypertensive drugs to: a reduce the dosing frequency, b increase the bioavailability, c deliver them to the target cells selectively with minimal side effects. This paper provides a comprehensive review of the various anti hypertensive drug delivery systems that have been developed for achieving sustained drug release kinetics, and for addressing formulation difficulties such as poor solubility, stability and drug entrapment. The physicochemical properties and the in vitro/in vivo performances of various system such as such as sustained release tablets, ceramic implants, nanoparticles, nanocontainers, liposomes, emulsomes, aspasomes, microemulsions, nanopowders and PheroidTM are summarised. This review highlights the significant potential that novel drug delivery systems have for the future effective treatment of hypertensive patients on anti-hypertensive drug therapy.

  6. Colloidal drug delivery systems: current status and future directions.

    Science.gov (United States)

    Garg, Tarun; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    In this paper, we provide an overview an extensive range of colloidal drug delivery systems with special focus on vesicular and particulates systems that are being used in research or might be potentially useful as carriers systems for drug or active biomolecules or as cell carriers with application in the therapeutic field. We present some important examples of commercially available drug delivery systems with applications in research or in clinical fields. This class of systems is widely used due to excellent drug targeting, sustained and controlled release behavior, higher entrapment efficiency of drug molecules, prevention of drug hydrolysis or enzymatic degradation, and improvement of therapeutic efficacy. These characteristics help in the selection of suitable carrier systems for drug, cell, and gene delivery in different fields.

  7. A REVIEW ON PARENTERAL CONTROLLED DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Milan Agrawal et al

    2012-10-01

    Full Text Available The parenteral administration route is the most effective and common form of delivery for active drug substances with poor bioavailability and the drugs with a narrow therapeutic index. Drug delivery technology that can reduce the total number of injection throughout the drug therapy period will be truly advantageous not only in terms of compliance, but also to improve the quality of the therapy and also may reduce the dosage frequency. Such reduction in frequency of drug dosing is achieved by the use of specific formulation technologies that guarantee the release of the active drug substance in a slow and predictable manner. The development of new injectable drug delivery system has received considerable attention over the past few years. A number of technological advances have been made in the area of parenteral drug delivery leading to the development of sophisticated systems that allow drug targeting and the sustained or controlled release of parenteral medicines.

  8. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration.

    Science.gov (United States)

    Amler, Evžen; Filová, Eva; Buzgo, Matej; Prosecká, Eva; Rampichová, Michala; Nečas, Alois; Nooeaid, Patcharakamon; Boccaccini, Aldo R

    2014-05-01

    A wide range of drug-delivery systems are currently attracting the attention of researchers. Nanofibers are very interesting carriers for drug delivery. This is because nanofibers are versatile, flexible, nanobiomimetic and similar to extracellular matrix components, possible to be functionalized both on their surface as well as in their core, and also because they can be produced easily and cost effectively. There have been increasing attempts to use nanofibers in the construction of a range of tissues, including cartilage and bone. Nanofibers have also been favorably engaged as a drug-delivery system in cell-free scaffolds. This short overview is devoted to current applications and to further perspectives of nanofibers as drug-delivery devices in the field of cartilage and bone regeneration, and also in osteochondral reconstruction. PMID:24978465

  9. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse;

    2015-01-01

    are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use......Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  10. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides...

  11. LHC beam dumping system Extraction channel layout and acceptance

    CERN Document Server

    Goddard, B; Uythoven, J; Veness, R; Weterings, W

    2003-01-01

    The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.

  12. AN OVERVIEW OF GASTRORETENTIVE DRUG DELIVERY SYSTEM RESEARCH

    OpenAIRE

    Lahoti S.R.; Syed Iftequar; Sabina M; Dehghan M.H.; Shoaib S; Mohiuddin S

    2011-01-01

    The reason of writing this research article on gastro retentive drug delivery systems was to gather the recent literature with special focus on various gastro retentive approaches that have recently become leading methodologies in the field of site-specific orally administered controlled release drug delivery. In order to identify with various physiological difficulties to achieve gastric retention, we have summarized important factors controlling gastric retention. Afterwards, we have review...

  13. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    OpenAIRE

    Torchilin, Vladimir P.

    2014-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasin...

  14. Multiparticulate system for colon targeted delivery of ondansetron

    OpenAIRE

    Jose S; Dhanya K; Cinu T; Aleykutty N

    2010-01-01

    Targeted delivery of drugs to colon has the potential for local treatment of a variety of colonic diseases. The main objective of the study was to develop a multiparticulate system containing chitosan microspheres for the colon targeted delivery of ondansetron for the treatment of irritable bowel syndrome. This work combines pH-dependent solubility of eudragit S-100 polymers and microbial degradability of chitosan polymers. Chitosan microspheres containing ondansetron were prepared by emulsio...

  15. ORAL CONTROLLED RELEASE DRUG DELIVERY SYSTEM: AN OVERVIEW

    OpenAIRE

    Modi Kushal; Modi Monali; Mishra Durgavati; Panchal Mittal; Sorathiya Umesh; Shelat Pragna

    2013-01-01

    Oral drug delivery is the most preferred and convenient option as the oral route provides maximum active surface area among all drug delivery system for administration of various drugs. The attractiveness of these dosage forms is due to awareness to toxicity and ineffectiveness of drugs when administered by oral conventional method in the form of tablets and capsules. Usually conventional dosage form produces wide range of fluctuation in drug concentration in the bloodstream and tissues with ...

  16. The LHC Beam Dumping System Trigger Synchronisation and Distribution System

    CERN Document Server

    Antoine, A; Voumard, N

    2005-01-01

    Two LHC beam dumping systems (LBDS) will fast-extract the counter-rotating beams safely from the LHC collider during setting-up of the accelerator, at the end of a physics run and in case of emergencies. They consist of 15 fast pulsed magnets per ring for beam extraction from the accelerator combined with 10 fast pulsed magnets for horizontal and vertical beam dilution. Dump requests will come from 3 different sources: the machine protection system for emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These spontaneously issued dump requests will be synchronised with the 3 µs beam abort gap within a fail-safe trigger synchronisation unit (TSU) based on a digital phase lock loop (DPLL) locked on the beam revolution frequency with a maximum phase error of 40 ns. Afterwards, the synchronised trigger pulse will be distributed to the fast pulsed magnet high voltage generators through a redundant fault tolerant trigger distribution system based on the...

  17. PROBIOTIC DELIVERY SYSTEMS: APPLICATIONS, CHALLENGES AND PROSPECTIVE

    Directory of Open Access Journals (Sweden)

    Yadav Nisha R.

    2013-04-01

    Full Text Available Probiotic are bacteria that help to maintain the natural balance of the microorganism in the intestine. Probiotic is gaining its popularity as an alternate approach for the healthcare management and till now has proofed its therapeutic indication in many simple to complex diseases. Diverse mechanism of action and being a living organism are two main advantages. However there are several drawbacks also associated with this new emerging therapeutic area. Probiotic strain identification, characterization, screening, understanding its mechanism of action for particular disease which is seeking much attention. The primary aim associated with the probiotic delivery is maintaining bacteria viability during product manufacturing and during storage. Several approaches such as microencapsulation and use of suitable biocompatible material have been studied and still under continuous exploration. Along with the regulatory aspect associated with the probiotics in this review details on current research in the area of exploring indication and advancement in delivery technologies has been covered. Review concluded with rational recommendations of each aspect of probiotics.

  18. Albumin-based nanocomposite spheres for advanced drug delivery systems.

    Science.gov (United States)

    Misak, Heath E; Asmatulu, Ramazan; Gopu, Janani S; Man, Ka-Poh; Zacharias, Nora M; Wooley, Paul H; Yang, Shang-You

    2014-01-01

    A novel drug delivery system incorporating human serum albumin, poly(lactic-co-glycolic acid, magnetite nanoparticles, and therapeutic agent(s) was developed for potential application in the treatment of diseases such as rheumatoid arthritis and skin cancer. An oil-in-oil emulsion/solvent evaporation (O/OSE) method was modified to produce a drug delivery system with a diameter of 0.5–2 μm. The diameter was mainly controlled by adjusting the viscosity of albumin in the discontinuous phase of the O/OSE method. The drug-release study showed that the release of drug and albumin was mostly dependent on the albumin content of the drug delivery system, which is very similar to the drug occlusion-mesopore model. Cytotoxicity tests indicated that increasing the albumin content in the drug delivery system increased cell viability, possibly due to the improved biocompatibility of the system. Overall, these studies show that the proposed system could be a viable option as a drug delivery system in the treatment of many illnesses, such as rheumatoid arthritis, and skin and breast cancers. PMID:24106002

  19. In vivo evaluation of self emulsifying drug delivery system for oral delivery of nevirapine

    Directory of Open Access Journals (Sweden)

    A. S. Chudasama

    2014-01-01

    Full Text Available Nevirapine is a highly lipophilic and water insoluble non-nucleoside reverse transcriptase inhibitor used for the treatment of HIV-1 infection. Lymphoid tissue constitutes the major reservoir of HIV virus and infected cells in HIV-infected patients. Self-emulsifying drug delivery system, using long chain triglycerides, is a popular carrier of drugs due to their ability to transport lipophilic drugs into the lymphatic circulation. However, HIV/AIDS patients experience a variety of functional and anatomical abnormalities in gastrointestinal tract that result in diarrhoea and nutrient malabsorption. Medium chain triglycerides are readily absorbed from the small bowel under conditions in which the absorption of long chain triglycerides is impaired. Therefore, nevirapine self-emulsifying drug delivery system containing medium chain fatty acid, caprylic acid and a solubilizer, Soluphor ® P (2-pyrrolidone was developed and found to be superior to the marketed conventional suspension with respect to in vitro diffusion and ex vivo intestinal permeability. This self-emulsifying drug delivery system has now been further investigated for in vivo absorption in an animal model. The contribution of caprylic acid and Soluphor ® P on in vivo absorption of nevirapine was also studied in the present study. The bioavailability of nevirapine from self-emulsifying drug delivery system, after oral administration, was 2.69 times higher than that of the marketed suspension. The improved bioavailability could be due to absorption of nevirapine via both portal and intestinal lymphatic routes. The study indicates that medium chain or structured triglycerides can be a better option to develop self-emulsifying drug delivery system for lipophilic and extensively metabolised drugs like nevirapine for patients with AIDS-associated malabsorption.

  20. In vivo Evaluation of Self Emulsifying Drug Delivery System for Oral Delivery of Nevirapine.

    Science.gov (United States)

    Chudasama, A S; Patel, V V; Nivsarkar, M; Vasu, Kamala K; Shishoo, C J

    2014-05-01

    Nevirapine is a highly lipophilic and water insoluble non-nucleoside reverse transcriptase inhibitor used for the treatment of HIV-1 infection. Lymphoid tissue constitutes the major reservoir of HIV virus and infected cells in HIV-infected patients. Self-emulsifying drug delivery system, using long chain triglycerides, is a popular carrier of drugs due to their ability to transport lipophilic drugs into the lymphatic circulation. However, HIV/AIDS patients experience a variety of functional and anatomical abnormalities in gastrointestinal tract that result in diarrhoea and nutrient malabsorption. Medium chain triglycerides are readily absorbed from the small bowel under conditions in which the absorption of long chain triglycerides is impaired. Therefore, nevirapine self-emulsifying drug delivery system containing medium chain fatty acid, caprylic acid and a solubilizer, Soluphor(®) P (2-pyrrolidone) was developed and found to be superior to the marketed conventional suspension with respect to in vitro diffusion and ex vivo intestinal permeability. This self-emulsifying drug delivery system has now been further investigated for in vivo absorption in an animal model. The contribution of caprylic acid and Soluphor(®) P on in vivo absorption of nevirapine was also studied in the present study. The bioavailability of nevirapine from self-emulsifying drug delivery system, after oral administration, was 2.69 times higher than that of the marketed suspension. The improved bioavailability could be due to absorption of nevirapine via both portal and intestinal lymphatic routes. The study indicates that medium chain or structured triglycerides can be a better option to develop self-emulsifying drug delivery system for lipophilic and extensively metabolised drugs like nevirapine for patients with AIDS-associated malabsorption. PMID:25035533

  1. Design of CMS Beam Halo Monitor system

    CERN Document Server

    AUTHOR|(CDS)2078842

    2015-01-01

    A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...

  2. Recent trends in challenges and opportunities of Transdermal drug delivery system

    Directory of Open Access Journals (Sweden)

    P.M.Patil

    2012-03-01

    Full Text Available Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered very effectively to skin patch. There has been great progress in the Transdermal drug delivery system for the delivery of different forms and our aim is to collect the information about what progressed have done in Transdermal drug delivery system and developments in Transdermal drug delivery systems in theoretical form. Also, to collect the information about the advantages and application of the Transdermal drug delivery systems.

  3. Recent trends in protein and peptide drug delivery systems

    Directory of Open Access Journals (Sweden)

    Gupta Himanshu

    2009-01-01

    Full Text Available With the discovery of insulin in 1922, identification and commercialization of potential protein and peptide drugs have been increased. Since then, research and development to improve the means of delivering protein therapeutics to patients has begun. The research efforts have followed two basic pathways: One path focused on noninvasive means of delivering proteins to the body and the second path has been primarily aimed at increasing the biological half-life of the therapeutic molecules. The search for approaches that provide formulations that are stable, bioavailable, readily manufacturable, and acceptable to the patient, has led to major advances in the development of nasal and controlled release technology, applicable to every protein or peptide. In several limited cases, sustained delivery of peptides and proteins has employed the use of polymeric carriers. More successes have been achieved by chemical modification using amino acid substitutions, protein pegylation or glycosylation to improve the pharmacodynamic properties of certain macromolecules and various delivery systems have been developed like the prolease technology, nano-particulate and microparticulate delivery systems, and the mucoadhesive delivery of peptides. The needle and syringe remain the primary means of protein delivery. Major hurdles remain in order to overcome the combined natural barriers of drug permeability, drug stability, pharmacokinetics, and pharmacodynamics of protein therapeutics. In our present review we have tried to compile some recent advances in protein and peptide drug delivery systems.

  4. Switched steerable multiple beam antenna system

    Science.gov (United States)

    Iwasaki, Richard S.

    1988-09-01

    A steerable multibeam five element cross-feed cluster antenna system is described. The feed power is divided into five branches. Each branch includes a switching network comprised of a plurality of time delay elements each individually controlled by a respective electromagnetic latching switch. Frequency independent individual two-dimensional beam steering at intermediate (IF) scanning frequencies is thereby provided wherein discrete incremental time delays are introduced by the switching networks into each branch and the signals recombined thereafter to form each beam. The electromagnetic latched switching reduces power consumption and permits higher power switching and reciprocal coincident tranmsit and receive operation. Frequency independence due to incremental time delay switching permits coincident reciprocal operation and steering for transmit-receive signal paths carrying different transmit-receive frequencies. Diagonal quarter wave plates in the waveguides alter polarization from the circular to orthogonal linear to provide transmitter-receiver isolation.

  5. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    Science.gov (United States)

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems.

  6. Status of Beam Diagnostic Systems for the PEFP

    CERN Document Server

    Park Jang Ho; Choi Byung Ho; Ha Hwang Woon; Han, Sang-Hyo; Park, Sung-Ju; Woon Parc, Yong; Yun Huang Jung

    2005-01-01

    A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the P...

  7. Improving vaccine delivery using novel adjuvant systems.

    Science.gov (United States)

    Pichichero, Michael E

    2008-01-01

    Adjuvants have been common additions to vaccines to help facilitate vaccine delivery. With advancements in vaccine technology, several adjuvants which activate immune specific responses have emerged. Available data show these adjuvants elicit important immune responses in both healthy and immunocompromised populations, as well as the elderly. Guidelines for the use and licensure of vaccine adjuvants remain under discussion. However, there is a greater understanding of the innate and adaptive immune response, and the realization of the need for immune specific adjuvants appears to be growing. This is a focused review of four adjuvants currently in clinical trial development: ASO4, ASO2A, CPG 7907, and GM-CSF. The vaccines including these adjuvants are highly relevant today, and are expected to reduce the disease burden of cervical cancer, hepatitis B and malaria. PMID:18398303

  8. Hydrocolloid-based nutraceutical delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Janaswamy, Srinivas; Youngren, Susanne R. (Purdue)

    2012-07-11

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings lay a strong foundation for developing value-added functional and medicinal foods.

  9. Coacervate delivery systems for proteins and small molecule drugs.

    Science.gov (United States)

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  10. Recent advances of cocktail chemotherapy by combination drug delivery systems.

    Science.gov (United States)

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-03-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in the clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end.

  11. Dendrimeric Systems and Their Applications in Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Burçin Yavuz

    2013-01-01

    Full Text Available Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug’s water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye’s unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed.

  12. Dendrimeric systems and their applications in ocular drug delivery.

    Science.gov (United States)

    Yavuz, Burçin; Pehlivan, Sibel Bozdağ; Unlü, Nurşen

    2013-01-01

    Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed. PMID:24396306

  13. Protection and Diagnostic Systems for High Intensity Beams

    CERN Document Server

    Jensen, L; Vismara, Giuseppe

    2000-01-01

    This paper presents a summary of the facilities for beam interlocks and diagnostics to protect the CERN SPS machine. An overview of the existing systems is given, which are based on beam loss and beam current monitors and large beam position excursion in the horizontal plane. The later system mainly protects the system against a failure of the transverse damping system. The design for a new large excursion interlock for both transverse planes is also presented in some detail. For this system a digital approach is being taken to allow post-mortem analysis of the behaviour of the beam prior to the activation of the interlock.

  14. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  15. Dosimetric precision of an ion beam tracking system

    International Nuclear Information System (INIS)

    Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems

  16. Dosimetric precision of an ion beam tracking system

    Directory of Open Access Journals (Sweden)

    Kraft Gerhard

    2010-06-01

    Full Text Available Abstract Background Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. Methods A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. Results All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum. Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3% between measurements and calculations within the target volume for beam tracking (stationary measurements. Conclusions The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.

  17. ULTRADEFORMABLE LIPID VESICLE AS A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Gautam Ambarish

    2012-08-01

    Full Text Available Various new technologies have been developed for the transdermal delivery of some important drugs. Transdermal route will always remain a lucrative area for drug delivery.The transdermal route of drug delivery has gained great interest of pharmaceutical research, as it circumvents number of problems associated with oral route of drug administration. The major barrier in transdermal delivery of drug is the skin intrinsic barrier, the stratum corneum, the outermost envelop of the skin that offers the principal hurdle for diffusion of hydrophilic ionisable bioactives. One of the very recent approaches is the use of ultradeformable carrier system (transfersomes®. Which is composed of phospholipid, surfactant, and water for enhanced transdermal delivery? The transfersomal system was much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. The system can be characterized by in vitro for vesicle shape and size, entrapment efficiency, degree of deformability, number of vesicles per cubic mm. Transferosome is an ultradeformable vesicle, elastic in nature which can squeeze itself through a pore which is many times smaller than its size owing to its elasticity. The uniqueness of this type of drug carrier system lies in the fact that it can accommodate hydrophilic, lipophilic as well as amphiphilic drugs. These drugs find place in different places in the elastic vesicle before they get delivered beneath the skin.

  18. Niosomes: a controlled and novel drug delivery system.

    Science.gov (United States)

    Rajera, Rampal; Nagpal, Kalpana; Singh, Shailendra Kumar; Mishra, Dina Nath

    2011-01-01

    During the past decade formulation of vesicles as a tool to improve drug delivery, has created a lot of interest amongst the scientist working in the area of drug delivery systems. Vesicular system such as liposomes, niosomes, transferosomes, pharmacosomes and ethosomes provide an alternative to improve the drug delivery. Niosomes play an important role owing to their nonionic properties, in such drug delivery system. Design and development of novel drug delivery system (NDDS) has two prerequisites. First, it should deliver the drug in accordance with a predetermined rate and second it should release therapeutically effective amount of drug at the site of action. Conventional dosage forms are unable to meet these requisites. Niosomes are essentially non-ionic surfactant based multilamellar or unilamellar vesicles in which an aqueous solution of solute is entirely enclosed by a membrane resulting from the organization of surfactant macromolecules as bilayer. Niosomes are formed on hydration of non-ionic surfactant film which eventually hydrates imbibing or encapsulating the hydrating aqueous solution. The main aim of development of niosomes is to control the release of drug in a sustained way, modification of distribution profile of drug and for targeting the drug to the specific body site. This paper deals with composition, characterization/evaluation, merits, demerits and applications of niosomes. PMID:21719996

  19. Structure analysis and performance measurement of Chinese health delivery system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: Although evidence has already demonstrated that the performance of Health Delivery System (HDS) varies widely across nations, relatively little is known about the factors that give rise to these variations and the key point to improve the performance besides adjusting system structure. By setup of HDS performance measurement system on the base of association of financial, social, and environmental characteristics, we construct system dynamic model of HDS to simulate the invention policies. Methods:Performance measures were collected from HDS in 31 regions of China and combined with secondary data sources. Multivariate, linear, nonlinear regression and factor analysis models were used to estimate associations between system characteristics and the performance. Results: Performance varied significantly with the size, financial resources and organizational structure of HDS. Performance measurement system of health delivery system was developed to give the rank of all Chinese regions. Conclusion: Performance measurement system of HDS is the basic of HDS modeling by system dynamic.

  20. Engaging Faculty in Telecommunications-Based Instructional Delivery Systems.

    Science.gov (United States)

    Swalec, John J.

    In the design and development of telecommunications-based instructional delivery systems, attention to faculty involvement and training is often overlooked until the system is operational. The Waubonsee Telecommunications Instructional Consortium (TIC), in Illinois, is one network that benefited from early faculty input. Even before the first…

  1. FORMATION OF POROUS MEMBRANES FOR DRUG DELIVERY SYSTEMS

    NARCIS (Netherlands)

    VANDEWITTE, P; ESSELBRUGGE, H; PETERS, AMP; DIJKSTRA, PJ; FEIJEN, J; GROENEWEGEN, RJJ; SMID, J; OLIJSLAGER, J; SCHAKENRAAD, JM; EENINK, MJD; SAM, AP

    1993-01-01

    Highly crystalline porous hollow poly (L-lactide) (PLLA) fibres suitable for the delivery of various drugs were obtained using a dry-wet spinning process. The pore structure of the fibres could be regulated by changing the spinning systems and spinning conditions. Using the spinning system PLLA-diox

  2. An epitope delivery system for use with recombinant mycobacteria

    NARCIS (Netherlands)

    Hetzel, C.; Janssen, R.; Ely, S.J.; Kristensen, N.M.; Bunting, K.; Cooper, J.B.; Lamb, J.R.; Young, D.B.; Thole, J.E.R.

    1998-01-01

    We have developed a novel epitope delivery system based on the insertion of peptides within a permissive loop of a bacterial superoxide dismutase molecule. This system allowed high-level expression of heterologous peptides in two mycobacterial vaccine strains, Mycobacterium bovis bacille Calmette- G

  3. MULTIPARTICULATE DRUG DELIVERY SYSTEM: PELLETIZATION THROUGH EXTRUSION AND SPHERONIZATION

    Directory of Open Access Journals (Sweden)

    Anshuli Sharma

    2013-02-01

    Full Text Available Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. Recent trends indicate that multiparticulate drug delivery systems are especially suitable for achieving controlled or delayed release oral formulations with low risk of dose dumping, flexibility of blending to attain different release patterns as well as reproducible and short gastric residence time. Pelletization is a technique used to prepare fine powders into pellets used as multiparticulate drug delivery systems. There are different pelletization techniques used to prepare pellets. Extrusion and spheronization is one of them used to prepare pellets drug loaded beads/pellets for extended release or sustained release oral formulations such as tablets and capsules.

  4. Information Delivery System through Bluetooth in Ubiquitous Networks

    CERN Document Server

    Devi, D Asha; Pavani, V L; Geethanjali, N

    2010-01-01

    computers into the real world, to serve humans where the ubiquitous network is the underneath infrastructure. In order to provide ubiquitous services (u-Service) which deliver useful information to service users without human intervention, this paper implements a proactive information delivery system using Bluetooth technology. Bluetooth is a lowpowered networking service that supports several protocol profiles, most importantly file transfer.Combined together, ubiquitous computing and Bluetooth ha e the potential to furnish ubiquitous solutions (u-Solutions) that are efficient, employ simplified design characteristics, and collaboratively perform functions they are otherwise not capable. Thus, this paper first addresses the current Bluetooth technology. Then, it suggests and develops the proactive information delivery system utilizing Bluetooth and ubiquitous computing network concepts. The proactive information delivery system can be used in many ubiquitous applications such as ubiquitous commerce (u-Commer...

  5. Pulsatile Drug Delivery System Based on Electrohydrodynamic Method

    CERN Document Server

    Zheng, Yi; Hu, Junqiang; Gao, Wenle

    2012-01-01

    Electrohydrodynamic (EHD) generation, a commonly used method in BioMEMS, plays a significant role in the pulsatile drug delivery system for a decade. In this paper, an EHD based drug delivery system is well designed, which can be used to generate a single drug droplet as small as 2.83 nL in 8.5 ms with a total device of 2\\times2\\times3 mm^3, and an external supplied voltage of 1500 V. Theoretically, we derive the expressions for the size and the formation time of a droplet generated by EHD method, while taking into account the drug supply rate, properties of liquid, gap between two electrodes, nozzle size, and charged droplet neutralization. This work proves a repeatable, stable and controllable droplet generation and delivery system based on EHD method experimentally as well as theoretically.

  6. Biologically erodable microspheres as potential oral drug delivery systems

    Science.gov (United States)

    Mathiowitz, Edith; Jacob, Jules S.; Jong, Yong S.; Carino, Gerardo P.; Chickering, Donald E.; Chaturvedi, Pravin; Santos, Camilla A.; Vijayaraghavan, Kavita; Montgomery, Sean; Bassett, Michael; Morrell, Craig

    1997-03-01

    Biologically adhesive delivery systems offer important advantages1-5 over conventional drug delivery systems6. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.

  7. Kagome-type hollow-core photonic crystal fibers for beam delivery and pulse compression of high-power ultrafast lasers

    Science.gov (United States)

    Saraceno, C. J.; Emaury, F.; Diebold, A.; Schriber, C.; Debord, B.; Gérôme, F.; Südmeyer, T.; Benabid, F.; Keller, U.

    2015-02-01

    Tremendous progress has been achieved in the last years in the field of ultrafast high-power sources. Among the different laser technologies driving this progress, thin-disk lasers (TDLs) have gained significant ground, both from amplifiers and modelocked oscillators. Modelocked TDLs are particularly attractive, as they allow for unprecedented high energy and average powers directly from an oscillator. The exponential progress in the performance of these sources drives growing needs for efficient means of beam delivery and pulse compression at high average power ( 10 MW). This remains a challenging regime for standard fiber solutions: microstructured large-mode-area silica photonic-crystal fibers (PCFs) are good candidates, but peak powers are limited to ≈4-6 MW by self-focusing. Hollow-core (HC) capillaries are adapted for higher peak powers, but exhibit high losses and are not suitable for compact beam delivery. In parallel to the progress achieved in the performance of ultrafast laser systems, recent progress in novel hollow-core PCF designs are currently emerging as an excellent solution for these challenges. In particular, Inhibited-coupling Kagome-type HC-PCFs are particularly promising: their intrinsic guiding properties allow for extremely high damage thresholds, low losses over wide transmission windows and ultra-low dispersion. In our most recent results, we achieve pulse compression in the hundred-watt average power regime using Kagome-type HC-PCFs. We launch 127-W, 18-μJ, 740-fs pulses from our modelocked TDL into an Ar-filled fiber (13 bar), reaching 93% transmission. The resulting spectral broadening allows us to compress the pulses to 88 fs at 112 W of average power, reaching 105 MW of peak power, at 88% compression efficiency. These results demonstrate the outstanding suitability of Kagome HC-PCFs for compression and beam delivery of state-of-the-art kilowatt-class ultrafast systems.

  8. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  9. Engineering Stent Based Delivery System for Esophageal Cancer Using Docetaxel.

    Science.gov (United States)

    Shaikh, Mohsin; Choudhury, Namita Roy; Knott, Robert; Garg, Sanjay

    2015-07-01

    Esophageal cancer patients are often diagnosed as "advanced" cases. These patients are subjected to palliative stenting using self-expanding metallic stents (SEMS) to maintain oral alimentation. Unfortunately, SEMS get reoccluded due to tumor growth, in and over the stent struts. To investigate potential solutions to this problem, docetaxel (DTX) delivery films were prepared using PurSil AL 20 (PUS), which can be used as a covering material for the SEMS. Drug-polymer miscibility and interactions were studied. Bilayer films were prepared by adhering the blank film to the DTX loaded film in order to maintain the unidirectional delivery to the esophagus. In vitro release and the local DTX delivery were studied using in vitro permeation experiments. It was found that DTX and PUS were physically and chemically compatible. The bilayer films exhibited sustained release (>30 days) and minimal DTX permeation through esophageal tissues in vitro. The rate-determining step for the DTX delivery was calculated. It was found that >0.9 fraction of rate control lies with the esophageal tissues, suggesting that DTX delivery can be sustained for longer periods compared to the in vitro release observed. Thus, the bilayer films can be developed as a localized sustained delivery system in combination with the stent. PMID:25936529

  10. Engineering Stent Based Delivery System for Esophageal Cancer Using Docetaxel.

    Science.gov (United States)

    Shaikh, Mohsin; Choudhury, Namita Roy; Knott, Robert; Garg, Sanjay

    2015-07-01

    Esophageal cancer patients are often diagnosed as "advanced" cases. These patients are subjected to palliative stenting using self-expanding metallic stents (SEMS) to maintain oral alimentation. Unfortunately, SEMS get reoccluded due to tumor growth, in and over the stent struts. To investigate potential solutions to this problem, docetaxel (DTX) delivery films were prepared using PurSil AL 20 (PUS), which can be used as a covering material for the SEMS. Drug-polymer miscibility and interactions were studied. Bilayer films were prepared by adhering the blank film to the DTX loaded film in order to maintain the unidirectional delivery to the esophagus. In vitro release and the local DTX delivery were studied using in vitro permeation experiments. It was found that DTX and PUS were physically and chemically compatible. The bilayer films exhibited sustained release (>30 days) and minimal DTX permeation through esophageal tissues in vitro. The rate-determining step for the DTX delivery was calculated. It was found that >0.9 fraction of rate control lies with the esophageal tissues, suggesting that DTX delivery can be sustained for longer periods compared to the in vitro release observed. Thus, the bilayer films can be developed as a localized sustained delivery system in combination with the stent.

  11. Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery.

    Science.gov (United States)

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Ndesendo, Valence M K; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix(®) multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise(®), which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix(®) as well as "release modules assemblage", which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  12. [Development of drug delivery systems for targeting to macrophages].

    Science.gov (United States)

    Chono, Sumio

    2007-09-01

    Drug delivery systems (DDS) using liposomes as drug carriers for targeting to macrophages have been developed for the treatment of diseases that macrophages are related to their progress. Initially, DDS for the treatment of atherosclerosis are described. The influence of particle size on the drug delivery to atherosclerotic lesions that macrophages are richly present and antiatherosclerotic effects following intravenous administration of liposomes containing dexamethasone (DXM-liposomes) was investigated in atherogenic mice. Both the drug delivery efficacy of DXM-liposomes (particle size, 200 nm) to atherosclerotic lesions and their antiatherosclerotic effects were greater than those of 70 and 500 nm. These results indicate that there is an optimal particle size for drug delivery to atherosclerotic lesions. DDS for the treatment of respiratory infections are then described. The influence of particle size and surface mannosylation on the drug delivery to alveolar macrophages (AMs) and antibacterial effects following pulmonary administration of liposomes containing ciprofloxacin (CPFX-liposomes) was investigated in rats. The drug delivery efficacy of CPFX-liposomes to AMs was particle size-dependent over the range 100-1000 nm and then became constant at over 1000 nm. These results indicate that the most effective size is 1000 nm. Both the drug delivery efficacy of mannosylated CPFX-liposomes (particle size, 1000 nm) to AMs and their antibacterial effects were significantly greater than those of unmodified CPFX-liposomes. These results indicate that the surface mannosylation is useful method for drug delivery to AMs. This review provides useful information to help in the development of novel pharmaceutical formulations aimed at drug targeting to macrophages.

  13. Electrokinetic pumping system based on nanochannel membrane for liquid delivery

    Institute of Scientific and Technical Information of China (English)

    Ling Xin Chen; Qing Ling Li; Xiao Lei Wang; Hai Long Wang; Ya Feng Guan

    2007-01-01

    Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanochannel membrane sandwiched between two membrane holders was constructed. The pump was tested with water and phosphate buffer at 1-6 V applied voltage, the maximum pressure and flow rate are 0.32 MPa (3.2 atm) and 4.2 μL/min for phosphate buffer, respectively. This proof-of-concept pump shows its potential use for drugs or chemical agents delivery by the usage of different membrane materials.

  14. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  15. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  16. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    OpenAIRE

    Dhote, Vinod; Bhatnagar, Punit; Pradyumna K Mishra; Mahajan, Suresh C.; Mishra, Dinesh K.

    2011-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin o...

  17. Self-nanoemulsifying drug delivery systems (SNEDDS) for the oral delivery of lipophilic drugs

    OpenAIRE

    Zhao, Tianjing

    2015-01-01

    The increasing number of lipophilic drug candidates in development in the pharmaceutical industry calls for advanced drug delivery systems with increased bioavailability less day-to-day and food-intake-dependent. Many of these drug candidates possess poor water solubility, so that their dissolution rate in the gastrointestinal tract (GIT) limits their absorption following oral administration. In the past few decades, various lipid-based formulations have been investigated to enhance the bi...

  18. In vivo Evaluation of Self Emulsifying Drug Delivery System for Oral Delivery of Nevirapine

    OpenAIRE

    Chudasama, A. S.; Patel, V. V.; Nivsarkar, M.; Kamala K Vasu; C. J. Shishoo

    2014-01-01

    Nevirapine is a highly lipophilic and water insoluble non-nucleoside reverse transcriptase inhibitor used for the treatment of HIV-1 infection. Lymphoid tissue constitutes the major reservoir of HIV virus and infected cells in HIV-infected patients. Self-emulsifying drug delivery system, using long chain triglycerides, is a popular carrier of drugs due to their ability to transport lipophilic drugs into the lymphatic circulation. However, HIV/AIDS patients experience a variety of functional a...

  19. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2016-01-01

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  20. A COMPREHENSIVE REVIEW OF PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Rompicharla Bhargavi

    2012-03-01

    Full Text Available Pulsatile drug delivery systems are gaining popularity in the field of pharmaceutical formulation, research and development. The prime advantage in this drug delivery is that the drug is released as per the pathophysiological need of the disease. As a result the change of development of drug resistance which is seen in conventional and sustained released formulations can be reduced. This therapy is mainly applicable where sustained action is not required and the drugs are toxic. Basic point of development of this formulation is to find out the circadian rhythms that is a suitable indicator that will trigger the release of drug from the device. Clock genes are the genes that control the circadian rhythms in human physiology. Pulsatile drug delivery systems are promising incase of asthma, cardiovascular diseases, peptic ulcers, arthritis, and hypercholesterolemic conditions.

  1. Development of fast beam-stop system using RF chopper

    International Nuclear Information System (INIS)

    To avoid heat damage and radioactivation by beam loss of the J-PARC accelerator, Machine Protection System (MPS) has been developed. Actually, high responsibility and high reliability have been achieved in J-PARC. Beam-stop method in addition to a way of RFQ OFF has been requested in order to avoid damage to the RFQ. Therefore, we have been developing a fast beam-stop system by using a RF chopper. The fast beam-stop system, including beam test, is described in this paper. (author)

  2. Smart surface-enhanced Raman scattering traceable drug delivery systems

    Science.gov (United States)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  3. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.

    Science.gov (United States)

    Rajan, Reshmy; Jose, Shoma; Mukund, V P Biju; Vasudevan, Deepa T

    2011-07-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  4. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  5. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Science.gov (United States)

    Rajan, Reshmy; Jose, Shoma; Mukund, V. P. Biju; Vasudevan, Deepa T.

    2011-01-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  6. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    International Nuclear Information System (INIS)

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular.A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design.A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients. (paper)

  7. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy

    Science.gov (United States)

    Grevillot, L.; Stock, M.; Vatnitsky, S.

    2015-10-01

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  8. Beam systems without failures - What can be done?

    International Nuclear Information System (INIS)

    The beam dumps at 3.5 TeV triggered by interlocks not related to the magnet powering are discussed. This concerns the systems like the RF, the transverse feedbacks, beam instrumentation, beam dumping system, collimators and control systems. An analysis of the reasons of these dumps is presented together with a possible strategy to mitigate the effect of these failures. It is very important to notice that no system has been identified to have any structural problem

  9. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  10. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder; ,Edgar B.

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  11. Novel targeted bladder drug-delivery systems: a review

    Directory of Open Access Journals (Sweden)

    Zacchè MM

    2015-11-01

    Full Text Available Martino Maria Zacchè, Sushma Srikrishna, Linda Cardozo Department of Urogynaecology, King's College Hospital, London, UK Abstract: The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD. Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin, nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy. Keywords: drug targeting, drug-delivery system, bladder disorders

  12. Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy

    Directory of Open Access Journals (Sweden)

    Juliana De Souza Rebouças

    2012-01-01

    Full Text Available In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines.

  13. Printing technologies in fabrication of drug delivery systems

    DEFF Research Database (Denmark)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri;

    2013-01-01

    INTRODUCTION: There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way...... for personalized dosing and tailor-made dosage forms.\

  14. Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system

    DEFF Research Database (Denmark)

    Stephansen, Karen; Chronakis, Ioannis S.; Jessen, Flemming

    2014-01-01

    fiberswere insoluble in water. However, when exposed to proteolytic enzymes, the fibers were degraded. Thedegradation products of the FSP fibers proved to be inhibitors of the diabetes-related enzyme DPP-IV. TheFSP fibers may have biomedical applications, among others as a delivery system. To demonstrate...

  15. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy.

    Science.gov (United States)

    De Souza Rebouças, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, María Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines.

  16. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  17. ITER neutral beam system US conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.

  18. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ravi Kant Upadhyay

    2014-01-01

    Full Text Available Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

  19. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    Science.gov (United States)

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  20. Unsteady jet in designing innovative drug delivery system

    Science.gov (United States)

    Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza

    2014-11-01

    Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.

  1. Particle beam injector system and method

    Science.gov (United States)

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  2. MICROEMULSIONS AS ANTIDIABETIC DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Omnia Sarhan, Mahmoud M. Ibrahim* and Mahmoud Mahdy

    2012-11-01

    Full Text Available Glibenclamide is practically insoluble in water and its gastrointestinal absorption is limited by its dissolution rate. Therefore, to enhance the drug dissolution and its hypoglycemic effects, the drug was formulated in different microemulsion systems and in vitro/in vivo evaluated. Microemulsion systems were prepared by Water titration method in which surfactants and cosurfactants (S/CoS were mixed at different weight ratios of 1:1, 2:1 and 3:1. They were subjected to transmission electron microscopical examination, pH determination and viscosity tests. The solubility of Glibenclamide in different microemulsion systems was determined. Forms 8, 9, 10, 11, 14 and 18 were found to have high Glibenclamide solubility using different oils. Form 11 and 9 showed the highest Glibenclamide release rates of 59.72% and 52.35%, respectively after 6 hours. In-vivo studies were tested using diabetic rats by application of form 11 with n-butanol as cosurfactant transdermally and form 8 with propylene glycol cosurfactant orally and transdermally. The results were compared to the drug suspension as a positive control. It was shown that microemulsion systems gave an effective tool of increasing drug dissolution probably due to enhanced wettability and reduced drug particle size, which in turn led to enhance its hypoglycemic effects.

  3. Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

    Science.gov (United States)

    Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki; Ikegami, Masanori

    2015-02-01

    In the J-PARC (Japan Proton Accelerator Research Complex) linac, an energy-upgrade project has started to achieve a design beam power of 1 MW at the exit of the downstream synchrotron. To account for the significant beam parameter upgrades, we will use the newly-fabricated beam monitors for the beam commissioning. This paper discusses the design and assembly of the beam position monitor, phase monitor, current monitor, transverse profile monitor, and beam loss monitor for the energy-upgraded linac. We periodically installed the newly-fabricated monitors for the upgraded beam line, as well as for longitudinal matching, because of the frequency jump between the original RF cavity and the newly-developed cavity. We employed two debunchers to correct for momentum spread and jitter. To account for the new debunchers, we fabricated and installed additional pairs of phase monitors in order to tune the debunchers to the adequate RF set point. Finally, we propose commissioning plans to support the beam monitor check. We will begin to establish the 181-MeV operation to confirm the proper functioning of beam monitors. Herein, we will examine the response to changes of the knobs that control the quadrupole magnets after the energy upgrade. After proper functioning of the beam monitors is confirmed, we will use the new beam monitors to establish the 400-MeV acceleration operation.

  4. Cost analysis of two implantable narcotic delivery systems.

    Science.gov (United States)

    Bedder, M D; Burchiel, K; Larson, A

    1991-08-01

    This survey compares costs of two commonly utilized implantable narcotic delivery systems. The systems are classified into type-I (exteriorized system using the DuPen epidural catheter) and type-II (implanted system using the Synchromed pump). Costs were analyzed by reviewing actual patient hospital financial service records and Homecare vendor quotations. From the perspective of cost analysis alone, we conclude that savings accrue when patients requiring treatment beyond 3 months duration are managed with a type-II implanted system compared with a type-I system with an external pump. PMID:1908884

  5. Self emulsifying drug delivery system (SEDDS) for phytoconstituents: a review.

    Science.gov (United States)

    Chouhan, Neeraj; Mittal, Vineet; Kaushik, Deepak; Khatkar, Anurag; Raina, Mitali

    2015-01-01

    The self emulsifying drug delivery system (SEDDS) is considered to be the novel technique for the delivery of lipophillic plant actives. The self emulsifying (SE) formulation significantly enhance the solubility and bioavailability of poorly aqueous soluble phytoconstituents. The self emulsifying drug delivery system (SEDDS) can be developed for such plant actives to enhance the oral bioavailability using different excipients (lipid, surfactant, co solvent etc.) and their concentration is selected on the basis of pre formulation studies like phase equilibrium studies, solvent capacity of oil for drug and mutual miscibility of excipients. The present review focuses mainly on the development of SEDDS and effect of excipients on oral bioavailability and aqueous solubility of poorly water soluble phytoconstituents/ derived products. A recent list of patents issued for self emulsifying herbal formulation has also been included. The research data for various self emulsifying herbal formulation and patents issued were reviewed using different databases such as PubMed, Google Scholar, Google patents, Scopus and Web of Science. In a nutshell, we can say that SEDDS was established as a novel drug delivery system for herbals and with the advances in this technique, lots of patents on herbal SEDDS can be translated into the commercial products. PMID:25335929

  6. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu, E-mail: vishnu_agarwal02@rediffmail.com [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  7. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    Science.gov (United States)

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome.

  8. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  9. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  10. Self-Emulsifying Drug Delivery System for Enhancing Bioavailability and Lymphatic Delivery of Tacrolimus.

    Science.gov (United States)

    Cho, Hea-Young; Choi, Ji-Hoon; Oh, In-Joon; Lee, Yong-Bok

    2015-02-01

    A self-emulsifying drug delivery system (SEDDS) containing tacrolimus has been developed to enhance the bioavailability and lymphatic delivery of tacrolimus. Solubility tests, combination tests, and phase diagrams were constructed for different sorts and ratios of oils, surfactants, and cosurfactants to identify optimal formulation. Optimized SEDDS was assessed for droplet size, zeta potential, stability in various media, and in vitro release. The tacrolimus-loaded SEDDS and commercial capsule (Prograf®) were orally administered (5 mg/kg) to rats. Whole blood, and mesenteric and axillary lymph node samples were taken and the concentrations of tacrolimus were measured to evaluate pharmacokinetic characteristics and the lymphatic delivery effects. The optimized SEDDS droplets were approximately 40 nm in size and stable enough to endure gastric pH environments. The release rate of tacrolimus from SEDDS was significantly higher than that from the commercial capsule. The bioavailability of tacrolimus in SEDDS after oral administration was significantly improved versus that of Prograf®. The lymphatic targeting efficiency of the prepared SEDDS formulation showed significantly greater than that of Prograf®. Our research indicates that prepared SEDDS can be an alternative to the conventional oral formulation of tacrolimus. Furthermore, SEDDS should be explored as a potential drug carrier for other lipophilic drugs. PMID:26353739

  11. Pricing strategies for capitated delivery systems

    OpenAIRE

    Gruenberg, Leonard; Wallack, Stanley S.; Tompkins, Christopher P.

    1986-01-01

    This article discusses alternative methods for establishing a fairer pricing mechanism for Medicare recipients who enroll in health maintenance organizations and other competitive medical plans. The current method, based upon the adjusted average per capita cost, is inadequate because it fails to adjust premium levels for differences in health status; it establishes undesirable incentives that may lead to underservice, and it is tied to costs in the fee-for-service system. Alternative methods...

  12. Marine origin polysaccharides in drug delivery systems

    OpenAIRE

    Matias J. Cardoso; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents an...

  13. Initial experience of using an active beam delivery technique at PSI

    International Nuclear Information System (INIS)

    At PSI a new proton therapy facility has been assembled and commissioned. The major features of the facility are the spot scanning technique and the very compact gantry. The operation of the facility was started in 1997 and the feasibility of the spot scanning technique has been demonstrated in practice with patient treatments. In this report we discuss the usual initial difficulties encountered in the commissioning of a new technology, the very positive preliminary experience with the system and the optimistic expectations for the future. The long range goal of this project is to parallel the recent developments regarding inverse planning for photons with a similar advanced technology optimized for a proton beam. (orig.)

  14. Hardware and Initial Beam Commissioning of the LHC RF Systems

    CERN Document Server

    Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F

    2008-01-01

    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.

  15. Laser Micro-beam Manipulation System for Cells

    Institute of Scientific and Technical Information of China (English)

    孟祥旺; 李岩; 张书练; 张志诚; 赵南明

    2002-01-01

    This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.

  16. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs

    DEFF Research Database (Denmark)

    Müllertz, Anette; Ogbonna, Anayo; Ren, Shan;

    2010-01-01

    The aim of this review is to highlight relevant considerations when implementing a rational strategy for the development of lipid and surfactant based drug delivery system and to discuss shortcomings and challenges to the current classification of these delivery systems. We also aim to offer...... suggestions for an improved classification system that will accommodate lipid based formulations that are not currently accommodated in the lipid formulation classification system....

  17. Carrier-Based Drug Delivery System for Treatment of Acne

    OpenAIRE

    Amber Vyas; Avinesh Kumar Sonker; Bina Gidwani

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of...

  18. Technical Evaluation Report 5: Classification of DE Delivery Systems

    OpenAIRE

    Diane Belyk; Jeremy Schubert; Jon Baggaley

    2002-01-01

    For their optimal use in distance education (DE), online educational applications need to be integrated within a comprehensive course management system (CMS). Such systems are server-based software that supports the development, delivery, administration, and evaluation of online learning environments. The selection of an appropriate CMS should be considered from the multiple perspectives of the student, the course developer, the course instructor/ tutor, the technical support staff, and the D...

  19. The Application Model of Moving Objects in Cargo Delivery System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feng-li; ZHOU Ming-tian; XU Bo

    2004-01-01

    The development of spatio-temporal database systems is primarily motivated by applications which track and present mobile objects. In this paper, solutions for establishing the moving object database based on GPS/GIS environment are presented, and a data modeling of moving object is given by using Temporal logical to extent the query language, finally the application model in cargo delivery system is shown.

  20. Floating bioadhesive drug delivery system using novel effervescent agents

    OpenAIRE

    Belgamwar V; Surana S

    2009-01-01

    Oral sustained release gastroretentive dosage forms offer many advantages for drugs having absorption from the upper gastrointestinal tract and improve the bioavailability of medications that are characterized by the narrow absorption window. A new gastroretentive sustained release delivery system using the novel effervescent system was developed with floating, swellable, and bioadhesive properties. Various release retarding polymers like psyllium husk, HPMC K15M, and a swelling agent crosspo...

  1. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  2. The N8 channel beam loss monitor system

    International Nuclear Information System (INIS)

    High intensity 70 GeV proton beam loss monitor system architecture in the area of single beam pass is described. The main system components choosing as detectors recording and controlling electronics are grounded on. There are list of the main system monitoring tasks and some experimental results. 12 refs.; 6 figs

  3. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  4. Magnetic nanoparticles as targeted delivery systems in oncology

    International Nuclear Information System (INIS)

    Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer

  5. A REVIEW ON ADVANCES OF SUSTAINED RELEASE DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sujit Bose

    2013-06-01

    Full Text Available Sustained release matrix tablets facilitate prolonged and continuous drug release and improve the bioavailability of drugs while avoiding unwanted side effects. Ofloxacin is a broad spectrum antibacterial agent used for treating wide range of gram positive and gram negative infections. The goal in designing sustained or controlled delivery systems is to reduce frequency of dosing or to increase the effectiveness of the drug by localization at the site of action, reducing the dose required, providing uniform drug delivery. Sustained release drug administration means not only prolongation of duration of drug delivery, but the term also implies the predictability and reproducibility of drug release kinetics. The controlled release of drug substances and their effective transport to sites of action can be exploited to maximize the beneficial clinical response and to minimize the incidence of unbeneficial adverse reactions and side effects. Oral ingestion has long been the most convenient and commonly employed route of drug delivery. Indeed, for sustained release systems, oral route of administration has received most of the attention with respect to research on physiological and drug constraints as well as design and testing of products.

  6. The TFTR 40 MW neutral beam injection system and DT operations

    International Nuclear Information System (INIS)

    Since December 1993, TFTR has performed DT experiments using tritium fuel provided mainly by neutral beam injection. Significant alpha particle populations and reactor-like conditions have been achieved at the plasma core, and fusion output power has risen to a record 10.7 MW using a record 40 MW NB heating. Tritium neutral beams have injected into over 480 DT plasmas and greater than 500 kCi have been processed through the neutral beam gas, cryo, and vacuum systems. Beam tritium injections, as well as tritium feedstock delivery and disposal, have now become part of routine operations. Shot reliability with tritium is about 90% and is comparable to deuterium shot reliability. This paper describes the neutral beam DT experience including the preparations, modifications, and operating techniques that led to this high level of success, as well as the critical differences in beam operations encountered during DT operations. Also, the neutral beam maintenance and repair history during DT operations, the corrective actions taken, and procedures developed for handling tritium contaminated components are discussed in the context of supporting a continuous DT program

  7. Preparation and Evaluation of Solid-Self-Emulsifying Drug Delivery System Containing Paclitaxel for Lymphatic Delivery

    OpenAIRE

    Hea-Young Cho; Jun-Hyuk Kang; Lien Ngo; Phuong Tran; Yong-Bok Lee

    2016-01-01

    Solid-self-emulsifying drug delivery system (S-SEDDS) of paclitaxel (Ptx) was developed by the spray drying method with the purpose of improving the low bioavailability (BA) of Ptx. 10% oil (ethyl oleate), 80% surfactant mixture (Tween 80 : Carbitol, 90 : 10, w/w), and 10% cosolvent (PEG 400) were chosen according to their solubilizing capacity. The mean droplet size, zeta potential, and encapsulation efficiency of the prepared S-SEDDS were 16.9 ± 1.53 nm, 12.5 ± 1.66 mV, and 56.2 ± 8.1%, res...

  8. THE ROLE OF HOSPITAL IN OVERALL HEALTH DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Nozadi

    1982-09-01

    Full Text Available Since hospitals are an important and integral part of the overall health delivery system, this study was carried out to measure the effectiveness of this institution within the system. The records of 633 hospitalized patients in the pediatrics ward of Ghaem Hospital in Mashhad during 1357 (21 March 1978-20 March 1979 has been consulted. More than half of the patients were hospitalized with the following diagnoses: Bronchopneumonia, Gastroentritis, Septicemia, and Malnutrition. Bronchopneumonia peaked in winter, whereas Gastroentritis and Malnutrition peaked in summer. Most of the hospitalized patients were male and the malnutrition was limited to the pre-school children of 1-6 years of age. The importance of these findings in development and utilization of the health delivery system has been discussed and considering the preventable nature of the above mentioned diseases, development and expansion of primary health care activities has been stressed.

  9. Yeast retrotransposon particles as antigen delivery systems.

    Science.gov (United States)

    Kingsman, A J; Burns, N R; Layton, G T; Adams, S E

    1995-05-31

    The development of technologies to produce recombinant proteins for use in the pharmaceutical industry has made substantial advances, in particular in the area of generating antigens containing multiple copies of important immunological regions. One such antigen-carrier system is based on the ability of a protein encoded by the yeast retrotransposon, Ty, to self-assemble into virus-like particles. Ty-fusion proteins retain this ability to form particles, and a range of hybrid VLPs carrying a variety of heterologous antigens have been produced and shown to induce potent immune responses. In particular, hybrid VLPs carrying the core protein p24 of HIV (p24-VLPs) have been shown to induce antibody and T-cell proliferative responses in both experimental animals and human volunteers, and immunization of rabbits with VLPs carrying the principal neutralizing determinant of HIV (V3-VLPs) resulted in the induction of neutralizing antibody responses and T-cell proliferation. Further studies with V3-VLPs have shown that this particulate antigen stimulates enhanced V3-specific lymphoproliferative responses as compared to whole recombinant gp120 or to V3 peptide conjugated to albumin. The V3-VLPs also induce potent CTL responses following immunization of mice in the absence of adjuvant. These responses are MHC class I restricted and are mediated by CD8-positive cells. These observations therefore demonstrate that hybrid Ty-VLPs induce both humoral and cellular immune responses against HIV and suggest that these immunogens may be important in combatting AIDS and other infections. PMID:7625653

  10. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  11. MICROSPONGE DELIVERY SYSTEM (MDS: A UNIQUE TECHNOLOGY FOR DELIVERY OF ACTIVE INGREDIENTS

    Directory of Open Access Journals (Sweden)

    Saurabh Kumar et al.

    2011-12-01

    Full Text Available In pharmaceutical industry, various controlled released dosage forms like solid formulation, semi solid formulation and topical preparation have more importance due to efficacy and patient compliance. Topical preparations have some disadvantages like unpleasant odour, greasiness and skin irritation and fail to reach the systemic circulation in sufficient amounts in few cases. This problem is overcome by microsponge delivery system. Microsponges are tiny sponge like spherical and highly porous micro-sized particles with a unique ability for entrapping actives. They offers programmable release active drug into the skin in order to reduce systemic exposure and minimize local cutaneous reactions to active. These MDS’s are closely related to microspheres, and used in the sun screens, creams, ointments, over- the-counter (OTC skin care preparations, recently used in oral drug as well as biopharmaceuticals (peptides, proteins and DNA-based therapeutics drug delivery. The present review introduces microsponge technology along with its synthesis, characterization, programmable parameters and release mechanism of MDS.

  12. Dendrimers as a Potential Drug Delivery System: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    D. Nagasamy Venkatesh

    2015-07-01

    Full Text Available Dendrimers are synthetic, highly branched, monodisperse macromolecules of nanometer dimensions with exact and large number of functional groups, distributed with unprecedented control, makes them a promising scaffolds, for drug delivery. Dendrimers serves as an ideal vehicle for cancer therapy, immunology, vaccines, antivirals, biosensors for diagnostics, neuron capture therapy, photodynamic therapy and photo thermal therapy. Dendrimers chemistry is one of the most fascinating and rapidly expanding areas in the field of chemistry. Prior to the dendrimer technology, nanoparticle drug delivery systems were one of the choicest systems owing to their selectivity and stability of therapeutic agents incorporated into the system. However, few drawbacks such as reticuloendothelial system (RES uptake, drug leakage, immunogenicity, hemolytic toxicity, cytotoxicity, hydrophobicity etc., impede the usage of these nanostructures. Further, these shortcomings shall be circumvented by modifying the surface engineering, such as poly ester dendrimer, arginine dendrimer, glycol dendrimer, PEGylated dendrimers etc., Unique properties of uniform size, water solubility, modifiable surface functionality and availability of internal cavities makes them intriguing carrier for biological and drug delivery system. In the present review, we focused on the bioactive agents that can be easily encapsulated into the interior cavity (or chemical attachment, conjugation (or physically adsorbed on to the dendrimer surface to serve the desired properties of the carrier to cater specific needs of the active components, its characterization and application.

  13. Quality measurement and system change of cancer care delivery.

    Science.gov (United States)

    Haggstrom, David A; Doebbeling, Bradley N

    2011-12-01

    Cancer care quality measurement and system change may serve as a case example for larger possibilities in the health care system related to other diseases. Cancer care quality gaps and variation exist across both technical and patient-centered cancer quality measures, especially among vulnerable populations. There is a need to develop measures that address the following dimensions of quality and its context: disparities, overuse, patient-centeredness, and uncertainty. Developments that may promote system change in cancer care delivery include changes in the information market, organizational accountability, and consumer empowerment. Information market changes include public cancer care quality reporting, enabled by health information exchange, and incentivized by pay-for-performance. Moving organizational accountability, reimbursement, and quality measurement from individual episodes of care to multiple providers providing coordinated cancer care may address quality gaps associated with the fragmentation of care delivery. Consumer empowerment through new technologies, such as personal health records, may lead to the collection of patient-centered quality measures and promote patient self-management. Across all of these developments, leadership and ongoing research to guide informed system changes will be necessary to transform the cancer care delivery system.

  14. Nanoscale drug delivery systems and the blood-brain barrier.

    Science.gov (United States)

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood-brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.

  15. Nanoengineered drug delivery systems for enhancing antibiotic therapy.

    Science.gov (United States)

    Kalhapure, Rahul S; Suleman, Nadia; Mocktar, Chunderika; Seedat, Nasreen; Govender, Thirumala

    2015-03-01

    Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections.

  16. Gamma- scintigraphy in the evaluation of drug delivery systems

    International Nuclear Information System (INIS)

    Gamma-scintigraphy is applied extensively in the development and evaluation of pharmaceutical delivery systems, particularly for monitoring formulations in the gastrointestinal and respiratory tracts. The radiolabelling is generally achieved by the incorporation of an appropriate radionuclide such as technetium-99m or indium-111 into the formulation or by addition of a non- radioactive isotope such as samarium-152 followed by neutron activation of the final product. Drug delivery systems can be tested in vitro using various techniques like dissolution rate. Since in vitro testing methods are not predictive of in vivo results, such systems should be evaluated in vivo using animal models, especially oral dosage forms. Altered gastrointestinal transit due to individual variation, physiologic factors, or the presence of food may influence bioavailability. Distribution or drug release may be premature or delayed in vivo. Similarly, altered deposition or clearance from other routes of administration such as nasal, ocular, or inhalation may explain drug absorption anomalies. Therefore, there is a growing tendency for new drug delivery systems to be tested, whenever possible, in human subjects in a so called phase 1 clinical evaluation. Gamma- scintigraphy combined with knowledge of physiological and dosage from design can help to identify some of these variables. the resulting insight can be used to accelerate the formulation development process and to ensure success in early clinical trials

  17. Preparation and Evaluation of Solid-Self-Emulsifying Drug Delivery System Containing Paclitaxel for Lymphatic Delivery

    Directory of Open Access Journals (Sweden)

    Hea-Young Cho

    2016-01-01

    Full Text Available Solid-self-emulsifying drug delivery system (S-SEDDS of paclitaxel (Ptx was developed by the spray drying method with the purpose of improving the low bioavailability (BA of Ptx. 10% oil (ethyl oleate, 80% surfactant mixture (Tween 80 : Carbitol, 90 : 10, w/w, and 10% cosolvent (PEG 400 were chosen according to their solubilizing capacity. The mean droplet size, zeta potential, and encapsulation efficiency of the prepared S-SEDDS were 16.9 ± 1.53 nm, 12.5 ± 1.66 mV, and 56.2 ± 8.1%, respectively. In the S-SEDDS, Ptx presents in the form of molecular dispersion in the emulsions or is distributed in an amorphous state or crystalline with very small size. The prepared S-SEDDS formulation showed 70 and 75% dissolution in 60 and 30 min in dissolution medium pH 1.2 and 6.8, respectively. Significant increase (P≤0.05 in the peak concentration (Cmax, the area under the curve (AUC0–∞, and the lymphatic targeting efficiency of Ptx was observed after the oral administration of the Ptx-loaded S-SEDDS to rats (20 mg/kg as Ptx. Our research suggests the prepared Ptx-loaded S-SEDDS can be a good candidate for the enhancement of BA and targeting drug delivery to the lymphatic system of Ptx.

  18. An approach to the intelligent drug delivery systems: Thermo-responsive membrane for pulsatile drug delivery

    Directory of Open Access Journals (Sweden)

    Evren Atlihan Gundogdu

    2013-09-01

    Full Text Available In this study, the potential use of thermotropic liquid crystals as a responsive release system was investigated. Cholesteryl oleyl carbonate liquid crystal (COC has been embedded in nylon membranes by using vacuum filtration methods. In vitro drug release studies were performed by using a fluid/fluid diffusion cell. Sodium salicylate as a model drug penetration study was performed in nylon membrane with or without COC that is prepared at 25 and 37°C. Also the penetration studies were performed by repeatedly exchanging the temperature cycle (10, 25, 37°C of the water bath at predetermined intervals. It was observed that COC and temperature have effects on the penetration of sodium salicylate. At 37 °C, the penetration rate of sodium salicylate was found higher than 25 °C and 10 °C, respectively. Also, the penetration amount of sodium salicylate has changed as pulsatile drug delivery in the presence of COC. As a result, according to the patients’ requirements, it seems that the penetration rate and profile can be adjusted by developing pulsatile drug delivery as a new system.

  19. CURRENT TRENDS IN β-CYCLODEXTRIN BASED DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    Lala Rita

    2011-05-01

    Full Text Available Many compounds identified through various screening programs are poorly soluble in the water. These molecules are difficult to formulate using the conventional formulation approaches. An important tool in this regard is the use of cyclodextrins, especially chemically modified cyclodextrins. These starch derivatives interact via dynamic complex formation and other mechanisms in a way that camouflages undesirable physicochemical properties, including low aqueous solubility, poor dissolution rate and limited drug stability, which leads to additional benefits such as increased solubility, increased bioavaibility, protection of active molecules from physicochemical degradation and decreased side-effects. This review aims to assess the use of cyclodextrins in newer drug delivery systems such as nanosponges, nanoparticles, nanospheres, nanoassemblies, drug-in cyclodextrin-in deformable liposomes and other drug delivery systems. These approaches are useful for resolving many of the current issues associated with developing and commercializing poorly water soluble drugs.

  20. Inhaled formulations and pulmonary drug delivery systems for respiratory infections.

    Science.gov (United States)

    Zhou, Qi Tony; Leung, Sharon Shui Yee; Tang, Patricia; Parumasivam, Thaigarajan; Loh, Zhi Hui; Chan, Hak-Kim

    2015-05-01

    Respiratory infections represent a major global health problem. They are often treated by parenteral administrations of antimicrobials. Unfortunately, systemic therapies of high-dose antimicrobials can lead to severe adverse effects and this calls for a need to develop inhaled formulations that enable targeted drug delivery to the airways with minimal systemic drug exposure. Recent technological advances facilitate the development of inhaled anti-microbial therapies. The newer mesh nebulisers have achieved minimal drug residue, higher aerosolisation efficiencies and rapid administration compared to traditional jet nebulisers. Novel particle engineering and intelligent device design also make dry powder inhalers appealing for the delivery of high-dose antibiotics. In view of the fact that no new antibiotic entities against multi-drug resistant bacteria have come close to commercialisation, advanced formulation strategies are in high demand for combating respiratory 'super bugs'.

  1. Biopolymer-Based Delivery Systems: Challenges and Opportunities.

    Science.gov (United States)

    Joye, Iris J; McClements, D Julian

    2016-01-01

    Biopolymer-based nanostructures or microstructures can be fabricated with different compositions, structures, and properties so that colloidal delivery systems can be tailored for specific applications. These structures can be assembled using various approaches, including electrospinning, coacervation, nanoprecipitation, injection, layer-by-layer deposition, and/or gelation. A major application of biopolymer-based particles is to encapsulate, protect, and release active molecules in the agricultural, food, supplements, personal care, and pharmaceutical sectors. The inherent variability and complexity of biopolymers (proteins and polysaccharides) often makes it challenging to produce particles with well-defined physicochemical and functional attributes. In this review, we discuss the properties of biopolymers, common particle fabrication methods, and some of the major challenges and opportunities associated with developing biopolymer-based particles for application as food-grade delivery systems.

  2. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  3. A review on self-emulsified drug delivery system

    OpenAIRE

    Thakare, Priya; Mogal, Vrushali; Dusane, Jaydeep; Kshirsagar, Sanjay

    2016-01-01

    Improving oral bioavailability of low poorly water soluble drugs using self-emulsifying drug delivery systems (SEDDS) possess significant potential. Oral bioavailability of hydrophobic drugs can be improved using SEDDS, and appears most promising. Their dispersion in gastro intestinal (GI) fluid after administration forms micro or nano emulsified drug which gets easily absorbed through lymphatic pathways bypassing the hepatic first pass metabolism. Parameters like surfactant concentration, oi...

  4. Demonstrations of Alternative Delivery Systems Under Medicare and Medicaid

    OpenAIRE

    Galblum, Trudi W.; Trieger, Sidney

    1982-01-01

    The current Administration supports competition as one method of helping to contain escalating costs. Proponents of competition claim many advantages to its implementation, but their claims have yet to be widely tested. Over the past several years, however, the Health Care Financing Administration has supported a number of Medicare and Medicaid demonstrations to yield information on plan participation, marketing, and reimbursement under alternative delivery systems. Much of these data are app...

  5. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  6. A clinical perspective on mucoadhesive buccal drug delivery systems

    OpenAIRE

    Ritu M Gilhotra; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2013-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a cli...

  7. A REVIEW ON ADVANCES OF SUSTAINED RELEASE DRUG DELIVERY SYSTEM

    OpenAIRE

    Sujit Bose; Amandeep Kaur; Sharma, S K

    2013-01-01

    Sustained release matrix tablets facilitate prolonged and continuous drug release and improve the bioavailability of drugs while avoiding unwanted side effects. Ofloxacin is a broad spectrum antibacterial agent used for treating wide range of gram positive and gram negative infections. The goal in designing sustained or controlled delivery systems is to reduce frequency of dosing or to increase the effectiveness of the drug by localization at the site of action, reducing the dose required, pr...

  8. Fully Supramolecular Polyrotaxanes as Biphase Drug Delivery Systems

    OpenAIRE

    2014-01-01

    Pseudopolyrotaxanes (PPR) consisting of α-cyclodextrin rings and polyethylene glycol axes with end thymine groups have been synthesized and characterized successfully. Fluorescein (Fl) as a model drug was conjugated to the hydroxyl functional groups of cyclodextrin rings of PPR via ester bonds and PPR-Fl as the primary drug delivery system was obtained. Finally PPR-Fl was capped by hydrogen bonds between end thymine groups and a suitable complementary molecule such as polycitric acid, citric ...

  9. Design and Optimization of Floating Drug Delivery System of Acyclovir

    OpenAIRE

    Kharia A; Hiremath S; Singhai A; Omray L; Jain S

    2010-01-01

    The purpose of the present work was to design and optimize floating drug delivery systems of acyclovir using psyllium husk and hydroxypropylmethylcellulose K4M as the polymers and sodium bicarbonate as a gas generating agent. The tablets were prepared by wet granulation method. A 32 full factorial design was used for optimization of drug release profile. The amount of psyllium husk (X1) and hydroxypropylmethylcellulose K4M (X2) were selected as independent variables. The times required for 50...

  10. Studies of scintillator response to 60 MeV protons in a proton beam imaging system

    Directory of Open Access Journals (Sweden)

    Rydygier Marzena

    2015-09-01

    Full Text Available A Proton Beam Imaging System (ProBImS is under development at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN. The ProBImS will be used to optimize beam delivery at IFJ PAN proton therapy facilities, delivering two-dimensional distributions of beam profiles. The system consists of a scintillator, optical tract and a sensitive CCD camera which digitally records the light emitted from the proton-irradiated scintillator. The optical system, imaging data transfer and control software have already been developed. Here, we report preliminary results of an evaluation of the DuPont Hi-speed thick back screen EJ 000128 scintillator to determine its applicability in our imaging system. In order to optimize the light conversion with respect to the dose locally deposited by the proton beam in the scintillation detector, we have studied the response of the DuPont scintillator in terms of linearity of dose response, uniformity of light emission and decay rate of background light after deposition of a high dose in the scintillator. We found a linear dependence of scintillator light output vs. beam intensity by showing the intensity of the recorded images to be proportional to the dose deposited in the scintillator volume.

  11. APPROACHES, TECHNIQUES AND EVALUATION OF GASTRORETENTIVE DRUG DELIVERY SYSTEMS: AN OVERVIEW

    OpenAIRE

    Kumar D; Saini S; Seth N; Khullar R; Sharma R

    2011-01-01

    This review explains the recent advances in gastroretentive drug delivery systems with special focus on floating drug delivery systems. Oral route is the most convenient and painless technique of drug delivery. Gastroretentive drug delivery systems have been developed which overcome physiological conditions in gastrointestinal tract such as short gastric resident time (GRT) and unpredictable gastric emptying times (GET). Various approaches used for prolonging GRT are mucoadhesive systems (Bio...

  12. Interpolating sliding mode observer for a ball and beam system

    Science.gov (United States)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  13. SELF EMULSIFYING DRUG DELIVERY SYSTEM: HITHERTO AND RECENT ADVANCES

    Directory of Open Access Journals (Sweden)

    Taksande Jayshree B

    2011-04-01

    Full Text Available Oral delivery of poorly water-soluble drugs creates critical problem for their formulation as 35- 40% of new active pharmaceutical ingredients have poor water solubility and frequently associated with low bioavailability. Recently much attention has been given to lipid-based formulation with particular emphasis on self emulsifying drug delivery system (SEDDS to improve the oral bioavailability. These can exist in either liquid or solid states. Self-emulsifying system formulation mainly depends on the nature of oil/lipid excipients, surfactants, their concentration and temperature at which emulsification occurs. As advancement or substitute of conventional liquid SEDDS, Solid SEDDS are better in minimizing manufacturing cost, makes simpler industrial manufacture, enhancing stability, patient compliance and most prominently these are very flexible to develop different solid dosage forms for oral and parentral administration. In addition, such formulation prevents GI irritation and able to control drug release. Recently self emulsifying drug delivery system is used as an efficient approach for the formulation of drugs that are beneficial in the diseases such as hypertension and congestive heart failure, HIV infections, cancer etc. The main difficulty in the development of SEDDS and other lipid-based formulations is the lack of high-quality in vitro models for their evaluation. Finally, the existing problems and the possible future research directions in this field are pointed out.

  14. DESIGN OF GASTRO RETENTIVE DRUG DELIVERY SYSTEM OF DILTIAZEM HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    L. K. Omray

    2014-02-01

    Full Text Available Gastro retentive drug delivery system of diltiazem hydrochloride was designed and evaluated for its effectiveness for the management of mild to moderate hypertension. Gastro retentive drug delivery system were prepared using polyvinyl alcohol and sodium carboxy methyl cellulose as the polymers and sodium bicarbonate as a gas generating agent for the reduction of floating lag time. Gastro retentive drug delivery system tablets were prepared by wet granulation method by compression in tablet compression machine. Formulations DL1, DL2, DL3, DL4 and DL5 were developed which differed in the ratio of polyvinyl alcohol and sodium carboxy methyl cellulose polymers. All the formulations were evaluated for hardness, weight variation, friability, drug content, swelling index, buoyancy studies and in vitro drug release study. In vitro drug release study was performed using United State Pharmacopoeia 23 type 2 dissolution test apparatus employing paddle stirrer at 50 r/pm. Dissolution medium was 900 ml of 0.1N hydrochloric acid at 37ºC ± 3ºC. Formulations DL3 was found to be better as compared to other formulation.

  15. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems.

  16. Advancing drug delivery systems for the treatment of multiple sclerosis.

    Science.gov (United States)

    Tabansky, Inna; Messina, Mark D; Bangeranye, Catherine; Goldstein, Jeffrey; Blitz-Shabbir, Karen M; Machado, Suly; Jeganathan, Venkatesh; Wright, Paul; Najjar, Souhel; Cao, Yonghao; Sands, Warren; Keskin, Derin B; Stern, Joel N H

    2015-12-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.

  17. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    Science.gov (United States)

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  18. A look at emerging delivery systems for topical drug products.

    Science.gov (United States)

    Fireman, Sharon; Toledano, Ofer; Neimann, Karine; Loboda, Natalia; Dayan, Nava

    2011-01-01

    The introduction of new topical drugs based on new chemical entities has become a rare event. Instead, pharmaceutical companies have been focused on reformulating existing drugs resulting in an ever-growing number of topical drug products for every approved drug substance. In light of this trend, soon reformulations may not be as rewarding to their sponsors as they are today unless they offer a substantial improvement over other formulations of the same drug substance and the same indication, namely improved efficacy over existing drugs, reduced side effects, unique drug combinations, or applicability for new indications. This article reviews and compares topical drug delivery systems currently under active research that are designed to offer such advantages in the coming years. The reviewed delivery systems are: liposomes, niosomes, transferosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, cyclodextrin, and sol-gel microcapsules. Among all the topical drug delivery systems currently undergoing active research, only the sol-gel microencapsulation is at clinical stages. PMID:22353154

  19. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  20. Intelligent Drug Delivery System Using UML Diagrams Analysis

    Institute of Scientific and Technical Information of China (English)

    CUI Qi-feng; LIU Cheng-liang; ZHA Xuan F

    2008-01-01

    A novel intelligent drug delivery system potential for the more effective therapy of the diabeticswas proposed, and the composition of system was analyzed. Based on the design of micro-electro-mechanicalsystems (MEMS), an iterative modeling process was introduced. Unified modeling language (UML) was em-ployed to describe the function requirement, and different diagrams were built up to explore the static model,the dynamic model and the employment model. The mapping analysis of different diagrams can simply verifythe consistency and completeness of the system model.

  1. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    Science.gov (United States)

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.

  2. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    Science.gov (United States)

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems. PMID:27173823

  3. Optimization of beam transformation system for laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%. PMID:27557249

  4. Optimization of beam transformation system for laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong

    2016-08-22

    An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.

  5. Liposomal drug delivery system from laboratory to clinic.

    Science.gov (United States)

    Kshirsagar, N A; Pandya, S K; Kirodian, G B; Sanath, S

    2005-01-01

    The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B) remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, Fungisome) drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India. We have therefore

  6. Liposomal drug delivery system from laboratory to clinic

    Directory of Open Access Journals (Sweden)

    Kshirsagar N

    2005-01-01

    Full Text Available The main objective of drug delivery systems is to deliver a drug effectively, specifically to the site of action and to achieve greater efficacy and minimise the toxic effects compared to conventional drugs. Amongst various carrier systems, liposomes have generated a great interest because of their versatility. Liposomes are vesicular concentric bilayered structures, which are biocompatible, biodegradable and nonimmumnogenic. They can control the delivery of drugs by targeting the drug to the site of action or by site avoidance drug delivery or by prolonged circulation of drugs. Amphotericin B (Amp B remains the drug of choice in most systemic mycoses and also as a second line treatment for Kala azar. However, its toxic effects often limit its use. Although the liposome delivery system has been tried for several drugs, only a few have been used in patients due to the slow development of necessary large-scale pharmaceutical procedures. This paper reviews the development of the technique for liposomal Amphotericin B (L-Amp-LRC-1, FungisomeTM drug delivery system in our laboratory in collaboration with the department of Biochemistry, Delhi University in India and proving the safety and efficacy of this preparation in clinical practice. It also attempts to compare the efficacy and benefits of our product for Indian patients with those of similar products and it includes facts from the publications that flowed from our work. As compared to conventional Amp B, Fungisome is infused over a much shorter period requiring a smaller volume and no premedication. It was found to be safe in patients who had developed serious unacceptable toxicity with conventional Amp B. In renal transplant patients, Fungisome did not produce any nephrotoxicity. Fungisome is effective in fungal infections resistant to fluconazole, conventional Amp B and in virgin and resistant cases of visceral leishmaniasis. The cost of any drug is of great significance, especially in India

  7. Spectroscopic investigations of chitosan-based systems for diclofenac delivery

    International Nuclear Information System (INIS)

    Complete text of publication follows. Drug targeting is the delivery of drugs to receptors or organs or any other specific part of the body to which one wishes to deliver the drug exclusively. The concept of designing a specified delivery system to achieve selective drug targeting has been originated from the perception of Paul Ehrlich, who proposed drug delivery to be as a 'magic bullet', where a drug-carrier complex/conjugate, delivers drug(s) exclusively to the preselected target cells in a specific manner. Through the novel biomaterials chitin and chitosan are intensively studied due to its many potential applications as a pharmaceutical drug carrier. Modern biocompatible systems target not only infectious diseases, but also autoimmune disorders, allergies, chronic inflammatory diseases and cancer. The study was aimed to develop and characterize a novel polyelectrolyte complex (PEC) chitosan with Tween-80 and oleic acid as drug carrier for controlled drug delivery, with possible use in skin burnt painfull injuries. The PEC chitosan complexes were prepared by coacervation method using the same ratios of Tween-80, oleic acid and chitosan. Diclofenac sodium (DCF) is used as model drug because it is one of the most useful non-steroidal anti-inflammatory drugs (NSAIDs). The use of chitosan as base in polyelectrolite complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper is reported the preparation of chitosan (CS) hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug. The immobilisation of DCF in chitosan is done by mixing the chitosan hydrogel with the anti-inflammatory drug solutions. Chitosan sponges with anti-inflammatory drugs were prepared by freeze-drying at -61 deg C and 0.009 atm. The characterization of the hydrogels and sponges was done by FTIR and UV-VIS spectroscopy, spectrofluorimetry and differential scanning calorimetry (DSC). The results indicated the

  8. Slow beam raster system at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Yan, C.; Beaufait, J.; Carlini, R.; Cuevas, C.; Vulcan, W.; Wines, R.

    1994-07-07

    A bedstead air-core raster magnet is being installed now, it will be used at CEBAF to scan the beam on the Hall C polarized target and the beam dump with fixed frequency 60 Hz in horizontal, 103.4 Hz in vertical. The x and y raster magnets are driven by Variac transformer and SUMIT-OMO inverter respectively. Both of them provide an approximate sine current waveform with peak current 20 A, corresponding to a maximum deflection angle 1 mr.

  9. Gelucire-stabilized nanoparticles as a potential DNA delivery system.

    Science.gov (United States)

    Oyewumi, Moses O; Wehrung, Daniel; Sadana, Prabodh

    2016-09-01

    Clinical viability of gene delivery systems has been greatly impacted by potential toxicity of the delivery systems. Recently, we reported the nanoparticle (NP) preparation process that employs biocompatible materials such as Gelucire® 44/14 and cetyl alcohol as matrix materials. In the current study, the NP preparation was modified for pDNA loading through: (i) inclusion of cationic lipids (DOTAP or DDAB) with NP matrix materials; or (ii) application of cationic surfactants (CTAB) to generate NPs with desired surface charges for pDNA complexation. Colloidal stability and efficiency of loading pGL3-DR4X2-luciferase plasmid DNA in NPs were verified by gel permeation chromatography. Compared to pDNA alone, all the NPs were effective in preserving pDNA from digestion by DNase. While pDNA loading using CTAB-NPs involved fewer steps compared to DOTAP-NPs and DDAB-NPs, CTAB-NPs were greatly impacted by elevated cytotoxicity level which could be ascribed to the concentrations of CTAB in NP formulations. In vitro transfection studies (in HepG2 cells) based on luciferase expression showed the ranking of cell transfection efficiency as DOTAP-NPs > DDAB-NPs > CTAB-NPs. The overall work provided an initial assessment of gelucire-stabilized NPs as a potential platform for gene delivery. PMID:25915179

  10. MAGNETIC MICROSPHERES AS A TARGETED DRUG DELIVERY SYSTEM : A REVIEW

    Directory of Open Access Journals (Sweden)

    TARUN PATEL

    2012-06-01

    Full Text Available The in-vivo targeting of tumors with magnetic microspheres is currently realized through the applicationof external non-uniform magnetic fields generated by rare-earth permanent magnets or electromagnets.This technique can be applied to magnetically targeted cancer therapy, magnetic embolization therapywith magnetic particles that contain anticancer agent, such as chemotherapeutic drugs or therapeuticradioisotopes. Drug targeting is one way of local or regional antitumor treatment. Magneticallycontrolled drug targeting is one of the various possible ways of drug targeting. This technology is basedon binding establish anticancer drug with ferrofluids that concentrate the drug in the area of interest(tumor site by means of magnetic fields. There has been keen interest in the development of amagnetically target drug delivery system. These drug delivery systems aims to deliver the drug at a ratedirected by the needs of the body during the period of treatment, and target the activity entity to the siteof action. This paper gives an overview of current application of magnetic microspheres (ferrofluid inconjunction with magnetic fields as they relate to the latest advances in medical application and inparticular to anticancer therapy and also discuss about mechanism of magnetic targeted delivery, drugrelease rate in-vitro, benefits and drawbacks of magnetic targeting.

  11. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan

    OpenAIRE

    Jaiswal, Parul; Aggarwal, Geeta; Harikumar, Sasidharan Leelakumari; Singh, Kashmir

    2014-01-01

    Objective: Self-microemulsifying drug delivery system (SMEDDS) and solid-SMEDDS of telmisartan was aimed at overcoming the problems of poor solubility and bioavailability. Methodology: The formulation strategy included selection of oil phase based on saturated solubility studies and surfactant and co-surfactant screening on the basis of their emulsification ability. Ternary phase diagrams were constructed to identify the self-emulsifying region using a dilution method. The prepared formulatio...

  12. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  13. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  14. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.

    Science.gov (United States)

    Torchilin, Vladimir P

    2014-11-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  15. Numerical simulation of iontophoresis in the drug delivery system.

    Science.gov (United States)

    Filipovic, Nenad; Zivanovic, Marko; Savic, Andrej; Bijelic, Goran

    2016-01-01

    The architecture and composition of stratum corneum act as barriers and limit the diffusion of most drug molecules and ions. Much effort has been made to overcome this barrier and it can be seen that iontophoresis has shown a good effect. Iontophoresis represents the application of low electrical potential to increase the transport of drugs into and across the skin or tissue. Iontophoresis is a noninvasive drug delivery system, and therefore, it is a useful alternative to drug transportation by injection. In this study, we present a numerical model and effects of electrical potential on the drug diffusion in the buccal tissue and the stratum corneum. The initial numerical results are in good comparison with experimental observation. We demonstrate that the application of an applied voltage can greatly improve the efficacy of localized drug delivery as compared to diffusion alone. PMID:26592537

  16. Mesostructured silica and aluminosilicate carriers for oxytetracycline delivery systems.

    Science.gov (United States)

    Berger, D; Nastase, S; Mitran, R A; Petrescu, M; Vasile, E; Matei, C; Negreanu-Pirjol, T

    2016-08-30

    Oxytetracycline delivery systems containing various MCM-type silica and aluminosilicate with different antibiotic content were developed in order to establish the influence of the support structural and textural properties and aluminum content on the drug release profile. The antibiotic molecules were loaded into the support mesochannels by incipient wetness impregnation method using a drug concentrated aqueous solution. The carriers and drug-loaded materials were investigated by small- and wide-angle XRD, FTIR spectroscopy, TEM and N2 adsorption-desorption isotherms. Faster release kinetics of oxytetracycline from uncalcined silica and aluminosilicate supports was observed, whereas higher drug content led to lower delivery rate. The presence of aluminum into the silica network also slowed down the release rate. The antimicrobial assays performed on Staphylococcus aureus clinical isolates showed that the oxytetracycline-loaded materials containing MCM-41-type mesoporous silica or aluminosilicate carriers inhibited the bacterial development. PMID:26861688

  17. A REVIEW ARTICLE ON MUCOADHESIVE BUCCAL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Jasvir Singh* and Pawan Deep

    2013-03-01

    Full Text Available ABSTRACT: As an alternative to injection pharmaceutical researcher and scientist are trying to explore transdermal and transmucosal route over the last few years. To overcome the deficiency associated with the other route of administration buccal region of oral cavity is an alternative target for the administration of choice of drug. The disadvantages relative with the oral drug delivery is the extensive presystemic metabolism, instability in acidic medium as a result inadequate absorption of the drugs. However parental route may overcome the drawback related with the oral route but these formulations have high cost, supervision is required and least patient compliance. By the buccal route the drug are directly pass through into systemic circulation, less hepatic metabolism and high bioavailability. The aim of the review article is an overview of buccal drug delivery, anatomy of oral mucosa, mechanism of drug penetration and their in-vitro and in-vivo mucoadhesion testing method.

  18. Sublingual route for the systemic delivery of Ondansetron

    Directory of Open Access Journals (Sweden)

    Priyank Patel

    2011-12-01

    Full Text Available Drug delivery via sublingual mucous membrane is considered to be a promising alternative to the oral route. This route is useful when rapid onset of action is desired as in the case of antiemetics such as ondansetron. In terms of permeability, the sublingual area of the oral cavity is more permeable than cheek and palatal areas of mouth. The drug absorbed via sublingual blood vessels bypasses the hepatic first-pass metabolic processes giving acceptable bioavailability with low doses and hence decreases the side effects. Sublingual drug delivery system is convenient for paediatric, geriatric, and psychiatric patients with dysphagia. This review highlights the different sublingual dosage forms, advantages, factors affecting sublingual absorption, pharmacology of ondasetron, methods of preparation and various in vitro and in vivo evaluation parameters of sublingual tablet of ondansetron

  19. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    International Nuclear Information System (INIS)

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed

  20. Applications of novel drug delivery system for herbal formulations.

    Science.gov (United States)

    Ajazuddin; Saraf, S

    2010-10-01

    Over the past several years, great advances have been made on development of novel drug delivery systems (NDDS) for plant actives and extracts. The variety of novel herbal formulations like polymeric nanoparticles, nanocapsules, liposomes, phytosomes, nanoemulsions, microsphere, transferosomes, and ethosomes has been reported using bioactive and plant extracts. The novel formulations are reported to have remarkable advantages over conventional formulations of plant actives and extracts which include enhancement of solubility, bioavailability, protection from toxicity, enhancement of pharmacological activity, enhancement of stability, improved tissue macrophages distribution, sustained delivery, and protection from physical and chemical degradation. The present review highlights the current status of the development of novel herbal formulations and summarizes their method of preparation, type of active ingredients, size, entrapment efficiency, route of administration, biological activity and applications of novel formulations. PMID:20471457

  1. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum

    OpenAIRE

    Brasselet, Etienne; Malinauskas, Mangirdas; Žukauskas, Albertas; Juodkazis, Saulius

    2010-01-01

    International audience Direct femtosecond laser photopolymerization is used to fabricate high resolution microscopic spiral phase plates. The total phase change all around their center is prepared to be a integer multiple of 2(pi) for the operating wavelength in the visible domain. The optical performances of the spiral plates are measured and we propose a simple single beam interferometric technique to characterize the phase singularity of the generated vortex beams. The experimental resu...

  2. Performance Studies of the SPS Beam Dump System for HL-LHC Beams

    CERN Document Server

    Velotti, FM; Bracco, C; Carlier, E; Cerutti, F; Cornelis, K; Ducimetiere, L; Goddard, B; Kain, V; Losito, R; Maglioni, C; Meddahi, M; Pasdeloup, F; Senaj, V; Steele, GE

    2014-01-01

    The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described.

  3. Data acquisition system for KOMAC beam monitoring using EPICS middleware

    Science.gov (United States)

    Song, Young-Gi

    2015-10-01

    The beam diagnostics instrument used to measure the beam properties is one of the important devices for the 100-MeV proton linear accelerator of the KOrea Multi-purpose Accelerator Complex (KOMAC). A data acquisition system (DAQ) is required to collect the output beam signals conditioned in the analog front-end circuitry of a beam loss monitor (BLM) and a beam position monitor (BPM). The electrical beam signal must be digitized, and the sampling has to be synchronized to a global timing system that produces a pulse signal for the pulsed beam operation. The digitized data must be accessible by the experimental physics and industrial control system (EPICS)-based control system, which manages all accelerator control. An input output controller (IOC), which runs Linux on a central process unit (CPU) module with a peripheral component interconnect (PCI) express-based Analog-to-digital converter (ADC) card, has been adopted to satisfy the requirements. An associated Linux driver and EPICS device support module have also been developed. The IOC meets the requirements, and the development and maintenance of software for the IOC is very efficient. In this paper, the details of the DAQ system for the BLM and the BPM with the introduction of the KOMAC beam-diagnostics devices, along with the performance, are described.

  4. Monitoring system experiments on beam loss at SSRF injector

    Science.gov (United States)

    Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming

    2011-12-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  5. Monitoring system experiments on beam loss at SSRF injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.

  6. A clinician-driven home care delivery system.

    Science.gov (United States)

    August, D A; Faubion, W C; Ryan, M L; Haggerty, R H; Wesley, J R

    1993-12-01

    The financial, entrepreneurial, administrative, and legal forces acting within the home care arena make it difficult for clinicians to develop and operate home care initiatives within an academic setting. HomeMed is a clinician-initiated and -directed home care delivery system wholly owned by the University of Michigan. The advantages of a clinician-directed system include: Assurance that clinical and patient-based factors are the primary determinants of strategic and procedural decisions; Responsiveness of the system to clinician needs; Maintenance of an important role for the referring physician in home care; Economical clinical research by facilitation of protocol therapy in ambulatory and home settings; Reduction of lengths of hospital stays through clinician initiatives; Incorporation of outcome analysis and other research programs into the mission of the system; Clinician commitment to success of the system; and Clinician input on revenue use. Potential disadvantages of a clinician-based system include: Entrepreneurial, financial, and legal naivete; Disconnection from institutional administrative and data management resources; and Inadequate clinician interest and commitment. The University of Michigan HomeMed experience demonstrates a model of clinician-initiated and -directed home care delivery that has been innovative, profitable, and clinically excellent, has engendered broad physician, nurse, pharmacist, and social worker enthusiasm, and has supported individual investigator clinical protocols as well as broad outcomes research initiatives. It is concluded that a clinician-initiated and -directed home care program is feasible and effective, and in some settings may be optimal. PMID:8242586

  7. Beam Effects on the Cryogenic System of LEP2

    CERN Document Server

    Gayet, P; Winkler, G

    1998-01-01

    The LEP collider was operated during 1996 for the first time with superconducting cavities at the four interaction points. During operation for physics it was observed that the dissipated heat in the cavities is not only a function of the acceleration gradient, but depends also on beam characteristics such as intensity, bunch length and beam current. These beam effects had not been foreseen in the original heat budget of the LEP cryogenic system. The observations indicating the beam effect and its origin are presented. The available capacity of the refrigerators demonstrates that cryogenics might become a limiting factor for the performance of the LEP collider.

  8. Computers and the design of ion beam optical systems

    Science.gov (United States)

    White, Nicholas R.

    Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.

  9. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  10. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  11. Transverse oscillations of an underwater beam-cable system

    OpenAIRE

    Blanco, Max; Wilson, P.A.

    2010-01-01

    An Autonomous Underwater Vehicle refuel station is proposed. The power source is located on board a surface vessel, while the AUV is serviced at depth. The structure which connects the two craft is modelled as a cable-beam. Transverse oscillations of this cable-beam system are investigated through a fourth-order differential equation.

  12. Nanoparticle Based Drug Delivery System: Milestone for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Gousia Chashoo

    2012-09-01

    Full Text Available The challenge of modern drug therapy is the optimization of the pharmacological action of the drugs coupled with the reduction of their toxic effects in vivo. The prime objectives in the design of drug delivery systems (DDS are the controlled delivery of the drug to its site of action at a therapeutically optimal rate and dosage to avoid toxicity and improve the drug effectiveness and therapeutic index. DDS has improved many of the pharmacological properties of conventional ("free" drugs including particulate carriers which are primarily composed of lipids and/or polymers and their associated therapeutics. It alters the pharmacokinetics (PK and biodistribution (BD of the associated drugs or functions as drug reservoir or both. Nanoparticles provide a range of new opportunities to increase the targeting of currently approved diagnostic and therapeutic agents to cancers. Nanoparticles carrying a chemotherapeutic can reduce the undesirable distribution of such agents. The problems related to cancer chemotherapy can partially be overcome by direct intratumoral delivery of controlled release biodegradable nanoparticles (NPs.

  13. New serine-derived gemini surfactants as gene delivery systems.

    Science.gov (United States)

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S

    2015-01-01

    Gemini surfactants have been extensively used for in vitro gene delivery. Amino acid-derived gemini surfactants combine the special aggregation properties characteristic of the gemini surfactants with high biocompatibility and biodegradability. In this work, novel serine-derived gemini surfactants, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini surfactant-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low surfactant/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini surfactants with great potential as gene delivery systems. PMID:25513958

  14. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  15. New Delivery Systems for Local Anaesthetics—Part 2

    Directory of Open Access Journals (Sweden)

    Edward A. Shipton

    2012-01-01

    Full Text Available Part 2 of this paper deals with the techniques for drug delivery of topical and injectable local anaesthetics. The various routes of local anaesthetic delivery (epidural, peripheral, wound catheters, intra-nasal, intra-vesical, intra-articular, intra-osseous are explored. To enhance transdermal local anaesthetic permeation, additional methods to the use of an eutectic mixture of local anaesthetics and the use of controlled heat can be used. These methods include iontophoresis, electroporation, sonophoresis, and magnetophoresis. The potential clinical uses of topical local anaesthetics are elucidated. Iontophoresis, the active transportation of a drug into the skin using a constant low-voltage direct current is discussed. It is desirable to prolong local anaesthetic blockade by extending its sensory component only. The optimal release and safety of the encapsulated local anaesthetic agents still need to be determined. The use of different delivery systems should provide the clinician with both an extended range and choice in the degree of prolongation of action of each agent.

  16. Formulation of microemulsion systems for dermal delivery of silymarin.

    Science.gov (United States)

    Panapisal, Vipaporn; Charoensri, Sawitree; Tantituvanont, Angkana

    2012-06-01

    Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating-cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin. PMID:22350738

  17. Nanoscale drug delivery systems and the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Alyautdin R

    2014-02-01

    Full Text Available Renad Alyautdin,1 Igor Khalin,2 Mohd Ismail Nafeeza,1 Muhammad Huzaimi Haron,1 Dmitry Kuznetsov31Faculty of Medicine, Universiti Teknologi MARA (UiTM, Sungai Buloh, Selangor, Malaysia; 2Faculty of Medicine and Defence Health, National Defence University of Malaysia (NDUM, Kuala Lumpur, Malaysia; 3Department of Medicinal Nanobiotechnologies, N. I. Pirogoff Russian State Medical University, Moscow, RussiaAbstract: The protective properties of the blood–brain barrier (BBB are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS. As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review

  18. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  19. Beam Position and Phase Monitor - Wire Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  20. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  1. Multi-electron beam system for high resolution electron beam induced deposition

    OpenAIRE

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...

  2. Pilot Study of the Delivery of Microcollimated Pars Plana External Beam Radiation in Porcine Eyes: 270-Day Analysis

    Directory of Open Access Journals (Sweden)

    Rishi P. Singh

    2012-01-01

    Full Text Available Objective. To determine the dose response and toxicity threshold of micro-collimated X-rays delivered to porcine maculae by a stereotactic radiosurgical system after 270 days. Methods. Twelve eyes of six Yucatan mini-swine were randomized to receive up to 90 Gy to the retina, using an office-based trans-pars plana delivery system. To determine the safety profile of this radiation delivery, ophthalmic examination, fundus photography, fluorescein angiography (FA, and spectral domain optical coherence tomography (SD-OCT were obtained at multiple time points up to 270 days post treatment. Results. No abnormalities were noted on external examination. Cataracts were noted in 4 of 12 eyes. Dose and time-dependent changes were noted on fundus examination, FA, ICG and SD-OCT. No significant abnormalities were seen in the control, 16 Gy or 24 Gy groups using any modality. Histopathology revealed a dose response effect with no discernable lesions in the 16 Gy group. Conclusion. The X-ray delivery system precisely targets the porcine retina in vivo with little effect on surrounding structures. No ophthalmic or intracranial adverse effects were noted at clinically relevant doses at 270 days following radiation delivery.

  3. G2 Autonomous Control for Cryogenic Delivery Systems

    Science.gov (United States)

    Dito, Scott J.

    2014-01-01

    The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.

  4. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems

    International Nuclear Information System (INIS)

    Microfluidic drug delivery systems consisting of a drug reservoir and microfluidic channels have shown the possibility of simple and robust modulation of drug release rate. However, the difficulty of loading a small quantity of drug into drug reservoirs at a micro-scale limited further development of such systems. Electrohydrodynamic (EHD) printing was employed to fill micro-reservoirs with controlled amount of drugs in the range of a few hundreds of picograms to tens of micrograms with spatial resolution of as small as 20 µm. Unlike most EHD systems, this system was configured in combination with an inverted microscope that allows in situ targeting of drug loading at micrometer scale accuracy. Methylene blue and rhodamine B were used as model drugs in distilled water, isopropanol and a polymer solution of a biodegradable polymer and dimethyl sulfoxide (DMSO). Also tetracycline-HCl/DI water was used as actual drug ink. The optimal parameters of EHD printing to load an extremely small quantity of drug into microscale drug reservoirs were investigated by changing pumping rates, the strength of an electric field and drug concentration. This targeted EHD technique was used to load drugs into the microreservoirs of PDMS microfluidic drug delivery devices and their drug release performance was demonstrated in vitro. (paper)

  5. THEORIES AND FACTORS AFFECTING MUCOADHESIVE DRUG DELIVERY SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Alexander Amit

    2011-04-01

    Full Text Available Bioadhesion is an interfacial phenomenon in which two materials, at least one of which is biological, are held together by means of interfacial forces. When the associated biological system is mucous, it is called mucoadhesion. This property of certain polymeric systems have got place in the drug delivery research in order to prolong contact time in the various mucosal route of drug administration, as the ability to maintain a delivery system at a particular location for an extended period of time has a great appeal for both local action as well as systemic drug bioavailability. A complete and comprehensive theory that can predict adhesion based on the chemical and/or physical nature of a polymer is not yet available. Several theories have been proposed to explain the fundamental mechanisms of adhesion such as glues, adhesives, and paints, have been adopted to study the mucoadhesion. Mucoadhesion is a complex process and numerous theories have been presented to explain the mechanisms involved. These theories include mechanical-interlocking, electrostatic, diffusion–interpenetration, adsorption and fracture processes. They are Electronic theory, Adsorption theory, Wetting theory, Diffusion theory, Fracture theory. The objective of the study is to explain the different mechanisms involved in mucoadhesion and various factors affecting mucoadhesion.

  6. HYBRID SEARCH AND DELIVERY OF LEARNING OBJECTS SYSTEM

    Directory of Open Access Journals (Sweden)

    Anthony N. Ilukwe

    2014-01-01

    Full Text Available Retrieving learning material from the internet is a tedious process that has begged for a solution to filter out of the cluster of data and irrelevant material on the internet and deliver material that is relevant to a specific user. The Hybrid Search and Delivery of Learning Objects (HSDLO system, put forward in this study, facilitates the personalized search and delivery of such learning material from the internet. The system combines a number of mechanisms to perform this: Keyword‐based search, concept‐based search and personalization. The keyword-and concept-based search methods are responsible for establishing the relevance of each learning material retrieved from the web. The system presented in this study builds upon work done in the previous iteration by additional functionality; further decoupling the subsystems to improve modularity; perfection of the personalization subsystem; and a redesign of the user interface to a simpler form with Web2.0 sensibilities. Additionally, the personalization subsystem is substantially extended, allowing for a learner to have a profile active within the system during a session in which he or she is logged in and following a search, for the profile to be adapted and stored in memory for subsequent sessions. This functionality has been tested and successfully evaluated.

  7. Development of compact quantum beam generation system and the application

    International Nuclear Information System (INIS)

    After the approval of the project as the 'High-Tech Research Center Project' conducted by MEXT at Waseda University, the laser driven photo-cathode RF-Gun (RF-Gun) has been developed very extensively. The system was developed to obtain the stable and high quality (i.e. very low emittance) electron beam in conjunction with the system stabilization such as RF power source and laser system for the electron emission. The high quality electron beams have been applied for the development of novel beam diagnostic system. At the same time, the beams (electron and laser) are applied for the inverse Compton scattering experiment for the generation of soft-X-ray with quasi-monochromatic energy and short time structure, and for the pump probe experiment (the pico-second pulse radiolysis) as the very compact system. (author)

  8. Paclitaxel Nano-Delivery Systems: A Comprehensive Review.

    Science.gov (United States)

    Ma, Ping; Mumper, Russell J

    2013-02-18

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  9. An Architectural Design for Brokered Collaborative Content Delivery System

    CERN Document Server

    Simalango, Mikael Fernandus

    2010-01-01

    Advances in web technologies have driven massive content uploads and requests that can be identified by the increased usage of multimedia web and social web services. This situation enforces the content providers to scale their infrastructure in order to cope with the extra provisioning of network traffic, storage and other resources. Since the complexity and cost factors in scaling the infrastructure exist, we propose a novel solution for providing and delivering contents to clients by introducing a brokered collaborative content delivery system. The architectural design of this system leverages content redundancy and content distribution mechanisms in other content providers to deliver contents to the clients. With the recent emergence of cloud computing, we show that this system can also be adopted to run on the cloud. In this paper, we focus on a brokering scheme to mediate user requests to the most appropriate content provider based on a ranking system. The architecture provides a novel Global Rank Value...

  10. Reliability review of the remote tool delivery system locomotor

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  11. Activity-based costing for integrated delivery systems.

    Science.gov (United States)

    Baker, J J

    1995-01-01

    The paradigm shift toward managed care is fueling new cost-finding demands. More sophisticated methods are emerging to meet these demands. Foremost among the new methods is activity-based costing (ABC). ABC is designed to eliminate cross-subsidies between products or services. Because costs are traced by activities across departments and cost centers, costs can also be traced by activities across integrated delivery systems (IDSs). The methodology makes ABC very applicable to combinations of providers including chains, affiliated groups, and IDS participants. PMID:8820298

  12. Chewing gum and lozenges as delivery systems for noscapine

    DEFF Research Database (Denmark)

    Norgaard Jensen, L.; Christrup, Lona Louring; Menger, N.;

    1991-01-01

    Chewing gum and lozenges were evaluated as delivery systems for noscapine with the aim of developing improved antitussive preparations. The formulations studied were prepared with both the water-soluble hydrochloride salt of noscapine and with the poorly soluble embonate salt and noscapine free...... base. The release characteristics of the preparations were evaluated both in vitro and in vivo, and their taste properties examined. Only the formulations containing noscapine base were without any appreciable taste. Chewing gum containing this compound showed, however, a low level of drug release both...

  13. Activity-based costing for integrated delivery systems.

    Science.gov (United States)

    Baker, J J

    1995-01-01

    The paradigm shift toward managed care is fueling new cost-finding demands. More sophisticated methods are emerging to meet these demands. Foremost among the new methods is activity-based costing (ABC). ABC is designed to eliminate cross-subsidies between products or services. Because costs are traced by activities across departments and cost centers, costs can also be traced by activities across integrated delivery systems (IDSs). The methodology makes ABC very applicable to combinations of providers including chains, affiliated groups, and IDS participants.

  14. Formulation and Optimization of Mucoadhesive Nanodrug Delivery System of Acyclovir

    OpenAIRE

    Bhosale, UV; Kusum, Devi V; Jain, N

    2011-01-01

    Acyclovir is an antiviral drug used for the treatment of herpes simplex virus infections, with an oral bioavailability of only 10–20% [limiting absorption in gastrointestinal tract to duodenum and jejunum] and half-life of about 3 h, and is soluble only at acidic pH (pKa 2.27). Mucoadhesive polymeric nanodrug delivery systems of acyclovir have been designed and optimized using 23 full factorial design. Poly (lactic-co-glycolic acid) (PLGA) (50:50) was used as the polymer along with polycarbop...

  15. Method of targeted delivery of laser beam to isolated retinal rods by fiber optics

    OpenAIRE

    Sim, Nigel; Bessarab, Dmitri; Jones, C. Michael; Krivitsky, Leonid

    2011-01-01

    A method of controllable light delivery to retinal rod cells using an optical fiber is described. Photo-induced current of the living rod cells was measured with the suction electrode technique. The approach was tested with measurements relating the spatial distribution of the light intensity to photo-induced current. In addition, the ion current responses of rod cells to polarized light at two different orientation geometries of the cells were studied.

  16. Method of targeted delivery of laser beam to isolated retinal rods by fiber optics

    CERN Document Server

    Sim, Nigel; Jones, C Michael; Krivitsky, Leonid

    2013-01-01

    A method of controllable light delivery to retinal rod cells using an optical fiber is described. Photo-induced current of the living rod cells was measured with the suction electrode technique. The approach was tested with measurements relating the spatial distribution of the light intensity to photo-induced current. In addition, the ion current responses of rod cells to polarized light at two different orientation geometries of the cells were studied.

  17. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  18. Developing system for delivery of optical radiation in medicobiological researches

    Science.gov (United States)

    Loschenov, Victor B.; Taraz, Majid

    2004-06-01

    Methods of optical diagnostics and methods of photodynamic therapy are actively used in medico-biological researches. The system for delivery of optical radiation is one of the key methods in these researches. Usually these systems use flexible optical fibers with diameters from 200 to 1000 micron. Two types of systems for delivery are subdivided, first for diagnostic researches, second for therapeutic procedures. Existing diagnostic catheters, which have most widely applied in medicine, have bifurcated with diameter of the tip equal 1.8 mm. These devices, which are called fiber-optical catheters, satisfy the majority endoscopes researches. However, till now the problem of optical-diagnostics inside tissue is not soled. Especially it is important at diagnostics of a mammary gland, livers, thyroid glands tumor, tumor of a brain and some other studies connected with punctures. In these cases, it is necessary that diameter of fiber-optical catheters be less than one millimeter. This work is devoted to the development of these catheters. Also in clinical procedures such as photodynamic therapy (PDT) and interstitial laser photocoagulation (ILP), cylindrical light diffusing tips are rapidly becoming a popular device for the administration of the desired light dose for the illumination of hollow organs, such as bronchus, trachea and oesophagus. This work is devoted to the development of these catheters.

  19. TRANSFEROSOME: AN OPPORTUNISTIC CARRIER FOR TRANSDERMAL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Malakar Jadupati

    2012-03-01

    Full Text Available Transdermal route of drug delivery system has received a great attention in pharmaceutical research and it has already proved its superiority in various respects than oral route, which has a number of problems in drug delivery system. However, the permeation of hydrophilic ioniazable species of drug always has been denied by the intrinsic barrier or stratum corneum for providing local or systemic actions. Transferosomes are ultra deformable vesicles, elastic in nature, which can squeeze itself through a pore and it is more advantageous than the conventional liposome due to its high elasticity, which offers its penetration through narrow constriction without measurable loss. The high permeability of transferosome across the skin also depends on its deformability and intermediate attachment sites for membrane fusion due presence of ripples in vesicles surface. Its infrastructure posses both hydrophilic and hydrophobic moieties together and it can entrap both type of drug. They can act as a carrier for low as well as high molecular weight drugs e.g., analgesics, anesthetics, corticosteroids, sex hormones, anticancer drugs, insulin, gap junction proteins, albumin, etc.

  20. Delivery of Probiotics in the Space Food System

    Science.gov (United States)

    Castro, S. L.; Ott, C. M.; Douglas, G. L.

    2014-01-01

    The addition of probiotic bacteria to the space food system is expected to confer immunostimulatory benefits on crewmembers during spaceflight, counteracting the immune dysregulation that has been documented in spaceflight. Specifically, the probiotic Lactobacillus acidophilus has been shown to promote health benefits including antagonism towards and inhibition of virulence related gene expression in pathogens, mucosal stimulation of immune cells, and a reduction in the occurrence and duration of cold and flu-like symptoms. The optimum delivery system for probiotics has not been determined for spaceflight, where the food system is shelf stable and the lack of refrigeration prevents the use of traditional dairy delivery methods. This work proposes to determine whether L. acidophilus is more viable, and therefore more likely to confer immune benefit, when delivered in a capsule form or when delivered in nonfat dry milk powder with a resuscitation opportunity upon rehydration, following 0, 4, and 8 months of storage at -80degC, 4degC, and 22degC, and both prior to and after challenge with simulated gastric and intestinal juices. We hypothesize that the low moisture neutral dairy matrix provided by the nonfat dry milk, and the rehydration step prior to consumption, will extend probiotic viability and stress tolerance compared to a capsule during potential storage conditions in spaceflight and in simulated digestion conditions.

  1. Beam monitor system for high-energy beam transportation at HIMAC

    CERN Document Server

    Torikoshi, M; Takada, E; Kanai, T; Yamada, S; Ogawa, H; Okumura, K; Narita, K; Ueda, K; Mizobata, M

    1999-01-01

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO sub 2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x10 sup 5 and 1x10 sup 6 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are use...

  2. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.

    Science.gov (United States)

    Giri, Tapan Kumar; Thakur, Deepa; Alexander, Amit; Ajazuddin; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-11-01

    Alginate is a non-toxic, biocompatible and biodegradable natural polymer with a number of peculiar physicochemical properties for which it has wide applications in drug delivery and cell delivery systems. Hydrogel formation can be obtained by interactions of anionic alginates with multivalent inorganic cations by simple ionotropic gelation method. Hydrophilic polymeric network of three dimensional cross linked structures of hydrogels absorb substantial amount of water or biological fluids. Among the numerous biomaterials used for hydrogel formation alginate has been and will continue to be one of the most important biomaterial. Therefore, in view of the vast literature support, we focus in this review on alginate - based hydrogel as drug delivery and cell delivery carriers for biomedical applications. Various properties of alginates, their hydrogels and also various techniques used for preparing alginate hydrogels have been reviewed. PMID:22998675

  3. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery: in vitro characterisation studies.

    Science.gov (United States)

    Charlton, S T; Davis, S S; Illum, L

    2007-04-01

    There is an increasing need for nasal drug delivery systems that could improve the efficiency of the direct nose to brain pathway especially for drugs for treatment of central nervous system disorders. Novel approaches that are able to combine active targeting of a formulation to the olfactory region with controlled release bioadhesive characteristics, for maintaining the drug on the absorption site are suggested. If necessary an absorption enhancer could be incorporated. Low methylated pectins have been shown to gel and be retained in the nasal cavity after deposition. Chitosan is known to be bioadhesive and also to work as an absorption enhancer. Consequently, two types of pectins, LM-5 and LM-12, together with chitosan G210, were selected for characterisation in terms of molecular weight, gelling ability and viscosity. Furthermore, studies on the in vitro release of model drugs from candidate formulations and the transport of drugs across MDCK1 cell monolayers in the presence of pectin and chitosan were also performed. Bioadhesive formulations providing controlled release with increased or decreased epithelial transport were developed. Due to their promising characteristics 3% LM-5, 1% LM-12 pectin and 1% chitosan G210 formulations were selected for further biological evaluation in animal models.

  4. Aerosol assisted depositions of polymers using an atomiser delivery system.

    Science.gov (United States)

    Crick, Colin R; Clausen-Thue, Victoria; Parkin, Ivan P

    2011-09-01

    The hydrophobicity, robustness and anti-microbial properties of Sylgard 184 polymer films deposited via AACVD were optimised by using aerosol droplets from an atomiser delivery system, polymer coating substrates and the swell encapsulation of methylene blue. By using an atomiser deposition system (average droplet size 0.35 microm) rather than a misting aerosol system (45 microm) lead to a surface with smaller surface features, which improved hydrophobicity (water contact angle 165 degrees) in addition to increasing the films transparency from ca 10 to 65%. Pre-treating the substrates with the same Sylgard 184 elastomer lead to a highly consistent surface hydrophobicity and an increase in average water contact angle measured (169 degrees). This paper shows the first example of dye incorporation in a CVD derived polymer film-these films have potential as antimicrobial surfaces.

  5. Beam Dynamics and Pulse Duration Control During Final Beam Bunching in Driver System for Heavy Ion Inertial Fusion

    CERN Document Server

    Kikuchi, Takashi; Katayama, Takeshi; Kawata, Shigeo; Nakajima, Mitsuo; Someya, Tetsuo

    2005-01-01

    Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.

  6. BECOLA Beam Line Construction and Laser System

    Science.gov (United States)

    Pedicini, Eowyn; Minamisono, Kei; Barquest, Brad; Bollen, Georg; Klose, Andrew; Mantica, Paul; Morrissey, Dave; Ringle, Ryan; Schwarz, Stefan; Vinnikova, Sophia

    2010-11-01

    The BECOLA (BEam COoler and LAser spectroscopy) facility is being installed at NSCL for experiments on radioactive nuclides.ootnotetextK. Minamisono et al, Proc. Inst. Nucl. Theory 16, 180 (2009). Low energy ion beams will be cooled/bunched in an RFQ ion trap and then extracted to a max of 60 kV. The ion beam will be neutralized through a charge exchange cell (CEC), and remaining ions will be removed by a deflector and collected in a Faraday cup. Collinear laser spectroscopy will be used to measure the atomic hyperfine structure, and nuclear properties will be extracted. The assembly, vacuum testing, and optical alignment of the CEC have been completed and the ion deflector and Faraday cup were also assembled. Stabilization of the Ti:sapphire laser to be used for spectroscopy is achieved through a feedback loop using a precision wavelength meter that is calibrated by a stabilized He-Ne laser. Coupling the He-Ne laser into a single-mode optical fiber was optimized for stable operation of the feedback loop. Finally, a wall chart of nuclear moments was prepared to view trends in μ and Q for nuclear ground states for planning future measurements.

  7. Invited article: Digital beam-forming imaging riometer systems.

    Science.gov (United States)

    Honary, Farideh; Marple, Steve R; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling

    2011-03-01

    The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.

  8. Beam Tracking in Switched-Beam Antenna System for V2V Communication

    Directory of Open Access Journals (Sweden)

    Settawit Poochaya

    2016-01-01

    Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.

  9. Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS

    CERN Document Server

    Goddard, B; Efthymiopoulos, I; Papaphilippou, Y; Parfenova, A

    2013-01-01

    For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector at a distance of 2300 km [1]. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the required beam transfer systems are outlined, including the new sections of transfer line between the Superconducting Proton Linac (SPL), HP-PS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H- injection system is discussed.

  10. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  11. Pulsatile Drug Delivery System: Method and Technology Review

    Directory of Open Access Journals (Sweden)

    Kumar Amit

    2012-12-01

    Full Text Available Traditionally, drugs are released in an immediate or extended manner. A pulsatile drug release, where the drug is released rapidly after a well defined lag-time, could be advantageous for many drugs or therapies. As the pulsatile drug delivery achieve desired therapeutic effect and reducing side effect, so patient compliance can be obtained along with lowering dose frequency. These systems are designed according to the circadian rhythm of the body and the drug is released as a pulse. Diseases like asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia can be cured by drugs, released by PDDS. Recent trends include Multiparticulate drug delivery systems that are especially suitable for achieving controlled or delayed release oral formulations with low risk of dose dumping, flexibility of blending to attain different release patterns as well as reproducible and short gastric residence time. Various methods and marketed technologies of PDDS such as Pulsincap TM, Diffucaps, CODAS, OROS and PULSYSTM are covered in this review.

  12. Advanced drug delivery systems of curcumin for cancer chemoprevention.

    Science.gov (United States)

    Bansal, Shyam S; Goel, Mehak; Aqil, Farrukh; Vadhanam, Manicka V; Gupta, Ramesh C

    2011-08-01

    Since ancient times, chemopreventive agents have been used to treat/prevent several diseases including cancer. They are found to elicit a spectrum of potent responses including anti-inflammatory, antioxidant, antiproliferative, anticarcinogenic, and antiangiogenic activity in various cell cultures and some animal studies. Research over the past 4 decades has shown that chemopreventives affect a number of proteins involved in various molecular pathways that regulate inflammatory and carcinogenic responses in a cell. Various enzymes, transcription factors, receptors, and adhesion proteins are also affected by chemopreventives. Although, these natural compounds have shown significant efficacy in cell culture studies, they elicited limited efficacy in various clinical studies. Their introduction into the clinical setting is hindered largely by their poor solubility, rapid metabolism, or a combination of both, ultimately resulting in poor bioavailability upon oral administration. Therefore, to circumvent these limitations and to ease their transition to clinics, alternate strategies should be explored. Drug delivery systems such as nanoparticles, liposomes, microemulsions, and polymeric implantable devices are emerging as one of the viable alternatives that have been shown to deliver therapeutic concentrations of various potent chemopreventives such as curcumin, ellagic acid, green tea polyphenols, and resveratrol into the systemic circulation. In this review article, we have attempted to provide a comprehensive outlook for these delivery approaches, using curcumin as a model agent, and discussed future strategies to enable the introduction of these highly potent chemopreventives into a physician's armamentarium. PMID:21546540

  13. Regulatory considerations on new adjuvants and delivery systems.

    Science.gov (United States)

    Sesardic, D

    2006-04-12

    New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.

  14. Alginate Nanoparticles as a Promising Adjuvant and Vaccine Delivery System

    Directory of Open Access Journals (Sweden)

    F Sarei

    2013-01-01

    Full Text Available During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines. In this study diphtheria toxoid loaded nanoparticles were prepared by ionic gelation technique and characterized with respect to size, zeta potential, morphology, encapsulation efficiency, release profile, and immunogenicity. Appropriate parameters (calcium chloride and sodium alginate concentration, homogenization rate and homogenization time redounded to the formation of suitable nanoparticles with a mean diameter of 70±0.5 nm. The loading studies of the nanoparticles resulted in high loading capacities (>90% and subsequent release studies showed prolong profile. The stability and antigenicity of toxoid were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ouchterlony test and proved that the encapsulation process did not affect the antigenic integrity and activity. Guinea pigs immunized with the diphtheria toxoid-loaded alginate nanoparticles showed highest humoral immune response than conventional vaccine. It is concluded that, with regard to the desirable properties of nanoparticles and high immunogenicity, alginate nanoparticles could be considered as a new promising vaccine delivery and adjuvant system.

  15. Niosomes as Nano-Delivery Systems in the Pharmaceutical Field.

    Science.gov (United States)

    Cerqueira-Coutinho, Cristal; Dos Santos, Elisabete P; Mansur, Claudia Regina E

    2016-01-01

    Nanosystems used in the pharmaceutical field aim to guarantee a controlled release and efficacy boost with dose reduction of the drug. The same active ingredient could be vehiculated in different concentrations in distinct nanosystems. Among these nanostructures, the vesicular ones present a versatile delivery system that could be applied to encapsulate lipophilic, amphiphilic, and hydrophilic compounds. Liposomes are the most well-known vesicular nanosystems; however, there are others, such as niosomes, that are composed of nonionic surfactants that are polymeric or conventional. Niosomes could be prepared using the thin film hydration method, in which the active ingredient is solubilized in organic solvent with the surfactant or in aqueous solution depending on its polarity. In addition, co-surfactants could be used to improve stabilization and vesicle integrity because they occupy regions in the interface where the mainly surfactant could not reach. Vesicular nanosystems could be characterized by different techniques, such as microscopy, dynamic light scattering, nuclear magnetic resonance, and others. These nanostructures could be applied to drugs (administered by different routes) or to gene and cosmetic delivery systems. PMID:27651102

  16. PREFORMULATION STUDIES OF SIMVASTATIN FOR TRANSDERMAL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Sameer Singh

    2012-09-01

    Full Text Available The aim of the present work to study the preformulation parameters for Transdermal drug delivery system. The objective of Preformulation study is to generic information useful to the formulater in developing stable and bioavailable dosage form. The use of Preformulation parameter maximizes the chances in formulation an acceptable, safe, efficacious and stable product and at the same time provide the basis for optimization of the drug product quality. Administration of conventional tablets of simvastatin has been reported to exhibit fluctuations in plasma drug levels, resulting either in manifestation of side effects or reduction in drug concentration at the receptor sites also, the maintenance of a constant plasma concentration of a cardiovascular drug is important in ensuring the desired therapeutic response, again since the half life of simvastatin is 3 hours hence multiple doses of the drug are needed to maintain a constant plasma concentration for a good therapeutic response, and improve patient compliance, hence the objective of the study was made to develop controlled release TDDS of simvastatin using polymer like HPMC and Carbopol, which will controlled the release of drug, increasing the bioavailability of the drug and thus decreasing the dosing frequency of the drug. The Preformulation studies were carried out in terms of testa for identification (physical appearance, melting point, and uv spectrophotometer, solubility profile, determination of partition coefficient and quantitative estimation of drug. All the observation and results showed that the simvastatin could serve as suitable candidate for Transdermal drug delivery system that may improve the bioavailability.

  17. The Smart Drug Delivery System and Its Clinical Potential

    Science.gov (United States)

    Liu, Dong; Yang, Fang; Xiong, Fei; Gu, Ning

    2016-01-01

    With the unprecedented progresses of biomedical nanotechnology during the past few decades, conventional drug delivery systems (DDSs) have been involved into smart DDSs with stimuli-responsive characteristics. Benefiting from the response to specific internal or external triggers, those well-defined nanoplatforms can increase the drug targeting efficacy, in the meantime, reduce side effects/toxicities of payloads, which are key factors for improving patient compliance. In academic field, variety of smart DDSs have been abundantly demonstrated for various intriguing systems, such as stimuli-responsive polymeric nanoparticles, liposomes, metals/metal oxides, and exosomes. However, these nanoplatforms are lack of standardized manufacturing method, toxicity assessment experience, and clear relevance between the pre-clinical and clinical studies, resulting in the huge difficulties to obtain regulatory and ethics approval. Therefore, such relatively complex stimulus-sensitive nano-DDSs are not currently approved for clinical use. In this review, we highlight the recent advances of smart nanoplatforms for targeting drug delivery. Furthermore, the clinical translation obstacles faced by these smart nanoplatforms have been reviewed and discussed. We also present the future directions and perspectives of stimuli-sensitive DDS in clinical applications. PMID:27375781

  18. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  19. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  20. Laser beam riding guided system principle and design research

    Science.gov (United States)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  1. [Advanced development of particle beam probe diagnostic system

    International Nuclear Information System (INIS)

    This progress report under DOE Grant DE-FG02-85ER3211 covers the period 15 December 1992 through 15 October 1993. The major accomplishments of this period are summarized below: The basic TEXT heavy ion beam probe including the primary beam line, the upper secondary beam line with the old 500 keV analyzer, and the lower secondary beam line with the new 2 MeV analyzer is operational and system shake-down is now beginning. Several subsystems of the complete system design are still under development, including secondary beam line sweeps, primary beam detectors, the digital control and data acquisition system. The lower analyzer entrance aperture and detector plates also have very limited capabilities to make it possible to more rapidly obtain satisfactory initial alignment and calibration conditions. We have performed a variety of high voltage tests that establish the basic efficacy of the 2 MeV analyzer design. We have upgraded the ion optics and added vacuum chambers in our vertical test stand facility to allow us to test the 2 MeV analyzers. We have also constructed a facility for testing ion source characteristics. We analyzed data on primary beam modulation taken during the last run period and confirmed the accuracy of our simulation code. Analysis of magnetic field measurements continued

  2. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  3. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  4. Formulation development and evaluation of controlled porosity osmotic pump delivery system for oral delivery of atenolol

    Directory of Open Access Journals (Sweden)

    Garvendra S Rathore

    2012-01-01

    Full Text Available In the present study, we developed and evaluated the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug atenolol (ATL. We selected target release profile and optimized different variables to help us achieve this. Formulation variables, such as, the levels of solubility enhancer (0-15% w/w of drug, ratio of the drug to the osmogents, coat thickness of the semipermeable membrane (SPM and level of pore former (0-20% w/w of polymer were found to effect the drug release from the developed formulations. Cellulose acetate (CA 398-10 was used as the semipermeable membrane containing polyethylene glycol 400 as the Cplasticizer. ATL release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of the pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. The optimized formulations were subjected to stability studies as per International Conference on Harmonisation (ICH guidelines, and formulations were found to be stable after 3 months study. Steady-state plasma levels of drug were predicted by the method of superposition.

  5. Technical Evaluation Report 5: Classification of DE Delivery Systems

    Directory of Open Access Journals (Sweden)

    Diane Belyk

    2002-01-01

    Full Text Available For their optimal use in distance education (DE, online educational applications need to be integrated within a comprehensive course management system (CMS. Such systems are server-based software that supports the development, delivery, administration, and evaluation of online learning environments. The selection of an appropriate CMS should be considered from the multiple perspectives of the student, the course developer, the course instructor/ tutor, the technical support staff, and the DE institution’s administration. The current evaluation of CMS packages was conducted by a team of individuals with experience and contacts in relation to each of these DE user types. The report compares a series of CMS packages in terms of their range of features, and in relation to their satisfaction of international online education standards.

  6. Gene gun delivery systems for cancer vaccine approaches.

    Science.gov (United States)

    Aravindaram, Kandan; Yang, Ning Sun

    2009-01-01

    Gene-based immunization with transgenic DNA vectors expressing tumor-associated antigens (TAA), cytokines, or chemokines, alone or in combination, provides an attractive approach to increase the cytotoxic T cell immunity against various cancer diseases. With this consideration, particle-mediated or gene gun technology has been developed as a nonviral method for gene transfer into various mammalian tissues. It has been shown to induce both humoral and cell-mediated immune responses in both small and large experimental animals. A broad range of somatic cell types, including primary cultures and established cell lines, has been successfully transfected ex vivo or in vitro by gene gun technology, either as suspension or adherent cultures. Here, we show that protocols and techniques for use in gene gun-mediated transgene delivery system for skin vaccination against melanoma using tumor-associated antigen (TAA) human gpl00 and reporter gene assays as experimental systems.

  7. Stateless and Delivery Guaranteed Geometric Routing on Virtual Coordinate System

    CERN Document Server

    Liu, Ke

    2008-01-01

    Stateless geographic routing provides relatively good performance at a fixed overhead, which is typically much lower than conventional routing protocols such as AODV. However, the performance of geographic routing is impacted by physical voids, and localization errors. Accordingly, virtual coordinate systems (VCS) were proposed as an alternative approach that is resilient to localization errors and that naturally routes around physical voids. However, VCS also faces virtual anomalies, causing their performance to trail geographic routing. In existing VCS routing protocols, there is a lack of an effective stateless and delivery guaranteed complementary routing algorithm that can be used to traverse voids. Most proposed solutions use variants of flooding or blind searching when a void is encountered. In this paper, we propose a spanning-path virtual coordinate system which can be used as a complete routing algorithm or as the complementary algorithm to greedy forwarding that is invoked when voids are encountere...

  8. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    Science.gov (United States)

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. PMID:26706565

  9. Spatial service delivery system for smart licensing & enforcement management

    Science.gov (United States)

    Wahap, N. A.; Ismail, N. M.; Nor, N. M.; Ahmad, N.; Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Noordin, N. M.; Mansor, S.

    2016-06-01

    Spatial information has introduced a new sense of urgency for a better understanding of the public needs in term of what, when and where they need services and through which devices, platform or physical locations they need them. The objective of this project is to value- add existing license management process for business premises which comes under the responsibility of Local Authority (PBT). Manipulation of geospatial and tracing technology via mobile platform allows enforcement officers to work in real-time, use a standardized system, improve service delivery, and optimize operation management. This paper will augment the scope and capabilities of proposed concept namely, Smart Licensing/Enforcement Management (SLEm). It will review the current licensing and enforcement practice of selected PBT in comparison to the enhanced method. As a result, the new enhanced system is expected to offer a total solution for licensing/enforcement management whilst increasing efficiency and transparency for smart city management and governance.

  10. A NOVEL OPHTHALMIC DRUG DELIVERY SYSTEM: IN-SITU GEL

    Directory of Open Access Journals (Sweden)

    A.P. Patil*, A.A. Tagalpallewar, G.M. Rasve, A.V. Bendre, P.G. Khapekar

    2012-09-01

    Full Text Available The ophthalmic in-situ gels now days proved an palpable sustained drug delivery in various eye diseases. The formulation of in-situ gels for eye which carries the advantages like easy for administration, reduces frequency of dose and improves patient compliance. The formation of in-situ gels depends on phase transition system or sol-gel transition system. The formulation approaches like temperature intonation, pH change and presence of ions from which the drug gets released in a sustained and controlled manner are utilised for in-situ gels. Various polymers that are used for the formulation of in-situ gels include chitosan, Pluronic F-127, poly-caprolactone, gellan gum, alginic acid, xyloglucan, pectin etc.

  11. Skin delivery of ferulic acid from different vesicular systems.

    Science.gov (United States)

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2010-10-01

    The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin. PMID:21329050

  12. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  13. Electron beam diagnostic system using computed tomography and an annular sensor

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  14. Ternary particles for effective vaccine delivery to the pulmonary system

    Science.gov (United States)

    Terry, Treniece La'shay

    Progress in the fields of molecular biology and genomics has provided great insight into the pathogenesis of disease and the defense mechanisms of the immune system. This knowledge has lead to the classification of an array of abnormal genes, for which, treatment relies on cellular expression of proteins. The utility of DNA-based vaccines hold great promise for the treatment of genetically based and infectious diseases, which ranges from hemophilia, cystic fibrosis, and HIV. Synthetic delivery systems consisting of cationic polymers, such as polyethylenimine (PEI), are capable of condensing DNA into compact structures, maximizing cellular uptake of DNA and yielding high levels of protein expression. To date, short term expression is a major obstacle in the development of gene therapies and has halted their expansion in clinical applications. This study intends to develop a sustained release vaccine delivery system using PLA-PEG block copolymers encapsulating PEI:DNA polyplexes. To enhance the effectiveness of such DNA-based vaccines, resident antigen presenting cells, macrophages and dendritic cells, will be targeted within the alveoli regions of the lungs. Porous microspheres will be engineered with aerodynamic properties capable of achieving deep lung deposition. A fabrication technique using concentric nozzles will be developed to produce porous microspheres. It was observed that modifications in the dispersed to continuous phase ratios have the largest influence on particle size distributions, release rates and encapsulation efficiency which ranged form 80--95% with fourteen days of release. Amphiphilic block copolymers were also used to fabricate porous microspheres. The confirmation of PEG within the biodegradable polymer backbone was found to have a tremendous impact on the microsphere morphology and encapsulation efficiency which varied from 50--90%. Porous microspheres were capable of providing sustained gene expression when tested in vitro using the

  15. Molecular beam sampling system with very high beam-to-background ratio: The rotating skimmer concept

    International Nuclear Information System (INIS)

    A novel method of reducing the background pressure in a vacuum system used for sampling a molecular beam from a high pressure region is presented. A triple differential pumping stage is constructed with a chopper with rotating skimmer within the first pumping stage, which serves effectively as a valve separating periodically the vacuum system from the ambient environment. The mass spectrometry measurement of the species in the molecular beam show an excellent beam-to-background ratio of 14 and a detection limit below 1 ppm. The potential of this method for detection of low density reactive species in atmospheric pressure plasmas is demonstrated for the detection of oxygen atoms generated in an atmospheric pressure microplasma source.

  16. Absorption Enhancing Excipients in Systemic Nasal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Edward T. Maggio

    2014-06-01

    Full Text Available Intranasal drug delivery is becoming an increasingly important form of drug administration for chronic and chronic-intermittent diseases. Important new applications in development include drugs for diabetes, osteoporosis, obesity, certain types of convulsive disorders, migraine headaches, symptomatic pain relief, nausea, and anxiety, among others. Transmucosal absorption across the nasal mucosa is generally limited to molecules under 1,000 Da in size. Systemic delivery of molecules larger than this requires formulation with a suitable transmucosal absorption enhancer. More than one hundred potential transmucosal absorption enhancing excipients have been tested to date. Nearly all have failed to be practical due to poor effectiveness or unacceptable toxicity to mucosal tissue. Alkylsaccharides, cyclodextrins, and chitosan's have emerged as the leading candidates for potential broad clinical applications and are allowing development of convenient, patient-friendly, needle free formulations of small molecule drugs, as well as peptide and protein drugs that can be administered at home, at work, or in other public and private settings outside of the doctor’s office or hospital environment.

  17. Multiparticulate system for colon targeted delivery of ondansetron

    Directory of Open Access Journals (Sweden)

    Jose S

    2010-01-01

    Full Text Available Targeted delivery of drugs to colon has the potential for local treatment of a variety of colonic diseases. The main objective of the study was to develop a multiparticulate system containing chitosan microspheres for the colon targeted delivery of ondansetron for the treatment of irritable bowel syndrome. This work combines pH-dependent solubility of eudragit S-100 polymers and microbial degradability of chitosan polymers. Chitosan microspheres containing ondansetron were prepared by emulsion cross linking method. The effect of process variables like chitosan concentration, drug-polymer ratio, emulsifier concentration and stirring speed were studied on particle size and entrapment efficiency of chitosan microspheres. In vitro drug release studies in simulated gastro intestinal fluids showed a burst drug release pattern in the initial hour necessitating microencapsulation around the chitosan microspheres. The optimized formulation was then subjected to microencapsulation with eudragit S-100 by solvent evaporation technique. The effect of different coat/core ratio on particle size, drug entrapment efficiency and in vitro drug release were studied. Formulation which contain 1:10 core/coat ratio released lesser amount of drug in the upper gastro intestinal conditions and so selected as best formulation and then subjected to in vitro drug release studies in presence of rat ceacal contents to assess biodegradability of chitosan microspheres in colon. In order to study the drug release mechanism in vitro drug release data was fitted into various kinetic models. Analysis of regression values suggested that the possible drug release mechanism was Peppas model.

  18. Strategic workforce planning for a multihospital, integrated delivery system.

    Science.gov (United States)

    Datz, David; Hallberg, Colleen; Harris, Kathy; Harrison, Lisa; Samples, Patience

    2012-01-01

    Banner Health has long recognized the need to anticipate, beyond the immediate operational realities or even the annual budgeting projection exercises, the necessary workforce needs of the future. Thus, in 2011, Banner implemented a workforce planning model that included structures, processes, and tools for predicting workforce needs, with particular focus on identified critical systemwide practice areas. The model represents the incorporation of labor management tools and processes with more strategic, broad-view, long-term assessment and planning mechanisms. The sequential tying of the workforce planning lifecycle with the organization's strategy and financial planning process supports alignment of goals, objectives, and resource allocation. Collaboration among strategy, finance, human resources, and operations has provided us with the ability to identify critical position groups based on 3-year strategic priorities. By engaging leaders from across the organization, focusing on activities at facility, regional, and system levels, and building in mechanisms for accountability, we are now engaged in continuous evaluations of our delivery models, the competencies and preparations necessary for the staff to effectively function within those delivery models, and developing and implementing action plans designed to ensure adequate numbers of the staff whose competencies will be suited to the work expected of them.

  19. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  20. Potential and problems in ultrasound-responsive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Zhao YZ

    2013-04-01

    Full Text Available Ying-Zheng Zhao,1,3 Li-Na Du,2 Cui-Tao Lu,1 Yi-Guang Jin,2 Shu-Ping Ge3 1Wenzhou Medical College, Wenzhou City, Zhejiang Province, 2Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3St Christopher’s Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. Keywords: ultrasound, targeted therapy, clinical application

  1. Radiation Shielding Design for ISOL System Beam Line

    Institute of Scientific and Technical Information of China (English)

    WANG; Feng; QIN; Jiu-chang

    2013-01-01

    The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm

  2. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl;

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written in the microflui...

  3. SPLinac Computer Simulations of SC Linac RF Systems with Beam

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.

  4. Phyto-vesicles:conduit between conventional and novel drug delivery system

    Institute of Scientific and Technical Information of China (English)

    Nidhi Mishra; Narayan P Yadav; Jaya Gopal Meher; Priyam Sinha

    2012-01-01

    Objective: To discuss the preparation, characterization, targeting and formulation aspect of phospholipids based drug delivery system i.e. Phyto-vesicles. Methods: The methods of phyto-vesicles preparation on R & D scale and different analytical techniques to characterize them have been discussed. Result: Phyto-vesicles are the advanced form of herbal drug delivery systems as its structure includes water soluble head and two fat soluble tails which act as an effective emulsifier. Conclusion: It is concluded that phytovesicular delivery system has improved pharmacokinetic and pharmacodynamic parameter as compared to conventional system Therefore, phyto-vesicles are called as conduit between conventional and novel drug delivery system.

  5. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  6. Relative bioavailability of a new transdermal nitroglycerin delivery system.

    Science.gov (United States)

    Noonan, P K; Gonzalez, M A; Ruggirello, D; Tomlinson, J; Babcock-Atkinson, E; Ray, M; Golub, A; Cohen, A

    1986-07-01

    The purpose of this study was to measure the bioavailability of nitroglycerin from a new transdermal delivery system, Nitro-Dur II, relative to that of Nitro-Dur. Twenty-four healthy male volunteers completed a two-way crossover study. Each subject randomly received Nitro-Dur (I) and Nitro-Dur II (II) for a 24-h period. Both transdermal systems had an active surface area of 20 cm2. Blood samples were collected immediately before treatment, at 0.5, 1, 2, 3, 4, 6, 8, 12, 18, and 24 h after topical application of the units, and 30 min after the units were removed. Nitroglycerin was determined with an analytical sensitivity of 50 pg/mL using gas chromatography with electron capture detection (GC-EC). Mean steady-state concentrations of nitroglycerin were 182 and 224 pg/mL for I and II, respectively. There were no statistical differences between I and II in the pharmacokinetic parameters measured (Css, AUC, Cmax, % fluctuation). Residual nitroglycerin content was measured in each transdermal unit after application to each of the 24 volunteers. The amounts of nitroglycerin delivered by I and II were 9.78 +/- 4.11 and 10.67 +/- 4.78 mg, respectively, or approximately 10 mg in 24 h. Statistical analysis of these data using an analysis of variance indicated no significant difference between these treatments (p = 0.27). Since there were also no differences in the plasma concentrations and pharmacokinetic parameters calculated after treatment with I and II, the bioequivalence of the two delivery systems was established. PMID:3093667

  7. Progress in psoriasis therapy via novel drug delivery systems

    Directory of Open Access Journals (Sweden)

    Nitha Vincent

    2014-09-01

    Full Text Available Psoriasis is a lifelong condition which is caused by the negative signals produced by immune system, which leads to hyper proliferation and other inflammatory reactions on the skin. In this case, keratinocytes which are the outermost layer of skin possess shortened life cycle and results in the alteration of desquamation process where the cytokines will come out through lesions of affected patients and as a result, scaling marks appears on the skin. These conditions may negatively affect the patient’s quality of life and lead to psychosocial stress. Psoriasis can be categorized as mild, moderate and severe conditions. Mild psoriasis leads to the formation of rashes, and when it becomes moderate, the skin turns into scaly. In severe conditions, red patches may be present on skin surface and becomes itchy. Topical therapy continues to be one of the pillars for psoriasis management. Drug molecules with target effect on the skin tissues and other inflammations should be selected for the treatment of psoriasis. Most of the existing drugs lead to systemic intoxication and dryness when applied in higher dose. Different scientific approaches for topical delivery are being explored by researches including emollient, modified gelling system, transdermal delivery, spray, nanogels, hydrogels, micro/nano emulsion, liposomes, nano capsules etc. These topical dosage forms are evaluated for various physico chemical properties such as drug content, viscosity, pH, extrudability, spreadability, toxicity, irritancy, permeability and drug release mechanism. This review paper focus attention to the impact of these formulation approaches on various anti-psoriasis drugs for their successful treatment.

  8. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  9. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  10. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  11. ROLE OF XANTHAN GUM (XANTHOMONAS COMPESTRIS) IN GASTRORETENTIVE DRUG DELIVERY SYSTEM: AN OVERVIEW

    OpenAIRE

    Uday Prakash; Lalit Singh; Vijay Sharma

    2013-01-01

    Floating drug delivery system is the form of gastro-retentive drug delivery system. That controls kinetic release rate of drug to a specific site for its pharmacological action. These are achieved by use of various polymeric substances including natural polymer such as xanthan gum. This delivery system prolongs the retention time of the drug in the stomach as compared to conventional dosage form. The present article highlights the use of xanthan gum for the formulation of the gastro-retentive...

  12. Progress in non-viral gene delivery systems fabricated via supramolecular assembly

    Institute of Scientific and Technical Information of China (English)

    WANG Youxiang; SHEN Jiacong

    2005-01-01

    Gene delivery systems are one of key issues that limit the development of gene therapy. The novel non-viral gene delivery systems fabricated via supramolecular assembly have begun to show increasing promising and applications in gene therapy due to its suitable nanometric size, controllable structure and excellent biocompatibility. In this review, the fundamental and recent progress of non-viral gene supramolecular assembly is reviewed. Artificial viruses--the future direction of non-viral gene delivery systems are also described.

  13. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  14. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author)

  15. Optimized formulation of solid self-microemulsifying sirolimus delivery systems

    Directory of Open Access Journals (Sweden)

    Cho W

    2013-04-01

    Full Text Available Wonkyung Cho,1,2 Min-Soo Kim,3 Jeong-Soo Kim,2 Junsung Park,1,2 Hee Jun Park,1,2 Kwang-Ho Cha,1,2 Jeong-Sook Park,2 Sung-Joo Hwang1,4 1Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; 2College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 3Department of Pharmaceutical Engineering, Inje University, Gimhae, Republic of Korea; 4College of Pharmacy, Yonsei University, Incheon, Republic of Korea Background: The aim of this study was to develop an optimized solid self-microemulsifying drug delivery system (SMEDDS formulation for sirolimus to enhance its solubility, stability, and bioavailability. Methods: Excipients used for enhancing the solubility and stability of sirolimus were screened. A phase-separation test, visual observation for emulsifying efficiency, and droplet size analysis were performed. Ternary phase diagrams were constructed to optimize the liquid SMEDDS formulation. The selected liquid SMEDDS formulations were prepared into solid form. The dissolution profiles and pharmacokinetic profiles in rats were analyzed. Results: In the results of the oil and cosolvent screening studies, Capryol™ Propylene glycol monocaprylate (PGMC and glycofurol exhibited the highest solubility of all oils and cosolvents, respectively. In the surfactant screening test, D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS was determined to be the most effective stabilizer of sirolimus in pH 1.2 simulated gastric fluids. The optimal formulation determined by the construction of ternary phase diagrams was the T32 (Capryol™ PGMC:glycofurol:vitamin E TPGS = 30:30:40 weight ratio formulation with a mean droplet size of 108.2 ± 11.4 nm. The solid SMEDDS formulations were prepared with Sucroester 15 and mannitol. The droplet size of the reconstituted solid SMEDDS showed no significant difference compared with the liquid SMEDDS. In the dissolution study, the release amounts of

  16. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...... of the concept depends, nevertheless, on how you manage and organise the detailed design process. In the end, prioritization, motivation and leadership are of vital importance to the construction process and to how good the safety at the site will be for the craftsmen. The developed concept has to be seen......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...

  17. Processing of Polymer Nanofibers Through Electrospinning as Drug Delivery Systems

    Science.gov (United States)

    Kenawy, E.; Abdel-Hay, F. I.; El-Newehy, M. H.; Wnek, G. E.

    The use of electrospun fibers as drug carriers could be promising in the future for biomedical applications, especially postoperative local chemotherapy. In this research, electrospun fibers were developed as a new system for the delivery of ketoprofen as non-steroidal anti-inflammatory drug (NSAID). The fibers were made either from polycaprolactone (PCL) as a biodegradable polymer or polyurethane (PU) as a non-biodegradable polymer, or from the blends of the two. The release of the ketoprofen was followed by UV—VIS spectroscopy in phosphate buffer of pH 7.4 at 37°C and 20°C. The results showed that the release rates from the polycaprolactone, polyurethane and their blend were similar. However, the blend of the polycaprolactone with polyurethane improved its visual mechanical properties. Release profiles from the electrospun mats were compared to cast films of the various formulations.

  18. [Anti-HIV drugs and drug delivery system].

    Science.gov (United States)

    Obaru, K; Mitsuya, H

    1998-03-01

    A number of candidate drugs for therapy of HIV-1 infection which show significant activity against the virus in vitro were reported; however, many of them have been dropped from drug development due to (i) insufficient intracellular activation in certain human target cells (particularly in case of nucleoside reverse transcriptase inhibitors), (ii) poor pharmacokinetic profiles, or (iii) intolerable in vitro and/or in vivo toxicities. To circumvent some of these problems, certain drug delivery systems have been applied and several candidate drugs including two novel nucleoside reverse transcriptase inhibitors, abacavir and adefovir, have acquired favorable properties in the clinical setting. This paper reviews several avenues for developing prodrugs of anti-HIV-1 agents to overcome their inherent limitations. PMID:9549371

  19. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig;

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...... of the products to entrap and release drug molecules and their cytotoxicity in order to develop novel DDS. Bioinspired silica synthesis occurs at pH 7, room temperature and in less than 5 minutes, resulting in a rapid, cheaper and greener route. Drugs were loaded into silica during the silica formation, thus...... allowing a one step and one pot method for simultaneous silica synthesis and drug loading. We established that the drug release profile can be modulated by synthetic parameters, which can allow design of tailored DDS. A systematic investigation using a two level factorial design was adopted in order...

  20. Fenton-treated functionalized diamond nanoparticles as gene delivery system.

    Science.gov (United States)

    Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-01-26

    When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp. PMID:20047335