WorldWideScience

Sample records for beam ct reconstruction

  1. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  2. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhanli, E-mail: huzhanli1983@gmail.com [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zou, Jing; Gui, Jianbao; Zheng, Hairong [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xia, Dan, E-mail: dan.xia@siat.ac.cn [Paul C. Lauterbur Research Center For Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2013-04-21

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time.

  3. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  4. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    OpenAIRE

    Xing Zhao; Jing-jing Hu; Peng Zhang

    2009-01-01

    Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed...

  5. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  6. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK)

    Science.gov (United States)

    Rit, S.; Vila Oliva, M.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G. C.

    2014-03-01

    We propose the Reconstruction Toolkit (RTK, http://www.openrtk.org), an open-source toolkit for fast cone-beam CT reconstruction, based on the Insight Toolkit (ITK) and using GPU code extracted from Plastimatch. RTK is developed by an open consortium (see affiliations) under the non-contaminating Apache 2.0 license. The quality of the platform is daily checked with regression tests in partnership with Kitware, the company supporting ITK. Several features are already available: Elekta, Varian and IBA inputs, multi-threaded Feldkamp-David-Kress reconstruction on CPU and GPU, Parker short scan weighting, multi-threaded CPU and GPU forward projectors, etc. Each feature is either accessible through command line tools or C++ classes that can be included in independent software. A MIDAS community has been opened to share CatPhan datasets of several vendors (Elekta, Varian and IBA). RTK will be used in the upcoming cone-beam CT scanner developed by IBA for proton therapy rooms. Many features are under development: new input format support, iterative reconstruction, hybrid Monte Carlo / deterministic CBCT simulation, etc. RTK has been built to freely share tomographic reconstruction developments between researchers and is open for new contributions.

  7. REVIEW OF RECENT DEVELOPMENTS IN CONE-BEAM CT RECONSTRUCTION ALGORITHMS FOR LONG-OBJECT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kai Zeng

    2011-05-01

    Full Text Available Long-object problem and short-object problem both deal with reconstruction problems with truncated conebeam CT projections acquired with a helical path. They have significantly less practical limitations than original exact cone-beam CT reconstruction algorithms which the cone-beam must cover the whole object. The short-object problem can be defined as reconstruction of the whole object having a finite support in the axial direction with helical scan extends a little bit above and below the object's support. However the longobject problem is to reconstruct the central region of interest (ROI of a long object having an infinite support in the axial direction with helical scan extends a little a bit above and below the ROI. Although the short-object problem is more difficult to solve than the conventional exact reconstruction with non-truncated projections, the long-object problem presents greater challenge to researchers. Recently, with the great development of panel detector technology and computer technology, more and more researchers have been inspired to work on it. Because of great practical value of long-object algorithms, this paper focuses on the review and discussion of recent developments in long-object algorithms. All Long-object algorithms are classified as exact and approximate algorithms. After going briefly over the history of cone-beam algorithms, some novel cone-beam long-object algorithms are introduced, such as: Tam's algorithm, PImethod, PHI-method, etc. Then, the methods described are being compared and discussed.

  8. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2009-01-01

    In practical applications of tomographic imaging, there are often challenges for image reconstruction due to under-sampling and insufficient data. In computed tomography (CT), for example, image reconstruction from few views would enable rapid scanning with a reduced x-ray dose delivered to the patient. Limited-angle problems are also of practical significance in CT. In this work, we develop and investigate an iterative image reconstruction algorithm based on the minimization of the image total variation (TV) that applies to divergent-beam CT. Numerical demonstrations of our TV algorithm are performed with various insufficient data problems in fan-beam CT. The TV algorithm can be generalized to cone-beam CT as well as other tomographic imaging modalities.

  9. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Science.gov (United States)

    Wang, Jing; Gu, Xuejun

    2014-03-01

    Image reconstruction and motion model estimation in four dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4DCBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR). The proposed SMEIR algorithm consists of two alternating steps: 1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and 2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction (SART) technique coupled with total variation minimization. During the forward- and back-projection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.

  10. GPU-based Cone Beam CT Reconstruction via Total Variation Regularization

    CERN Document Server

    Jia, Xun; Lewis, John; Li, Ruijiang; Gu, Xuejun; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) reconstruction is of central importance in image guided radiation therapy due to its broad applications in many clinical contexts. However, the high image dose in CBCT scans is a clinical concern, especially when it is used repeatedly for patient setup purposes before each radiotherapy treatment fraction. A desire for lower imaging does has motivated a vast amount of interest in the CBCT reconstruction based on a small number of X-ray projections. Recently, advances in image processing and compressed sensing have led to tremendous success in recovering signals based on extremely low sampling rates, laying the mathematical foundation for reconstructing CBCT from few projections. In this paper, we present our recent development on a GPU-based iterative algorithm for the highly under-sampled CBCT reconstruction problem. We considered an energy functional consisting of a data fidelity term and a regularization term of a total variation norm. In order to solve our model, we developed a modified...

  11. Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Ja [Graduate School of Clinical Dentistry, Hallym University, Seoul (Korea, Republic of); Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-03-15

    This study was performed to determine the accuracy of linear measurements on three-dimensional (3D) images using multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). MDCT and CBCT were performed using 24 dry skulls. Twenty-one measurements were taken on the dry skulls using digital caliper. Both types of CT data were imported into OnDemand software and identification of landmarks on the 3D surface rendering images and calculation of linear measurements were performed. Reproducibility of the measurements was assessed using repeated measures ANOVA and ICC, and the measurements were statistically compared using a Student t-test. All assessments under the direct measurement and image-based measurements on the 3D CT surface rendering images using MDCT and CBCT showed no statistically difference under the ICC examination. The measurements showed no differences between the direct measurements of dry skull and the image-based measurements on the 3D CT surface rendering images (P>.05). Three-dimensional reconstructed surface rendering images using MDCT and CBCT would be appropriate for 3D measurements.

  12. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Gu, Xuejun [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-8808 (United States)

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  13. Task-driven image acquisition and reconstruction in cone-beam CT.

    Science.gov (United States)

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  14. GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    CERN Document Server

    Jia, Xun; Lou, Yifei; Jiang, Steve B

    2010-01-01

    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512x512x70 can be reconstructed in about ~139 sec. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm leads to much higher CBCT quality than those obtained from a conventional FDK algorithm in the context of undersamp...

  15. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  16. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    Science.gov (United States)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  17. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    Science.gov (United States)

    Wang, Adam S.; Webster Stayman, J.; Otake, Yoshito; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L.; Khanna, A. Jay; Siewerdsen, Jeffrey H.

    2014-02-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (˜40-80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4-2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ˜1.7 mGy and benefits from 50% sparsity at dose below ˜1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose.

  18. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  19. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  20. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  1. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    International Nuclear Information System (INIS)

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  2. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    Science.gov (United States)

    Stsepankou, D.; Arns, A.; Ng, S. K.; Zygmanski, P.; Hesser, J.

    2012-10-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone-beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system.

  3. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  4. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Varslot, T.; Kingston, A.; Myers, G.; Sheppard, A. [Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    conventional circular scan micro-CT. Conclusions: Autofocus-corrected, theoretically-exact cone-beam reconstruction is a viable option for reducing acquisition time in high-resolution micro-CT imaging. It also opens up the possibility of efficiently imaging long objects.

  5. SU-E-J-153: Reconstructing 4D Cone Beam CT Images for Clinical QA of Lung SABR Treatments

    International Nuclear Information System (INIS)

    Purpose: To verify that the planned Primary Target Volume (PTV) and Internal Gross Tumor Volume (IGTV) fully enclose a moving lung tumor volume as visualized on a pre-SABR treatment verification 4D Cone Beam CT. Methods: Daily 3DCBCT image sets were acquired immediately prior to treatment for 10 SABR lung patients using the on-board imaging system integrated into a Varian TrueBeam (v1.6: no 4DCBCT module available). Respiratory information was acquired during the scan using the Varian RPM system. The CBCT projections were sorted into 8 bins offline, both by breathing phase and amplitude, using in-house software. An iterative algorithm based on total variation minimization, implemented in the open source reconstruction toolkit (RTK), was used to reconstruct the binned projections into 4DCBCT images. The relative tumor motion was quantified by tracking the centroid of the tumor volume from each 4DCBCT image. Following CT-CBCT registration, the planning CT volumes were compared to the location of the CBCT tumor volume as it moves along its breathing trajectory. An overlap metric quantified the ability of the planned PTV and IGTV to contain the tumor volume at treatment. Results: The 4DCBCT reconstructed images visibly show the tumor motion. The mean overlap between the planned PTV (IGTV) and the 4DCBCT tumor volumes was 100% (94%), with an uncertainty of 5% from the 4DCBCT tumor volume contours. Examination of the tumor motion and overlap metric verify that the IGTV drawn at the planning stage is a good representation of the tumor location at treatment. Conclusion: It is difficult to compare GTV volumes from a 4DCBCT and a planning CT due to image quality differences. However, it was possible to conclude the GTV remained within the PTV 100% of the time thus giving the treatment staff confidence that SABR lung treatements are being delivered accurately

  6. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  7. Evaluation of Sparse-view Reconstruction from Flat-panel-detector Cone-beam CT

    OpenAIRE

    Bian, J.; Siewerdsen, J. H.; Han, X.; Sidky, E. Y.; Prince, J. L.; Pelizzari, C. A.; Pan, X.

    2010-01-01

    Flat-panel-detector X-ray cone-beam computed tomography (CBCT) is used in a rapidly increasing host of imaging applications, including image-guided surgery and radiotherapy. The purpose of the work is to investigate and evaluate image reconstruction from data collected at projection views significantly fewer than what is used in current CBCT imaging. Specifically, we carried out imaging experiments by use of a bench-top CBCT system that was designed to mimic imaging conditions in image-guided...

  8. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    International Nuclear Information System (INIS)

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward–backward splitting algorithm and a Gauss–Jacobi iteration method are employed to solve the problems. The algorithms implementation

  9. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  10. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  11. Evaluation of the resolving potency of a novel reconstruction filter on periodontal ligament space with dental cone-beam CT: a quantitative phantom study

    Science.gov (United States)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-ichi; Naitoh, Munetaka; Ariji, Eiichiro; Kodera, Yoshie

    2014-03-01

    Diagnosis of the alveolar bone condition is important for the treatment planning of periodontal disease. Especially the determination of periodontal ligament space is the most important remark because it represents the periodontal tissue support for tooth retention. However, owing to the image blur of the current cone-beam CT (CBCT) imaging technique, the periodontal ligament space is difficult to visualize. In this study, we developed an original periodontal ligament phantom (PLP) and evaluated the image quality of simulated periodontal ligament space using a novel reconstruction filter for CBCT that emphasized high frequency component. PLP was composed from two resin blocks of different materials, the bone equivalent block and the dentine equivalent block. They were assembled to make continuously changing space from 0.0 to 1.0 millimeter that mimics periodontal ligament space. PLP was placed in water and the image was obtained by using Alphard-3030 dental cone-beam CT (Asahi Roentgen Industry Co., Ltd.). Then we reconstructed the projection data with a novel reconstruction filter. The axial images were compared with conventional reconstructed images. In novel filter reconstruction images, 0.4 millimeter of the space width was steadily detected by calculation of pixel value, on the other hand 0.6 millimeter was in conventional images. With our method, the resolving potency of conebeam CT images was improved.

  12. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  13. Evaluation of state-of-the-art hardware architectures for fast cone-beam CT reconstruction

    CERN Document Server

    Scherl, Holger

    2011-01-01

    Holger Scherl introduces the reader to the reconstruction problem in computed tomography and its major scientific challenges that range from computational efficiency to the fulfillment of Tuy's sufficiency condition. The assessed hardware architectures include multi- and many-core systems, cell broadband engine architecture, graphics processing units, and field programmable gate arrays.

  14. SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Gu, X; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-01

    Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Three different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)

  15. Experimental study on the application of a compressed-sensing (CS) algorithm to dental cone-beam CT (CBCT) for accurate, low-dose image reconstruction

    Science.gov (United States)

    Oh, Jieun; Cho, Hyosung; Je, Uikyu; Lee, Minsik; Kim, Hyojeong; Hong, Daeki; Park, Yeonok; Lee, Seonhwa; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2013-03-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient data. In computed tomography (CT); for example, image reconstruction from few views would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction method based on a compressed-sensing (CS) algorithm, which exploits the sparseness of the gradient image with substantially high accuracy, for accurate, low-dose dental cone-beam CT (CBCT) reconstruction. We applied the algorithm to a commercially-available dental CBCT system (Expert7™, Vatech Co., Korea) and performed experimental works to demonstrate the algorithm for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images from several undersampled data and evaluated the reconstruction quality in terms of the universal-quality index (UQI). Experimental demonstrations of the CS-based reconstruction algorithm appear to show that it can be applied to current dental CBCT systems for reducing imaging doses and improving the image quality.

  16. New Developments of exact Cone-beam CT Reconstruction Algorithms%锥束CT精确重建算法研究最新进展

    Institute of Scientific and Technical Information of China (English)

    陈志强; 李亮; 康克军; 张丽

    2005-01-01

    第八届三维图像重建及核医疗学国际会议于2005年7月在美国盐湖城召开.该会议是在CT、PET及SPECT图像重建领域最负盛名的会议之一.本文主要介绍在本次会议上提出的几种最新锥束CT精确重建算法,包括MD-FBP算法、R-line算法等;还讨论了这两种精确锥束重建算法的各自优点,并对CT图像重建领域下一步的研究方向做了展望.%The international meeting on fully three-dimensional image reconstruction meeting in radiology and nuclear medicine was hold in July 2005, USA. It is one of the most famous meetings in CT, PET and SPECT image reconstruction field. This paper introduces some novel developments in PET, SPECT and CT imaging upon this meeting. According to our interest, we focus on exact cone-beam CT reconstruction including Minimum data filtered-backprojection algorithm (MD-FBP), the R-line algorithm and so on. In the end, we discuss the different advantages of the above two exact algorithms and research prospects in cone-beam reconstruction.

  17. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region

    Energy Technology Data Exchange (ETDEWEB)

    Elstroem, Ulrik V.; Muren, Ludvig P. (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark); Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)), e-mail: ulrielst@rm.dk; Petersen, Joergen B. B. (Dept. of Medical Physics, Aarhus Univ. Hospital, Aarhus (Denmark)); Grau, Cai (Dept. of Oncology, Aarhus Univ. Hospital, Aarhus (Denmark))

    2011-08-15

    Purpose. To evaluate the image quality obtained in a standard QA phantom with both clinical and non-clinical cone-beam computed tomography (CBCT) acquisition modes for the head and neck (HN) region as a step towards CBCT-based treatment planning. The impact of deteriorated Hounsfield unit (HU) accuracy was investigated by comparing results from clinical CBCT image reconstructions to those obtained from a pre-clinical scatter correction algorithm. Methods. Five different CBCT acquisition modes on a clinical system for kV CBCT-guided radiotherapy were investigated. Image reconstruction was performed in both standard clinical software and with an experimental reconstruction algorithm with improved beam hardening and scatter correction. Using the Catphan 504 phantom, quantitative measures of HU uniformity, HU verification and linearity, contrast-to-noise ratio (CNR), and spatial resolution using modulation transfer function (MTF) estimation were assessed. To benchmark the CBCT image properties, comparison to standard HN protocols on conventional CT scanners was performed by similar measures. Results. The HU uniformity within a water-equivalent homogeneous region was considerably improved using experimental vs. standard reconstruction, by factors of two for partial scans and four for full scans. Similarly, the amount of capping/cupping artifact was reduced by more than 1.5%. With mode and reconstruction specific HU calibration using seven inhomogeneity inserts comparable HU linearity was observed. CNR was on average 5% higher for experimental reconstruction (scaled with the square-root of dose between modes for both reconstruction methods). Conclusions. Judged on parameters affecting the common diagnostic image properties, improved beam hardening and scatter correction diminishes the difference between CBCT and CT image quality considerably. In the pursuit of CBCT-based treatment adaptation, dedicated imaging protocols may be required

  18. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  19. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  20. Model-based cone-beam CT reconstruction for image-guided minimally invasive treatment of hip osteolysis

    Science.gov (United States)

    Otake, Yoshito; Stayman, J. W.; Zbijewski, W.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Siewerdsen, J. H.; Armand, M.

    2013-03-01

    Purpose: Accurate assessment of the size and location of osteolytic regions is essential in minimally invasive hip revision surgery. Moreover, image-guided robotic intervention for osteolysis treatment requires precise localization of implant components. However, high density metallic implants in proximity to the hip make assessment by either 2D or 3D x-ray imaging difficult. This paper details the initial implementation and evaluation of an advanced model-based conebeam CT (CBCT) reconstruction algorithm to improve guidance and assessment of hip osteolysis treatment. Method: A model-based reconstruction approach called Known Component Reconstruction (KCR) was employed to obtain high-quality reconstruction of regions neighboring metallic implants. KCR incorporates knowledge about the implant shape and material to precisely reconstruct surrounding anatomy while simultaneously estimating implant position. A simulation study involving a phantom generated from a CBCT scan of a cadaveric hip was performed. Registration accuracy in KCR iterations was evaluated as translational and rotational error from the true registration. Improvement in image quality was evaluated using normalized cross correlation (NCC) in two regions of interest (ROIs) about the femoral and acetabular components. Result: The study showed significant improvement in image quality over conventional filtered backprojection (FBP) and penalized-likelihood (PL) reconstruction. The NCC in the two ROIs improved from 0.74 and 0.81 (FBP) to 0.98 and 0.86 (PL) and >0.99 for KCR. The registration error was 0.01 mm in translation (0.02° in rotation) for the acetabular component and 0.01 mm (0.01° rotation) for the femoral component. Conclusions: Application of KCR to imaging hip osteolysis in the presence of the implant offers a promising step toward quantitative assessment in minimally invasive image-guided osteolysis treatment. The method improves image quality (metal artifact reduction), yields a precise

  1. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  2. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    Science.gov (United States)

    Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T.; Cooper, Benjamin J.; Kuncic, Zdenka; Keall, Paul J.

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and did

  3. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    International Nuclear Information System (INIS)

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp–Davis–Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and

  4. Noise study on cone-beam CT FDK image reconstruction by improved area-simulating-volume technique

    Science.gov (United States)

    Liu, Yan; Wang, Jin; Zhang, Hao; Fan, Yi; Liang, Zhengrong

    2014-03-01

    Previous studies have reported that the volume-weighting technique has advantages over the linear interpolation technique for cone-beam computed tomography (CBCT) image reconstruction. However, directly calculating the intersecting volume between the pencil beam X-ray and the object is a challenge due to the computational complexity. Inspired by previous works in area-simulating volume (ASV) technique for 3D positron emission tomography, we proposed an improved ASV (IASV) technique, which can fast calculate the geometric probability of the intersection between the pencil beam and the object. In order to show the improvements of using IASV technique in volumeweighting based Feldkamp-Davis-Kress (VW-FDK) algorithm compared to the conventional linear interpolation technique based FDK algorithm (LI-FDK), the variances images from both theoretical prediction and empirical determination are described basing on the assumption of the uncorrelated and stationary noise for each detector bin. In digital phantom study, both of the theoretically predicted variance images and the empirically determined variance images concurred and demonstrated that the VW-FDK algorithm can result in uniformly distributed noise across the FOV. In the physical phantom study, the performance enhancements by the VW-FDK algorithm were quantitatively evaluated by the contrast-noise-ratio (CNR) merit. The CNR values from the VW-FDK result were about 40% higher than the conventional LI-FDK result. Therefore it can be concluded that the VW-FDK algorithm can efficiently address the non-uniformity noise and suppress noise level of the reconstructed images.

  5. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  6. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  7. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  8. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

    International Nuclear Information System (INIS)

    Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ∼40–80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of

  9. Empirical beam hardening correction (EBHC) for CT

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, 91052 Erlangen (Germany)

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  10. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  11. Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-princple study

    CERN Document Server

    Cai, Jian-Feng; Gao, Hao; Jiang, Steve B; Shen, Zuowei; Zhao, Hongkai

    2012-01-01

    Respiration-correlated CBCT, commonly called 4DCBCT, provide respiratory phase-resolved CBCT images. In many clinical applications, it is more preferable to reconstruct true 4DCBCT with the 4th dimension being time, i.e., each CBCT image is reconstructed based on the corresponding instantaneous projection. We propose in this work a novel algorithm for the reconstruction of this truly time-resolved CBCT, called cine-CBCT, by effectively utilizing the underlying temporal coherence, such as periodicity or repetition, in those cine-CBCT images. Assuming each column of the matrix $\\bm{U}$ represents a CBCT image to be reconstructed and the total number of columns is the same as the number of projections, the central idea of our algorithm is that the rank of $\\bm{U}$ is much smaller than the number of projections and we can use a matrix factorization form $\\bm{U}=\\bm{L}\\bm{R}$ for $\\bm{U}$. The number of columns for the matrix $\\bm{L}$ constraints the rank of $\\bm{U}$ and hence implicitly imposing a temporal cohere...

  12. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    Science.gov (United States)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  13. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    Science.gov (United States)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  14. ON ACCELERATING CONE BEAM CT IMAGE RECONSTRUCTION ALGORITHM BY CUDA-BASED GPU%基于CUDA的图形处理器加速锥束CT重建算法的研究

    Institute of Scientific and Technical Information of China (English)

    王丽芳

    2014-01-01

    锥束CT图像重建数据量巨大、运算复杂度高,重建时间长,难以满足实际应用的需求。研究基于CUDA的图形处理器加速锥束CT重建算法的方案,通过有效的并行策略来提高滤波和反投影过程的时间,并利用常数存储器和纹理存储器来提高数据访存效率。实验证明在保证重建质量的情况下,重建速度可以提高82倍。%Cone beam CT image reconstruction has huge data volume and high operation complexity,the time of image reconstruction is too long to meet the needs of practical applications.In this paper we study the acceleration solution of cone beam CT image reconstruction algo-rithm with the CUDA-based GPU.It improves the filtering and back projection process time through effective parallel strategy,and improves data access and storage efficiency using constant memory and texture memory.Experimental results show that there can have 82 times im-provement in reconstruction speed under the condition of ensuring the quality of reconstruction.

  15. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  16. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    Science.gov (United States)

    Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-06-01

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  17. Reconstruction of biologically equivalent dose distribution on CT-image from measured physical dose distribution of therapeutic beam in water phantom

    International Nuclear Information System (INIS)

    From the standpoint of quality assurance in radiotherapy, it is very important to compare the dose distributions realized by an irradiation system with the distribution planned by a treatment planning system. To compare the two dose distributions, it is necessary to convert the dose distributions on CT images to distributions in a water phantom or convert the measured dose distributions to distributions on CT images. Especially in heavy-ion radiotherapy, it is reasonable to show the biologically equivalent dose distribution on the CT images. We developed tools for the visualization and comparison of these distributions in order to check the therapeutic beam for each patient at the National Institute of Radiological Sciences (NIRS). To estimate the distribution in a patient, the dose is derived from the measurement by mapping it on a CT-image. Fitting the depth-dose curve to the calculated SOBP curve also gives biologically equivalent dose distributions in the case of a carbon beam. Once calculated, dose distribution information can be easily handled to make a comparison with the planned distribution and display it on a grey-scale CT-image. Quantitative comparisons of dose distributions can be made with anatomical information, which also gives a verification of the irradiation system in a very straightforward way. (author)

  18. Compressed-sensing (CS)-based 3D image reconstruction in cone-beam CT (CBCT) for low-dose, high-quality dental X-ray imaging

    Science.gov (United States)

    Lee, M. S.; Kim, H. J.; Cho, H. S.; Hong, D. K.; Je, U. K.; Oh, J. E.; Park, Y. O.; Lee, S. H.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    The most popular reconstruction algorithm for cone-beam computed tomography (CBCT) is based on the computationally-inexpensive filtered-backprojection (FBP) method. However, that method usually requires dense projections over the Nyquist samplings, which imposes severe restrictions on the imaging doses. Moreover, the algorithm tends to produce cone-beam artifacts as the cone angle is increased. Several variants of the FBP-based algorithm have been developed to overcome these difficulties, but problems with the cone-beam reconstruction still remain. In this study, we considered a compressed-sensing (CS)-based reconstruction algorithm for low-dose, high-quality dental CBCT images that exploited the sparsity of images with substantially high accuracy. We implemented the algorithm and performed systematic simulation works to investigate the imaging characteristics. CBCT images of high quality were successfully reconstructed by using the built-in CS-based algorithm, and the image qualities were evaluated quantitatively in terms of the universal-quality index (UQI) and the slice-profile quality index (SPQI).We expect the reconstruction algorithm developed in the work to be applicable to current dental CBCT systems, to reduce imaging doses, and to improve the image quality further.

  19. Design Consideration and Reconstruction Method for Double-source Double-multislice Spiral CT

    Institute of Scientific and Technical Information of China (English)

    LIU Zun-gang; ZHAO Jun; ZHUANG Tian-ge

    2007-01-01

    To accelerate the scan speed and improve the image quality, a new type of CT configuration, "doublesource double-multislice spiral CT" (DSDMS-CT), which is based on two sets of single-source multislice spiral CT was proposed with a special reconstruction algorithm.Simulation results using the fan-beam filtered backprojection algorithm with a special interpolation method were presented for both single-source multislice spiral CT and DSDMS-CT.The results of new CT model show that it scans faster than the traditional spiral CT and has a better slice sensitivity profile (SSP) with larger pitch value.

  20. Dental cone-beam CT reconstruction from limited-angle view data based on compressed-sensing (CS) theory for fast, low-dose X-ray imaging

    International Nuclear Information System (INIS)

    Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360 .deg. ) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200 .deg. with a fixed angle step of 1.2 .deg. and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  1. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  2. A Statistical Approach to Motion Compensated Cone Beam Reconstruction

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  3. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    Science.gov (United States)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  4. Iterative reconstruction reduces abdominal CT dose

    International Nuclear Information System (INIS)

    Objective: In medical imaging, lowering radiation dose from computed tomography scanning, without reducing diagnostic performance is a desired achievement. Iterative image reconstruction may be one tool to achieve dose reduction. This study reports the diagnostic performance using a blending of 50% statistical iterative reconstruction (ASIR) and filtered back projection reconstruction (FBP) compared to standard FBP image reconstruction at different dose levels for liver phantom examinations. Methods: An anthropomorphic liver phantom was scanned at 250, 185, 155, 140, 120 and 100 mA s, on a 64-slice GE Lightspeed VCT scanner. All scans were reconstructed with ASIR and FBP. Four readers evaluated independently on a 5-point scale 21 images, each containing 32 test sectors. In total 672 areas were assessed. ROC analysis was used to evaluate the differences. Results: There was a difference in AUC between the 250 mA s FBP images and the 120 and 100 mA s FBP images. ASIR reconstruction gave a significantly higher diagnostic performance compared to standard reconstruction at 100 mA s. Conclusion: A blending of 50–90% ASIR and FBP may improve image quality of low dose CT examinations of the liver, and thus give a potential for reducing radiation dose.

  5. Resolution-enhancing hybrid, spectral CT reconstruction

    Science.gov (United States)

    Clark, D. P.; Badea, C. T.

    2016-04-01

    Spectral x-ray imaging based on photon-counting x-ray detectors (PCXD) is an area of growing interest. By measuring the energy of x-ray photons, a spectral CT system can better differentiate elements using a single scan. However, the spatial resolution achievable with most PCXDs limits their application, particularly in preclinical CT imaging. Consequently, our group is developing a hybrid micro-CT scanner based on a high-resolution, energy-integrating (EID) detector and a lower-resolution, PCXD. To complement this system, we propose and demonstrate a hybrid, spectral CT reconstruction algorithm which robustly combines the spectral contrast of the PCXD with the spatial resolution of the EID. Specifically, the high-resolution, spectrally resolved data (X) is recovered as the sum of two matrices: one with low column rank (XL) determined from the EID data and one with intensity gradient sparse columns (XS) corresponding to the upsampled spectral contrast obtained from the PCXD data. We test the proposed algorithm in a feasibility study focused on molecular imaging of atherosclerotic plaque using activatable iodine and gold nanoparticles. The results show accurate estimation of material concentrations at increased spatial resolution for a voxel size ratio between the PCXD and the EID of 500 μm3:100 μm3. Specifically, regularized, iterative reconstruction of the MOBY mouse phantom around the K-edges of iodine (33.2 keV) and gold (80.7 keV) reduces the reconstruction error by more than a factor of three relative to least-squares, algebraic reconstruction. Likewise, the material decomposition accuracy into iodine, gold, calcium, and water improves by more than a factor of two.

  6. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  7. Mixed Confidence Estimation for Iterative CT Reconstruction.

    Science.gov (United States)

    Perlmutter, David S; Kim, Soo Mee; Kinahan, Paul E; Alessio, Adam M

    2016-09-01

    Dynamic (4D) CT imaging is used in a variety of applications, but the two major drawbacks of the technique are its increased radiation dose and longer reconstruction time. Here we present a statistical analysis of our previously proposed Mixed Confidence Estimation (MCE) method that addresses both these issues. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, MCE can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. We also propose a fast approximation of the variance of images reconstructed with MCE and confirm that this approximation is accurate compared to analytic calculations of and multi-realization image variance. This MCE method requires less computation time and provides reduced image variance for imaging scenarios where portions of the image are known with more certainty than others allowing for potentially reduced radiation dose and/or improved dynamic imaging. PMID:27008663

  8. Measuring temporal resolution of cardiac CT reconstructions

    Science.gov (United States)

    Matthews, David; Heuscher, Dominic

    2005-04-01

    Multi-slice CT today is capable of imaging the heart with excellent temporal resolution. Algorithms have been developed to perform reconstructions combining data from multiple cardiac cycles. This paper presents a simulation phantom that enables a direct measurement of the actual temporal resolution achieved by these algorithms. This is not only useful for assessing the temporal resolution but also for validating the algorithms themselves. A simulation phantom was developed that consists of a 20 cm. diameter water phantom containing an array of cylinders whose intensities are pulsed for various durations ranging from 10 msec. to 250 msec. The intensity varied between the background value of water (0 HU) and 800 HU. By measuring the nominal attenuation value at the center of each cylinder, a curve can be derived representing the response over the given temporal range. A temporal resolution representing the FWHM value is determined based on the half-max value of this curve. Reconstructions were performed using a multi-cycle cardiac algorithm described previously in the literature. The measured FWHM values agree quite well to the temporal resolution predicted by the cardiac algorithm itself. Even the variation along the longitudinal axis can be accounted for by the predicted values. A simulated phantom can be used to accurately assess the temporal resolution of cardiac reconstruction algorithms. Excellent agreement was achieved between the predicted and measured temporal resolution values for the multi-cycle algorithm used in this study.

  9. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  10. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    Full Text Available The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D reconstruction with cone-beam computed tomography (CBCT scan.Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left and 2 vertical rotations (upward/downward. Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion.Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05. Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05.Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  11. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    NARCIS (Netherlands)

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, BK; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (>= 5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effec

  12. Impact of iterative reconstruction on CT coronary calcium quantification

    DEFF Research Database (Denmark)

    Kurata, Akira; Dharampal, Anoeshka; Dedic, Admir;

    2013-01-01

    We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT).......We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT)....

  13. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  14. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  15. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations.

    Science.gov (United States)

    Stolzmann, Paul; Winklhofer, Sebastian; Schwendener, Nicole; Alkadhi, Hatem; Thali, Michael J; Ruder, Thomas D

    2013-09-01

    The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.

  16. Development of a cone-beam CT system for radiological technologist education

    International Nuclear Information System (INIS)

    For radiological technologists, it is very important to understand the principle of computed tomography (CT) and CT artifacts derived from mechanical and electrical failure. In this study, a CT system for educating radiological technologists was developed. The system consisted of a cone-beam CT scanner and educational software. The cone-beam CT scanner has a simple structure, using a micro-focus X-ray tube and an indirect-conversion flat panel detector. For the educational software, we developed various educational functions of image reconstruction and reconstruction parameters as well as CT artifacts. In the experiments, the capabilities of the system were evaluated using an acrylic phantom. We verified that the system produced the expected results. (author)

  17. Towards cone-beam CT thermometry

    Science.gov (United States)

    Li, Ming; Abi-Jaoudeh, Nadine; Kapoor, Ankur; Kadoury, Samuel; Xu, Sheng; Noordhoek, Niels; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J.

    2013-03-01

    Temperature monitoring and therefore the final treatment zone achieved during a cone-beam CT (CBCT) guided ablation can prevent overtreatment and undertreatment. A novel method is proposed to detect changes in consecutive CBCT images obtained from projection reconstructions during an ablation procedure. The possibility is explored of using this method to generate thermometry maps from CBCT images, which can be used as an input function for ablation treatment planning. This novel method uses a baseline and an intermittent CBCT scan, which are routinely acquired to confirm the needle position and monitor progress of the ablation. Accurate registration is required and assumed in vitro and ex vivo. A Wronskian change detector algorithm is applied on the compensated images to obtain a difference image between the intermittent and baseline scans. Finally, a thermal map created by applying a calibration determined experimentally is used to obtain the corresponding temperature at each pixel or voxel. We applied Wronskian change detector to detect the difference of two CBCT images, which have low signal to noise ratio, and calibrate Wronskian change model to temperature data using a gel phantom. We tested the temperature mapping with water and gel phantoms as well as pig shoulder. The experimental results show this method can detect temperature change within 5°C for a voxel size of 1mm3 (within clinical relevancy), and by consequence delineate the ablation zone. The preliminary experimental results show that CBCT thermometry is possible and promising, but may require pre-processing, such as registration for motion compensation between the baseline and intermittent scans. Further, quantitative evaluations have to be conducted for validation prior to clinical assessment and translation. CBCT is a widely available technology that could make thermometry clinically practical as an enabling component of iterative ablation treatment planning.

  18. Iterative Reconstruction for Quantitative Material Decomposition in Dual-Energy CT

    OpenAIRE

    Muhammad, Arif

    2010-01-01

    It is of clinical interest to decompose a three material mixture into its constituted substances using dual-energy CT. In radiation therapy, for example material decomposition can be used to determine tissue properties for the calculation of dose in treatment planning. Due to use of polychromatic spectrum in CT, beam hardening artifacts prevent to achieve fully satisfactory results. Here an iterative reconstruction algorithm proposed by A. Malusek, M. Magnusson, M.Sandborg, and G. Alm Carlsso...

  19. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S. [MGH Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  20. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  1. Scatter corrections for cone beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Olding, Tim; Holmes, Oliver [Department of Physics, Queen' s University (United Kingdom); Schreiner, L John [Medical Physics Department, Cancer Centre of Southeastern Ontario (Canada)], E-mail: Tim.Olding@krcc.on.ca

    2009-05-01

    Cone beam optical computed tomography (OptCT) employing the VISTA scanner (Modus Medical, London, ON) has been shown to have significant promise for fast, three dimensional imaging of polymer gel dosimeters. One distinct challenge with this approach arises from the combination of the cone beam geometry, a diffuse light source, and the scattering polymer gel media, which all contribute scatter signal that perturbs the accuracy of the scanner. Beam stop array (BSA), beam pass array (BPA) and anti-scatter polarizer correction methodologies have been employed to remove scatter signal from OptCT data. These approaches are investigated through the use of well-characterized phantom scattering solutions and irradiated polymer gel dosimeters. BSA corrected scatter solutions show good agreement in attenuation coefficient with the optically absorbing dye solutions, with considerable reduction of scatter-induced cupping artifact at high scattering concentrations. The application of BSA scatter corrections to a polymer gel dosimeter lead to an overall improvement in the number of pixel satisfying the (3%, 3mm) gamma value criteria from 7.8% to 0.15%.

  2. Investigation of statistical iterative reconstruction for dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Andrey; Glick, Stephen J. [UMass Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 (United States)

    2013-08-15

    Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially

  3. Demons Registration of CT Volume and CBCT Projections for Adaptive Radiotherapy: Avoiding CBCT Reconstruction

    DEFF Research Database (Denmark)

    Bjerre, Troels; Aznar, M.; Munck af Rosenschöld, P.;

    2012-01-01

    Purpose/Objective: In adaptive radiotherapy, the dose plan is adapted throughout the fractionation schedule to accommodate for anatomical changes. This can be achieved by deformable image registration of the planning PET-CT scan with segmented tumor and organs to daily cone beam CT (CBCT) scans....... CBCT scans, are typically reconstructed using the filtered back-projection algorithm, which introduces significant artefacts, causing deteriorated image quality and registration results. We study the feasibility of performing demons registration without tomographic reconstruction of the CBCT...... projections. Materials and Methods: We demonstrate demons registration [1,2] of a CT volume and CBCT projections of the same subject. For simplicity, instead of measured projections, we used synthetic projections of the CT deformed by a known deformation. A volume from [3] was used. The iterative registration...

  4. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    Science.gov (United States)

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  5. Comparison of CT numbers between cone-beam CT and multi-detector CT

    International Nuclear Information System (INIS)

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, ρ(g/cm3), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were ρ=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, ρ=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, ρ=0.001 H+1.43 with R2 value of 0.980 for i-CAT and ρ=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  6. SU-C-207-04: Reconstruction Artifact Reduction in X-Ray Cone Beam CT Using a Treatment Couch Model

    Energy Technology Data Exchange (ETDEWEB)

    Lasio, G; Hu, E; Zhou, J; Lee, M; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: to mitigate artifacts induced by the presence of the RT treatment couch in on-board CBCT and improve image quality Methods: a model of a Varian IGRT couch is constructed using a CBCT scan of the couch in air. The model is used to generate a set of forward projections (FP) of the treatment couch at specified gantry angles. The model couch forward projections are then used to process CBCT scan projections which contain the couch in addition to the scan object (Catphan phantom), in order to remove the attenuation component of the couch at any given gantry angle. Prior to pre-processing with the model FP, the Catphan projection data is normalized to an air scan with bowtie filter. The filtered Catphan projections are used to reconstruct the CBCT with an in-house FDK algorithm. The artifact reduction in the processed CBCT scan is assessed visually, and the image quality improvement is measured with the CNR over a few selected ROIs of the Catphan modules. Results: Sufficient match between the forward projected data and the x-ray projections is achieved to allow filtering in attenuation space. Visual improvement of the couch induced artifacts is achieved, with a moderate expense of CNR. Conclusion: Couch model-based correction of CBCT projection data has a potential for qualitative improvement of clinical CBCT scans, without requiring position specific correction data. The technique could be used to produce models of other artifact inducing devices, such as immobilization boards, and reduce their impact on patient CBCT images.

  7. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  8. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  9. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  10. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    Science.gov (United States)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  11. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    International Nuclear Information System (INIS)

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  12. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  13. Performance evaluation of the backprojection filtered (BPF) algorithm in circular fan-beam and cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article we introduce an exact backprojecfion filtered (BPF) type reconstruction algorithm for cone-beam scans based on Zou and Pan's work. The algorithm can reconstruct images using only the projection data passing through the parallel PI-line segments in reduced scans. Computer simulations and practical experiments are carried out to evaluate this algorithm. The BPF algorithm has a higher computational efficiency than the famous FDK algorithm. The BPF algorithm is evaluated using the practical CT projection data on a 450 keV X-ray CT system with a flat-panel detector (FPD). From the practical experiments, we get the spatial resolution of this CT system. The algorithm could achieve the spatial resolution of 2.4 lp/mm and satisfies the practical applications in industrial CT inspection.

  14. An iterative CT reconstruction algorithm for fast fluid flow imaging

    OpenAIRE

    Eyndhoven, van, G.L.; Batenburg, K. Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D.; Dobson, Katherine J.; Sijbers, Jan

    2015-01-01

    Abstract: The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid f...

  15. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five...

  16. Quantitative image quality evaluation for cardiac CT reconstructions

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  17. 锥形束CT三维影像在口腔正畸头影测量中的数据构建和应用%The data reconstruction and application of cone-beam CT three-dimensional impacts in orthodontic cephalometric measurement

    Institute of Scientific and Technical Information of China (English)

    吴海苗; 陈栋; 潘杰; 陈骊

    2012-01-01

    Objective To investigate methods of three -dimensional images data reconstruction and application in orthodontic cephalometry based on cone-beam CT. Methods Cone-beam CT images data are stored and transmissed by IP SAN.and construction of threee -dimensional impacts and cephalometry are achieved through using Invivo 5.0 software. Results It is feasible to store and transmiss cone-beam CT images data by using IP SAN.Which combined with Invivo 5.0 software can realize three-dimensional data reconstructing and be used for orthodontic application. Conclusion IP SAN is a kind of mature and relatively cheap cone-beam CT technology.and Invivo 5.0 software in orthodontic cephalometry has better clinical value and application prospect.%目的:探索锥形束CT三维影像数据的构建方法及在正畸科头影测量方面的应用价值.方法:通 过IP SAN技术实现锥形束CT图像数据的存储和传输,并利用Invivo 5.0软件实现影像的三维构建和头影测量.结果:IP SAN技术用于锥形 束CT图像数据的存储和传输具有可行性,结合Invivo 5.0软件可以实现影像数据的三维构建并用于正畸科临床.结论:IP SAN技术是一种成熟可靠和相对价廉的锥形束CT影像存储和传输技术,Invivo 5.0软件在正畸科头影测量方面具有较好的临 床价值和应用前景.

  18. Dynamic Bowtie for Fan-beam CT

    CERN Document Server

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  19. Iterative reconstruction methods in X-ray CT.

    Science.gov (United States)

    Beister, Marcel; Kolditz, Daniel; Kalender, Willi A

    2012-04-01

    Iterative reconstruction (IR) methods have recently re-emerged in transmission x-ray computed tomography (CT). They were successfully used in the early years of CT, but given up when the amount of measured data increased because of the higher computational demands of IR compared to analytical methods. The availability of large computational capacities in normal workstations and the ongoing efforts towards lower doses in CT have changed the situation; IR has become a hot topic for all major vendors of clinical CT systems in the past 5 years. This review strives to provide information on IR methods and aims at interested physicists and physicians already active in the field of CT. We give an overview on the terminology used and an introduction to the most important algorithmic concepts including references for further reading. As a practical example, details on a model-based iterative reconstruction algorithm implemented on a modern graphics adapter (GPU) are presented, followed by application examples for several dedicated CT scanners in order to demonstrate the performance and potential of iterative reconstruction methods. Finally, some general thoughts regarding the advantages and disadvantages of IR methods as well as open points for research in this field are discussed. PMID:22316498

  20. Implementation of efficient image reconstruction for CT

    Institute of Scientific and Technical Information of China (English)

    Jie Liu; Guangfei Wang

    2005-01-01

    @@ The operational procedures for efficiently reconstructing the two-dimensional image of a body by the filtered back projection are described in this paper. The projections are interpolated for four times of original projection by zero-padding the original projection in frequency-domain and then inverse fast Fourier transform (FFT) is taken to improve accuracy.

  1. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm

  2. Preoperative CT angiography reduces surgery time in perforator flap reconstruction

    NARCIS (Netherlands)

    Smit, Jeroen M.; Dimopoulou, Angeliki; Liss, Anders G.; Zeebregts, Clark J.; Kildal, Morten; Whitaker, Iain S.; Magnusson, Anders; Acosta, Rafael

    2009-01-01

    The use of perforator flaps in breast reconstructions has increased considerably in the past decade. A disadvantage of the perforator flap is difficult dissection, which results in a longer procedure. During spring 2006, we introduced CT angiography (CTA) as part of the diagnostic work-up in perfora

  3. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Science.gov (United States)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  4. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T Hannah Mary; Purnima, S; Ravindran, B Paul [Department of Radiotherapy, Christian Medical College, Vellore (India); Devakumar, D [Department of Nuclear Medicine, Christian Medical College, Vellore (India)], E-mail: paul@cmcvellore.ac.in

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0{sup 0} and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between {+-}6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  5. Filtered backprojection proton CT reconstruction along most likely paths

    Energy Technology Data Exchange (ETDEWEB)

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, 69008 Lyon (France)

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  6. Application of CT 3D reconstruction in diagnosing atlantoaxial subluxation

    Institute of Scientific and Technical Information of China (English)

    段少银; 林清池; 庞瑞麟

    2004-01-01

    Objective:To evaluate and compare the diagnostic value in atlantoaxial subluxation by CT three-dimensional (3D) reconstruction.Methods:3D reconstruction fimdings of 41 patients with atlantoaxiai subluxation were retrospectively analyzed, and comparisons were made among images of transverse section, multiplanar reformorting (MPR), surface shade display (SSD), maximum intensity project (MIP), and volume rendering (VR). Results:Of 41 patients with atlantoaxial subluxation, 31 belonged to rotary dislocation, 5 antedislocation, and 5 hind dislocation. All the cases showed the dislocated joint panel of atlantoaxial articulation.Fifteen cases showed deviation of the odontoid process and 8 cases widened distance between the dens and anterior arch of the atlas. The dislocated joint panel of atlantoaxial articulation was more clearly seen with SSD-3D imaging than any other methods. Conclusions:Atlantoaxial subluxation can well be diagnosed by CT 3D reconstruction, in which SSD-3D imaging is optimal.

  7. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  8. CT Reconstruction from Simultaneous Projections: A Step towards Capturing CT in One Go

    CERN Document Server

    Saha, Sajib; Lambert, Andrew; Pickering, Mark

    2014-01-01

    This paper focuses on minimizing the time requirement for CT capture through innovative simultaneous x-ray capture method. The state-of-the-art CT imaging methodology captures a sequence of projections during which the internal organ movements may lead to poor reconstruction due to motion artefacts. Traditional CT scanners' minimize such effect by taking more projections than necessary. In this work we focus on an innovative CT capture method that captures projections simultaneously, promising super fast scans along with possible radiation dose reductions. While the simultaneous CT capture model has already been proposed in our earlier work 'Multi-axial CT Reconstruction from Few View Projections' (in SPIE Optical Engineering and Applications, pp. 85000A-85000A. International Society for Optics and Photonics, 2012) and 'A New Imaging Method for Real-time 3D X-ray Reconstruction' (in SPIE Medical Imaging, pp. 86685G-86685G. International Society for Optics and Photonics, 2013), in this work we enhance the mode...

  9. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  10. Filtered back-projection reconstruction for attenuation proton CT along most likely paths

    Science.gov (United States)

    Quiñones, C. T.; Létang, J. M.; Rit, S.

    2016-05-01

    This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West–Sherwood effect.

  11. Spectrotemporal CT data acquisition and reconstruction at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Darin P.; Badea, Cristian T., E-mail: cristian.badea@duke.edu [Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States); Lee, Chang-Lung [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-11-15

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  12. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  13. Fast reconstruction of low dose proton CT by sinogram interpolation

    Science.gov (United States)

    Hansen, David C.; Sangild Sørensen, Thomas; Rit, Simon

    2016-08-01

    Proton computed tomography (CT) has been demonstrated as a promising image modality in particle therapy planning. It can reduce errors in particle range calculations and consequently improve dose calculations. Obtaining a high imaging resolution has traditionally required computationally expensive iterative reconstruction techniques to account for the multiple scattering of the protons. Recently, techniques for direct reconstruction have been developed, but these require a higher imaging dose than the iterative methods. No previous work has compared the image quality of the direct and the iterative methods. In this article, we extend the methodology for direct reconstruction to be applicable for low imaging doses and compare the obtained results with three state-of-the-art iterative algorithms. We find that the direct method yields comparable resolution and image quality to the iterative methods, even at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction time over previously published iterative algorithms.

  14. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    Science.gov (United States)

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  15. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.

    Science.gov (United States)

    Park, Hyoung Suk; Hwang, Dosik; Seo, Jin Keun

    2016-02-01

    This paper proposes a new method to correct beam hardening artifacts caused by the presence of metal in polychromatic X-ray computed tomography (CT) without degrading the intact anatomical images. Metal artifacts due to beam-hardening, which are a consequence of X-ray beam polychromaticity, are becoming an increasingly important issue affecting CT scanning as medical implants become more common in a generally aging population. The associated higher-order beam-hardening factors can be corrected via analysis of the mismatch between measured sinogram data and the ideal forward projectors in CT reconstruction by considering the known geometry of high-attenuation objects. Without prior knowledge of the spectrum parameters or energy-dependent attenuation coefficients, the proposed correction allows the background CT image (i.e., the image before its corruption by metal artifacts) to be extracted from the uncorrected CT image. Computer simulations and phantom experiments demonstrate the effectiveness of the proposed method to alleviate beam hardening artifacts. PMID:26390451

  16. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis.

    Directory of Open Access Journals (Sweden)

    Edwin Bennink

    Full Text Available Although CT scanners generally allow dynamic acquisition of thin slices (1 mm, thick slice (≥5 mm reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction.From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and permeability-surface area product (PS were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF, and motion correction on the perfusion values was investigated.Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small.This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are used for clinical decision making.

  17. Joint regularization for spectro-temporal CT reconstruction

    Science.gov (United States)

    Clark, D. P.; Badea, C. T.

    2016-03-01

    X-ray CT is widely used, both clinically and preclinically, for fast, high-resolution, anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. In previous work, we proposed and demonstrated a projection acquisition and reconstruction strategy for 5D CT (3D + dual-energy + time) which recovered spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. The approach relied on the approximate separability of the temporal and spectral reconstruction sub-problems, which enabled substantial projection undersampling and effective regularization. Here, we extend this previous work to more general, nonseparable 5D CT reconstruction cases (3D + muti-energy + time) with applicability to K-edge imaging of exogenous contrast agents. We apply the newly proposed algorithm in phantom simulations using a realistic system and noise model for a photon counting x-ray detector with six energy thresholds. The MOBY mouse phantom used contains realistic concentrations of iodine, gold, and calcium in water. Relative to weighted least-squares reconstruction, the proposed 5D reconstruction algorithm improved reconstruction and material decomposition accuracy by 3-18 times. Furthermore, by exploiting joint, low rank image structure between time points and energies, ~80 HU of contrast associated with the Kedge of gold and ~35 HU of contrast associated with the blood pool and myocardium were recovered from more than 400 HU of noise.

  18. Dual resolution cone beam breast CT: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C. [Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2009-09-15

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 {mu}m and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  19. A LabVIEW based user-friendly nano-CT image alignment and 3D reconstruction platform

    CERN Document Server

    Wang, Shenghao; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray nanometer computed tomography (nano-CT) offers applications and opportunities in many scientific researches and industrial areas. Here we present a user-friendly and fast LabVIEW based package running, after acquisition of the raw projection images, a procedure to obtain the inner structure of the sample under analysis. At first, a reliable image alignment procedure fixes possible misalignments among image series due to mechanical errors, thermal expansion and other external contributions, then a novel fast parallel beam 3D reconstruction performs the tomographic reconstruction. The remarkable improved reconstruction after the image calibration confirms the fundamental role of the image alignment procedure. It minimizes blurring and additional streaking artifacts present in a reconstructed slice that cause loss of information and faked structures in the observed material. The nano-CT image alignment and 3D reconstruction LabVIEW package significantly reducing the data process, makes faster and easier th...

  20. Investigation of statistical iterative reconstruction for dedicated breast CT

    Science.gov (United States)

    Makeev, Andrey; Das, Mini; Glick, Stephen J.

    2012-03-01

    Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. In this study, statistical iterative reconstruction with a penalized likelihood objective function and a Huber prior are investigated for use with breast CT. This prior has two free parameters, the penalty weight and the edgepreservation threshold, that need to be evaluated to determine those values that give optimal performance. Computer simulations with breast-like phantoms were used to study these parameters using various figuresof- merit that relate to performance in detecting microcalcifications. Results suggested that a narrow range of Huber prior parameters give optimal performance. Furthermore, iterative reconstruction provided improved performance measures as compared to conventional filtered back-projection.

  1. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  2. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    Energy Technology Data Exchange (ETDEWEB)

    Madhav, P; Crotty, D J; Tornai, M P [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); McKinley, R L [Zumatek Incorporated, Chapel Hill, NC 27519 (United States)], E-mail: priti.madhav@duke.edu

    2009-06-21

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  3. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    International Nuclear Information System (INIS)

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast

  4. Evaluation of pixel value of dental cone beam CT

    International Nuclear Information System (INIS)

    CT number derived from medical CT (MDCT) is effective for evaluating the quality of bone. On the other hand, in dental cone beam CT (CBCT), it is questionable whether the pixel value of the CBCT reflects the quality of bone. To investigate this matter, we prepared a dry skull with gypsum markers attached at different positions, scanned by MDCT and CBCT, and compared the CT number or pixel value between gypsum markers. Sixteen gypsum markers were attached on labial and buccal sites of maxillary and mandibular bone of a dry skull. They were scanned by a MDCT and three dental CBCT devices. The CT numbers or pixel values of gypsum markers measured by CT devices were examined, and their position and CT device dependencies were compared and discussed. In the case of MDCT, the average CT number and standard deviation of 16 markers was 2,011±79. In the case of CBCT, pixel value was 2,815±305. The pixel value changed significantly by a slight change in position of the dry skull. Similar results were obtained for other CBCT devices. These results are considered to be due mainly to the scattered beams in the CBCT. The incident beam extends conically-shaped in the CBCT and there is much beam scattering depending on the position of the measured object, causing pixel values to deviate. Flat panel detector equipped in the CBCT is not effective to defend scattered beam on the edges of the detector. An effective device such as a collimator to eliminate beam scattering or software to compensate for beam scattering needs to be developed. (author)

  5. Towards an inline reconstruction architecture for micro-CT systems

    International Nuclear Information System (INIS)

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 μm. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection

  6. Towards an inline reconstruction architecture for micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, David [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Humbert, Bernard [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Mathelin, Carole [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Rio, Marie-Christine [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Guyonnet, Jean-Louis [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France)

    2005-12-21

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 {mu}m. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection.

  7. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    OpenAIRE

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the orig...

  8. Timing-invariant reconstruction for deriving high-quality CT angiographic data from cerebral CT perfusion data.

    NARCIS (Netherlands)

    Smit, E.J.; Vonken, E.J.; Schaaf, I.C. van der; Mendrik, A.M.; Dankbaar, J.W.; Horsch, A.D.; Seeters, T. van; Ginneken, B. van; Prokop, M.

    2012-01-01

    PURPOSE: To suggest a simple and robust technique used to reconstruct high-quality computed tomographic (CT) angiographic images from CT perfusion data and to compare it with currently used CT angiography techniques. MATERIALS AND METHODS: Institutional review board approval was waived for this retr

  9. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  10. Likelihood-based CT reconstruction of objects containing known components

    Energy Technology Data Exchange (ETDEWEB)

    Stayman, J. Webster [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Biomedical Engineering; Otake, Yoshito; Uneri, Ali; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2011-07-01

    There are many situations in medical imaging where there are known components within the imaging volume. Such is the case in diagnostic X-ray CT imaging of patients with implants, in intraoperative CT imaging where there may be surgical tools in the field, or in situations where the patient support (table or frame) or other devices are outside the (truncated) reconstruction FOV. In such scenarios it is often of great interest to image the relation between the known component and the surrounding anatomy, or to provide high-quality images at the boundary of these objects, or simply to minimize artifacts arising from such components. We propose a framework for simultaneously estimating the position and orientation of a known component and the surrounding volume. Toward this end, we adopt a likelihood-based objective function with an image volume jointly parameterized by a known object, or objects, with unknown registration parameters and an unknown background attenuation volume. The objective is solved iteratively using an alternating minimization approach between the two parameter types. Because this model integrates a substantial amount of prior knowledge about the overall volume, we expect a number of advantages including the reduction of metal artifacts, potential for more sparse data acquisition (decreased time and dose), and/or improved image quality. We illustrate this approach using simulated spine CT data that contains pedicle screws placed in a vertebra, and demonstrate improved performance over traditional filtered-backprojection and penalized-likelihood reconstruction techniques. (orig.)

  11. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  12. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  13. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    Science.gov (United States)

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  14. 3D Reconstruction in Spiral Multislice CT Scans

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: The rapid development of spiral (helical computed tomography (CT has resulted in exciting new applications for CT. One of these applications, three-dimensional (3D CT with volume ren-dering, is now a major area of clinical and academic interest. One of the greatest advantages of spiral CT with 3D volume rendering is that it provides all the necessary information in a single radiologic study (and there-fore at the lowest possible price in cases that previously required two or more studies. Three-dimensional vol-ume rendering generates clinically accurate and immediately available images from the full CT data set with-out extensive editing. It allows the radiologist and clinician to address specific questions concerning patient care by interactively exploring different aspects of the data set. Three-dimensional images integrate a series of axial CT sections into a form that is often easier to interpret than the sections themselves and can be made to appear similar to other more familiar images such as catheter angiograms. The data are organized into a 3D matrix of volume elements (voxels. The screen of the computer monitor is a 2D-surface composed of discrete picture elements (pixels. Presenting what is stored in memory (ie, floating within the monitor on a 2D-screen is a challenge, but it is the very problem that 3D reconstruc-tion software has creatively solved. Voxel selection is usually accomplished by projecting lines (rays through the data set that correspond to the pixel matrix of the desired 2D image. Differences in the images produced with various 3D rendering techniques are the result of variations in how voxels are selected and weighted. In this article, I compare 3D volume rendering of spiral CT data with other rendering techniques (shaded surface display, maximum intensity projection and present a brief history of 3D volume rendering and discuss the im-plementation of this promising technology in terms of

  15. CT image reconstruction system based on hardware implementation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hamilton P. da [Faculdade Tecnologica Internacional de Curitiba, PR (Brazil); Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil); Hormaza, Joel M. [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias; Lopes, Ricardo T. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2009-07-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  16. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  17. Comparison of advanced iterative reconstruction methods for SPECT/CT

    International Nuclear Information System (INIS)

    Aim: Corrective image reconstruction methods which produce reconstructed images with improved spatial resolution and decreased noise level became recently commercially available. In this work, we tested the performance of three new software packages with reconstruction schemes recommended by the manufacturers using physical phantoms simulating realistic clinical settings. Methods: A specially designed resolution phantom containing three 99mTc lines sources and the NEMA NU-2 image quality phantom were acquired on three different SPECT/CT systems (General Electrics Infinia, Philips BrightView and Siemens Symbia T6). Measurement of both phantoms was done with the trunk filled with a 99mTc-water solution. The projection data were reconstructed using the GE's Evolution for Bone registered, Philips Astonish registered and Siemens Flash3D registered software. The reconstruction parameters employed (number of iterations and subsets, the choice of post-filtering) followed theses recommendations of each vendor. These results were compared with reference reconstructions using the ordered subset expectation maximization (OSEM) reconstruction scheme. Results: The best results (smallest value for resolution, highest percent contrast values) for all three packages were found for the scatter corrected data without applying any post-filtering. The advanced reconstruction methods improve the full width at half maximum (FWHM) of the line sources from 11.4 to 9.5 mm (GE), from 9.1 to 6.4 mm (Philips), and from 12.1 to 8.9 mm (Siemens) if no additional post filter was applied. The total image quality control index measured for a concentration ratio of 8:1 improves for GE from 147 to 189, from 179. to 325 for Philips and from 217 to 320 for Siemens using the reference method for comparison. The same trends can be observed for the 4:1 concentration ratio. The use of a post-filter reduces the background variability approximately by a factor of two, but deteriorates significantly the

  18. Improvement of the temporal resolution of cardiac CT reconstruction algorithms using an optimized filtering step

    Energy Technology Data Exchange (ETDEWEB)

    Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Koenig, A.; Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    In this paper we study a property of the filtering step of multi-cycle reconstruction algorithm used in the field of cardiac CT. We show that the common filtering step procedure is not optimal in the case of divergent geometry and decrease slightly the temporal resolution. We propose to use the filtering procedure related to the work of Noo at al ( F.Noo, M. Defrise, R. Clakdoyle, and H. Kudo. Image reconstruction from fan-beam projections on less than a short-scan. Phys. Med.Biol., 47:2525-2546, July 2002)and show that this alternative allows to reach the optimal temporal resolution with the same computational effort. (N.C.)

  19. Dose reconstruction for real-time patient-specific dose estimation in CT

    Energy Technology Data Exchange (ETDEWEB)

    De Man, Bruno, E-mail: deman@ge.com; Yin, Zhye [Image Reconstruction Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Wu, Mingye [X-ray and CT Laboratory, GE Global Research, Shanghai 201203 (China); FitzGerald, Paul [Radiation Systems Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Kalra, Mannudeep [Divisions of Thoracic and Cardiac Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  20. An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.

    Science.gov (United States)

    Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan

    2015-11-01

    The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed. PMID:26259219

  1. The PRIMA collaboration: Preliminary results in FBP reconstruction of pCT data

    Energy Technology Data Exchange (ETDEWEB)

    Vanzi, Eleonora, E-mail: eleonora.vanzi@unifi.it [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Bruzzi, Mara [INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Energetica, Università degli Studi di Firenze, Firenze (Italy); Bucciolini, Marta [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Fisiopatologia Clinica, Università degli Studi di Firenze, Firenze (Italy); Cirrone, G.A. Pablo [INFN-Laboratori Nazionali del Sud, Catania (Italy); Civinini, Carlo [INFN-Sezione di Firenze, Firenze (Italy); Cuttone, Giacomo [INFN-Laboratori Nazionali del Sud, Catania (Italy); Lo Presti, Domenico [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Università degli Studi di Catania, Catania (Italy); Pallotta, Stefania [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Fisiopatologia Clinica, Università degli Studi di Firenze, Firenze (Italy); Pugliatti, Cristina [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Università degli Studi di Catania, Catania (Italy); Randazzo, Nunzio [INFN-Sezione di Catania, Catania (Italy); Romano, Francesco [INFN-Laboratori Nazionali del Sud, Catania (Italy); Centro Studi e Ricerche e Museo Storico della Fisica, Roma (Italy); Scaringella, Monica [Dipartimento di Energetica, Università degli Studi di Firenze, Firenze (Italy); Sipala, Valeria [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari (Italy); INFN-Sezione di Cagliari, Cagliari (Italy); Stancampiano, Concetta [INFN-Laboratori Nazionali del Sud, Catania (Italy); and others

    2013-12-01

    A first prototype of proton Computed Tomography (pCT) scanner, made of four planes and a calorimeter, has been developed by the PRIMA (PRoton IMAging) Italian collaboration and first results concerning tomographic image reconstruction of experimentally acquired data are discussed in this paper. The Filtered Back-Projection (FBP) algorithm was used to reconstruct projections of a phantom acquired with a 62 MeV proton beam. Image noise and spatial resolution were assessed for different parameters of the filter used, with and without selection strategies on proton directions. A satisfactory image quality (0.88 mm resolution and 2.5% noise) was achieved even when the backprojection line was defined using only the line connecting the impact points on the second and third planes and all the data were used, irrespective of the proton direction and residual energy. Probably due to the specific detector-phantom arrangement used in this experiment and due to the substantial reduction of the number of useful events, cuts on proton directions did not increase the image resolution significantly. The results confirm the good performances of the PRIMA scanner prototype. They also demonstrate that FBP can produce images of sufficient quality to be used for patient positioning and to initialize iterative pCT reconstruction methods. -- Highlights: •pCT data have been acquired with the PRIMA scanner and 62 MeV protons. •FBP reconstruction strategies have been analyzed in terms of resolution and noise. •Even the simplest strategy for data rebinning gave <1mm resolution and <3% noise. •FBP image quality could be sufficient for patient positioning verification.

  2. The PRIMA collaboration: Preliminary results in FBP reconstruction of pCT data

    International Nuclear Information System (INIS)

    A first prototype of proton Computed Tomography (pCT) scanner, made of four planes and a calorimeter, has been developed by the PRIMA (PRoton IMAging) Italian collaboration and first results concerning tomographic image reconstruction of experimentally acquired data are discussed in this paper. The Filtered Back-Projection (FBP) algorithm was used to reconstruct projections of a phantom acquired with a 62 MeV proton beam. Image noise and spatial resolution were assessed for different parameters of the filter used, with and without selection strategies on proton directions. A satisfactory image quality (0.88 mm resolution and 2.5% noise) was achieved even when the backprojection line was defined using only the line connecting the impact points on the second and third planes and all the data were used, irrespective of the proton direction and residual energy. Probably due to the specific detector-phantom arrangement used in this experiment and due to the substantial reduction of the number of useful events, cuts on proton directions did not increase the image resolution significantly. The results confirm the good performances of the PRIMA scanner prototype. They also demonstrate that FBP can produce images of sufficient quality to be used for patient positioning and to initialize iterative pCT reconstruction methods. -- Highlights: •pCT data have been acquired with the PRIMA scanner and 62 MeV protons. •FBP reconstruction strategies have been analyzed in terms of resolution and noise. •Even the simplest strategy for data rebinning gave <1mm resolution and <3% noise. •FBP image quality could be sufficient for patient positioning verification

  3. A biological phantom for evaluation of CT image reconstruction algorithms

    Science.gov (United States)

    Cammin, J.; Fung, G. S. K.; Fishman, E. K.; Siewerdsen, J. H.; Stayman, J. W.; Taguchi, K.

    2014-03-01

    In recent years, iterative algorithms have become popular in diagnostic CT imaging to reduce noise or radiation dose to the patient. The non-linear nature of these algorithms leads to non-linearities in the imaging chain. However, the methods to assess the performance of CT imaging systems were developed assuming the linear process of filtered backprojection (FBP). Those methods may not be suitable any longer when applied to non-linear systems. In order to evaluate the imaging performance, a phantom is typically scanned and the image quality is measured using various indices. For reasons of practicality, cost, and durability, those phantoms often consist of simple water containers with uniform cylinder inserts. However, these phantoms do not represent the rich structure and patterns of real tissue accurately. As a result, the measured image quality or detectability performance for lesions may not reflect the performance on clinical images. The discrepancy between estimated and real performance may be even larger for iterative methods which sometimes produce "plastic-like", patchy images with homogeneous patterns. Consequently, more realistic phantoms should be used to assess the performance of iterative algorithms. We designed and constructed a biological phantom consisting of porcine organs and tissue that models a human abdomen, including liver lesions. We scanned the phantom on a clinical CT scanner and compared basic image quality indices between filtered backprojection and an iterative reconstruction algorithm.

  4. The PRIMA collaboration: Preliminary results in FBP reconstruction of pCT data

    Science.gov (United States)

    Vanzi, Eleonora; Bruzzi, Mara; Bucciolini, Marta; Cirrone, G. A. Pablo; Civinini, Carlo; Cuttone, Giacomo; Lo Presti, Domenico; Pallotta, Stefania; Pugliatti, Cristina; Randazzo, Nunzio; Romano, Francesco; Scaringella, Monica; Sipala, Valeria; Stancampiano, Concetta; Talamonti, Cinzia; Zani, Margherita

    2013-12-01

    A first prototype of proton Computed Tomography (pCT) scanner, made of four planes and a calorimeter, has been developed by the PRIMA (PRoton IMAging) Italian collaboration and first results concerning tomographic image reconstruction of experimentally acquired data are discussed in this paper. The Filtered Back-Projection (FBP) algorithm was used to reconstruct projections of a phantom acquired with a 62 MeV proton beam. Image noise and spatial resolution were assessed for different parameters of the filter used, with and without selection strategies on proton directions. A satisfactory image quality (0.88 mm resolution and 2.5% noise) was achieved even when the backprojection line was defined using only the line connecting the impact points on the second and third planes and all the data were used, irrespective of the proton direction and residual energy. Probably due to the specific detector-phantom arrangement used in this experiment and due to the substantial reduction of the number of useful events, cuts on proton directions did not increase the image resolution significantly. The results confirm the good performances of the PRIMA scanner prototype. They also demonstrate that FBP can produce images of sufficient quality to be used for patient positioning and to initialize iterative pCT reconstruction methods.

  5. Implementation and evaluation of two helical CT reconstruction algorithms in CIVA

    Science.gov (United States)

    Banjak, H.; Costin, M.; Vienne, C.; Kaftandjian, V.

    2016-02-01

    The large majority of industrial CT systems reconstruct the 3D volume by using an acquisition on a circular trajec-tory. However, when inspecting long objects which are highly anisotropic, this scanning geometry creates severe artifacts in the reconstruction. For this reason, the use of an advanced CT scanning method like helical data acquisition is an efficient way to address this aspect known as the long-object problem. Recently, several analytically exact and quasi-exact inversion formulas for helical cone-beam reconstruction have been proposed. Among them, we identified two algorithms of interest for our case. These algorithms are exact and of filtered back-projection structure. In this work we implemented the filtered-backprojection (FBP) and backprojection-filtration (BPF) algorithms of Zou and Pan (2004). For performance evaluation, we present a numerical compari-son of the two selected algorithms with the helical FDK algorithm using both complete (noiseless and noisy) and truncated data generated by CIVA (the simulation platform for non-destructive testing techniques developed at CEA).

  6. Cone-beam local reconstruction based on a Radon inversion transformation

    Institute of Scientific and Technical Information of China (English)

    Wang Xian-Chao; Yan Bin; Li Lei; Hu Guo-En

    2012-01-01

    The local reconstruction from truncated projection data is one area of interest in image reconstruction for computed tomography (CT),which creates the possibility for dose reduction.In this paper,a filtered-backprojection (FBP)algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local reconstruction in the circular geometry.The algorithm achieves the data filtering in two steps.The first step is the derivative of projections,which acts locally on the data and can thus be carried out accurately even in the presence of data truncation.The second step is the nonlocal Hilbert filtering.The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm.Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT),not only it has a comparable ability to restrain truncation artifacts,but also its reconstruction efficiency is improved.It is about twice as fast as that of the ATRACT.Therefore,this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.

  7. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  8. High Energy Electron Reconstruction in the BeamCal

    CERN Document Server

    Sailer, Andre

    2016-01-01

    This note discusses methods of particle reconstruction in the forward region detectors of future e+ e− linear colliders such as ILC or CLIC. At the nominal luminosity the innermost electromagnetic calorimeters undergo high particle fluxes from the beam-induced background. In this prospect, different methods of the background simulation and signal electron reconstruction are described.

  9. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  10. Applicability of 3D-CT facial reconstruction for forensic individual identification

    OpenAIRE

    Rocha Sara dos Santos; Ramos Dalton Luiz de Paula; Cavalcanti Marcelo de Gusmão Paraíso

    2003-01-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using craniometric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering techni...

  11. Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction

    OpenAIRE

    Nien, Hung; Fessler, Jeffrey A.

    2015-01-01

    Statistical image reconstruction (SIR) methods are studied extensively for X-ray computed tomography (CT) due to the potential of acquiring CT scans with reduced X-ray dose while maintaining image quality. However, the longer reconstruction time of SIR methods hinders their use in X-ray CT in practice. To accelerate statistical methods, many optimization techniques have been investigated. Over-relaxation is a common technique to speed up convergence of iterative algorithms. For instance, usin...

  12. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Jed D [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Kudo, H [Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba (Japan)

    2004-06-07

    This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction at any point in a large volume. The reconstruction can be achieved either using a new algorithm presented herein or using a formula recently introduced by Katsevich (2003 Int. J. Math. Math. Sci. 21 1305-21). The shape of the reconstructed volume and the properties of saddles make saddles attractive for cardiac imaging. Three examples of saddles are presented with a discussion of implementation on devices similar to modern C-arm systems and multislice CT scanners. Reconstruction with one of these saddles has been tested using computer-simulated data, with and without truncation. The imaged phantom for the truncated data is a FORBILD head phantom (representing the heart) that has been modified and embedded inside the FORBILD thorax phantom. The non-truncated data were generated by excluding the thorax. The reconstructed images demonstrate the accuracy of the mathematical results.

  13. Quality control and patient dosimetry in dental cone beam CT

    International Nuclear Information System (INIS)

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMATM Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 μGy m2 for available adult protocols and to be 54 μGy m2 for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK (Finland)) was 0.05 mSv for children and 0.09-0.16 mSv for adults. (authors)

  14. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  15. Evaluation of algebraic iterative image reconstruction methods for tetrahedron beam computed tomography systems.

    Science.gov (United States)

    Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi

    2013-01-01

    Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  16. Evaluation of Algebraic Iterative Image Reconstruction Methods for Tetrahedron Beam Computed Tomography Systems

    Directory of Open Access Journals (Sweden)

    Joshua Kim

    2013-01-01

    Full Text Available Tetrahedron beam computed tomography (TBCT performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT, it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  17. A feature refinement approach for statistical interior CT reconstruction

    Science.gov (United States)

    Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong

    2016-07-01

    Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)—minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.

  18. A feature refinement approach for statistical interior CT reconstruction.

    Science.gov (United States)

    Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong

    2016-07-21

    Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)-minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements. PMID:27362527

  19. Correction of scatter in megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Spies, L. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany). E-mail: lothar.spies at philips.com; Ebert, M.; Groh, B.A.; Hesse, B.M.; Bortfeld, T. [Deutsches Krebsforschungszentrum, 69120 Heidelberg (Germany)

    2001-03-01

    The role of scatter in a cone-beam computed tomography system using the therapeutic beam of a medical linear accelerator and a commercial electronic portal imaging device (EPID) is investigated. A scatter correction method is presented which is based on a superposition of Monte Carlo generated scatter kernels. The kernels are adapted to both the spectral response of the EPID and the dimensions of the phantom being scanned. The method is part of a calibration procedure which converts the measured transmission data acquired for each projection angle into water-equivalent thicknesses. Tomographic reconstruction of the projections then yields an estimate of the electron density distribution of the phantom. It is found that scatter produces cupping artefacts in the reconstructed tomograms. Furthermore, reconstructed electron densities deviate greatly (by about 30%) from their expected values. The scatter correction method removes the cupping artefacts and decreases the deviations from 30% down to about 8%. (author)

  20. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  1. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  2. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    International Nuclear Information System (INIS)

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity

  3. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Wei, J [Landauer Medical Physics, Newnan, GA (United States)

    2015-06-15

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity.

  4. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    Science.gov (United States)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  5. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  6. Cone beam CT in radiology; DVT in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, Florian [ALB FILS KLINIKEN GmbH, Klinik am Eichert, Goeppingen (Germany). Inst. fuer Radiologie

    2013-06-15

    Cone beam computed tomography (CBCT) is a cross-sectional X-ray modality using an imaging system with cone-beam geometry. Unlike CT, the data set is acquired in a single circulation of a C-arm shaped tube-detector unit. Image characteristics vs. exposure dose ratio is similar to conventional CT, but varies widely depending on the CBVT device and the selected settings, and is limited to low dose/high noise applications. Up to now, only few data is available to estimate the clinical value of CBCT. Nevertheless, the use of CBCT is increasing drastically in the recent years, especially in the dental and ENT diagnostic field. For this reason the European Commission recently published guidelines concerning the clinical application of CBCT. These guidelines, as well as clinically relevant technical features of CBCT and examples of the most frequent dental applications are presented in the following article. (orig.)

  7. Evaluation of the linearity characteristic of the cone-beam CT fixed on the Varian 23EX linear accelerator

    International Nuclear Information System (INIS)

    Objective: To investigate the CT number linearity of the cone-beam CT (CBCT) images at the different spatial locations in the scanning area. Methods: The Catphan 504 phantom at the different locations are scanned repeatedly using the CBCT on the Varian 23EX linear accelerator. The phantom is located the isocenter point, eccentric 3 cm, eccentric 6 cm, and different points on the z-axis successively on the accelerator. The scanned mode is the standard head mode. The reconstructive thickness is 2.5 cm. The different densities inserts of CTP 4.4 module on the different locations are measured via Eclips treatment planning system (TPS) and computed by Matlab 7.0 and the CT linear fitting are then processed. In order to understand better the linear distribution along with the value of CT in the spatial distribution the results are compared with the fan-beam CT. Results: Phantom studies show that: CBCT has good linearity performance not only under the standard header (body) of the scanning conditions, but also on such locations including the cross-sectional, the sagittal, the coronal plane and the eccentric position (R2>0.953). Bowtie filtration device dose not change the CT linearity but changes the value of CT. Conclusions: The linearity of X-ray CBCT on the Varian linear accelerator is favorable. CBCT will be used in the TPS dose calculation via further correction of the CT value. (authors)

  8. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Science.gov (United States)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  9. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Y.C. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Jan, M.L. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Chen, K.W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Cheng, Y.D. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Chuang, K.S. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu 30043, Taiwan (China); Fu, Y.K. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China)]. E-mail: fufrank@iner.gov.tw

    2006-12-20

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET'' (registered) R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of 'cupping' in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  10. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  11. Clinical investigation of flat panel CT following middle ear reconstruction: a study of 107 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, K. [University Hospital Heidelberg, Ruprecht Karls University, Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg (Germany); Kromeier, J. [St. Josefs Hospital, RkK, Department of Radiology, Freiburg (Germany); Neudert, M.; Beleites, T.; Zahnert, T. [University Hospital Dresden, Technical University, Department of Otorhinolaryngology, Head and Neck Surgery, Dresden (Germany); Laszig, R.; Offergeld, C. [University Hospital Freiburg, Albert Ludwigs University, Department of Otorhinolaryngology, Head and Neck Surgery, Freiburg (Germany)

    2014-03-15

    After middle ear reconstruction using partial or total ossicular replacement prostheses (PORP/TORP), an air-bone gap (ABG) may persist because of prosthesis displacement or malposition. So far, CT of the temporal bone has played the main role in the diagnosis of reasons for postoperative insufficient ABG improvement. Recent experimental and clinical studies have evaluated flat panel CT (fpCT) as an alternative imaging technique that provides images with high isovolumetric resolution, fewer metal-induced artefacts and lower irradiation doses. One hundred and seven consecutive patients with chronic otitis media with or without cholesteatoma underwent reconstruction by PORP (n = 52) or TORP (n = 55). All subjects underwent preoperative and postoperative audiometric testing and postoperative fpCT. Statistical evaluation of all 107 patients as well as the sole sub-assembly groups (PORP or TORP) showed a highly significant correlation between hearing improvement and fpCT-determined prosthesis position. FpCT enables detailed postoperative information on patients with middle ear reconstruction. FpCT is a new imaging technique that provides immediate feedback on surgical results after reconstructive middle ear surgery. Specific parameters evaluated by fpCT may serve as a predictive tool for estimated postoperative hearing improvement. Therefore this imaging technique is suitable for postoperative quality control in reconstructive middle ear surgery. (orig.)

  12. Texture-preserving Bayesian image reconstruction for low-dose CT

    Science.gov (United States)

    Zhang, Hao; Han, Hao; Hu, Yifan; Liu, Yan; Ma, Jianhua; Li, Lihong; Moore, William; Liang, Zhengrong

    2016-03-01

    Markov random field (MRF) model has been widely used in Bayesian image reconstruction to reconstruct piecewise smooth images in the presence of noise, such as in low-dose X-ray computed tomography (LdCT). While it can preserve edge sharpness via edge-preserving potential function, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it compromises clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodule or colon polyp. This study aims to shift the edge preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of lung, bone, fat, muscle, etc. from previous full-dose CT scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of proposed reconstruction framework, experiments using clinical patient scans (with lung nodule or colon polyp) were conducted. The experimental outcomes showed noticeable gain by the a priori knowledge for LdCT image reconstruction with the well-known Haralick texture measures. Thus, it is conjectured that texture-preserving LdCT reconstruction has advantages over edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  13. Reduced Circular Sinusoidal Cone-beam CT for Industrial Applications

    OpenAIRE

    XIA, DAN; Cho, Seungryong; Pan, Xiaochuan

    2009-01-01

    Cone-beam computed tomography (CBCT) plays an important role in industrial, nondestructive testing applications not to mention in medical applications. Circular scanning configuration is widely used for its mechanical simplicity and for readily available and efficient reconstruction algorithms based on the Feldkamp algorithm. However, due to the lack of data sufficiency, circular CBCT does not guarantee image accuracy, and is not free from image artifacts related to the cone-angle and axial v...

  14. High-performance soft-tissue imaging in extremity cone-beam CT

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  15. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    Science.gov (United States)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  16. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    Science.gov (United States)

    Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.

  17. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams

    International Nuclear Information System (INIS)

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue’s RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT. (paper)

  18. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T. [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R. [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T. [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  19. Quantifying Admissible Undersampling for Sparsity-Exploiting Iterative Image Reconstruction in X-Ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2013-01-01

    Iterative image reconstruction with sparsity-exploiting methods, such as total variation (TV) minimization, investigated in compressive sensing claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is nontrivial, because both full sampling...

  20. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    Science.gov (United States)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  1. Job profiles and responsibilities of cone-beam CT in dentistry

    International Nuclear Information System (INIS)

    The first applications of Cone Beam CT (CBTC) were within the angiographic and radiotherapy. In recent years the CBTC has found its greatest field of application in the dental and maxillofacial surgery and is expected to be used more and more frequently in clinical practice. Wider use of CBTC and reducing costs of equipment purchase was made possible by the development of specific software for 3D reconstruction and hardware that can handle the amount of data to be processed. The technique TC volumetric 'Cone Beam', thanks to the higher resolution capability of the detectors used and the high intrinsic contrast of the bony structures, you can get good quality images with patient doses lower than those usually administered with conventional parameters, from equipment TC traditional (at equal volume irradiated from 5 to 20 times lower).

  2. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    Science.gov (United States)

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain. PMID:27022608

  3. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  4. Accelerated gradient methods for total-variation-based CT image reconstruction

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian;

    2011-01-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV......-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence...

  5. CT to cone-beam CT deformable registration with simultaneous intensity correction

    Science.gov (United States)

    Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2012-11-01

    Computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called deformation with intensity simultaneously corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.

  6. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy

    Science.gov (United States)

    Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Park, Justin C.

    2016-01-01

    The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors for pCT. The system consisted of four silicon strip detectors for particle tracking and a calorimeter to measure the residual energies of the individual protons. The optimized pCT system design was then adjusted to ensure that the solution to a CS-based convex optimization problem would converge to yield the desired pCT images after a reasonable number of iterative corrections. In particular, we used a total variation-based formulation that has been useful in exploiting prior knowledge about the minimal variations of proton attenuation characteristics in the human body. Examinations performed using our CS algorithm showed that high-quality pCT images could be reconstructed using sets of 72 projections within 20 iterations and without any streaks or noise, which can be caused by under-sampling and proton starvation. Moreover, the images yielded by this CS algorithm were found to be of higher quality than those obtained using other reconstruction algorithms. The optimized pCT scanner system demonstrated the potential to perform high-quality pCT during on-line image-guided proton therapy, without increasing the imaging dose, by applying our CS based proton CT reconstruction algorithm. Further, we make our optimized detector system and CS-based proton CT reconstruction algorithm potentially useful in on-line proton therapy. PMID:27243822

  7. Enhancement of mobile C-arm cone-beam reconstruction using prior anatomical models

    Science.gov (United States)

    Sadowsky, Ofri; Lee, Junghoon; Sutter, Edward G.; Wall, Simon J.; Prince, Jerry L.; Taylor, Russell H.

    2009-02-01

    We demonstrate an improvement to cone-beam tomographic imaging by using a prior anatomical model. A protocol for scanning and reconstruction has been designed and implemented for a conventional mobile C-arm: a 9 inch image-intensifier OEC-9600. Due to the narrow field of view (FOV), the reconstructed image contains strong truncation artifacts. We propose to improve the reconstructed images by fusing the observed x-ray data with computed projections of a prior 3D anatomical model, derived from a subject-specific CT or from a statistical database (atlas), and co-registered (3D/2D) to the x-rays. The prior model contains a description of geometry and radiodensity as a tetrahedral mesh shape and density polynomials, respectively. A CT-based model can be created by segmentation, meshing and polynomial fitting of the object's CT study. The statistical atlas is created through principal component analysis (PCA) of a collection of mesh instances deformably-registered (3D/3D) to patient datasets. The 3D/2D registration method optimizes a pixel-based similarity score (mutual information) between the observed x-rays and the prior. The transformation involves translation, rotation and shape deformation based on the atlas. After registration, the image intensities of observed and prior projections are matched and adjusted, and the two information sources are blended as inputs to a reconstruction algorithm. We demonstrate recostruction results of three cadaveric specimens, and the effect of fusing prior data to compensate for truncation. Further uses of hybrid reconstruction, such as compensation for the scan's limited arc length, are suggested for future research.

  8. Optimization of Proton CT Detector System and Image Reconstruction Algorithm for On-Line Proton Therapy

    OpenAIRE

    Lee, Chae Young; Song, Hankyeol; Park, Chan Woo; Chung, Yong Hyun; Kim, Jin Sung; Park, Justin C.

    2016-01-01

    The purposes of this study were to optimize a proton computed tomography system (pCT) for proton range verification and to confirm the pCT image reconstruction algorithm based on projection images generated with optimized parameters. For this purpose, we developed a new pCT scanner using the Geometry and Tracking (GEANT) 4.9.6 simulation toolkit. GEANT4 simulations were performed to optimize the geometric parameters representing the detector thickness and the distance between the detectors fo...

  9. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, Rainer; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, Erlangen 91052 (Germany)

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured

  10. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  11. SU-E-J-147: Monte Carlo Study of the Precision and Accuracy of Proton CT Reconstructed Relative Stopping Power Maps

    Energy Technology Data Exchange (ETDEWEB)

    Dedes, G; Asano, Y; Parodi, K [Ludwig Maximilians University Munich, Garching, DE (Germany); Arbor, N [Universite de Strasbourg, Strasbourg (France); Dauvergne, D; Testa, E [Universite Lyon 1, Institut de Physique Nucleaire de Lyon, Lyon (France); Letang, J; Rit, S [Universite Lyon 1, INSA Lyon, CREATIS, Lyon (France)

    2015-06-15

    Purpose: The quantification of the intrinsic performances of proton computed tomography (pCT) as a modality for treatment planning in proton therapy. The performance of an ideal pCT scanner is studied as a function of various parameters. Methods: Using GATE/Geant4, we simulated an ideal pCT scanner and scans of several cylindrical phantoms with various tissue equivalent inserts of different sizes. Insert materials were selected in order to be of clinical relevance. Tomographic images were reconstructed using a filtered backprojection algorithm taking into account the scattering of protons into the phantom. To quantify the performance of the ideal pCT scanner, we study the precision and the accuracy with respect to the theoretical relative stopping power ratios (RSP) values for different beam energies, imaging doses, insert sizes and detector positions. The planning range uncertainty resulting from the reconstructed RSP is also assessed by comparison with the range of the protons in the analytically simulated phantoms. Results: The results indicate that pCT can intrinsically achieve RSP resolution below 1%, for most examined tissues at beam energies below 300 MeV and for imaging doses around 1 mGy. RSP maps accuracy of less than 0.5 % is observed for most tissue types within the studied dose range (0.2–1.5 mGy). Finally, the uncertainty in the proton range due to the accuracy of the reconstructed RSP map is well below 1%. Conclusion: This work explores the intrinsic performance of pCT as an imaging modality for proton treatment planning. The obtained results show that under ideal conditions, 3D RSP maps can be reconstructed with an accuracy better than 1%. Hence, pCT is a promising candidate for reducing the range uncertainties introduced by the use of X-ray CT alongside with a semiempirical calibration to RSP.Supported by the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (MAP)

  12. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  13. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  14. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  15. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  16. Role of 3-D CT reconstruction of laryngeal mucosal surface in preoperative staging of laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Hwa; Park, Jong Yeon; Lee, Young Jun; Kim, Kun Il; Kim, Byung Soo; Wang, Soo Guen [Pusan National University, Busan (Korea, Republic of); Sol, Chang Hyo [Hong-In Total Imaing Diagnostic Clinic, Pusan (Korea, Republic of)

    1994-01-15

    CT or MRT is performed in preoperative staging of laryngeal cancer. These methods are used in assessment of the deep tissues and cartilage of the larynx, but cannot compete with laryngoscopy in the evaluation of the laryngeal surface. The purpose of this study is to evaluate feasibility and clinical value of the 3-D reconstruction of the mucosal surface in laryngeal cancer. Twenty two patients with laryngeal cancer proved by means of surgical exploration (pathologic) or clinical examinations including laryngoscope, imaging studies and biopsy underwent preoperative staging with computed tomography(CT) and three dimensional(3D) CT reconstruction. The TNM classification of the American Joint Committee on Cancer was used to compare the imaging findings with pathologic or clinical staging. When the extension of primary tumor(T staging) was evaluated, the findings at only transaxial CT and those at pathologic or clinical examination were concordant in 8 of 14 cases(57.1%) of supraglottic tumor, and 3 of 6 cases(50%) of glottic tumor. The overall accuracy of CT with additional 3D-reconstruction was 85.7% for assessment of supraglottic tumor, and 66.6% for glottic tumor. 3D CT reconstruction after transaxial CT may improve outcome in preoperative staging of laryngeal cancer and has a potential value in guiding management decisions.

  17. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  18. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    International Nuclear Information System (INIS)

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  19. Self-calibration of a cone-beam micro-CT system

    International Nuclear Information System (INIS)

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBμCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBμCT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 μm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  20. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    X. Liang; I. Lambrichts; Y. Sun; K. Denis; B. Hassan; L. Li; R. Pauwels; R. Jacobs

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  1. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  2. Filtered Iterative Reconstruction (FIR) via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

    CERN Document Server

    Gao, Hao

    2015-01-01

    This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Specifically, FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergenc...

  3. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  4. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  5. Redundant data and exact helical cone-beam reconstruction

    International Nuclear Information System (INIS)

    This paper is about helical cone-beam reconstruction and the use of redundant data in the framework of two reconstruction methods. The first method is the approximate wedge reconstruction formula introduced by Tuy at the 3D meeting in 1999. The second method is a (exact) hybrid implementation of the exact filtered backprojection formula of Katsevich (2004 Adv. Appl. Math. at press) that combines filtering in the native cone-beam geometry with backprojection in the wedge geometry. The similarity of the two methods is explored and their image quality performance is compared for geometries with up to 112 detector rows. Furthermore, the concept of aperture weighting is introduced to allow the handling of variable amounts of redundant data. A reduction of motion artefacts using redundant data is demonstrated for geometries with 16, 32 and 112 detector rows using a pitch factor of 1.25. For scans with up to 100 rows, utilizing 50% of the redundant data provided excellent results without any introduction of cone-beam artefacts. For larger cone angles, an alternative approach that utilizes all available redundant data, even at reduced pitch factors, is suggested

  6. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  7. GPU-based Low Dose CT Reconstruction via Edge-preserving Total Variation Regularization

    CERN Document Server

    Tian, Zhen; Yuan, Kehong; Pan, Tinsu; Jiang, Steve B

    2010-01-01

    High radiation dose in CT scans increases a lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with Total Variation (TV) regularization have been developed to reconstruct CT images from highly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, TV regularization may lead to over-smoothed images and lost edge information. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing an energy consisting of an edge-preserving TV norm and a data fidelity term posed by the x-ray projections. The edge-preserving TV term is proposed to preferentially perform smoothing only on non-edge part of the image in order to avoid over-smoothing, which is realized by introducing a penalty weight to the original total variation norm. Our...

  8. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDIvol was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  9. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Kunisaki, Shaun M. [University of Michigan Health System, Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States)

    2015-07-15

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI{sub vol} was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  10. Can CT measurements of femoral varus be performed reliably – even between reconstructions?

    DEFF Research Database (Denmark)

    Miles, James Edward; Berg-Sørensen, Kristina; Buelund, Lene Elisabeth

    reconstructions, a situation with more real-life applicability. CT scans of 20 canine femora underwent 3D reconstruction by 3 independent observers. Reconstruction spin and tilt data were used to assess reconstruction variability. Two observers of differing experience levels made 3 independent readings...... and tilt data obtained above were used to specify a model to predict the effect of reconstruction variability on varus measurements. Intraobserver repeatability coefficients were 2.4° and 2.6°, and the interobserver repeatability coefficient was 3.5°. Reconstruction variability yielded a spin-tilt ellipse...... area of 0.59 deg2. Surprisingly, reconstruction variability produced minimal effects on simulated varus measurements in contrast to previous experimental reports. Possible explanations include changing landmark appearance which cannot be modelled and lower magnitude of femoral subtense (procurvatum...

  11. Post-reconstruction non-local means filtering methods using CT side information for quantitative SPECT

    International Nuclear Information System (INIS)

    Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose–response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation–maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved −2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower

  12. Recent advances in iterative reconstruction for clinical SPECT/PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Brian F. (Inst. of Nuclear Medicine, Univ. College London, London (United Kingdom)), e-mail: brian.hutton@uclh.nhs.uk

    2011-08-15

    Statistical iterative reconstruction is now widely used in clinical practice and has contributed to significant improvement in image quality in recent years. Although primarily used for reconstruction in emission tomography (both single photon emission computed tomography (SPECT) and positron emission tomography (PET)) there is increasing interest in also applying similar algorithms to x-ray computed tomography (CT). There is increasing complexity in the factors that are included in the reconstruction, a demonstration of the versatility of the approach. Research continues with exploration of methods for further improving reconstruction quality with effective correction for various sources of artefact

  13. A simple optical cone beam CT set-up for gel 'readout'

    Energy Technology Data Exchange (ETDEWEB)

    Ravindran, B P; Visalatchi, S; Brindha, S [Department of Radiation Oncology, Christian Medical College, Vellore India 632 004 (India)

    2004-01-01

    In this study we have attempted to setup a simple optical cone beam CT using the geometry used by Wolodzko et al and Jordan et al using an Intel webcam. This approach of recording transmission images of the gel is the inverse of x-ray cone beam CT if you consider only the rays, which contribute to image formation. This simple optical cone beam CT could be setup with minimum cost and could be used to demonstrate the principle of optical CT for teaching and if further investigated could be a potential optical readout device for gel dosimetry.

  14. Point spread function modeling and images restoration for cone-beam CT

    OpenAIRE

    Zhang, Hua; Huang, Kuidong; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the...

  15. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  16. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  17. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  18. Cone beam CT for dental and maxillofacial imaging: dose matters.

    Science.gov (United States)

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications. PMID:25805884

  19. Adaptive region of interest method for analytical micro-CT reconstruction.

    Science.gov (United States)

    Yang, Wanneng; Xu, Xiaochun; Bi, Kun; Zeng, Shaoqun; Liu, Qian; Chen, Shangbin

    2011-01-01

    The real-time imaging is important in automatic successive inspection with micro-computerized tomography (micro-CT). Generally, the size of the detector is chosen according to the most probable size of the measured object to acquire all the projection data. Given enough imaging area and imaging resolution of X-ray detector, the detector is larger than specimen projection area, which results in redundant data in the Sinogram. The process of real-time micro-CT is computation-intensive because of the large amounts of source and destination data. The speed of the reconstruction algorithm can't always meet the requirements of real-time applications. A preprocessing method called adaptive region of interest (AROI), which detects the object's boundaries automatically to focus the active Sinogram regions, is introduced into the analytical reconstruction algorithm in this paper. The AROI method reduces the volume of the reconstructing data and thus directly accelerates the reconstruction process. It has been further shown that image quality is not compromised when applying AROI, while the reconstruction speed is increased as the square of the ratio of the sizes of the detector and the specimen slice. In practice, the conch reconstruction experiment indicated that the process is accelerated by 5.2 times with AROI and the imaging quality is not degraded. Therefore, the AROI method improves the speed of analytical micro-CT reconstruction significantly. PMID:21422587

  20. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    International Nuclear Information System (INIS)

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  1. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    Energy Technology Data Exchange (ETDEWEB)

    Meilinger, Manuel [Regensburg Univ. (Germany). CIML Group; Siemens Healthcare, Erlangen (Germany); Schmidgunst, Christian; Schuetz, Oliver [Siemens Healthcare, Erlangen (Germany); Lang, Elmar W. [Regensburg Univ. (Germany). CIML Group

    2011-07-01

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  2. IMAGE RECONSTRUCTION AND OBJECT CLASSIFICATION IN CT IMAGING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    张晓明; 蒋大真; 等

    1995-01-01

    By obtaining a feasible filter function,reconstructed images can be got with linear interpolation and filtered backoprojection techniques.Considering the gray and spatial correlation neighbour informations of each pixel,a new supervised classification method is put forward for the reconstructed images,and an experiment with noise image is done,the result shows that the method is feasible and accurate compared with ideal phantoms.

  3. Reducing CT radiation dose with iterative reconstruction algorithms: The influence of scan and reconstruction parameters on image quality and CTDIvol

    International Nuclear Information System (INIS)

    Highlights: • Iterative reconstruction (IR) and filtered back projection (FBP) were compared. • CT image noise was reduced by 12.4%–52.2% using IR in comparison to FBP. • IR did not affect high- and low-contrast resolution. • CTDIvol was reduced by 26–50% using hybrid IR at comparable image quality levels. • IR produced good to excellent image quality in patients. - Abstract: Objectives: In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. Methods: Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan®) were performed with varying tube voltages (80–140 kV) and currents (30–200 mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. Results: In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5 mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26–50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. Conclusions: Our

  4. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  5. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  6. A practical fan-beam design and reconstruction algorithm for Active and Passive Computed Tomography of radioactive waste barrels

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tushar, E-mail: tushar@barc.gov.in; More, M.R.; Ratheesh, Jilju; Sinha, Amar

    2015-09-11

    Active and Passive CT (A&PCT) of waste barrels is mostly carried out in parallel beam configuration due to its relative ease of implementation. This necessitates either using a single detector–source pair and translating the barrel or using multiple detector–source pairs for increasing the scanning speed. Additionally, because the use of bulky HPGe detectors may limit the number of detectors used in both active and passive modes, we propose to use 1″×1″ LaBr{sub 3}(Ce) scintillators. This paper describes a practical fan-beam reconstruction for A&PCT imaging of waste barrels. A fan beam system model has been computed analytically and reconstruction done using MLEM algorithm. The results are compared with analytical reconstruction. - Highlights: • Fan beam geometry with equally spaced detectors implemented for A&PCT. • Analytical computation of system matrix for fan beam geometry. • Implementation of fan beam with single active source in A&PCT.

  7. Image Reconstruction from 2D stack of MRI/CT to 3D using Shapelets

    OpenAIRE

    Arathi T; Latha Parameswaran

    2014-01-01

    Image reconstruction is an active research field, due to the increasing need for geometric 3D models in movie industry, games, virtual environments and in medical fields. 3D image reconstruction aims to arrive at the 3D model of an object, from its 2D images taken at different viewing angles. Medical images are multimodal, which includes MRI, CT scan image, PET and SPECT images. Of these, MRI and CT scan images of an organ when taken, is available as a stack of 2D images, taken at different a...

  8. High-quality four-dimensional cone-beam CT by deforming prior images

    Science.gov (United States)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Due to a limited number of projections at each phase, severe view aliasing artifacts are present in four-dimensional cone beam computed tomography (4D-CBCT) when reconstruction is performed using conventional algorithms. In this work, we aim to obtain high-quality 4D-CBCT of lung cancer patients in radiation therapy by deforming the planning CT. The deformation vector fields (DVF) to deform the planning CT are estimated through matching the forward projection of the deformed prior image and measured on-treatment CBCT projection. The estimation of the DVF is formulated as an unconstrained optimization problem, where the objective function to be minimized is the sum of the squared difference between the forward projection of the deformed planning CT and the measured 4D-CBCT projection. A nonlinear conjugate gradient method is used to solve the DVF. As the number of the variables in the DVF is much greater than the number of measurements, the solution to such a highly ill-posed problem is very sensitive to the initials during the optimization process. To improve the estimation accuracy of DVF, we proposed a new strategy to obtain better initials for the optimization. In this strategy, 4D-CBCT is first reconstructed by total variation minimization. Demons deformable registration is performed to register the planning CT and the 4D-CBCT reconstructed by total variation minimization. The resulted DVF from demons registration is then used as the initial parameters in the optimization process. A 4D nonuniform rotational B-spline-based cardiac-torso (NCAT) phantom and a patient 4D-CBCT are used to evaluate the algorithm. Image quality of 4D-CBCT is substantially improved by using the proposed strategy in both NCAT phantom and patient studies. The proposed method has the potential to improve the temporal resolution of 4D-CBCT. Improved 4D-CBCT can better characterize the motion of lung tumors and will be a valuable tool for image-guided adaptive radiation therapy.

  9. Reconstructions with identical filling (RIF) of the heart: a physiological approach to image reconstruction in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Reinartz, S.D.; Diefenbach, B.S.; Kuhl, C.K.; Mahnken, A.H. [University Hospital, RWTH Aachen University, Department of Diagnostic and Interventional Radiology, Aachen (Germany); Allmendinger, T. [Siemens Healthcare Sector, Department of Computed Tomography, Forchheim (Germany)

    2012-12-15

    To compare image quality in coronary artery computed tomography angiography (cCTA) using reconstructions with automated phase detection and Reconstructions computed with Identical Filling of the heart (RIF). Seventy-four patients underwent ECG-gated dual source CT (DSCT) between November 2009 and July 2010 for suspected coronary heart disease (n = 35), planning of transcatheter aortic valve replacement (n = 34) or evaluation of ventricular function (n = 5). Image data sets by the RIF formula and automated phase detection were computed and evaluated with the AHA 15-segment model and a 5-grade Likert scale (1: poor, 5: excellent quality). Subgroups regarding rhythm (sinus rhythm = SR; arrhythmia = ARR) and potential premedication were evaluated by a per-segment, per-vessel and per-patient analysis. RIF significantly improved image quality in 10 of 15 coronary segments (P < 0.05). More diagnostic segments were provided by RIF regarding the entire cohort (n = 693 vs. 590, P < 0.001) and all of the subgroups (e.g. ARR: n = 143 vs. 72, P < 0.001). In arrhythmic patients (n = 19), more diagnostic vessels (e.g. LAD: n = 10 vs. 3; P < 0.014) and complete data sets (n = 7 vs. 1; P < 0.001) were produced. RIF reconstruction is superior to automatic diastolic non-edited reconstructions, especially in arrhythmic patients. RIF theory provides a physiological approach for determining the optimal image reconstruction point in ECG-gated CT angiography. (orig.)

  10. Reconstructions with identical filling (RIF) of the heart: a physiological approach to image reconstruction in coronary CT angiography

    International Nuclear Information System (INIS)

    To compare image quality in coronary artery computed tomography angiography (cCTA) using reconstructions with automated phase detection and Reconstructions computed with Identical Filling of the heart (RIF). Seventy-four patients underwent ECG-gated dual source CT (DSCT) between November 2009 and July 2010 for suspected coronary heart disease (n = 35), planning of transcatheter aortic valve replacement (n = 34) or evaluation of ventricular function (n = 5). Image data sets by the RIF formula and automated phase detection were computed and evaluated with the AHA 15-segment model and a 5-grade Likert scale (1: poor, 5: excellent quality). Subgroups regarding rhythm (sinus rhythm = SR; arrhythmia = ARR) and potential premedication were evaluated by a per-segment, per-vessel and per-patient analysis. RIF significantly improved image quality in 10 of 15 coronary segments (P < 0.05). More diagnostic segments were provided by RIF regarding the entire cohort (n = 693 vs. 590, P < 0.001) and all of the subgroups (e.g. ARR: n = 143 vs. 72, P < 0.001). In arrhythmic patients (n = 19), more diagnostic vessels (e.g. LAD: n = 10 vs. 3; P < 0.014) and complete data sets (n = 7 vs. 1; P < 0.001) were produced. RIF reconstruction is superior to automatic diastolic non-edited reconstructions, especially in arrhythmic patients. RIF theory provides a physiological approach for determining the optimal image reconstruction point in ECG-gated CT angiography. (orig.)

  11. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  12. Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT

    Science.gov (United States)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A.; Schirra, Carsten O.

    2014-05-01

    The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and investigate sparsity-regularized penalized weighted least squares-based image reconstruction algorithms for reconstructing K-edge images from few-view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and experimental phantom studies are conducted to quantitatively demonstrate the effectiveness of the proposed reconstruction algorithms.

  13. GPU-accelerated few-view CT reconstruction using the OSC and TV techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri [Montreal Univ., QC (Canada). Dept. de Physique; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Centre Hospitalier Univ. de Quebec, QC (Canada). Dept. de Radio-Oncologie

    2011-07-01

    The present work proposes a promising iterative reconstruction technique designed specifically for X-ray transmission computed tomography (CT). The main objective is to reduce diagnostic radiation dose through the reduction of the number of CT projections, while preserving image quality. The second objective is to provide a fast implementation compatible with clinical activities. The proposed tomographic reconstruction technique is a combination of the Ordered Subsets Convex (OSC) algorithm and the Total Variation minimization (TV) regularization technique. The results in terms of image quality and computational speed are discussed. Using this technique, it was possible to obtain reconstructed slices of relatively good quality with as few as 100 projections, leading to potential dose reduction factors of up to an order of magnitude depending on the application. The algorithm was implemented on a Graphical Processing Unit (GPU) and yielded reconstruction times of approximately 185 ms per slice. (orig.)

  14. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  15. Quantitative SPECT reconstruction using CT-derived corrections

    Science.gov (United States)

    Willowson, Kathy; Bailey, Dale L.; Baldock, Clive

    2008-06-01

    A method for achieving quantitative single-photon emission computed tomography (SPECT) based upon corrections derived from x-ray computed tomography (CT) data is presented. A CT-derived attenuation map is used to perform transmission-dependent scatter correction (TDSC) in conjunction with non-uniform attenuation correction. The original CT data are also utilized to correct for partial volume effects in small volumes of interest. The accuracy of the quantitative technique has been evaluated with phantom experiments and clinical lung ventilation/perfusion SPECT/CT studies. A comparison of calculated values with the known total activities and concentrations in a mixed-material cylindrical phantom, and in liver and cardiac inserts within an anthropomorphic torso phantom, produced accurate results. The total activity in corrected ventilation-subtracted perfusion images was compared to the calibrated injected dose of [99mTc]-MAA (macro-aggregated albumin). The average difference over 12 studies between the known and calculated activities was found to be -1%, with a range of ±7%.

  16. Quantitative SPECT reconstruction using CT-derived corrections

    Energy Technology Data Exchange (ETDEWEB)

    Willowson, Kathy; Bailey, Dale L; Baldock, Clive [Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 (Australia)], E-mail: K.Willowson@physics.usyd.edu.au

    2008-06-21

    A method for achieving quantitative single-photon emission computed tomography (SPECT) based upon corrections derived from x-ray computed tomography (CT) data is presented. A CT-derived attenuation map is used to perform transmission-dependent scatter correction (TDSC) in conjunction with non-uniform attenuation correction. The original CT data are also utilized to correct for partial volume effects in small volumes of interest. The accuracy of the quantitative technique has been evaluated with phantom experiments and clinical lung ventilation/perfusion SPECT/CT studies. A comparison of calculated values with the known total activities and concentrations in a mixed-material cylindrical phantom, and in liver and cardiac inserts within an anthropomorphic torso phantom, produced accurate results. The total activity in corrected ventilation-subtracted perfusion images was compared to the calibrated injected dose of [{sup 99m}Tc]-MAA (macro-aggregated albumin). The average difference over 12 studies between the known and calculated activities was found to be -1%, with a range of {+-}7%.

  17. Detectability of the appendix with multidetector-row CT scanning and multiplanar reconstruction

    International Nuclear Information System (INIS)

    Twenty-six consecutive patients with the clinical diagnosis of appendicitis underwent multidetector-row CT (MD-CT) in order to detect entire longitudinal configuration of the appendix. While axial CT failed to detect the appendix in 7 patients, multiplanar reconstruction (MPR) demonstrated a longitudinal tubular structure continuous from the cecal caput in 25 patients (96.2%), including 7 patients whose post-surgical pathology were available. It is summarized that scanning and MPR images are advantageous to finding inflammatory processes in the appendix when the diagnosis of appendicitis remains ambiguous even with US. (author)

  18. Physical performance and image optimization of megavoltage cone-beam CT

    International Nuclear Information System (INIS)

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  19. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  20. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu [Department of Radiology, Hyogo Kaibara Hospital, 5208-1 Kaibara, Kaibara-cho, Tanba 669-3395 (Japan)], E-mail: hisanobu19760104@yahoo.co.jp; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: yosirad@kobe-u.ac.jp; Yamazaki, Youichi [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: y.yamazk@sahs.med.osaka-u.ac.jp; Nogami, Munenobu [Division of PET, Institute of Biomedical Research and Innovation, 2-2 MInamimachi, Minatojima, Chu0-ku, Kobe 650-0047 (Japan)], E-mail: aznogami@fbri.org; Kusaka, Akiko [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: a.kusaka@hosp.kobe-u.ac.jp; Murase, Kenya [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: murase@sahs.med.osaka-u.ac.jp; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: sugimura@med.kobe-u.ac.jp

    2010-04-15

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  1. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    International Nuclear Information System (INIS)

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  2. Applicability of 3D-CT facial reconstruction for forensic individual identification

    International Nuclear Information System (INIS)

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  3. Applicability of 3D-CT facial reconstruction for forensic individual identification

    Directory of Open Access Journals (Sweden)

    Rocha Sara dos Santos

    2003-01-01

    Full Text Available Computed tomography (CT is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT. The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using craniometric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10 craniometric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution.

  4. Applicability of 3D-CT facial reconstruction for forensic individual identification.

    Science.gov (United States)

    Rocha, Sara dos Santos; Ramos, Dalton Luiz; Cavalcanti, Marcelo de Gusmão Paraíso

    2003-01-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using craniometric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) craniometric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution.

  5. Applicability of 3D-CT facial reconstruction for forensic individual identification

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Sara dos Santos [Sao Paulo Univ., SP (Brazil). Odontologia Forense; Ramos, Dalton Luiz de Paula [Sao Paulo Univ., SP (Brazil). Dept. of Odontologia Social; Cavalcanti, Marcelo de Gusmao Paraiso [Sao Paulo Univ., SP (Brazil). Dept. de Radiologia

    2003-03-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  6. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    Science.gov (United States)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that 3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  7. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  8. Multienergy CT acquisition and reconstruction with a stepped tube potential scan

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Le; Xing, Yuxiang, E-mail: xingyx@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education and the Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2015-01-15

    Purpose: Based on an energy-dependent property of matter, one may obtain a pseudomonochromatic attenuation map, a material composition image, an electron-density distribution, and an atomic number image using a dual- or multienergy computed tomography (CT) scan. Dual- and multienergy CT scans broaden the potential of x-ray CT imaging. The development of such systems is very useful in both medical and industrial investigations. In this paper, the authors propose a new dual- and multienergy CT system design (segmental multienergy CT, SegMECT) using an innovative scanning scheme that is conveniently implemented on a conventional single-energy CT system. The two-step-energy dual-energy CT can be regarded as a special case of SegMECT. A special reconstruction method is proposed to support SegMECT. Methods: In their SegMECT, a circular trajectory in a CT scan is angularly divided into several arcs. The x-ray source is set to a different tube voltage for each arc of the trajectory. Thus, the authors only need to make a few step changes to the x-ray energy during the scan to complete a multienergy data acquisition. With such a data set, the image reconstruction might suffer from severe limited-angle artifacts if using conventional reconstruction methods. To solve the problem, they present a new prior-image-based reconstruction technique using a total variance norm of a quotient image constraint. On the one hand, the prior extracts structural information from all of the projection data. On the other hand, the effect from a possibly imprecise intensity level of the prior can be mitigated by minimizing the total variance of a quotient image. Results: The authors present a new scheme for a SegMECT configuration and establish a reconstruction method for such a system. Both numerical simulation and a practical phantom experiment are conducted to validate the proposed reconstruction method and the effectiveness of the system design. The results demonstrate that the proposed Seg

  9. Volumetric measurement of pulmonary nodules at low-dose chest CT : effect of reconstruction setting on measurement variability

    NARCIS (Netherlands)

    Wang, Y.; de Bock, G.H.; van Klaveren, R.J.; van Ooyen, P.; Tukker, W.; Zhao, Y.; Dorrius, M.D.; Proenca, R.V.; Post, W.J.; Oudkerk, M.

    2010-01-01

    To assess volumetric measurement variability in pulmonary nodules detected at low-dose chest CT with three reconstruction settings. The volume of 200 solid pulmonary nodules was measured three times using commercially available semi-automated software of low-dose chest CT data-sets reconstructed wit

  10. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  11. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    Science.gov (United States)

    Panetta, D.; Belcari, N.; DelGuerra, A.; Moehrs, S.

    2008-07-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  12. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Science.gov (United States)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm

  13. Optimized image reconstruction for detection of deep venous thrombosis at multidetector-row CT venography

    Energy Technology Data Exchange (ETDEWEB)

    Das, Marco; Muehlenbruch, Georg; Mahnken, Andreas Horst; Guenther, Rolf W.; Wildberger, Joachim Ernst [University Hospital, University of Technology (RWTH), Department of Diagnostic Radiology, Aachen (Germany); Weiss, Claudia [RWTH Aachen, Institute of Medical Statistics, Aachen (Germany); Schoepf, U. Joseph [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Leidecker, Christianne [Institute of Medical Physics, University of Erlangen, Erlangen (Germany)

    2006-02-01

    The aims of this study were to optimize image quality for indirect CT venography (sequential versus spiral), and to evaluate different image reconstruction parameters for patients with suspected deep venous thrombosis (DVT). Fifty-one patients (26/25 with/without DVT) were prospectively evaluated for pulmonary embolism (PE) with standard multidetector-row computed tomography (MDCT) protocols. Retrospective image reconstruction was done with different slice thicknesses and reconstruction increments in sequential and spiral modes. All reconstructions were read for depiction of DVT and to evaluate best reconstruction parameters in comparison with the thinnest reconstruction (''gold standard''). Image noise and venous enhancement were measured as objective criteria for image quality. Subjective image quality was rated on a four-point scale. Effective dose was estimated for all reconstructions. In sequential 10/50 reconstruction DVT was completely detected in 13/26 cases, partially in 10/26 cases and was not detected at all in 3/26 cases, and 15/26, 9/26 and 2/26 cases for the 10/20 reconstruction, respectively. DVT was completely detected in all spiral reconstructions. Image noise ranged between 14.8-29.1 HU. Median image quality was 2. Estimated effective dose ranged between 2.3 mSv and 11.8 mSv. Gaps in sequential protocols may lead to false negative results. Therefore, spiral scanning protocols for complete depiction of DVT are mandatory. (orig.)

  14. Information extraction and CT reconstruction of liver images based on diffraction enhanced imaging

    Institute of Scientific and Technical Information of China (English)

    Chunhong Hu; Tao Zhao; Lu Zhang; Hui Li; Xinyan Zhao; Shuqian Luo

    2009-01-01

    X-ray phase-contrast imaging (PCI) is a new emerging imaging technique that generates a high spatial resolution and high contrast of biological soft tissues compared to conventional radiography. Herein a biomedical application of diffraction enhanced imaging (DEI) is presented. As one of the PCI methods, DEI derives contrast from many different kinds of sample information, such as the sample's X-ray absorption, refraction gradient and ultra-small-angle X-ray scattering (USAXS) properties, and the sample information is expressed by three parametric images. Combined with computed tomography (CT), DEI-CT can produce 3D volumetric images of the sample and can be used for investigating micro-structures of biomedical samples. Our DEI experiments for fiver samples were implemented at the topog-raphy station of Beijing Synchrotron Radiation Facility (BSRF). The results show that by using our provided information extraction method and DEI-CT reconstruction approach, the obtained parametric images clearly display the inner structures of liver tissues and the morphology of blood vessels. Furthermore, the reconstructed 3D view of the fiver blood vessels exhibits the micro blood vessels whose minimum diameter is on the order of about tens of microns, much better than its conventional CT reconstruction at a millimeter resolution.In conclusion, both the information extraction method and DEI-CT have the potential for use in biomedical micro-structures analysis.

  15. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.

    Science.gov (United States)

    Zhang, Hao; Ma, Jianhua; Wang, Jing; Liu, Yan; Lu, Hongbing; Liang, Zhengrong

    2014-09-01

    Low-dose computed tomography (CT) imaging without sacrifice of clinical tasks is desirable due to the growing concerns about excessive radiation exposure to the patients. One common strategy to achieve low-dose CT imaging is to lower the milliampere-second (mAs) setting in data scanning protocol. However, the reconstructed CT images by the conventional filtered back-projection (FBP) method from the low-mAs acquisitions may be severely degraded due to the excessive noise. Statistical image reconstruction (SIR) methods have shown potentials to significantly improve the reconstructed image quality from the low-mAs acquisitions, wherein the regularization plays a critical role and an established family of regularizations is based on the Markov random field (MRF) model. Inspired by the success of nonlocal means (NLM) in image processing applications, in this work, we propose to explore the NLM-based regularization for SIR to reconstruct low-dose CT images from low-mAs acquisitions. Experimental results with both digital and physical phantoms consistently demonstrated that SIR with the NLM-based regularization can achieve more gains than SIR with the well-known Gaussian MRF regularization or the generalized Gaussian MRF regularization and the conventional FBP method, in terms of image noise reduction and resolution preservation.

  16. Application of incremental algorithms to CT image reconstruction for sparse-view, noisy data

    DEFF Research Database (Denmark)

    Rose, Sean; Andersen, Martin Skovgaard; Sidky, Emil Y.;

    2014-01-01

    This conference contribution adapts an incremental framework for solving optimization problems of interest for sparse-view CT. From the incremental framework two algorithms are derived: one that combines a damped form of the algebraic reconstruction technique (ART) with a total-variation (TV...

  17. Arthrographic examination for temporomandibular joint (TMJ) by limited cone beam X-CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    TMJ arthrography has been performed with a surgical X-ray television system (fluoroscope) and a tomographic apparatus for patients with disturbance of opening of the mouth. Limited cone beam X-CT for dental use (Ortho-CT) developed by Arai et al. is small and very effective for the small maxillofacial area. We performed TMJ arthrography by using Ortho-CT for TMD patients, and obtained good results, compared with those of MRI. Objects were 13 joints in 12 patients diagnosed as having TMD. As a result, there was a high percentage of agreement with figure and position of the articular disk and it was certain that Ortho-CT had the accuracy similar to that of MRI, because there was no statistically significant difference. We conclude that Ortho-CT is very effective for TMJ arthrography. (author)

  18. Accelerated gradient methods for total-variation-based CT image reconstruction

    CERN Document Server

    Jørgensen, Jakob Heide; Hansen, Per Christian; Jensen, Søren Holdt; Sidky, Emil Y; Pan, Xiaochuan

    2011-01-01

    Total-variation (TV)-based Computed Tomography (CT) image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large-scale systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits slow convergence. In the present work we consider the use of two accelerated gradient-based methods, GPBB and UP...

  19. [Metal artefact on head and neck cone-beam CT images].

    Science.gov (United States)

    Kovacs, Miklós; Fejérdy, Pál; Dobó, Nagy Csaba

    2008-10-01

    There are only a few factors, where the properties of the CBCT is inferior compared to conventional CT. One of these properties is the low contrast resolution, which has an importance in the discrimination of different soft tissues. Another difference is the image quality degrading effect by metal objects. This latter factor has much higher importance in head and neck region CBCT application. The metal artifact is closely related to other types of artifacts, like beam-hardening and x-ray photon scattering artifacts. In some of the cases, metal artifacts can be avoided by the proper adjustment of the scanning parameters, but sometimes the problem overgrows the possibilities. The current pre- and post-processing algorithms used for the correction of different artifacts can improve the image quality, but these algorithms are not the ultimate solution to the problem. The introduction of iterative reconstruction algorithms into the CBCT market will effectively reduce the most CT artifacts, however, the spread of this algorithms are set back because of the insufficient computational power of today's PCs. Another advantage of the use of iterative algorithms is that the patient dose could be significantly reduced.

  20. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    OpenAIRE

    Bence Tamas Szabo; Levente Pataky; Regina Mikusi; Pal Fejerdy; Csaba Dobo-Nagy

    2012-01-01

    The aim of this study was to compare three different cone-beam CT (CBCT) instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis) skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL). After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 ro...

  1. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  2. Evaluation of dose reduction and image quality in CT colonography: Comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Koichi [Kameda Medical Center, Department of Radiology, Kamogawa, Chiba (Japan); Jichi Medical University, Department of Radiology, Tochigi (Japan); National Cancer Center, Cancer Screening Technology Division, Research Center for Cancer Prevention and Screening, Tokyo (Japan); Fujiwara, Masanori; Mogi, Tomohiro; Iida, Nao [Kameda Medical Center Makuhari, Department of Radiology, Chiba (Japan); Kanazawa, Hidenori; Sugimoto, Hideharu [Jichi Medical University, Department of Radiology, Tochigi (Japan); Mitsushima, Toru [Kameda Medical Center Makuhari, Department of Gastroenterology, Chiba (Japan); Lefor, Alan T. [Jichi Medical University, Department of Surgery, Tochigi (Japan)

    2015-01-15

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p < 0.01). Overall image quality and noise of low-dose CTC with iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1 % without image quality degradation compared to routine-dose CTC with filtered back projection. (orig.)

  3. Advanced modelled iterative reconstruction for abdominal CT: Qualitative and quantitative evaluation

    International Nuclear Information System (INIS)

    Aim: To determine qualitative and quantitative image-quality parameters in abdominal imaging using advanced modelled iterative reconstruction (ADMIRE) with third-generation dual-source 192 section CT. Materials and methods: Forty patients undergoing abdominal portal-venous CT at different tube voltage levels (90, 100, 110, and 120 kVp, n = 10 each) and 10 consecutive patients undergoing abdominal non-enhanced low-dose CT (100 kVp, 60 mAs) using a third-generation dual-source 192 section CT machine in the single-source mode were included. Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1–5). Two blinded, independent readers subjectively determined image noise, artefacts, visibility of small structures, and image contrast, and measured attenuation in the liver, spleen, kidney, muscle, fat, and urinary bladder, and objective image noise. Results: Subjective noise was significantly lower and image contrast significantly higher for each increasing ADMIRE strength level and also for ADMIRE 1 compared to FBP (all, p < 0.001). No significant differences were found for artefact and visibility ratings among image sets (all, p > 0.05). Attenuation was similar across tube voltage-image datasets in all anatomical regions (all, p > 0.05). Objective noise was significantly lower for each increasing ADMIRE strength level, and for ADMIRE 1 compared to FBP (all, p < 0.001, maximal reduction 53%). Independent predictors of noise were tube voltage (p < 0.05) and current (p < 0.001), diameter (p < 0.05), and reconstruction algorithm (p<0.001); the amount of noise reduction was related only to the reconstruction algorithm (p < 0.001). Conclusion: Abdominal CT using ADMIRE results in an improved image quality with lower image noise as compared with FBP, while the attenuation of various anatomical regions remains constant among reconstruction algorithms. - Highlights: • Advanced modeled iterative reconstruction results in an

  4. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell;

    2007-01-01

    in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method...... was significantly lower (p library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator...

  5. Hardware-accelerated cone-beam reconstruction on a mobile C-arm

    Science.gov (United States)

    Churchill, Michael; Pope, Gordon; Penman, Jeffrey; Riabkov, Dmitry; Xue, Xinwei; Cheryauka, Arvi

    2007-03-01

    The three-dimensional image reconstruction process used in interventional CT imaging is computationally demanding. Implementation on general-purpose computational platforms requires a substantial time, which is undesirable during time-critical surgical and minimally invasive procedures. Field Programmable Gate Arrays (FPGA)s and Graphics Processing Units (GPU)s have been studied as a platform to accelerate 3-D imaging. FPGA and GPU devices offer a reprogrammable hardware architecture, configurable for pipelining and high levels of parallel processing to increase computational throughput, as well as the benefits of being off-the-shelf and effective 'performance-to-watt' solutions. The main focus of this paper is on the backprojection step of the image reconstruction process, since it is the most computationally intensive part. Using the popular Feldkamp-Davis-Kress (FDK) cone-beam algorithm, our studies indicate the entire 256 3 image reconstruction process can be accelerated to real or near real-time (i.e. immediately after a finished scan of 15-30 seconds duration) on a mobile X-ray C-arm system using available resources on built-in FPGA board. High resolution 512 3 image backprojection can be also accomplished within the same scanning time on a high-end GPU board comprising up to 128 streaming processors.

  6. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  7. Visual C++ Implementation of Sinogram-based Adaptive Iterative Reconstruction for Sparse View X-Ray CT

    CERN Document Server

    Trinca, D; Wang, Y; Mamyrbayev, T; Libin, E

    2016-01-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this report, we describe our proposal of an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. Implementation code in the C language is provided, along with example of user interface.

  8. [Examination of Visual Effect in Low-dose Cerebral CT Perfusion Phantom Image Using Iterative Reconstruction].

    Science.gov (United States)

    Ohmura, Tomomi; Lee, Yongbum; Takahashi, Noriyuki; Sato, Yuichiro; Ishida, Takato; Toyoshima, Hideto

    2015-11-01

    CT perfusion (CTP) is obtained cerebrovascular circulation image for assessment of stroke patients; however, at the expense of increased radiation dose by dynamic scan. Iterative reconstruction (IR) method is possible to decrease image noise, it has the potential to reduce radiation dose. The purpose of this study is to assess the visual effect of IR method by using a digital perfusion phantom. The digital perfusion phantom was created by reconstructed filtered back projection (FBP) method and IR method CT images that had five exposure doses. Various exposure dose cerebral blood flow (CBF) images were derived from deconvolution algorithm. Contrast-to-noise ratio (CNR) and visual assessment were compared among the various exposure dose and each reconstructions. Result of low exposure dose with IR method showed, compared with FBP method, high CNR in severe ischemic area, and visual assessment was significantly improvement. IR method is useful for improving image quality of low-dose CTP. PMID:26596197

  9. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, P.; Zbijewski, W.; Gang, G. J.; Ding, Y.; Stayman, J. W.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2 M9 (Canada) and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2011-10-15

    Purpose: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. Methods: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. Results: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M {approx} 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of {approx}65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results--e.g., {approx}0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to {approx}0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific

  10. Radiographic evaluation of dentigerous cyst with cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do [School of Dentisity, Wonkwang University, Iksan (Korea, Republic of)

    2010-09-15

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  11. High-performance C-arm cone-beam CT guidance of thoracic surgery

    Science.gov (United States)

    Schafer, Sebastian; Otake, Yoshito; Uneri, Ali; Mirota, Daniel J.; Nithiananthan, Sajendra; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Graumann, Rainer; Sussman, Marc; Siewerdsen, Jeffrey H.

    2012-02-01

    Localizing sub-palpable nodules in minimally invasive video-assisted thoracic surgery (VATS) presents a significant challenge. To overcome inherent problems of preoperative nodule tagging using CT fluoroscopic guidance, an intraoperative C-arm cone-beam CT (CBCT) image-guidance system has been developed for direct localization of subpalpable tumors in the OR, including real-time tracking of surgical tools (including thoracoscope), and video-CBCT registration for augmentation of the thoracoscopic scene. Acquisition protocols for nodule visibility in the inflated and deflated lung were delineated in phantom and animal/cadaver studies. Motion compensated reconstruction was implemented to account for motion induced by the ventilated contralateral lung. Experience in CBCT-guided targeting of simulated lung nodules included phantoms, porcine models, and cadavers. Phantom studies defined low-dose acquisition protocols providing contrast-to-noise ratio sufficient for lung nodule visualization, confirmed in porcine specimens with simulated nodules (3-6mm diameter PE spheres, ~100-150HU contrast, 2.1mGy). Nodule visibility in CBCT of the collapsed lung, with reduced contrast according to air volume retention, was more challenging, but initial studies confirmed visibility using scan protocols at slightly increased dose (~4.6-11.1mGy). Motion compensated reconstruction employing a 4D deformation map in the backprojection process reduced artifacts associated with motion blur. Augmentation of thoracoscopic video with renderings of the target and critical structures (e.g., pulmonary artery) showed geometric accuracy consistent with camera calibration and the tracking system (2.4mm registration error). Initial results suggest a potentially valuable role for CBCT guidance in VATS, improving precision in minimally invasive, lungconserving surgeries, avoid critical structures, obviate the burdens of preoperative localization, and improve patient safety.

  12. Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT

    Science.gov (United States)

    Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.

    2015-03-01

    Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).

  13. Low-dose CT coronary angiography using iterative reconstruction with a 256-slice CT scanner

    OpenAIRE

    Carrascosa, Patricia; Rodriguez-Granillo, Gastón A; Capuñay, Carlos; Deviggiano, Alejandro

    2013-01-01

    AIM: To explore whether computer tomography coronary angiography (CTCA) using iterative reconstruction (IR) leads to significant radiation dose reduction without a significant loss in image interpretability compared to conventional filtered back projection (FBP).

  14. Beam emittance reconstructions at the KFUPM 350 keV ion accelerator

    International Nuclear Information System (INIS)

    We successfully reconstructed the horizontal and vertical beam emittances of a 160 keV low-intensity deuteron ion beam from the Energy Research Laboratory's low intensity duoplasmatron deuteron ion source. Reconstructions were made from horizontal and vertical beam width measurements. These measurements were done using only one quadrupole triplet and a beam profile monitor situated towards the end of the 45 beam line of the 350 kV ion accelerator. The deuteron beam emittances were εh = 67 π mm-mrad and εv = 4π mm-mrad at 90% of the beam. (orig.)

  15. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus;

    2010-01-01

    , especially when transferring data across the (network-) borders of different hospitals. Overall, the most important precondition for successful integration of functional imaging in RT treatment planning is the goal orientated as well as close and thorough communication between nuclear medicine......The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non......-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy...

  16. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  17. The role of 3D Helical CT in the reconstructive treatment of maxillofacial cancers

    International Nuclear Information System (INIS)

    Purpose of this work is to investigate the role of Helical CT and the usefulness of three-dimensional (3D) imaging for pre-operative planning and follow-up of reconstructive maxillofacial surgery with alloplastic material in neoplastic disease involving this region. From 1996 to 1999 eleven patients were examined with Helical CT and 3D images for planning of maxillofacial plastic and reconstructive surgery for advanced cancer of this anatomically complex region. A 3D-modulated titanium mesh (100%) or micro nets was used to rebuild the anterior surface of maxillary bone and the orbital floor. The mesh was cut to the appropriate size and shape and curved where necessary. Within the residual sinusal cavity a siliconed filling was used surmounting an acrylic prosthesis with dental arch to rebuild the palate. A rehydrated bovine pericardium was affixed and moduled on the borders in two cases only. Three-dimensionally reconstructed CT images were obtained preoperatively and at least 6 months postoperatively in all patients. The images were generated on a computer workstation using the shaded surface display (SSD) software with threshold values ranging 425 to 630 HU, and a more closed window for the imaging of titanium mesh/bone interface in the post surgical follow-up. It was obtained an excellent complete spatial depiction of maxillo facial region both before and after surgery, with no artefacts so important as to affect the 3D reconstruction process and the image quality. Together with the head-neck surgical team it could be worked for preoperative planning through CT scans by different 3D points of view. The 3D reconstructed follow-up scans showed good filling of the defect in the area where the titanium mesh had been used. Then efficacious bone modelling and good biocompatibility of the alloplastic material were seen in all patients, with no inflammatory reactions. Titanium is a well-known material, which is widely used for cranioplasty. It is a radiolucent, non

  18. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    OpenAIRE

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization d...

  19. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  20. Acquisition, preprocessing, and reconstruction of ultralow dose volumetric CT scout for organ-based CT scan planning

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno [Image Reconstruction Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Yao, Yangyang; Wu, Mingye [X-ray and CT Laboratory, GE Global Research, Shanghai 201203 (China); Montillo, Albert [Biomedical Image Processing Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Edic, Peter M. [CT, X-ray and Functional Imaging, GE Global Research, Niskayuna, New York 12309 (United States); Kalra, Mannudeep [Thoracic and Cardiac Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2015-05-15

    Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies to achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.

  1. Visibility of microcalcifications in CCD-based cone beam CT: a preliminary study

    Science.gov (United States)

    Shen, Youtao; Chen, Lingyun; Ge, Shuaiping; Yi, Ying; Han, Tao; Zhong, Yuncheng; Lai, Chao-Jen; Liu, Xinming; Wang, Tianpeng; Shaw, Chris C.

    2009-02-01

    In this work, we investigated the visibility of microcalcifications in CCD-based cone beam CT (CBCT) breast imaging. A paraffin cylinder with a diameter of 135 mm and a thickness of 40 mm was used to simulate a 100% adipose breast. Calcium carbonate grains, ranging from 140-150 to 200-212 μm in size, were used to simulate the microcalcifications. Groups of 25 same size microcalcifications were arranged into 5 × 5 clusters. Each cluster was embedded at the center of a smaller (15 mm diameter) cylindrical paraffin phantom, which were inserted into a hole at the center of the breast phantom. The breast phantom with the simulated microcalcifications was scanned on a bench top experimental CCDbased cone beam CT system at various exposure levels with two CCD cameras: Hamamatsu's C4742-56-12ER and Dalsa 99-66-0000-00. 300 projection images were acquired over 360° and reconstructed with Feldkamp's backprojection algorithm using a ramp filter. The images were reviewed by 6 readers independently. The ratios of visible microcalcifications were recorded and averaged over all readers. These ratios were plotted as the function of measured image signal-to-noise ratio (SNR) for various scans. It was found that 94% visibility was achieved for 200-212 μm calcifications at an SNR of 48.2 while 50% visibility was achieved for 200-212, 180-200, 160-180, 150-160 and 140-150 μm calcifications at an SNR of 25.0, 35.3, 38.2, 42.2 and 64.4, respectively.

  2. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  3. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    Science.gov (United States)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  4. Coronary CT angiography: automatic cardiac-phase selection for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ruzsics, Balazs; Brothers, Robin L.; Costello, Philip [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Gebregziabher, Mulugeta [Medical University of South Carolina, Department of Biostatistics, Bioinformatics, and Epidemiology, Charleston, SC (United States); Lee, Heon [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Seoul Medical Center, Department of Radiology, Seoul (Korea); Allmendinger, Thomas; Vogt, Sebastian [Siemens Medical Solutions, Division CT, Forchheim (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Charleston, SC (United States)

    2009-08-15

    We evaluated an algorithm for automatic selection of the cardiac phase with the least motion for image reconstruction at coronary computed tomography (CT) angiography (CCTA). We analyzed data of 100 patients (49 female, mean age 59 years) who had undergone retrospectively ECG-gated CCTA. Two experienced observers visually identified the most suitable end-systolic and end-diastolic phases using a series of image reconstructions in 5% increments across the RR cycle. The same data were then reconstructed using an automatic phase finding algorithm based on a 4D weighting function of cardiac motion. On average, the algorithm determined the most suitable systolic reconstruction phase at 40.11{+-}6.29% RR compared with 40.07{+-}5.58% RR by the human observers (p=NS). The most suitable diastolic phase was found at 72.71{+-}7.37% RR by the automatic algorithm, compared with 76.43{+-}6.35% RR by the observers (p<0.05). No statistically significant difference was found between automatically and visually determined reconstruction phases regarding motion and stair-step artifacts in either systole or diastole (p>0.05). Thus, there appears to be no relevant difference between an automatic phase finding algorithm and visual selection by experienced observers for determining the phase with the least cardiac motion for CCTA image reconstruction. The use of automatic phase finding may therefore facilitate the performance of cardiac CT and reduce human error. (orig.)

  5. Phase-selective image reconstruction of the lungs in small animals using micro-CT

    Science.gov (United States)

    Johnston, S. M.; Perez, B. A.; Kirsch, D. G.; Badea, C. T.

    2010-04-01

    Gating in small animal imaging can compensate for artifacts due to physiological motion. This paper presents a strategy for sampling and image reconstruction in the rodent lung using micro-CT. The approach involves rapid sampling of freebreathing mice without any additional hardware to detect respiratory motion. The projection images are analyzed postacquisition to derive a respiratory signal, which is used to provide weighting factors for each projection that favor a selected phase of the respiration (e.g. end-inspiration or end-expiration) for the reconstruction. Since the sampling cycle and the respiratory cycle are uncorrelated, the sets of projections corresponding to any of the selected respiratory phases do not have a regular angular distribution. This drastically affects the image quality of reconstructions based on simple filtered backprojection. To address this problem, we use an iterative reconstruction algorithm that combines the Simultaneous Algebraic Reconstruction Technique with Total Variation minimization (SART-TV). At each SART-TV iteration, backprojection is performed with a set of weighting factors that favor the desired respiratory phase. To reduce reconstruction time, the algorithm is implemented on a graphics processing unit. The performance of the proposed approach was investigated in simulations and in vivo scans of mice with primary lung cancers imaged with our in-house developed dual tube/detector micro-CT system. We note that if the ECG signal is acquired during sampling, the same approach could be used for phase-selective cardiac imaging.

  6. Noise power properties of a cone-beam CT system for breast cancer detection

    OpenAIRE

    Yang, Kai; Kwan, Alexander L.C.; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2008-01-01

    The noise power properties of a cone-beam computed tomography (CT) system dedicated for breast cancer detection were investigated. Uniform polyethylene cylinders of various diameters were scanned under different system acquisition conditions. Noise power spectra were calculated from difference data generated by subtraction between two identical scans. Multidimensional noise power spectra (NPS) were used as the metric to evaluate the noise properties of the breast CT (bCT) under different syst...

  7. CT Reconstruction for Limited Angle%有限角度CT重建方法

    Institute of Scientific and Technical Information of China (English)

    李镜; 卢孝强; 孙怡

    2011-01-01

    Computed Tomography (CT) has made a revolutionary impact on medical diagnosis and industrial non-destructive testing. However, it is not always possible to acquire projection data through a complete CT angular range in some real applications, such as imaging system design constraints. The conventional and most commonly used method for reconstruction from tomographic projections is the analytical reconstruction technique which is not so adaptable to incomplete projection data and results in poor reconstructions with severe artifacts in limited angle cases. Two reconstruction algorithms for limited angle cases are illustrated and the performance of algorithms is shown.%计算机断层成像技术(Computed Tomography,CT)技术已经被广泛应用于医学诊断、工业无损探伤以及安全检查等领域.然而在实际应用中,很多情况下并不能采集到完全角度下的投影数据,例如成像系统设计的限制等.利用有限角度下的投影数据进行图像重建被称为X射线成像有限角度重建.本文介绍了两种有限角度CT迭代重建方法,并对其重建结果进行了比较和评价.

  8. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    Science.gov (United States)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  9. Reconstruction of Cochlea Based on Micro-CT and Histological Images of the Human Inner Ear

    Directory of Open Access Journals (Sweden)

    Christos Bellos

    2014-01-01

    Full Text Available The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and, so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible, without further impairing function. Mathematical modelling is therefore particularly attractive as a tool in researching the cochlea and its pathology. The first step towards efficient mathematical modelling is the reconstruction of an accurate three dimensional (3D model of the cochlea that will be presented in this paper. The high quality of the histological images is being exploited in order to extract several sections of the cochlea that are not visible on the micro-CT (mCT images (i.e., scala media, spiral ligament, and organ of Corti as well as other important sections (i.e., basilar membrane, Reissner membrane, scala vestibule, and scala tympani. The reconstructed model is being projected in the centerline of the coiled cochlea, extracted from mCT images, and represented in the 3D space. The reconstruction activities are part of the SIFEM project, which will result in the delivery of an infrastructure, semantically interlinking various tools and libraries (i.e., segmentation, reconstruction, and visualization tools with the clinical knowledge, which is represented by existing data, towards the delivery of a robust multiscale model of the inner ear.

  10. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?

    International Nuclear Information System (INIS)

    Despite major advances in x-ray sources, detector arrays, gantry mechanical design and especially computer performance, one component of computed tomography (CT) scanners has remained virtually constant for the past 25 years—the reconstruction algorithm. Fundamental advances have been made in the solution of inverse problems, especially tomographic reconstruction, but these works have not been translated into clinical and related practice. The reasons are not obvious and seldom discussed. This review seeks to examine the reasons for this discrepancy and provides recommendations on how it can be resolved. We take the example of field of compressive sensing (CS), summarizing this new area of research from the eyes of practical medical physicists and explaining the disconnection between theoretical and application-oriented research. Using a few issues specific to CT, which engineers have addressed in very specific ways, we try to distill the mathematical problem underlying each of these issues with the hope of demonstrating that there are interesting mathematical problems of general importance that can result from in depth analysis of specific issues. We then sketch some unconventional CT-imaging designs that have the potential to impact on CT applications, if the link between applied mathematicians and engineers/physicists were stronger. Finally, we close with some observations on how the link could be strengthened. There is, we believe, an important opportunity to rapidly improve the performance of CT and related tomographic imaging techniques by addressing these issues. (topical review)

  11. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  12. Methods of X-ray CT image reconstruction from few projections

    International Nuclear Information System (INIS)

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author)

  13. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  14. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2015-11-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover

  15. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    Science.gov (United States)

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374

  16. Adaptive Adjustment of Relaxation Parameters for Algebraic Reconstruction Technique and its Possible Application to Sparsity Prior X-ray CT Reconstruction

    CERN Document Server

    Saha, Sajib; Lambert, Andrew; Pickering, Mark

    2015-01-01

    In this paper, we systematically evaluate the performance of adaptive adjustment of the relaxation parameters of various iterative algorithms for X-ray CT reconstruction relying on sparsity priors. Sparsity prior has been found to be an efficient strategy in CT reconstruction where significantly fewer attenuation measurements are available. Sparsity prior CT reconstruction relies on iterative algorithms such as the algebraic reconstruction technique (ART) to produce a crude reconstruction based on which a sparse approximation is performed. Data driven adjustment of relaxation has been found to ensure better convergence than traditional relaxation for ART. In this paper, we study the performance of such data driven relaxation on a (CS) compressed sensing environment. State-of-the-art algorithms are implemented and their performance analyzed in regard to conventional and data-driven relaxation. Experiments are performed both on simulated and real environments. For the simulated case, experiments are conducted w...

  17. Non-uniform noise spatial distribution in CT myocardial perfusion and a potential solution: statistical image reconstruction

    Science.gov (United States)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-03-01

    Myocardial perfusion scans are an important tool in the assessment of myocardial viability following an infarction. Cardiac perfusion analysis using CT datasets is limited by the presence of so-called partial scan artifacts. These artifacts are due to variations in beam hardening and scatter between different short-scan angular ranges. In this research, another angular range dependent effect is investigated: non-uniform noise spatial distribution. Images reconstructed using filtered backprojection (FBP) are subject to this effect. Statistical image reconstruction (SIR) is proposed as a potential solution. A numerical phantom with added Poisson noise was simulated and two swines were scanned in vivo to study the effect of FBP and SIR on the spatial uniformity of the noise distribution. It was demonstrated that images reconstructed using FBP often show variations in noise on the order of 50% between different time frames. This variation is mitigated to about 10% using SIR. The noise level is also reduced by a factor of 2 in SIR images. Finally, it is demonstrated that the measurement of quantitative perfusion metrics are generally more accurate when SIR is used instead of FBP.

  18. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.; Chen Guanghong [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705-2275 (United States); Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705-2275 (United States)

    2012-07-15

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution

  19. Dentomaxillofacial imaging with panoramic views and cone beam CT.

    Science.gov (United States)

    Suomalainen, Anni; Pakbaznejad Esmaeili, Elmira; Robinson, Soraya

    2015-02-01

    Panoramic and intraoral radiographs are the basic imaging modalities used in dentistry. Often they are the only imaging techniques required for delineation of dental anatomy or pathology. Panoramic radiography produces a single image of the maxilla, mandible, teeth, temporomandibular joints and maxillary sinuses. During the exposure the x-ray source and detector rotate synchronously around the patient producing a curved surface tomography. It can be supplemented with intraoral radiographs. However, these techniques give only a two-dimensional view of complicated three-dimensional (3D) structures. As in the other fields of imaging also dentomaxillofacial imaging has moved towards 3D imaging. Since the late 1990s cone beam computed tomography (CBCT) devices have been designed specifically for dentomaxillofacial imaging, allowing accurate 3D imaging of hard tissues with a lower radiation dose, lower cost and easier availability for dentists when compared with multislice CT. Panoramic and intraoral radiographies are still the basic imaging methods in dentistry. CBCT should be used in more demanding cases. In this review the anatomy with the panoramic view will be presented as well as the benefits of the CBCT technique in comparison to the panoramic technique with some examples. Also the basics as well as common errors and pitfalls of these techniques will be discussed. Teaching Points • Panoramic and intraoral radiographs are the basic imaging methods in dentomaxillofacial radiology.• CBCT imaging allows accurate 3D imaging of hard tissues.• CBCT offers lower costs and a smaller size and radiation dose compared with MSCT.• The disadvantages of CBCT imaging are poor soft tissue contrast and artefacts.• The Sedentexct project has developed evidence-based guidelines on the use of CBCT in dentistry. PMID:25575868

  20. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR)

    Energy Technology Data Exchange (ETDEWEB)

    Vachha, Behroze, E-mail: bvachha@partners.org [Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114 (United States); Brodoefel, Harald; Wilcox, Carol; Hackney, David B.; Moonis, Gul [Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215 (United States)

    2013-12-01

    Purpose: To compare objective and subjective image quality in neck CT images acquired at different tube current–time products (275 mA s and 340 mA s) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Materials and methods: HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current–time-product (340 mA s; n = 33) or reduced tube-current–time-product (275 mA s, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mA s and 275 mA s. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Results: Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mA s and 275 mA s. Reduction of tube current from 340 mA s to 275 mA s resulted in an increase in mean objective image noise (p = 0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mA s images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mA s CT images reconstructed with FBP (p > 0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Conclusion: Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality.

  1. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    Science.gov (United States)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  2. An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction

    Science.gov (United States)

    2016-01-01

    Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered via Locally Linear Embedding (LLE). To validate the method, two studies were performed. Numerical simulation using an abdomen phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse projection data. A real dataset was used to further validate the method. PMID:27689076

  3. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  4. Technical Note: Proximal Ordered Subsets Algorithms for TV Constrained Optimization in CT Image Reconstruction

    CERN Document Server

    Rose, Sean; Sidky, Emil Y; Pan, Xiaochuan

    2016-01-01

    This article is intended to supplement our 2015 paper in Medical Physics titled "Noise properties of CT images reconstructed by use of constrained total-variation, data-discrepancy minimization", in which ordered subsets methods were employed to perform total-variation constrained data-discrepancy minimization for image reconstruction in X-ray computed tomography. Here we provide details regarding implementation of the ordered subsets algorithms and suggestions for selection of algorithm parameters. Detailed pseudo-code is included for every algorithm implemented in the original manuscript.

  5. Four-Dimensional Computerized Tomography (4D-CT) Reconstruction Based on the Similarity Measure of Spatial Adjacent Images

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-xu; ZHOU Ling-hong; CHEN Guang-jie; LIN Sheng-qu; YE Yu-sheng; ZHANG Hai-nan

    2008-01-01

    Objective:To investigate the feasibility of a 4D-CT reconstruction method based on the similarity principle of spatial adjacent images and mutual information measure. Methods:A motor driven sinusoidal motion platform made in house was used to create one-dimensional periodical motion that was along the longitudinal axis of the CT couch. The amplitude of sinusoidal motion was set to an amplitude of ±1 cm. The period of the motion was adjustable and set to 3.5 s. Phantom objects of two eggs were placed in a Styrofoam block, which in turn were placed on the motion platform. These objects were used to simulate volumes of interest undergoing ideal periodic motion. CT data of static phantom were acquired using a multi-slice general electric (GE) LightSpeed 16-slice CT scanner in an axial mode. And the CT data of periodical motion phantom were acquired in an axial and cine-mode scan. A software program was developed by using VC++ and VTK software tools to resort the CT data and reconstruct the 4D-CT. Then all of the CT data with same phase were sorted by the program into the same series based on the similarity principle of spatial adjacent images and mutual information measure among them, and 3D reconstruction of different phase CT data were completed by using the software. Results:All of the CT data were sorted accurately into different series based on the similarity principle of spatial adjacent images and mutual information measures among them. Compared with the unsorted CT data, the motion artifacts in the 3D reconstruction of sorted CT data were reduced significantly, and all of the sorted CT series result in a 4D-CT that reflected the characteristic of the periodical motion phantom. Conclusion:Time-resolved 4D-CT reconstruction can be implemented with any general multi-slice CT scanners based on the similarity principle of spatial adjacent images and mutual information measure.The process of the 4D-CT data acquisition and reconstruction were not restricted to the

  6. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  7. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy.

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications. PMID:27032676

  8. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  9. CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    CERN Document Server

    Zhan, Ruohan

    2016-01-01

    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \\cite{Dong2013X} and that of the data-driven tight frames for image denoising \\cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \\cite{Dong2013X} especially in recovering some subtle structures in the images.

  10. Patients with problems after ACL reconstruction - what do help MRI and SPECT/CT?

    Science.gov (United States)

    Mathis, Dominic T.; Hirschmann, Michael T.; Rasch, Helmut; Falkowski, Anna; Hirschmann, Anna

    2016-01-01

    Aims and Objectives: Magnetic resonance imaging (MRI) and single-photon emission computed tomography/ computed tomography (SPECT/CT) are established diagnostic instruments for symptomatic patients after ACL reconstruction. The purpose of the study was to compare and correlate MRI and SPECT/CT findings of symptomatic patients after ACL reconstruction. Materials and Methods: In a retrospective study 30 knees of symptomatic patients complaining about pain and/or instability after ACL reconstruction were investigated using 99mTc-HDP SPECT/CT and MRI. In MRI signs of a graft tear (partial and complete) were noted. Graft signal intensity, bone bruise, cyst formation in proximal, medial and distal femoral and tibial tunnels, roof impingement, roof osteophytes, graft arthrofibrosis, knee joint effusion and synovial thickness were classified. Measurements were performed by two musculoskeletal radiologists. The agreement of the assessed MR signs were calculated using cohen’s kappa coefficient. These showed excellent (kappa >0.75) to good (kappa >0.40) reproducibility between the readings of the two observers. Quantitative grading of bone tracer uptake (BTU) for each anatomical area of a previously validated localisation scheme was done. Tunnel width was assessed in CT at three different levels for femoral and tibial tunnels. The findings in SPECT/CT and MRI were correlated (pknee regions was found in patients with MR findings of knee joint effusion, synovial thickening and bone bruise in various knee regions. A reciprocal correlation was shown for cyst formation in the central and distal area of the femoral tunnel and BTU in the femoral tunnel. MR findings such as graft continuity, graft signal intensity in the femoral and tibial tunnel, roof impingement, roof osteophytes did not show a significant correlation. A reciprocal correlation was revealed for tunnel enlargement in the proximal and central femoral tunnel and MR signal intensity in the entire intra-articular graft

  11. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Ung Bae Jeon; Jun Woo Lee; Ki Seok Choo; Chang Won Kim; Suk Kim; Tae Hong Lee; Yeon Joo Jeong; Dae Hwan Kang

    2009-01-01

    AIM: To evaluate the utility of assessing iodized oil uptake with cone-beam computed tomography (CT) in transarterial chemoembolization (TACE) for small hepatocellular carcinoma (HCC). METHODS: Cone-beam CT provided by a biplane flatpanel detector angiography suite was performed on eighteen patients (sixteen men and two women; 41-76 years; mean age, 58.9 years) directly after TACE for small HCC (26 nodules under 30 mm; mean diameter, 11.9 mm; range, 5-28 mm). The pre-procedural locations of the tumors were evaluated using triphasic multi-detector row helical computed tomography (MDCT). The tumor locations on MDCT and the iodized oil uptake by the tumors were analyzed on cone-beam CT and on spot image directly after the procedures. RESULTS: All lesions on preprocedural MDCT were detected using iodized oil uptake in the lesions on conebeam CT (sensitivity 100%, 26/26). Spot image depicted iodized oil uptake in 22 of the lesions (sensitivity 85%). The degree of iodized oil uptake was overestimated (9%, 2/22) or underestimated (14%, 3/22) on spot image in five nodules compared with that of cone-beam CT. CONCLUSION: Cone-beam CT is a useful and convenient tool for assessing the iodized oil uptake of small hepatic tumors (< 3 cm) directly after TACE.

  12. Diagnostic value of multiplanar reconstruction in CT recognition of lumbar spinal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Im, S. K.; Choi, J. H.; Kim, C. H.; Sohn, M. H.; Lim, K. Y.; Choi, K. C. [Chonbuk National University College of Medicine, Chonju (Korea, Republic of)

    1984-12-15

    The computer tomography is useful in evaluation of bony structures and adjacent soft tissues of the lumbar spine. Recently, the multiplanar reconstruction of lumbar spine of CT of significant value for the anatomical localization and for the myelographic and surgical correlation. We observed 177 cases of lumbar spine CT, who complains of spinal symptom, during the period from Dec. 1982 to Aug. 1984. The results were as follows: 1. The sex distribution of cases were 113 males and 44 females. The CT diagnosis showed 152 cases of herniated lumbar disc, 15 cases of degenerative disease, 5 cases of spine tbc., 3 cases of spine trauma and 2 cases of meningocele. 2. CT findings of herniated disc were as follows: focal protrusion of posterior disc margin and obliteration of anterior epidural fat in all cases, indentation on dural sac in 92 cases (60.5%) soft tissue mass in epidural fat in 85 cases (55.9%), compression or displacement of nerve root sheath in 22 cases(14.4%). 3. Sites of herniated lumbar disc were at L4-L5 level in 100 cases(59.1%) and at L5-S1 level in 65 cases (38.4%). Location of it were central type in 70 cases(41.1%), left-central type in 46 cases (27.2%), right-central type in 44 cases(26.0%) and lateral type in 9 cases (5.1%). 4. The sagittal reconstruction images were helpful in evaluating neural foramina, size of disc bluge into spinal canal, especially at L5-S1, and patients with spondylolisthesis. The coronal reconstruction images were the least informative, although they contributed to the evaluation of lumbar nerve roots of course, the axial CT scans were the most sensitive and specific.

  13. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    OpenAIRE

    Lauzier, Pascal Thériault; Jie TANG; Speidel, Michael A.; Chen, Guang-Hong

    2012-01-01

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a di...

  14. Determination of optimal parameters for three-dimensional reconstruction images of central airways using helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takahumi; Akata, Soichi; Matsuno, Naoto; Nagao, Takeshi; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    2002-01-01

    Three-dimensional (3D) image reconstruction of central airways using helical CT requires several user-defined parameters that exceed the requirements of conventional CT. The purpose of this study was to evaluate the optimal parameters for 3D images of central airways using helical CT. In our experimental study using a piglet immediately after sacrifice, 3D images of the central airway were evaluated with changes of 3D imaging parameters, such as detector collimation (1, 2, 3 and 6 mm), table speed (1, 2, 3 and 5 mm/sec), tube electric current (50, 100, 150, 200 and 250 mA), reconstruction interval (0.3, 0.5, 1, 2 and 3 mm), algorithm (mediastinum and lung) and interpolation method (180 deg and 360 deg). To minimize detector collimation, table speed, and reconstruction interval could provide the best 3D images of the central airway. Stair-step artifacts could also be reduced with a slow table speed. However, decreasing the collimation and table speed decreases not only the effective section thickness but also the scan coverage that can be achieved with a helical CT. For routine diagnosis, we conclude that optimal parameters for 3D images of the central airway are to minimize the table speed necessary to cover the volume of interest and to set detector collimation to 1/2 of the table speed. The reconstruction intervals should also be selected at up to 1/2 of the detector collimation, but with trade-offs of increased image processing time, data storage requirements, and physician time for image review. Regarding to tube electric current, 200 mA or more was necessary. Pixel noise increased with the algorithm for the lung. The 180 deg interpolation is better than 360 deg interpolation due to thin effective section thickness. (author)

  15. Novel iterative reconstruction method for optimal dose usage in redundant CT - acquisitions

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Allmendinger, T.; Kappler, S.; Sunnegardh, J.; Stierstorfer, K.; Flohr, T.

    2014-03-01

    In CT imaging, a variety of applications exist where reconstructions are SNR and/or resolution limited. However, if the measured data provide redundant information, composite image data with high SNR can be computed. Generally, these composite image volumes will compromise spectral information and/or spatial resolution and/or temporal resolution. This brings us to the idea of transferring the high SNR of the composite image data to low SNR (but high resolution) `source' image data. It was shown that the SNR of CT image data can be improved using iterative reconstruction [1] .We present a novel iterative reconstruction method enabling optimal dose usage of redundant CT measurements of the same body region. The generalized update equation is formulated in image space without further referring to raw data after initial reconstruction of source and composite image data. The update equation consists of a linear combination of the previous update, a correction term constrained by the source data, and a regularization prior initialized by the composite data. The efficiency of the method is demonstrated for different applications: (i) Spectral imaging: we have analysed material decomposition data from dual energy data of our photon counting prototype scanner: the material images can be significantly improved transferring the good noise statistics of the 20 keV threshold image data to each of the material images. (ii) Multi-phase liver imaging: Reconstructions of multi-phase liver data can be optimized by utilizing the noise statistics of combined data from all measured phases (iii) Helical reconstruction with optimized temporal resolution: splitting up reconstruction of redundant helical acquisition data into a short scan reconstruction with Tam window optimizes the temporal resolution The reconstruction of full helical data is then used to optimize the SNR. (iv) Cardiac imaging: the optimal phase image (`best phase') can be improved by transferring all applied over

  16. The impact of iterative reconstruction on image quality and radiation dose in thoracic and abdominal CT

    International Nuclear Information System (INIS)

    Purpose: To compare the image quality and radiation dose between iterative reconstruction (IR) and standard filtered back projection (FBP) in CT of the chest and abdomen. Materials and methods: Thoracic CT was performed in 50 patients (38 male, 12 female; mean age, 51 ± 23 yrs; range, 7–85 yrs) and abdominal CT was performed in 50 patients (36 male, 14 female; mean age, 62 ± 13 yrs; range, 20–85 yrs), using IR as well as FBP for image reconstruction. Image noise was quantitatively assessed measuring standard deviation of Hounsfield Units (HU) in defined regions of interest in subcutaneous tissue. Scan length and Computed Tomography Dose Index (CTDI) were documented. Scan length, image noise, and CTDI of both reconstruction techniques were compared by using paired tests according to the nature of variables (McNemar test or Student t test). Overall subjective image quality and subjective image noise were compared. Results: There was no significant difference between the protocols in terms of mean scan length (p > 0.05). Image noise was statistically significantly higher with IR, although the difference was clinically insignificant (13.3 ± 3.0 HU and 13.6 ± 3.0 HU for thoracic CT and 11.5 ± 3.1 HU and 11.7 ± 3.0 HU for abdominal CT, p < 0.05). There was no significant difference in overall subjective image quality and subjective image noise. The radiation dose was significantly lower with IR. Volume-weighted CTDI decreased by 64% (6.2 ± 2.5 mGy versus 17.1 ± 9.5 mGy, p < 0.001) for thoracic CT and by 58% (7.8 ± 4.6 mGy versus 18.5 ± 8.6 mGy, p < 0.001) for abdominal CT. Conclusions: Our study shows that in thoracic and abdominal CT with IR, there is no clinically significant impact on image quality, yet a significant radiation dose reduction compared to FBP

  17. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  18. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  19. Noise performance of statistical model based iterative reconstruction in clinical CT systems

    Science.gov (United States)

    Li, Ke; Tang, Jie; Chen, Guang-Hong

    2014-03-01

    The statistical model based iterative reconstruction (MBIR) method has been introduced to clinical CT systems. Due to the nonlinearity of this method, the noise characteristics of MBIR are expected to differ from those of filtered backprojection (FBP). This paper reports an experimental characterization of the noise performance of MBIR equipped on several state-of-the-art clinical CT scanners at our institution. The thoracic section of an anthropomorphic phantom was scanned 50 times to generate image ensembles for noise analysis. Noise power spectra (NPS) and noise standard deviation maps were assessed locally at different anatomical locations. It was found that MBIR lead to significant reduction in noise magnitude and improvement in noise spatial uniformity when compared with FBP. Meanwhile, MBIR shifted the NPS of the reconstructed CT images towards lower frequencies along both the axial and the z frequency axes. This effect was confirmed by a relaxed slice thicknesstradeoff relationship shown in our experimental data. The unique noise characteristics of MBIR imply that extra effort must be made to optimize CT scanning parameters for MBIR to maximize its potential clinical benefits.

  20. 3D cardiac motion reconstruction from CT data and tagged MRI.

    Science.gov (United States)

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  1. Dual-source multi-energy CT with triple or quadruple x-ray beams

    Science.gov (United States)

    Yu, Lifeng; Li, Zhoubo; Leng, Shuai; McCollough, Cynthia H.

    2016-03-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using both tri-beam and quadruple-beam configurations. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  2. Reducing radiation dose in adult head CT using iterative reconstruction. A clinical study in 177 patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, D. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Kahn, J.; Huizing, L.; Wiener, E.; Grupp, U.; Boening, G.; Streitparth, F. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Ghadjar, P. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Renz, D.M. [Jena University Hospital (Germany). Dept. of Radiology

    2016-02-15

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n=71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n=86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n=74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n=20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n=20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Conclusion: Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up.

  3. Reducing radiation dose in adult head CT using iterative reconstruction. A clinical study in 177 patients

    International Nuclear Information System (INIS)

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n=71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n=86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n=74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n=20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n=20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Conclusion: Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up.

  4. High-fidelity artifact correction for cone-beam CT imaging of the brain

    International Nuclear Information System (INIS)

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30–50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ∼4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ∼3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ∼7 to 49.7 HU, in good

  5. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  6. A novel iterative reconstruction algorithm allows reduced dose multidetector-row CT imaging of mechanical prosthetic heart valves

    OpenAIRE

    Habets, Jesse; Symersky, Petr; de Mol, Bas A. J. M.; Willem P Th M Mali; Leiner, Tim; Budde, Ricardo P.J.

    2011-01-01

    Multidetector-row CT is promising for prosthetic heart valve (PHV) assessment but retrospectively ECG-gated scanning has a considerable radiation dose. Recently introduced iterative reconstruction (IR) algorithms may enable radiation dose reduction with retained image quality. Furthermore, PHV image quality on the CT scan mainly depends on extent of PHV artifacts. IR may decrease streak artifacts. We compared image noise and artifact volumes in scans of mechanical PHVs reconstructed with conv...

  7. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation

    OpenAIRE

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teet...

  8. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    International Nuclear Information System (INIS)

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption

  9. 3D-guided CT reconstruction using time-of-flight camera

    Science.gov (United States)

    Ismail, Mahmoud; Taguchi, Katsuyuki; Xu, Jingyan; Tsui, Benjamin M. W.; Boctor, Emad M.

    2011-03-01

    We propose the use of a time-of-flight (TOF) camera to obtain the patient's body contour in 3D guided imaging reconstruction scheme in CT and C-arm imaging systems with truncated projection. In addition to pixel intensity, a TOF camera provides the 3D coordinates of each point in the captured scene with respect to the camera coordinates. Information from the TOF camera was used to obtain a digitized surface of the patient's body. The digitization points are transformed to X-Ray detector coordinates by registering the two coordinate systems. A set of points corresponding to the slice of interest are segmented to form a 2D contour of the body surface. Radon transform is applied to the contour to generate the 'trust region' for the projection data. The generated 'trust region' is integrated as an input to augment the projection data. It is used to estimate the truncated, unmeasured projections using linear interpolation. Finally the image is reconstructed using the combination of the estimated and the measured projection data. The proposed method is evaluated using a physical phantom. Projection data for the phantom were obtained using a C-arm system. Significant improvement in the reconstructed image quality near the truncation edges was observed using the proposed method as compared to that without truncation correction. This work shows that the proposed 3D guided CT image reconstruction using a TOF camera represents a feasible solution to the projection data truncation problem.

  10. Optimisation of reconstruction for the registration of CT liver perfusion sequences

    Science.gov (United States)

    Romain, B.; Letort, V.; Lucidarme, O.; d'Alché-Buc, F.; Rouet, L.

    2012-02-01

    Objective. CT abdominal perfusion is frequently used to evaluate tumor evolution when patients are undergoing antiangiogenic therapy. Parameters depending on longer-term dynamics of the diffusion of the contrast medium (e. g. permeability) could help assessing the treatment efficacy. To this end, dynamic image sequences are obtained while patients breath freely. Prior to any analysis, one needs to compensate the respiratory motion. The goal of our study is to optimize the CT reconstruction parameters (filter of reconstruction, thickness of image volumes) for our registration method. We also aim at proposing relevant criteria allowing to quantify the registration quality. Methods. Registration is computed in 4 steps: z-global rigid registration, local refinements with multiresolution blockmatching, regularization and warping. Two new criteria are defined to evaluate the quality of registration: one for spatial evaluation and the other for temporal evaluation. Results. The two measures decrease after registration (58% and 10% average decrease for the best reconstruction parameters for the spatial and temporal criteria respectively) which is consistent with visual inspection of the images. They are therefore used to determine the best combination of reconstruction parameters.

  11. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 paffected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  12. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  13. Asymmetric wavelet reconstruction of particle hologram with an elliptical Gaussian beam illumination.

    Science.gov (United States)

    Wu, Xuecheng; Wu, Yingchun; Zhou, Binwu; Wang, Zhihua; Gao, Xiang; Gréhan, Gérard; Cen, Kefa

    2013-07-20

    We propose an asymmetric wavelet method to reconstruct a particle from a hologram illuminated by an elliptical, astigmatic Gaussian beam. The particle can be reconstructed by a convolution of the asymmetric wavelet and hologram. The reconstructed images have the same size and resolution as the recorded hologram; therefore, the reconstructed 3D field is convenient for automatic particle locating and sizing. The asymmetric wavelet method is validated by both simulated holograms of spherical particles and experimental holograms of opaque, nonspherical coal particles.

  14. Cone-beam CT with three-dimensional reconstruction techniques versus conventional digital subtraction angiography in transcatheter arterial chemoembolization of hepatocellular carcinoma%锥形束CT联合三维重建技术与传统的血管造影在肝动脉化疗栓塞术中的比较研究

    Institute of Scientific and Technical Information of China (English)

    高龙; 邵海波; 马腾闯; 倪尔会; 吴文颖; 苏洪英; 徐克

    2015-01-01

    Objective To evaluate the efficacy of cone-beam computed tomography (CBCT) with three-dimensional (3D) reconstruction techniques in transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). Methods 16 patients with 35 HCC were randomly selected to undergo CBCT angiography with 3D-roadmap and multi-planar reconstruction (MPR) and no conventional digital subtraction angiography (DSA) whereas 20 patients with 44 HCC underwent DSAduring super-selective TACE..The two methods for guiding TACE were retrospectively compared by follow-up contrast-enhanced CT at 1 month. Results TACE was successful in all patients without serious complications. .3D CBCT was significantly better at demonstrating the feeding arteries (100%) and HCC lesions (97.14%) with higher success rate of super-selective catheterization (93.75%) than DSA (75.0%, 70.45%, 65.0%). The amount of contrast agent required was not significantly lower with CBCT (30.38 mL) than that of DSA (34.05 mL). The duration of TACE with CBCT (43.88 minutes) was significantly (P<0.001) longer with significantly (P<0.001) higher radiation exposure (241 mGy) than those with DSA (33.55 minutes,155mGy). Lipiodol deposition of CBCT (91.43%) was significantly (P=0.007) higher than that of DSA (66%). Conclusion CBCT with 3D reconstruction techniques is superior to DSA for demonstrating the feeding artery and lesions,.guiding catheterization and evaluating effect of embolization in TACE of HCC with longer procedure time and radiation exposure.%目的:探讨在肝动脉化疗栓塞术(TACE)中联合应用锥形束CT(CBCT)与三维重建技术的价值,同时与传统的血管造影(DSA )作比较。方法收集我院36例接受超选择TACE的原发性肝癌患者。16例患者(35处病灶)在术中行CBCT。运用三维血管造影、三维路图和多平面重建技术来指导手术并评价栓塞效果。其余20例患者(44处病灶)术中行传统的血管造影。分别评价和

  15. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Bai, T [UT Southwestern Medical Center, Dallas, TX (United States); Xi' an Jiaotong University, Xi' an (China); Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research

  16. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  17. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    International Nuclear Information System (INIS)

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  18. Value of three-dimensional reconstructions in pancreatic carcinoma using multidetector CT: Initial results

    Institute of Scientific and Technical Information of China (English)

    Miriam Klauβ; Max Sch(o)binger; Ivo Wolf; Jens Werner; Hans-Peter Meinzer; Hans-Ulrich Kauczor; Lars Grenacher

    2009-01-01

    AIM: To evaluate the use of three-dimensional imaging of pancreatic carcinoma using multidetector computed tomography (CT) in a prospective study. METHODS: Ten patients with suspected pancreatic tumors were examined prospectively using multidetector CT (Somatom Sensation 16, Siemens, Erlangen, Germany). The images were evaluated for the presence of a pancreatic carcinoma and invasion of the peripancreatic vessels and surrounding organs. Using the isotropic CT data sets, a three-dimensional image was created with automatic vascular analysis and semiautomatic segmentation of the organs and pancreatic tumor by a radiologist. The CT examinations and the three-dimensional images were presented to the surgeon directly before and during the patient's operation using the Medical Imaging Interaction Toolkit-based software "ReLiver". Immediately after surgery, the value of the two images was judged by the surgeon. The operation and the histological results served as the gold standard. RESULTS: Nine patients had a pancreatic carcinoma (all pT3), and one patient had a serous cystadenoma. One tumor infiltrated the superior mesenteric vein. The infiltration was correctly evaluated. All carcinomas were resectable. In comparison to the CT image with axial and coronal reconstructions, the three-dimensional image was judged by the surgeons as better for operation planning and consistently described as useful. CONCLUSION: A 3D-image of the pancreas represents an invaluable aid to the surgeon. However, the 3D-software must be further developed in order to be integrated into daily clinical routine.

  19. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    Directory of Open Access Journals (Sweden)

    Bence Tamas Szabo

    2012-01-01

    Full Text Available The aim of this study was to compare three different cone-beam CT (CBCT instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL. After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 root canals were selected and analysed by three observers at RL and following cross sectional parameters were determined: area of the lumen, major and minor diameters, aspect ratio and mean thickness. Results suggest that only high resolution CBCT instruments allow dentists detecting the full length of the root canal.

  20. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  1. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  2. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  3. Cone Beam Breast CT with a Flat Panel Detector- Simulation, Implementation and Demonstration.

    Science.gov (United States)

    Shaw, Chris; Chen, Lingyun; Altunbas, Mastafa; Tu, Shuju; Wang, Tian-Peng; Lai, Chao-Jen; Cheenu Kappadath, S; Meng, Yang; Liu, Xinming

    2005-01-01

    This paper describes our experiences in the simulation, implementation and application of a flat panel detector based cone beam computed tomography (CT) imaging system for dedicated 3-D breast imaging. In our simulation study, the breast was analytically modeled as a cylinder of breast tissue loosely molded into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients for various types of breast tissue, soft tissue masses and calcifications were estimated for various kVp's to generate simulated image signals. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the x-ray kVp/filtration used, transmittance through the phantom, detective quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to compute the quantum noise level on a pixel-by-pixel basis for various dose levels at the isocenter. This estimated noise level was then used with a random number generator to generate and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulate detector blurring. Additional 2-D Gaussian filtering was applied to the projection images and tested for improving the detection of soft tissue masses and calcifications in the reconstructed images. Reconstruction was performed using the Feldkamp filtered backprojection algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. PMID:17281227

  4. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  5. Beam hardening and motion artifacts in cardiac CT: evaluation and iterative correction method

    Science.gov (United States)

    Shen, Zeyang; Lee, Okkyun; Taguchi, Katsuyuki

    2016-03-01

    For myocardial perfusion CT exams, beam hardening (BH) artifacts may degrade the accuracy of myocardial perfusion defect detection. Meanwhile, cardiac motion may make BH process inconsistent, which makes conventional BH correction (BHC) methods ineffective. The aims of this study were to assess the severity of BH artifacts and motion artifacts and propose a projection-based iterative BHC method which has a potential to handle the motion-induced inconsistency better than conventional methods. In this study, four sets of forward projection data were first acquired using both cylindrical phantoms and cardiac images as objects: (1) with monochromatic x-rays without motion; (2) with polychromatic x-rays without motion; (3) with monochromatic x-rays with motion; and (4) with polychromatic x-rays with motion. From each dataset, images were reconstructed using filtered back projection; for datasets 2 and 4, one of the following BHC methods was also performed: (A) no BHC; (B) BHC that concerns water only; and (C) BHC that takes both water and iodine into account, which is an iterative method we developed in this work. Biases of images were quantified by the mean absolute difference (MAD). The MAD of images with BH artifacts alone (dataset 2, without BHC) was comparable or larger than that of images with motion artifacts alone (dataset 3): In the study of cardiac image, BH artifacts account for over 80% of the total artifacts. The use of BHC was effective: with dataset 4, MAD values were 170 HU with no BHC, 54 HU with water BHC, and 42 HU with the proposed BHC. Qualitative improvements in image quality were also noticeable in reconstructed images.

  6. Image characteristics of cone beam computed tomography using a CT performance phantom

    International Nuclear Information System (INIS)

    To evaluate the characteristics of (widely used) cone beam computed tomography (CBCT) images. Images were obtained with CT performance phantoms (The American Association of Physicists in Medicine; AAPM). CT phantom as the destination by using PSR 9000N TM dental CT system (Asahi Roentgen Ind. Co., Ltd., Japan) and i-CAT CBCT (Imaging Science International Inc., USA) that have different kinds of detectors and field of view, and compared these images with the CT number for linear attenuation, contrast resolution, and spatial resolution. CT number of both PSR 9000N TM dental CT system and i-CAT CBCT did not conform to the base value of CT performance phantom. The contrast of i-CAT CBCT is higher than that of PSR 9000N TM dental CT system. Both contrasts were increased according to thickness of cross section. Spatial resolution and shapes of reappearance was possible up to 0.6 mm in PSR 9000N TM dental CT system and up to 1.0 mm in i-CAT CBCT. Low contrast resolution in region of low contrast sensitivity revealed low level at PSR 9000N TM dental CT system and i-CAT CBCT. CBCT images revealed higher spatial resolution, however, contrast resolution in region of low contrast sensitivity was the inferiority of image characteristics

  7. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Directory of Open Access Journals (Sweden)

    Ciprian Valerian LUCAN

    2010-12-01

    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  8. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior

    Science.gov (United States)

    Ritschl, Ludwig; Sawall, Stefan; Knaup, Michael; Hess, Andreas; Kachelrieß, Marc

    2012-03-01

    Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.

  9. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, Georg; Sterzer, Sergej; Kahraman, Deniz; Dietlein, Markus; Drzezga, Alexander; Kobe, Carsten [University Hospital of Cologne, Department of Nuclear Medicine, Cologne (Germany); Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Scheffler, Matthias; Wolf, Juergen [University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology Cologne Bonn, Cologne (Germany)

    2016-02-15

    In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT. (orig.)

  10. Portal venous calcifications 20 years after portosystemic shunting Demonstration by spiral CT with CT angiography and 3D reconstructions

    International Nuclear Information System (INIS)

    Background: Evaluation of the value of spiral computed tomography (SCT), and postprocessing procedures in patients with extensive portal venous calcifications 20 years after portosystemic shunting was performed. Methods: In two patients spiral CT (SCT) examinations of the abdomen (slice thickness 3 mm, table feed 6 mm/s) were performed prior and after application of 150 ml of contrast material administered at a flow rate of 4 ml/s. Axial images were reconstructed at 2 mm increments for postprocessing procedures and 6 mm increments for axial source images. Postprocessing was performed with a maximum intensity projection (MIP) and shaded surface display (SSD) imaging program. Results: In both cases preoperative plain film radiography of the chest and abdomen showed large curvilinear calcifications located at the upper quadrant of the abdomen. The calcifications were directed along the expected axis and position of the portal vein and the portosystemic venous anastomosis. Axial CT slices and CTA showed that the calcifications were located in the vessel wall and that the portal vein lumen as well as the portosystemic venous anastomosis were patent. Conclusion: Long-standing portal hypertension is capable of causing portal venous calcifications due to mechanical stress to the vessel wall even years after performing portosystemic shunting. Typically, the calcifications are directed along the expected axis and position of the portal vein. SCT of the portal venous system is a reliable method to differentiate between calcifications in a thrombus or in the vessel wall, which may have therapeutic significance

  11. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    Science.gov (United States)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  12. Cardiovascular CT angiography in neonates and children : Image quality and potential for radiation dose reduction with iterative image reconstruction techniques

    NARCIS (Netherlands)

    Tricarico, Francesco; Hlavacek, Anthony M.; Schoepf, U. Joseph; Ebersberger, Ullrich; Nance, John W.; Vliegenthart, Rozemarijn; Cho, Young Jun; Spears, J. Reid; Secchi, Francesco; Savino, Giancarlo; Marano, Riccardo; Schoenberg, Stefan O.; Bonomo, Lorenzo; Apfaltrer, Paul

    2013-01-01

    To evaluate image quality (IQ) of low-radiation-dose paediatric cardiovascular CT angiography (CTA), comparing iterative reconstruction in image space (IRIS) and sinogram-affirmed iterative reconstruction (SAFIRE) with filtered back-projection (FBP) and estimate the potential for further dose reduct

  13. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  14. Self-reconstruction of diffraction-free and accelerating laser beams in scattering media

    International Nuclear Information System (INIS)

    We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles. -- Highlights: ► We experimentally investigate propagation of shaped laser beams in turbid media. ► Peak intensity of Bessel and Airy beams decrease slower with increasing scatterer. ► Shaped beam profiles deteriorate faster, as compared to reference Gaussian beams. ► Shaped beam profiles can enhance applications of lasers inscattering media.

  15. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    International Nuclear Information System (INIS)

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, PC. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and

  16. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun [Philips Healthcare, Cleveland, Ohio 44143 (United States); Wilson, David L., E-mail: dlw@case.edu [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106 (United States)

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  17. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, Nicola; Imperatori, Andrea; Arlant, Veronica; Dominioni, Lorenzo [Insubria University, Center for Thoracic Surgery, Varese (Italy); Floridi, Chiara; Fontana, Federico; Ierardi, Anna Maria; Mangini, Monica; De Marchi, Giuseppe; Fugazzola, Carlo; Carrafiello, Gianpaolo [Insubria University, Radiology Department, Varese (Italy); Novario, Raffaele [Insubria University, Medical Physics Department, Varese (Italy)

    2016-02-15

    To compare the diagnostic performance of cone-beam CT (CBCT)-guided and CT fluoroscopy (fluoro-CT)-guided technique for transthoracic needle biopsy (TNB) of lung nodules. The hospital records of 319 consecutive patients undergoing 324 TNBs of lung nodules in a single radiology unit in 2009-2013 were retrospectively evaluated. The newly introduced CBCT technology was used to biopsy 123 nodules; 201 nodules were biopsied by conventional fluoro-CT-guided technique. We assessed the performance of the two biopsy systems for diagnosis of malignancy and the radiation exposure. Nodules biopsied by CBCT-guided and by fluoro-CT-guided technique had similar characteristics: size, 20 ± 6.5 mm (mean ± standard deviation) vs. 20 ± 6.8 mm (p = 0.845); depth from pleura, 15 ± 15 mm vs. 15 ± 16 mm (p = 0.595); malignant, 60 % vs. 66 % (p = 0.378). After a learning period, the newly introduced CBCT-guided biopsy system and the conventional fluoro-CT-guided system showed similar sensitivity (95 % and 92 %), specificity (100 % and 100 %), accuracy for diagnosis of malignancy (96 % and 94 %), and delivered non-significantly different median effective doses [11.1 mSv (95 % CI 8.9-16.0) vs. 14.5 mSv (95 % CI 9.5-18.1); p = 0.330]. The CBCT-guided and fluoro-CT-guided systems for lung nodule biopsy are similar in terms of diagnostic performance and effective dose, and may be alternatively used to optimize the available technological resources. (orig.)

  18. Reduced-dose abdominopelvic CT using hybrid iterative reconstruction in suspected left-sided colonic diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Laqmani, Azien; Dulz, Simon; Behzadi, Cyrus; Schmidt-Holtz, Jakob; Wassenberg, Felicia; Adam, Gerhard; Regier, Marc [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Veldhoen, Simon [University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Derlin, Thorsten [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Sehner, Susanne [University Medical Center Hamburg-Eppendorf, Department of Medical Biometry and Epidemiology, Hamburg (Germany); Nagel, Hans-Dieter [Scientific and Application-oriented Studies and Consulting in Radiology (SASCRAD), Buchholz (Germany)

    2016-01-15

    To assess the effect of hybrid iterative reconstruction (HIR) and filtered back projection (FBP) on abdominopelvic CT with reduced-dose (RD-APCT) in the evaluation of acute left-sided colonic diverticulitis (ALCD). Twenty-five consecutive patients with suspected ALCD who underwent RD-APCT (mean CTDIvol 11.2 ± 4.2 mGy) were enrolled in this study. Raw data were reconstructed using FBP and two increasing HIR levels, L4 and L6. Two radiologists assessed image quality, image noise and reviewer confidence in interpreting findings of ALCD, including wall thickening, pericolic fat inflammation, pericolic abscess, and contained or free extraluminal air. Objective image noise (OIN) was measured. OIN was reduced up to 54 % with HIR compared to FBP. Subjective image quality of HIR images was superior to FBP; subjective image noise was reduced. The detection rate of extraluminal air was higher with HIR L6. Reviewer confidence in interpreting CT findings of ALCD significantly improved with application of HIR. RD-APCT with HIR offers superior image quality and lower image noise compared to FBP, allowing a high level of reviewer confidence in interpreting CT findings in ALCD. HIR facilitates detection of ALCD findings that may be missed with the FBP algorithm. (orig.)

  19. Corrected knife-edge-based reconstruction of tightly focused higher order beams

    CERN Document Server

    Orlov, S; Marchenko, P; Banzer, P; Leuchs, G

    2016-01-01

    The knife-edge method is an established technique for profiling of even tightly focused light beams. However the straightforward implementation of this method fails if the materials and geometry of the knife-edges are not chosen carefully or in particular if knife-edges are used that are made of pure materials. In these cases artifacts are introduced in the shape and position of the reconstructed beam profile due to the interaction of the light beam under study with the knife. Hence, corrections to the standard knife-edge evaluation method are required. Here we investigate the knife-edge method for highly focused radially and azimuthally polarized beams and their linearly polarized constituents. We introduce relative shifts for those constituents and report on the consistency with the case of a linearly polarized Gaussian beam. An adapted knife-edge reconstruction technique is presented and proof-of-concept tests demonstrating the reconstruction of beam profiles are shown.

  20. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  1. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  2. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy

    OpenAIRE

    Marchant, T. E.; Moore, C. J.; Rowbottom, C G; Mackay, R. I.; Williams, P.C.

    2008-01-01

    Cone-beam CT (CBCT) images have recently become an established modality for treatment verification in radiotherapy. However, identification of soft-tissue structures and the calculation of dose distributions based on CBCT images is often obstructed by image artefacts and poor consistency of density calibration. A robust method for voxel-by-voxel enhancement of CBCT images using a priori knowledge from the planning CT scan has been developed and implemented. CBCT scans were enhanced using a lo...

  3. ECG-gated HYPR reconstruction for undersampled CT myocardial perfusion imaging

    Science.gov (United States)

    Speidel, Michael A.; Van Lysel, Michael S.; Reeder, Scott B.; Supanich, Mark; Nett, Brian E.; Zambelli, Joseph; Chang, Su Min; Hsieh, Jiang; Chen, Guang-Hong; Mistretta, Charles A.

    2007-03-01

    In this study we develop a novel ECG-gated method of HYPR (HighlY constrained backPRojection) CT reconstruction for low-dose myocardial perfusion imaging and present its first application in a porcine model. HYPR is a method of reconstructing time-resolved images from view-undersampled projection data. Scanning and reconstruction techniques were explored using x-ray projections from a 50 sec contrast-enhanced axial scan of a 47 kg swine on a 64-slice MDCT system. Scans were generated with view undersampling factors from 2 to 10. A HYPR reconstruction algorithm was developed in which a fully-sampled composite image is generated from views collected from multiple cardiac cycles within a diastolic window. A time frame image for a heartbeat was produced by modifying the composite with projections from the cycle of interest. Heart rate variations were handled by automatically selecting cardiac window size and number of cycles per composite within defined limits. Cardiac window size averaged 35% of the R-R interval for 2x undersampling and increased to 64% R-R using 10x undersampling. The selected window size and cycles per composite was sensitive to synchrony between heart rate, gantry rate, and the view undersampling pattern. Temporal dynamics and perfusion metrics measured in conventional short-scan (FBP) images were well-reproduced in the undersampled HYPR time series. Mean transit times determined from HYPR myocardial time-density curves agreed to within 8% with the FBP results. The results indicate potential for an order of magnitude reduction in dose requirement per image in cardiac perfusion CT via undersampled scanning and ECG-gated HYPR reconstruction.

  4. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    Energy Technology Data Exchange (ETDEWEB)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Radiology, Jerusalem (Israel); Katz, Ran [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Urology, Jerusalem (Israel); Salama, Shaden [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Emergency Medicine, Jerusalem (Israel)

    2010-05-15

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: {<=}5 mm, 6-9 mm and {>=}10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  5. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method.

  6. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    Science.gov (United States)

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation. PMID:26462240

  7. Sparse-view image reconstruction in inverse-geometry CT (IGCT) for fast, low-dose, volumetric dental X-ray imaging

    Science.gov (United States)

    Hong, D. K.; Cho, H. S.; Oh, J. E.; Je, U. K.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Park, Y. O.; Choi, S. I.; Koo, Y. S.; Cho, H. M.

    2012-12-01

    As a new direction for computed tomography (CT) imaging, inverse-geometry CT (IGCT) has been recently introduced and is intended to overcome limitations in conventional cone-beam CT (CBCT) such as the cone-beam artifacts, imaging dose, temporal resolution, scatter, cost, and so on. While the CBCT geometry consists of X-rays emanating from a small focal spot and collimated toward a larger detector, the IGCT geometry employs a large-area scanned source array with the Xray beams collimated toward a smaller-area detector. In this research, we explored an effective IGCT reconstruction algorithm based on the total-variation (TV) minimization method and studied the feasibility of the IGCT geometry for potential applications to fast, low-dose volumetric dental X-ray imaging. We implemented the algorithm, performed systematic simulation works, and evaluated the imaging characteristics quantitatively. Although much engineering and validation works are required to achieve clinical implementation, our preliminary results have demonstrated a potential for improved volumetric imaging with reduced dose.

  8. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  9. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  10. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  11. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  12. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  13. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas;

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  14. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    Science.gov (United States)

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. PMID:17420106

  15. Compressive sampling based interior reconstruction for dynamic carbon nanotube micro-CT.

    Science.gov (United States)

    Yu, Hengyong; Cao, Guohua; Burk, Laurel; Lee, Yueh; Lu, Jianping; Santago, Pete; Zhou, Otto; Wang, Ge

    2009-01-01

    In the computed tomography (CT) field, one recent invention is the so-called carbon nanotube (CNT) based field emission x-ray technology. On the other hand, compressive sampling (CS) based interior tomography is a new innovation. Combining the strengths of these two novel subjects, we apply the interior tomography technique to local mouse cardiac imaging using respiration and cardiac gating with a CNT based micro-CT scanner. The major features of our method are: (1) it does not need exact prior knowledge inside an ROI; and (2) two orthogonal scout projections are employed to regularize the reconstruction. Both numerical simulations and in vivo mouse studies are performed to demonstrate the feasibility of our methodology. PMID:19923686

  16. Dose-reduced CT with model-based iterative reconstruction in evaluations of hepatic steatosis: How low can we go?

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, Koichiro, E-mail: koyasaka@gmail.com [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Katsura, Masaki [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Akahane, Masaaki [NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625 (Japan); Sato, Jiro [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Matsuda, Izuru [Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8510 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2014-07-15

    Purpose: To determine whether dose-reduced CT with model-based iterative image reconstruction (MBIR) is a useful tool with which to diagnose hepatic steatosis. Materials and methods: This prospective clinical study approved by our Institutional Review Board included 103 (67 men and 36 women; mean age, 64.3 years) patients who provided written informed consent to undergo unenhanced CT. Images of reference-dose CT (RDCT) with filtered back projection (R-FBP) and low- and ultralow-dose CT (dose-length product; 24 and 9% of that of RDCT) with MBIR (L-MBIR and UL-MBIR) were reconstructed. Mean CT numbers of liver (CT[L]) and spleen (CT[S]), and quotient (CT[L/S]) of CT[L] and CT[S] were calculated from selected regions of interest. Bias and limits of agreement (LOA) of CT[L] and CT[L/S] in L-MBIR and UL-MBIR (vs. R-FBP) were assessed using Bland–Altman analyses. Diagnostic methods for hepatic steatosis of CT[L] < 48 Hounsfield units (HU) and CT[L/S] < 1.1 were applied to L-MBIR and UL-MBIR using R-FBP as the reference standard. Results: Bias was larger for CT[L] in UL-MBIR than in L-MBIR (−3.18 HU vs. −1.73 HU). The LOA of CT[L/S] was larger for UL-MBIR than for L-MBIR (±0.425 vs. ±0.245) and outliers were identified in CT[L/S] of UL-MBIR. Accuracy (0.92–0.95) and the area under the receiver operating characteristics curve (0.976–0.992) were high for each method, but some were slightly lower in UL-MBIR than L-MBIR. Conclusion: Dose-reduced CT reconstructed with MBIR is applicable to diagnose hepatic steatosis, however, a low dose of radiation might be preferable.

  17. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM

    International Nuclear Information System (INIS)

    Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone. Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. The most important

  18. Low-dose CT of the lung: potential value of iterative reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, Stephan; Winklehner, Anna; Karlo, Christoph; Goetti, Robert; Frauenfelder, Thomas; Alkadhi, Hatem [University Hospital Zurich, Institute for Diagnostic and Interventional Radiology, Zurich (Switzerland); Flohr, Thomas [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Russi, Erich W. [University Hospital Zurich, Pulmonary Division, Department of Internal Medicine, Zurich (Switzerland)

    2012-12-15

    To prospectively assess the impact of sinogram-affirmed iterative reconstruction (SAFIRE) on image quality of nonenhanced low-dose lung CT as compared to filtered back projection (FBP). Nonenhanced low-dose chest CT (tube current-time product: 30 mAs) was performed on 30 patients at 100 kVp and on 30 patients at 80 kVp. Images were reconstructed with FBP and SAFIRE. Two blinded, independent readers measured image noise; two readers assessed image quality of normal anatomic lung structures on a five-point scale. Radiation dose parameters were recorded. Image noise in datasets reconstructed with FBP (57.4 {+-} 15.9) was significantly higher than with SAFIRE (31.7 {+-} 9.8, P < 0.001). Image quality was significantly superior with SAFIRE than with FBP (P < 0.01), without significant difference between FBP at 100 kVp and SAFIRE at 80 kVp (P = 0.68). Diagnostic image quality was present with FBP in 96% of images at 100 kVp and 88% at 80 kVp, and with SAFIRE in 100% at 100 kVp and 98% at 80 kVp. There were significantly more datasets with diagnostic image quality with SAFIRE than with FBP (P < 0.01). Mean CTDI{sub vol} and effective doses were 1.5 {+-} 0.7 mGy.cm and 0.7 {+-} 0.2 mSv at 100 kVp, and 1.4 {+-} 2.8 mGy.cm and 0.5 {+-} 0.2 mSv at 80 kVp (P < 0.001, both). Use of SAFIRE in low-dose lung CT reduces noise, improves image quality, and renders more studies diagnostic as compared to FBP. (orig.)

  19. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Roquet, Florian, E-mail: florianroquet@hotmail.com [Gustave Roussy, Biostatistics Department (France); Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Dreuil, Serge, E-mail: serge.dreuil@gustaveroussy.fr [Gustave Roussy, Medical Physics Department (France); Hakimé, Antoine, E-mail: thakime@yahoo.com; Teriitehau, Christophe, E-mail: cteriitehau@me.com [Gustave Roussy, Interventional Radiology Department (France); Auperin, Anne, E-mail: anne.auperin@gustaveroussy.fr [Gustave Roussy, Biostatistics Department (France); Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, Frederic, E-mail: frederic.deschamps@gustaveroussy.fr [Gustave Roussy, Interventional Radiology Department (France)

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  20. CT colonography at low tube potential: using iterative reconstruction to decrease noise

    International Nuclear Information System (INIS)

    Aim: To determine the level of iterative reconstruction required to reduce increased image noise associated with low tube potential computed tomography (CT). Materials and methods: Fifty patients underwent CT colonography with a supine scan at 120 kVp and a prone scan at 100 kVp with other scan parameters unchanged. Both scans were reconstructed with filtered back projection (FBP) and increasing levels of adaptive statistical iterative reconstruction (ASiR) at 30%, 60%, and 90%. Mean noise, soft tissue and tagged fluid attenuation, contrast, and contrast-to-noise ratio (CNR) were collected from reconstructions at both 120 and 100 kVp and compared using a generalised linear mixed model. Results: Decreasing tube potential from 120 to 100 kVp significantly increased image noise by 30–34% and tagged fluid attenuation by 120 HU at all ASiR levels (p<0.0001, all measures). Increasing ASiR from 0% (FBP) to 30%, 60%, and 90% resulted in significant decreases in noise and increases in CNR at both tube potentials (p<0.001, all comparisons). Compared to 120 kVp FBP, ASiR greater than 30% at 100 kVp yielded similar or lower image noise. Conclusions: Iterative reconstruction adequately compensates for increased image noise associated with low tube potential imaging while improving CNR. An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR. -- Highlights: •Peak kilovoltage (kVp) can be reduced to decrease radiation dose and increase contrast attenuation at a cost of increased image noise. •Utilizing iterative reconstruction can decrease image noise and increase contrast to noise ratio (CNR) independent of kVp. •Iterative reconstruction adequately compensates for increased image noise associated with low dose low kVp imaging while improving CNR. •An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR

  1. Neural network CT image reconstruction method for small amount of projection data

    CERN Document Server

    Ma, X F; Takeda, T

    2000-01-01

    This paper presents a new method for two-dimensional image reconstruction by using a multi-layer neural network. Though a conventionally used object function of such a neural network is composed of a sum of squared errors of the output data, we define an object function composed of a sum of squared residuals of an integral equation. By employing an appropriate numerical line integral for this integral equation, we can construct a neural network which can be used for CT image reconstruction for cases with small amount of projection data. We applied this method to some model problems and obtained satisfactory results. This method is especially useful for analyses of laboratory experiments or field observations where only a small amount of projection data is available in comparison with the well-developed medical applications.

  2. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    LENUS (Irish Health Repository)

    McLaughlin, P D

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR).

  3. Volumetric cone-beam CT system based on a 41x41 cm2 flat-panel imager

    Science.gov (United States)

    Jaffray, David A.; Siewerdsen, Jeffrey H.

    2001-06-01

    Cone-beam computed tomography (CBCT) based upon large-area flat-panel imager (FPI) technology is a flexible and adaptable technology that offers large field-of-view (FOV), high spatial resolution, and soft-tissue imaging. The imaging performance of FPI-based cone-beam CT has been evaluated on a computer-controlled bench-top system using an early prototype FPI with a small FOV (20.5 X 20.5 cm2). These investigations demonstrate the potential of this exciting technology. In this report, imaging performance is evaluated using a production grade large-area FPI (41 X 41 cm2) for which the manufacturer has achieved a significant reduction in additive noise. This reduction in additive noise results in a substantial improvement in detective quantum efficiency (DQE) at low exposures. The spatial resolution over the increased FOV of the cone-beam CT system is evaluated by imaging a fine steel wire placed at various locations within the volume of reconstruction. The measured modulation transfer function (MTF) of the system demonstrates spatial frequency pass beyond 1 mm-1 (10% modulation) with a slight degradation at points off the source plane. In addition to investigations of imaging performance, progress has also been made in the integration of this technology with a medical linear accelerator for on-line image-guided radiation therapy. Unlike the bench-top system, this implementation must contend with significant geometric non-idealities caused by gravity-induced flex of the x-ray tube and FPI support assemblies. A method of characterizing and correcting these non-idealities has been developed. Images of an anthropomorphic head phantom qualitatively demonstrate the excellent spatial resolution and large FOV achievable with the cone-beam approach in the clinical implementation.

  4. Radiation Exposure of Patients by Cone Beam CT during Endobronchial Navigation - A Phantom Study

    OpenAIRE

    Hohenforst-Schmidt, Wolfgang; Banckwitz, Rosemarie; Zarogoulidis, Paul; Vogl, Thomas; Darwiche, Kaid; Goldberg, Eugene; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Freitag, Lutz; Turner, J. Francis; Pivert, Patrick Le; Yarmus, Lonny; Zarogoulidis, Konstantinos

    2014-01-01

    Rationale: Cone Beam Computed Tomography imaging has become increasingly important in many fields of interventional therapies. Objective: Lung navigation study which is an uncommon soft tissue approach. Methods: As no effective organ radiation dose levels were available for this kind of Cone Beam Computed Tomography application we simulated in our DynaCT (Siemens AG, Forchheim, Germany) suite 2 measurements including 3D acquisition and again for 3D acquisition and 4 endobronchial navigation m...

  5. Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets

    NARCIS (Netherlands)

    N. Ibrahim; A. Parsa; B. Hassan; P. van der Stelt; I.H.A. Aartman; D. Wismeijer

    2014-01-01

    Objective Cone-beam CT (CBCT) images are infrequently utilized for trabecular bone microstructural measurement due to the system's limited resolution. The aim of this study was to determine the accuracy of CBCT for measuring trabecular bone microstructure in comparison with micro CTCT). Materials

  6. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media

    Science.gov (United States)

    Fahrbach, Florian O.; Rohrbach, Alexander

    2012-01-01

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  7. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;

    2010-01-01

    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  8. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    CERN Document Server

    Jørgensen, Jakob H; Pan, Xiaochuan

    2011-01-01

    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low-dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization, shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task. This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic...

  9. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard;

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  10. Development of the three dimensional image display program for limited cone beam X-ray CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    We have already developed and reported a limited cone beam X-ray CT system for dental use (Ortho-CT). This system has been used clinically since 1997. In this study, we report a 3D surface display program for Ortho-CT which has been newly-developed by the authors. The 3D surface display software has been developed using visual C++ (Microsoft Co. WA. USA) and a personal computer (Pentium 450MHz Intel Co. CA USA, Windows NT 4.0 Microsoft WA. USA). In this software, the 3D surface images are recorded as AVI files and can be displayed on the personal computer. The 3D images can be rotated and a stepwise change of the threshold voxel value for binary image formation can be automatically used. We have applied these 3D surface images to clinical studies from January 1999 to May 1999 at the Radiology section in our Dental hospital. The images can be displayed very easily in personal computers using AVI files. Thirty-five cases have been reconstructed using 3D surface images in this way. The 3D surface image is useful in the diagnosis of fractures of the mandibular head and impacted teeth. Only teeth are observed when a relative threshold voxel value is set at a high level such as about 0.37. When the threshold is changed to a lower value (about 0.3), we can observe both teeth and the surface of the bone. We have developed a 3D surface display program for personal computers. The images are useful for the diagnosis of the pathosis in the maxillofacial region. (author)

  11. Planning of External Beam Radiotherapy for Prostate Cancer Guided by PET/CT.

    Science.gov (United States)

    von Eyben, Finn Edler; Kairemo, Kalevi; Kiljunen, Timo; Joensuu, Timo

    2015-01-01

    In this paper, we give an overview of articles on non-choline tracers for PET/CT for patients with prostate cancer and planning of radiotherapy guided by PET/CT. Nineteen articles described (11)C-Acetate PET/CT. Of 629 patients 483 (77%, 95% CI 74% - 80%) had positive (11)C-Acetate PET/CT scans. Five articles described (18)F-FACBC PET/CT. Of 174 patients, 127 (73%, 95% CI 68% - 78%) had positive scans. Both tracers detected local lesions, lesions in regional lymph nodes, and distant organs. Ten articles described (18)F-NaF PET/CT and found that 1289 of 3918 patients (33%) had positive reactive lesions in bones. PET/CT scan can guide external beam radiotherapy (EBRT) planning for patients with loco-regional prostate cancer. In six studies with 178 patients with localized prostate cancer, PET/CT pointed out dominant intraprostatic lesions (DIL). Oncologists gave EBRT to the whole prostate and a simultaneously integrated boost to the DIL. Four studies with 254 patients described planning of EBRT for patients with PETpositive lymph nodes. After the EBRT, 15 of 29 node-positive patients remained in remission for median 28 months (range 14 to 50 months). Most articles describe (11)C- and (18)F-Choline PET/CT. However, (11)C-Acetate and (18)F-FACBC may also be useful tracers for PET/CT. Planning of radiotherapy guided by MRI or PET/CT is an investigational method for localized prostate cancer. Current clinical controlled trials evaluate whether the method improves overall survival.

  12. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction

    Science.gov (United States)

    Kim, Hojin; Chen, Josephine; Wang, Adam; Chuang, Cynthia; Held, Mareike; Pouliot, Jean

    2016-09-01

    The compressed sensing (CS) technique has been employed to reconstruct CT/CBCT images from fewer projections as it is designed to recover a sparse signal from highly under-sampled measurements. Since the CT image itself cannot be sparse, a variety of transforms were developed to make the image sufficiently sparse. The total-variation (TV) transform with local image gradient in L1-norm was adopted in most cases. This approach, however, which utilizes very local information and penalizes the weight at a constant rate regardless of different degrees of spatial gradient, may not produce qualified reconstructed images from noise-contaminated CT projection data. This work presents a new non-local operator of total-variation (NLTV) to overcome the deficits stated above by utilizing a more global search and non-uniform weight penalization in reconstruction. To further improve the reconstructed results, a reweighted L1-norm that approximates the ideal sparse signal recovery of the L0-norm is incorporated into the NLTV reconstruction with additional iterates. This study tested the proposed reconstruction method (reweighted NLTV) from under-sampled projections of 4 objects and 5 experiments (1 digital phantom with low and high noise scenarios, 1 pelvic CT, and 2 CBCT images). We assessed its performance against the conventional TV, NLTV and reweighted TV transforms in the tissue contrast, reconstruction accuracy, and imaging resolution by comparing contrast-noise-ratio (CNR), normalized root-mean square error (nRMSE), and profiles of the reconstructed images. Relative to the conventional NLTV, combining the reweighted L1-norm with NLTV further enhanced the CNRs by 2-4 times and improved reconstruction accuracy. Overall, except for the digital phantom with low noise simulation, our proposed algorithm produced the reconstructed image with the lowest nRMSEs and the highest CNRs for each experiment.

  13. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction

    Science.gov (United States)

    Kim, Hojin; Chen, Josephine; Wang, Adam; Chuang, Cynthia; Held, Mareike; Pouliot, Jean

    2016-09-01

    The compressed sensing (CS) technique has been employed to reconstruct CT/CBCT images from fewer projections as it is designed to recover a sparse signal from highly under-sampled measurements. Since the CT image itself cannot be sparse, a variety of transforms were developed to make the image sufficiently sparse. The total-variation (TV) transform with local image gradient in L1-norm was adopted in most cases. This approach, however, which utilizes very local information and penalizes the weight at a constant rate regardless of different degrees of spatial gradient, may not produce qualified reconstructed images from noise-contaminated CT projection data. This work presents a new non-local operator of total-variation (NLTV) to overcome the deficits stated above by utilizing a more global search and non-uniform weight penalization in reconstruction. To further improve the reconstructed results, a reweighted L1-norm that approximates the ideal sparse signal recovery of the L0-norm is incorporated into the NLTV reconstruction with additional iterates. This study tested the proposed reconstruction method (reweighted NLTV) from under-sampled projections of 4 objects and 5 experiments (1 digital phantom with low and high noise scenarios, 1 pelvic CT, and 2 CBCT images). We assessed its performance against the conventional TV, NLTV and reweighted TV transforms in the tissue contrast, reconstruction accuracy, and imaging resolution by comparing contrast-noise-ratio (CNR), normalized root-mean square error (nRMSE), and profiles of the reconstructed images. Relative to the conventional NLTV, combining the reweighted L1-norm with NLTV further enhanced the CNRs by 2–4 times and improved reconstruction accuracy. Overall, except for the digital phantom with low noise simulation, our proposed algorithm produced the reconstructed image with the lowest nRMSEs and the highest CNRs for each experiment.

  14. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution m

  15. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT

    Science.gov (United States)

    Dunet, Vincent; Hachulla, Anne-Lise; Grimm, Jochen; Beigelman-Aubry, Catherine

    2016-01-01

    Background Model-based iterative reconstruction (MBIR) reduces image noise and improves image quality (IQ) but its influence on post-processing tools including maximal intensity projection (MIP) and minimal intensity projection (mIP) remains unknown. Purpose To evaluate the influence on IQ of MBIR on native, mIP, MIP axial and coronal reformats of reduced dose computed tomography (RD-CT) chest acquisition. Material and Methods Raw data of 50 patients, who underwent a standard dose CT (SD-CT) and a follow-up RD-CT with a CT dose index (CTDI) of 2–3 mGy, were reconstructed by MBIR and FBP. Native slices, 4-mm-thick MIP, and 3-mm-thick mIP axial and coronal reformats were generated. The relative IQ, subjective IQ, image noise, and number of artifacts were determined in order to compare different reconstructions of RD-CT with reference SD-CT. Results The lowest noise was observed with MBIR. RD-CT reconstructed by MBIR exhibited the best relative and subjective IQ on coronal view regardless of the post-processing tool. MBIR generated the lowest rate of artefacts on coronal mIP/MIP reformats and the highest one on axial reformats, mainly represented by distortions and stairsteps artifacts. Conclusion The MBIR algorithm reduces image noise but generates more artifacts than FBP on axial mIP and MIP reformats of RD-CT. Conversely, it significantly improves IQ on coronal views, without increasing artifacts, regardless of the post-processing technique.

  16. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; P. van der Stelt; D. Wismeijer

    2015-01-01

    Objectives The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the

  17. Variation of patient imaging doses with scanning parameters for linac-integrated kilovoltage cone beam CT.

    Science.gov (United States)

    Liao, Xiongfei; Wang, Yunlai; Lang, Jinyi; Wang, Pei; Li, Jie; Ge, Ruigang; Yang, Jack

    2015-01-01

    To evaluate the Elekta kilovoltage CBCT doses and the associated technical protocols with patient dosimetry estimation. Image guidance technique with cone-beam CT (CBCT) in radiation oncology on a daily basis can deliver a significant dose to the patient. To evaluate the patient dose from LINAC-integrated kV cone beam CT imaging in image-guided radiotherapy. CT dose index (CTDI) were measured with PTW TM30009 CT ion chamber in air, in head phantom and body phantom, respectively; with different combinations of tube voltage, current, exposure time per frame, collimator and gantry rotation range. Dose length products (DLP) were subsequently calculated to account for volume integration effects. The CTDI and DLP were also compared to AcQSim™ simulator CT for routine clinical protocols. Both CTDIair and CTDIw depended quadratically on the voltage, while linearly on milliampere x seconds (mAs) settings. It was shown that CTDIw and DLP had very close relationship with the collimator settings and the gantry rotation ranges. Normalized CTDIw for Elekta XVI™ CBCT was lower than that of ACQSim simulator CT owing to its pulsed radiation output characteristics. CTDIw can be used to assess the patient dose in CBCT due to its simplicity for measurement and reproducibility. Regular measurement should be performed in QA & QC program. Optimal image parameters should be chosen to reduce patient dose during CBCT. PMID:26405932

  18. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  19. Time-resolved cardiac cone beam CT using an interventional C-arm system

    NARCIS (Netherlands)

    Schomberg, H.

    2012-01-01

    It is both desirable and challenging to make interventional C-arm systems fit for cardiac cone beam CT. A number of methods towards thisgoal have been proposed, some of which even attempt to generate 4Dimages of the beating heart. A promising candidate of this type, proposed earlier by this author,

  20. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    NARCIS (Netherlands)

    Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.A.C.; Suetens, P.; Steenberghe, D van

    2006-01-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging techno

  1. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank;

    2013-01-01

    Industrial X-ray CT systems are increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable yet. The measurement accuracy is influenced by many factors, such as workpiece properties, X-ray settings, beam hardening and calibration methods [1-4]. Sin...

  2. Influence of cone beam CT scanning parameters on grey value measurements at an implant site

    NARCIS (Netherlands)

    A. Parsa; N. Ibrahim; B. Hassan; A. Motroni; P. van der Stelt; D. Wismeijer

    2013-01-01

    Objectives: The aim of this study was to determine the grey value variation at the implant site with different scan settings, including field of view (FOV), spatial resolution, number of projections, exposure time and dose selections in two cone beam CT (CBCT) systems and to compare the results with

  3. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    Science.gov (United States)

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation. PMID:23389391

  4. Influence of scan setting selections on root canal visibility with cone beam CT

    NARCIS (Netherlands)

    B.A. Hassan; J. Payam; B. Juyanda; P. van der Stelt; P.R. Wesselink

    2012-01-01

    Objectives The aim of this study was to assess the influence of scan setting selection, including field of view (FOV) ranging from small to large, number of projections and scan modes on the visibility of the root canal with cone beam CT (CBCT). Methods One human mandible cadaver was scanned with CB

  5. A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging

    Directory of Open Access Journals (Sweden)

    Li Xueli

    2011-08-01

    Full Text Available Abstract Background Computed Tomography (CT is a technology that obtains the tomogram of the observed objects. In real-world applications, especially the biomedical applications, lower radiation dose have been constantly pursued. To shorten scanning time and reduce radiation dose, one can decrease X-ray exposure time at each projection view or decrease the number of projections. Until quite recently, the traditional filtered back projection (FBP method has been commonly exploited in CT image reconstruction. Applying the FBP method requires using a large amount of projection data. Especially when the exposure speed is limited by the mechanical characteristic of the imaging facilities, using FBP method may prolong scanning time and cumulate with a high dose of radiation consequently damaging the biological specimens. Methods In this paper, we present a compressed sensing-based (CS-based iterative algorithm for CT reconstruction. The algorithm minimizes the l1-norm of the sparse image as the constraint factor for the iteration procedure. With this method, we can reconstruct images from substantially reduced projection data and reduce the impact of artifacts introduced into the CT reconstructed image by insufficient projection information. Results To validate and evaluate the performance of this CS-base iterative algorithm, we carried out quantitative evaluation studies in imaging of both software Shepp-Logan phantom and real polystyrene sample. The former is completely absorption based and the later is imaged in phase contrast. The results show that the CS-based iterative algorithm can yield images with quality comparable to that obtained with existing FBP and traditional algebraic reconstruction technique (ART algorithms. Discussion Compared with the common reconstruction from 180 projection images, this algorithm completes CT reconstruction from only 60 projection images, cuts the scan time, and maintains the acceptable quality of the

  6. A new algorithm for geometric self-calibration in cone-beam CT

    International Nuclear Information System (INIS)

    Geometric misalignment leads to severe artifacts in computed tomography (CT). We suggest a general theory for identification of unknown geometric parameters in cone-beam CT and derive a new computational algorithm to obtain the geometric parameters directly from the scan data. In contrast to many existing approaches, our method requires no dedicated calibration devices and allows us to calibrate the system using an arbitrary phantom or even the patient data. The theory is based on the formalism of the consistency conditions for linear integral operators; the algorithm makes use of the quadratic optimization of the consistency conditions. In the practice, the suggested approach can be viewed as a new concept of 'self-calibration', where the user does not need to be aware of the calibration procedure and plays no role in it, which can be a great advantage in applications of cone-beam CT in interventional radiology and radiotherapy. (orig.)

  7. Image-domain shading correction for cone-beam CT without prior patient information.

    Science.gov (United States)

    Fan, Qiyong; Lu, Bo; Park, Justin C; Niu, Tianye; Li, Jonathan G; Liu, Chihray; Zhu, Lei

    2015-01-01

    In the era of high-precision radiotherapy, cone-beam CT (CBCT) is frequently utilized for on-board treatment guidance. However, CBCT images usually contain severe shading artifacts due to strong photon scatter from illumination of a large volume and non-optimized patient-specific data measurements, limiting the full clinical applications of CBCT. Many algorithms have been proposed to alleviate this problem by data correction on projections. Sophisticated methods have also been designed when prior patient information is available. Nevertheless, a standard, efficient, and effective approach with large applicability remains elusive for current clinical practice. In this work, we develop a novel algorithm for shading correction directly on CBCT images. Distinct from other image-domain correction methods, our approach does not rely on prior patient information or prior assumption of patient data. In CBCT, projection errors (mostly from scatter and non-ideal usage of bowtie filter) result in dominant low-frequency shading artifacts in image domain. In circular scan geometry, these artifacts often show global or local radial patterns. Hence, the raw CBCT images are first preprocessed into the polar coordinate system. Median filtering and polynomial fitting are applied on the transformed image to estimate the low-frequency shading artifacts (referred to as the bias field) angle-by-angle and slice-by-slice. The low-pass filtering process is done firstly along the angular direction and then the radial direction to preserve image contrast. The estimated bias field is then converted back to the Cartesian coordinate system, followed by 3D low-pass filtering to eliminate possible high-frequency components. The shading-corrected image is finally obtained as the uncorrected volume divided by the bias field. The proposed algorithm was evaluated on CBCT images of a pelvis patient and a head patient. Mean CT number values and spatial non-uniformity on the reconstructed images were

  8. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    International Nuclear Information System (INIS)

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ1-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

  9. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Renliang; Dogandžić, Aleksandar [Iowa State University, Center for Nondestructive Evaluation, 1915 Scholl Road, Ames, IA 50011 (United States)

    2014-02-18

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ{sub 1}-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.

  10. CT reconstruction from few-views with anisotropic edge-guided total variance

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Jiao, Chun; Ma, Jianhua; Lu, Hongbing

    2016-06-01

    To overcome the oversmoothing drawback in the edge areas when reconstructing few-view CT with total variation (TV) minimization, in this paper, we propose an anisotropic edge-guided TV minimization framework for few-view CT reconstruction. In the framework, anisotropic TV is summed with pre-weighted image gradient and then used as the object function for minimizing. It includes edge-guided TV minimization (EGTV) and edge-guided adaptive-weighted TV minimization (EGAwTV) algorithms. For EGTV algorithm, the weights of the TV discretization term are updated by anisotropic edge information detected from the image, whereas the weights for EGAwTV are determined based on edge information and local image-intensity gradients. To solve the minimization problem of the proposed algorithm, a similar TV-based minimization implementation is developed to address the raw data fidelity and other constraints. The evaluation results using both computer simulations with the Shepp-Logan phantom and experimental data from a physical phantom demonstrate that the proposed algorithms exhibit noticeable gains in the merits of spatial resolution compared with the conventional TV and other modified TV algorithms.

  11. Improved Scatter Correction in X-Ray Cone Beam CT with Moving Beam Stop Array Using Johns' Equation

    CERN Document Server

    Yan, Hao; Tang, Shaojie; Xu, Qiong

    2014-01-01

    In this paper, an improved scatter correction with moving beam stop array (BSA) for x-ray cone beam (CB) CT is proposed. Firstly, correlation between neighboring CB views is deduced based on John's Equation. Then, correlation-based algorithm is presented to complement the incomplete views by using the redundancy (over-determined information) in CB projections. Finally, combining the algorithm with scatter correction method using moving BSA, where part of primary radiation is blocked and incomplete projections are acquired, an improved correction method is proposed. Effectiveness and robustness is validated by Monte Carlo (MC) simulation with EGSnrc on humanoid phantom.

  12. Quantifying the Importance of the Statistical Assumption in Statistical X-ray CT Image Reconstruction.

    Science.gov (United States)

    Xu, Jingyan; Tsui, Benjamin M W

    2014-01-01

    Statistical image reconstruction (SIR) is a promising approach to reducing radiation dose in clinical computerized tomography (CT) scans. Clinical CT scanners use energy-integrating detectors. The CT signal follows a compound Poisson distribution, its probability density function (PDF) does not have an analytical form hence cannot be used in an SIR method. The goal of this work is to quantify the effects of using an approximate statistical assumption in SIR methods for clinical CT applications. We apply a pseudo-Ideal Observer (pIO) to simulated CT projection data of the fanbeam geometry at different dose levels. The simulation models the polychromatic X-ray tube spectrum, the effects of the bowtie filter, and the energy-integrating detectors. The pIO uses a pseudo likelihood function (pLF) to calculate the pseudo likelihood ratio, which is the decision variable used by the pIO in a binary detection task. The pLF is an approximation to the true LF of the underlying data. The pIO has inferior performance than the IO unless the pLF coincides with the LF; this performance difference quantifies the closeness between the pseudo likelihood and the exact one. Using lesion detectability in a signal known exactly, background known exactly binary detection task as a figure-of-merit, our results show that at down to 0.1% of a reference tube current level I0, the pIO that uses a Poisson approximation, or a matched variance Gaussian approximation in either the transmission or the line integral domain, achieves 99% the performance of the IO. The constant variance Gaussian approximation has only 70%-80% of the IO performance. At tube currents lower than 0.1% I0, the performance difference is more substantial. We conclude that at current clinical dose levels, it is important to account for the mean-dependent variance in CT projection data in SIR problem formulation, the exact PDF of the CT signal is not as important. PMID:24001989

  13. Studies on the Electron Reconstruction Efficiency for the Beam Calorimeter of an ILC Detector

    CERN Document Server

    Novgorodova, Olga

    2010-01-01

    In this talk recent simulation results on the single high energy electron reconstruction with the Beam Calorimeter for the ILD detector are presented. Guinea Pig is used to generate the e+e- pair background and GEANT4 for the simulation of electron showers in the calorimeter. An algorithm was developed for the sHEe reconstruction on top of the large e+e- background. The efficiency of the sHEe reconstruction is estimated for the nominal and SB-2009 ILC beam parameters.

  14. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    Science.gov (United States)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  15. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  16. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu (China)

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  17. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  18. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    International Nuclear Information System (INIS)

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences

  19. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  20. Should image rotation be addressed during routine cone-beam CT quality assurance?

    Science.gov (United States)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  1. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  2. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  3. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mark [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Norwich Radiology Academy, Norwich (United Kingdom); Reid, Karen [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P. [Norfolk and Norwich University Hospital and University of East Anglia, Norwich (United Kingdom)

    2013-02-15

    The aim of this study was to determine whether high keV monoenergetic reconstruction of dual energy computed tomography (DECT) could be used to overcome the effects of beam hardening artefact that arise from preferential deflection of low energy photons. Two phantoms were used: a Charnley total hip replacement set in gelatine and a Catphan 500. DECT datasets were acquired at 100, 200 and 400 mA (Siemens Definition Flash, 100 and 140 kVp) and reconstructed using a standard combined algorithm (1:1) and then as monoenergetic reconstructions at 10 keV intervals from 40 to 190 keV. Semi-automated segmentation with threshold inpainting was used to obtain the attenuation values and standard deviation (SD) of the streak artefact. High contrast line pair resolution and background noise were assessed using the Catphan 500. Streak artefact is progressively reduced with increasing keV monoenergetic reconstructions. Reconstruction of a 400 mA acquisition at 150 keV results in reduction in the volume of streak artefact from 65 cm{sup 3} to 17 cm{sup 3} (74 %). There was a decrease in the contrast to noise ratio (CNR) at higher tube voltages, with the peak CNR seen at 70-80 keV. High contrast spatial resolution was maintained at high keV values. Monoenergetic reconstruction of dual energy CT at increasing theoretical kilovoltages reduces the streak artefact produced by beam hardening from orthopaedic prostheses, accompanied by a modest increase in heterogeneity of background image attenuation, and decrease in contrast to noise ratio, but no deterioration in high contrast line pair resolution. (orig.)

  4. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    International Nuclear Information System (INIS)

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  5. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  6. LBP-based penalized weighted least-squares approach to low-dose cone-beam computed tomography reconstruction

    Science.gov (United States)

    Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong

    2014-03-01

    Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.

  7. Statistical model based iterative reconstruction in myocardial CT perfusion: exploitation of the low dimensionality of the spatial-temporal image matrix

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Chen, Guang-Hong

    2015-03-01

    Time-resolved CT imaging methods play an increasingly important role in clinical practice, particularly, in the diagnosis and treatment of vascular diseases. In a time-resolved CT imaging protocol, it is often necessary to irradiate the patients for an extended period of time. As a result, the cumulative radiation dose in these CT applications is often higher than that of the static CT imaging protocols. Therefore, it is important to develop new means of reducing radiation dose for time-resolved CT imaging. In this paper, we present a novel statistical model based iterative reconstruction method that enables the reconstruction of low noise time-resolved CT images at low radiation exposure levels. Unlike other well known statistical reconstruction methods, this new method primarily exploits the intrinsic low dimensionality of time-resolved CT images to regularize the reconstruction. Numerical simulations were used to validate the proposed method.

  8. Mapping the nasal airways: using histology to enhance CT-based three-dimensional reconstruction in Nycticebus.

    Science.gov (United States)

    Deleon, Valerie Burke; Smith, Timothy D

    2014-11-01

    Three-dimensional reconstructions of imaging data are an increasingly common approach for studying anatomical structure. However, certain aspects of anatomy, including microscopic structure and differentiating tissue types, continue to benefit from traditional histological analyses. We present here a detailed methodology for combining data from microCT and histological imaging to create 3D virtual reconstructions for visualization and further analyses. We used this approach to study the distribution of olfactory mucosa on ethmoturbinal I of an adult pygmy slow loris, Nycticebus pygmaeus. MicroCT imaging of the specimen was followed by processing, embedding, and sectioning for histological analysis. We identified corresponding features in the CT and histological data, and used these to reconstruct the plane of section in the CT volume. The CT volume was then digitally re-sliced, such that orthogonal sections of the CT image corresponded to histological sections. Histological images were annotated for the features of interest (in this case, the contour of soft tissue on ethmoturbinal I and the extent of olfactory mucosa), and annotations were transferred to binary masks in the CT volume. These masks were combined with density-based surface reconstructions of the skull to create an enhanced 3D virtual reconstruction, in which the bony surfaces are coded for mucosal function. We identified a series of issues that may be raised in this approach, for example, deformation related to histological processing, and we make recommendations for addressing these issues. This method provides an evidence-based approach to 3D visualization and analysis of microscopic features in an anatomic context.

  9. Lower-dose CT urography (CTU) with iterative reconstruction technique in children – initial experience and examination protocol

    International Nuclear Information System (INIS)

    Conventional X-ray urography is one of the basic imaging techniques in urinary tract diseases in children. CT urography (CTU) employing standard Filtered Back Projection (FBP) reconstruction algorithms is connected with higher radiation dose. Advanced iterative reconstruction techniques enable lowering the radiation dose to the level comparable with conventional X-ray urography with better visualization of the urinary tract. Study protocol and indications for this modified technique should be discussed. Introduction of iterative image reconstruction techniques allowed to significantly reduce the radiation dose delivered during examinations performed at our Department, including CT examinations of urinary tract in children. During the last two years, CT urography replaced conventional X-ray urography and became the basic imaging technique in our Department. We discuss the study protocol regarding pediatric CTU examinations. The main goal is to receive an optimal image quality at reduced radiation dose. CTU examinations performed using the standard filtered back projection (FBP) reconstruction technique are associated with radiation doses about 1.5 times higher than those in conventional X-ray urography. Implementation of iterative reconstruction algorithms in advanced CT scanners allow to reduce the radiation dose to a level comparable or even lower than that in X-ray urography. In addition, urinary tract can be evaluated more precisely in multiplanar reformatted (MPR) and volume rendered (VR) images. 1. Advanced iterative reconstruction techniques allow to reduce radiation dose in CT examinations and to extend indications for CT urography in children. 2. Urinary tract can be evaluated more precisely in multiplanar reformatted and volume rendered images. 3. CTU may replace conventional X-ray urography in children

  10. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    Science.gov (United States)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  11. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography

    OpenAIRE

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2009-01-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded imag...

  12. Exact fan-beam compensated reconstruction formula for time-dependent affine deformations

    International Nuclear Information System (INIS)

    This work is dedicated to the reduction of reconstruction artefacts due to motions occurring during the acquisition of computerized tomographic projections. This problem has to be solved when imaging moving organs such as the lungs or the heart. The proposed method belongs to the class of motion compensated algorithms, where the model of motion is included in the reconstruction formula. The questions that have to be answered in this approach are: first what conditions the deformation has to verify to allow the reconstruction of the object from the projections acquired sequentially during the deformation? and second how can we reconstruct the object in that case? Here we solve these questions in the particular case of general time-dependent affine deformations. We treat the problem of admissibility conditions on the deformation in the parallel-beam and in the fan-beam cases. Then we propose for both geometries exact reconstruction methods based on re-binning or sequential FBP formulae. (author)

  13. Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Niesten, Joris M.; Schaaf, Irene C. van der; Riordan, Alan J.; Jong, Hugo W.A.M. de; Eijspaart, Daniel; Smit, Ewoud J.; Mali, Willem P.T.M.; Velthuis, Birgitta K. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Horsch, Alexander D. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Rijnstate Hospital, Department of Radiology, Arnhem (Netherlands)

    2014-02-15

    To investigate whether iterative reconstruction (IR) in cerebral CT perfusion (CTP) allows for 50 % dose reduction while maintaining image quality (IQ). A total of 48 CTP examinations were reconstructed into a standard dose (150 mAs) with filtered back projection (FBP) and half-dose (75 mAs) with two strengths of IR (middle and high). Objective IQ (quantitative perfusion values, contrast-to-noise ratio (CNR), penumbra, infarct area and penumbra/infarct (P/I) index) and subjective IQ (diagnostic IQ on a four-point Likert scale and overall IQ binomial) were compared among the reconstructions. Half-dose CTP with high IR level had, compared with standard dose with FBP, similar objective (grey matter cerebral blood volume (CBV) 4.4 versus 4.3 mL/100 g, CNR 1.59 versus 1.64 and P/I index 0.74 versus 0.73, respectively) and subjective diagnostic IQ (mean Likert scale 1.42 versus 1.49, respectively). The overall IQ in half-dose with high IR level was scored lower in 26-31 %. Half-dose with FBP and with the middle IR level were inferior to standard dose with FBP. With the use of IR in CTP imaging it is possible to examine patients with a half dose without significantly altering the objective and diagnostic IQ. The standard dose with FBP is still preferable in terms of subjective overall IQ in about one quarter of patients. (orig.)

  14. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T; Cho, S [KAIST, Daejon (Korea, Republic of); Kim, I; Han, B [EB Tech Co., Ltd., Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  15. Adaptive statistical iterative reconstruction and bismuth shielding for evaluation of dose reduction to the eye and image quality during head CT

    International Nuclear Information System (INIS)

    There is a concern regarding the adverse effects of increasing radiation doses due to repeated computed tomography (CT) scans, especially in radiosensitive organs and portions thereof, such as the lenses of the eyes. Bismuth shielding with an adaptive statistical iterative reconstruction (ASIR) algorithm was recently introduced in our clinic as a method to reduce the absorbed radiation dose. This technique was applied to the lens of the eye during CT scans. The purpose of this study was to evaluate the reduction in the absorbed radiation dose and to determine the noise level when using bismuth shielding and the ASIR algorithm with the GE DC 750 HD 64-channel CT scanner for CT of the head of a humanoid phantom. With the use of bismuth shielding, the noise level was higher in the beam-hardening artifact areas than in the revealed artifact areas. However, with the use of ASIR, the noise level was lower than that with the use of bismuth alone; it was also lower in the artifact areas. The reduction in the radiation dose with the use of bismuth was greatest at the surface of the phantom to a limited depth. In conclusion, it is possible to reduce the radiation level and slightly decrease the bismuth-induced noise level by using a combination of ASIR as an algorithm process and bismuth as an in-plane hardware-type shielding method.

  16. Algorithm Study on Reconstruction of Refractive Angles in Fan Beam Diffraction Enhanced Computed Tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Min; CEN Yu-Wan; ZHU Pei-Ping; HU Xiao-Fang; YU Xiao-Liu

    2008-01-01

    @@ Based on the 360°computing method of refractive angle for parallel beam diffraction enhanced imaging computed tomography(DE-CT)technique,a new algorithm used to calculate the refractive angle for fan-beam DE-CT technique is developed.The refractive index gradient can be obtained by using the new algorithm with projection data of an object in the range of 0-360°.and the new algorithm only needs to set the analyser at half slope position of the rocking curve.

  17. A prototype fan-beam optical CT scanner for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

  18. A prototype fan-beam optical CT scanner for 3D dosimetry

    International Nuclear Information System (INIS)

    technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

  19. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Geoffrey D [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States); Liang Jian; Yan Di, E-mail: gdhugo@vcu.ed [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI (United States)

    2010-05-07

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  20. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Science.gov (United States)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  1. Reconstruction of IP Beam Parameters at the ILC From Beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    White, G.; /SLAC /Queen Mary, U. of London

    2005-07-11

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  2. Reconstruction of IP Beam Parameters at the ILC from Beamstraahlung

    CERN Document Server

    White, Glen

    2005-01-01

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  3. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  4. Sinogram affirmed iterative reconstruction in head CT: Improvement of objective and subjective image quality with concomitant radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.; Bender, B.; Fenchel, M. [Department of Diagnostic und Interventional Neuroradiology, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Spira, D.; Schabel, C.; Thomas, C. [Department of Diagnostic und Interventional Radiology, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Flohr, T. [Computed Tomography Division, Siemens HealthCare, 91301 Forchheim (Germany); Claussen, C.D. [Department of Diagnostic und Interventional Radiology, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Bhadelia, R. [Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115 (United States); Ernemann, U. [Department of Diagnostic und Interventional Neuroradiology, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Brodoefel, H., E-mail: hbrodoef@bidmc.harvard.edu [Department of Diagnostic und Interventional Radiology, Hoppe-Seyler-Straße 3, 72076 Tübingen (Germany); Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115 (United States)

    2013-09-15

    Purpose: Iterative reconstruction has recently been revisited as a promising concept for substantial CT dose reduction. The purpose of this study was to assess the potential benefit of sinogram affirmed iterative reconstruction (SAFIRE) in head CT by comparing objective and subjective image quality at reduced tube current with standard dose filtered back projection (FBP). Materials and methods: Non-contrast reduced dose head CT (255 mA s, CTDI{sub vol} 47.8 mGy) was performed in thirty consecutive patients and reconstructed with SAFIRE and FBP. Images were assessed in terms of quantitative and qualitative image quality and compared with FBP of standard dose acquisitions (320 mA s, CTDI{sub vol} 59.7 mGy). Results: In reduced dose CT examinations, use of SAFIRE versus FBP resulted in 47% increase in contrast-to-noise ratio (CNR) (2.49 vs. 1.69; p < 0.0001). While reduction of tube current was associated with 13% decrease in CNR, quantitative degradation of image quality at lower dose was more than compensated through SAFIRE (2.49 vs. 1.96; p = 0.0004). Objective measurements of image sharpness were comparable between FBP and SAFIRE reconstructions (575.9 ± 74.1 vs. 583.4 ± 74.7 change in HU/Pixel; p = 0.28). Compared to standard dose FBP, subjective grading of noise as well as overall image quality scores were significantly improved when SAFIRE was used in reduced dose exams (1.3 vs. 1.6, p = 0.006; 1.3 vs. 1.7, p = 0.026). Conclusion: At 20% dose reduction, reconstruction of head CT by SAFIRE provides above standard objective and subjective image quality, suggesting potential for more vigorous dose savings in neuroradiology CT applications.

  5. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.