WorldWideScience

Sample records for beam ct reconstruction

  1. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  2. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  3. 3D analytic cone-beam reconstruction for multiaxial CT acquisitions.

    Science.gov (United States)

    Yin, Zhye; De Man, Bruno; Pack, Jed

    2009-01-01

    A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.

  4. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2009-01-01

    In practical applications of tomographic imaging, there are often challenges for image reconstruction due to under-sampling and insufficient data. In computed tomography (CT), for example, image reconstruction from few views would enable rapid scanning with a reduced x-ray dose delivered to the patient. Limited-angle problems are also of practical significance in CT. In this work, we develop and investigate an iterative image reconstruction algorithm based on the minimization of the image total variation (TV) that applies to divergent-beam CT. Numerical demonstrations of our TV algorithm are performed with various insufficient data problems in fan-beam CT. The TV algorithm can be generalized to cone-beam CT as well as other tomographic imaging modalities.

  5. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Benson, T M; Gregor, J [Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-3450 (United States)

    2006-09-21

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  6. GPU-based Cone Beam CT Reconstruction via Total Variation Regularization

    CERN Document Server

    Jia, Xun; Lewis, John; Li, Ruijiang; Gu, Xuejun; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) reconstruction is of central importance in image guided radiation therapy due to its broad applications in many clinical contexts. However, the high image dose in CBCT scans is a clinical concern, especially when it is used repeatedly for patient setup purposes before each radiotherapy treatment fraction. A desire for lower imaging does has motivated a vast amount of interest in the CBCT reconstruction based on a small number of X-ray projections. Recently, advances in image processing and compressed sensing have led to tremendous success in recovering signals based on extremely low sampling rates, laying the mathematical foundation for reconstructing CBCT from few projections. In this paper, we present our recent development on a GPU-based iterative algorithm for the highly under-sampled CBCT reconstruction problem. We considered an energy functional consisting of a data fidelity term and a regularization term of a total variation norm. In order to solve our model, we developed a modified...

  7. Task-driven image acquisition and reconstruction in cone-beam CT.

    Science.gov (United States)

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  8. GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    CERN Document Server

    Jia, Xun; Lou, Yifei; Jiang, Steve B

    2010-01-01

    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512x512x70 can be reconstructed in about ~139 sec. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm leads to much higher CBCT quality than those obtained from a conventional FDK algorithm in the context of undersamp...

  9. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  10. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  11. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  12. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  13. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  14. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  15. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Varslot, T.; Kingston, A.; Myers, G.; Sheppard, A. [Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    conventional circular scan micro-CT. Conclusions: Autofocus-corrected, theoretically-exact cone-beam reconstruction is a viable option for reducing acquisition time in high-resolution micro-CT imaging. It also opens up the possibility of efficiently imaging long objects.

  16. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    Science.gov (United States)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  17. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  18. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States)

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  19. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  20. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  1. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    Science.gov (United States)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  2. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  3. Evaluation of state-of-the-art hardware architectures for fast cone-beam CT reconstruction

    CERN Document Server

    Scherl, Holger

    2011-01-01

    Holger Scherl introduces the reader to the reconstruction problem in computed tomography and its major scientific challenges that range from computational efficiency to the fulfillment of Tuy's sufficiency condition. The assessed hardware architectures include multi- and many-core systems, cell broadband engine architecture, graphics processing units, and field programmable gate arrays.

  4. New Developments of exact Cone-beam CT Reconstruction Algorithms%锥束CT精确重建算法研究最新进展

    Institute of Scientific and Technical Information of China (English)

    陈志强; 李亮; 康克军; 张丽

    2005-01-01

    第八届三维图像重建及核医疗学国际会议于2005年7月在美国盐湖城召开.该会议是在CT、PET及SPECT图像重建领域最负盛名的会议之一.本文主要介绍在本次会议上提出的几种最新锥束CT精确重建算法,包括MD-FBP算法、R-line算法等;还讨论了这两种精确锥束重建算法的各自优点,并对CT图像重建领域下一步的研究方向做了展望.%The international meeting on fully three-dimensional image reconstruction meeting in radiology and nuclear medicine was hold in July 2005, USA. It is one of the most famous meetings in CT, PET and SPECT image reconstruction field. This paper introduces some novel developments in PET, SPECT and CT imaging upon this meeting. According to our interest, we focus on exact cone-beam CT reconstruction including Minimum data filtered-backprojection algorithm (MD-FBP), the R-line algorithm and so on. In the end, we discuss the different advantages of the above two exact algorithms and research prospects in cone-beam reconstruction.

  5. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  6. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  7. Effect of light source instability on uniformity of 3D reconstructions from a cone beam optical CT scanner.

    Science.gov (United States)

    Begg, J; Taylor, M L; Holloway, L; Kron, T; Franich, R D

    2014-12-01

    Temporally varying light intensity during acquisition of projection images in an optical CT scanner can potentially be misinterpreted as physical properties of the sample. This work investigated the impact of LED light source intensity instability on measured attenuation coefficients. Different scenarios were investigated by conducting one or both of the reference and data scans in a 'cold' scanner, where the light source intensity had not yet stabilised. Uniform samples were scanned to assess the impact on measured uniformity. The orange (590 nm) light source decreased in intensity by 29 % over the first 2 h, while the red (633 nm) decreased by 9 %. The rates of change of intensity at 2 h were 0.1 and 0.03 % respectively over a 5 min period-corresponding to the scan duration. The normalisation function of the reconstruction software does not fully account for the intensity differences and discrepancies remain. Attenuation coefficient inaccuracies of up to 8 % were observed for data reconstructed from projection images acquired with a cold scanner. Increased noise was observed for most cases where one or both of the scans was acquired without sufficient warm-up. The decrease in accuracy and increase in noise were most apparent for data reconstructed from reference and data scans acquired with a cold scanner on different days.

  8. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  9. Development of a new prior knowledge based image reconstruction algorithm for the cone-beam-CT in radiation therapy; Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus fuer die Cone-Beam-CT Bildgebung in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Vaegler, Sven

    2016-07-08

    The treatment of cancer in radiation therapy is achievable today by techniques that enable highly conformal dose distributions and steep dose gradients. In order to avoid mistreatment, these irradiation techniques have necessitated enhanced patient localization techniques. With an integrated x-ray tube at modern linear accelerators kV-projections can be acquired over a sufficiently large angular space and can be reconstructed to a volumetric image data set from the current situation of the patient prior to irradiation. The so-called Cone-Beam-CT (CBCT) allows a precise verification of patient positioning as well as adaptive radiotherapy. The benefits of an improved patient positioning due to a daily performed CBCT's is contrary to an increased and not negligible radiation exposure of the patient. In order to decrease the radiation exposure, substantial research effort is focused on various dose reduction strategies. Prominent strategies are the decrease of the charge per projection, the reduction of the number of projections as well as the reduction of the acquisition space. Unfortunately, these acquisition schemes lead to images with degraded quality with the widely used Feldkamp-Davis-Kress image reconstruction algorithm. More sophisticated image reconstruction techniques can deal with these dose-reduction strategies without degrading the image quality. A frequently investigated method is the image reconstruction by minimizing the total variation (TV), which is also known as Compressed Sensing (CS). A Compressed Sensing-based reconstruction framework that includes prior images into the reconstruction algorithm is the Prior-Image-Constrained- Compressed-Sensing algorithm (PICCS). The images reconstructed by PICCS outperform the reconstruction results of the conventional Feldkamp-Davis-Kress algorithm (FDK) based method if only a small number of projections are available. However, a drawback of PICCS is that major deviations between prior image data sets and

  10. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  11. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  12. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Hagiwara, Akira; Nilsen, Roy A.; Thibault, Jean-Baptiste; Drapkin, Evgeny

    2005-08-01

    The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few 'circular plus' trajectories have been proposed in the past to help the original FDK algorithm to reduce CB artefacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as head imaging, breast imaging, cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artefacts existing in the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle (namely conjugate ray inconsistency). The conjugate ray inconsistency is pixel dependent, varying dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artefacts that can be avoided if appropriate weighting strategies are exercised. Along with an experimental evaluation and verification, a three-dimensional (3D) weighted axial cone beam filtered backprojection (CB-FBP) algorithm is proposed in this paper for image reconstruction in volumetric CT under a circular source trajectory. Without extra trajectories supplemental to the circular trajectory, the proposed algorithm applies 3D weighting on projection data before 3D backprojection to reduce conjugate ray inconsistency by suppressing the contribution from one of the conjugate rays with a larger cone angle. Furthermore, the 3D weighting is dependent on the distance between the reconstruction plane and the central plane determined by the circular trajectory. The proposed 3D weighted axial CB-FBP algorithm

  13. Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise

    Science.gov (United States)

    Tilley, Steven, II; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-01-01

    While model-based reconstruction methods have been successfully applied to flat-panel cone-beam CT (FP-CBCT) systems, typical implementations ignore both spatial correlations in the projection data as well as system blurs due to the detector and focal spot in the x-ray source. In this work, we develop a forward model for flat-panel-based systems that includes blur and noise correlation associated with finite focal spot size and an indirect detector (e.g. scintillator). This forward model is used to develop a staged reconstruction framework where projection data are deconvolved and log-transformed, followed by a generalized least-squares reconstruction that utilizes a non-diagonal statistical weighting to account for the correlation that arises from the acquisition and data processing chain. We investigate the performance of this novel reconstruction approach in both simulated data and in CBCT test-bench data. In comparison to traditional filtered backprojection and model-based methods that ignore noise correlation, the proposed approach yields a superior noise-resolution tradeoff. For example, for a system with 0.34 mm FWHM scintillator blur and 0.70 FWHM focal spot blur, using the correlated noise model instead of an uncorrelated noise model increased resolution by 42% (with variance matched at 6.9  ×  10-8 mm-2). While this advantage holds across a wide range of systems with differing blur characteristics, the improvements are greatest for systems where source blur is larger than detector blur.

  14. Empirical beam hardening correction (EBHC) for CT

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, 91052 Erlangen (Germany)

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  15. Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-princple study

    CERN Document Server

    Cai, Jian-Feng; Gao, Hao; Jiang, Steve B; Shen, Zuowei; Zhao, Hongkai

    2012-01-01

    Respiration-correlated CBCT, commonly called 4DCBCT, provide respiratory phase-resolved CBCT images. In many clinical applications, it is more preferable to reconstruct true 4DCBCT with the 4th dimension being time, i.e., each CBCT image is reconstructed based on the corresponding instantaneous projection. We propose in this work a novel algorithm for the reconstruction of this truly time-resolved CBCT, called cine-CBCT, by effectively utilizing the underlying temporal coherence, such as periodicity or repetition, in those cine-CBCT images. Assuming each column of the matrix $\\bm{U}$ represents a CBCT image to be reconstructed and the total number of columns is the same as the number of projections, the central idea of our algorithm is that the rank of $\\bm{U}$ is much smaller than the number of projections and we can use a matrix factorization form $\\bm{U}=\\bm{L}\\bm{R}$ for $\\bm{U}$. The number of columns for the matrix $\\bm{L}$ constraints the rank of $\\bm{U}$ and hence implicitly imposing a temporal cohere...

  16. TH-E-17A-06: Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, C; Kipritidis, J; OBrien, R; Cooper, B; Kuncic, Z; Keall, P [The University of Sydney, Sydney, New South Wales (Australia)

    2014-06-15

    Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimization step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10{sup 4} vs. 1.4*10{sup 4}). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed AACS

  17. ON ACCELERATING CONE BEAM CT IMAGE RECONSTRUCTION ALGORITHM BY CUDA-BASED GPU%基于CUDA的图形处理器加速锥束CT重建算法的研究

    Institute of Scientific and Technical Information of China (English)

    王丽芳

    2014-01-01

    锥束CT图像重建数据量巨大、运算复杂度高,重建时间长,难以满足实际应用的需求。研究基于CUDA的图形处理器加速锥束CT重建算法的方案,通过有效的并行策略来提高滤波和反投影过程的时间,并利用常数存储器和纹理存储器来提高数据访存效率。实验证明在保证重建质量的情况下,重建速度可以提高82倍。%Cone beam CT image reconstruction has huge data volume and high operation complexity,the time of image reconstruction is too long to meet the needs of practical applications.In this paper we study the acceleration solution of cone beam CT image reconstruction algo-rithm with the CUDA-based GPU.It improves the filtering and back projection process time through effective parallel strategy,and improves data access and storage efficiency using constant memory and texture memory.Experimental results show that there can have 82 times im-provement in reconstruction speed under the condition of ensuring the quality of reconstruction.

  18. 3D curved multiplanar cone beam CT reconstruction for intracochlear position assessment of straight electrodes array. A temporal bone and clinical study.

    Science.gov (United States)

    De Seta, D; Mancini, P; Russo, F Y; Torres, R; Mosnier, I; Bensimon, J L; De Seta, E; Heymann, D; Sterkers, O; Bernardeschi, D; Nguyen, Y

    2016-12-01

    A retrospective review of post-op cone beam CT (CBCT) of 8 adult patients and 14 fresh temporal bones that underwent cochlear implantation with straight flexible electrodes array was performed to determine if the position of a long and flexible electrodes array within the cochlear scalae could be reliably assessed with CBCT. An oto-radiologist and two otologists examined the images and assessed the electrodes position. The temporal bone specimens underwent histological analysis for confirm the exact position. The position of the electrodes was rated as scala tympani, scala vestibule, or intermediate position for the electrodes at 180°, 360° and for the apical electrode. In the patient group, for the electrodes at 180° all observers agreed for scala tympani position except for 1 evaluation, while a discrepancy in 3 patients both for the 360° and for the apical electrode assessment were found. In five temporal bones the evaluations were in discrepancy for the 180° electrode, while at 360° a disagreement between raters on the scalar positioning was seen in six temporal bones. A higher discrepancy between was found in assessment of the scalar position of the apical electrode (average pairwise agreement 45.4%, Fleiss k = 0.13). A good concordance was found between the histological results and the consensus between raters for the electrodes in the basal turn, while low agreement (Cohen's k 0.31, pairwise agreement 50%) was found in the identification of the apical electrode position confirming the difficulty to correct identify the electrode position in the second cochlear turn in temporal bones. In conclusion, CBCT is a reliable radiologic exam to correctly evaluate the position of a lateral wall flexible array in implanted patients using the proposed imaging reconstruction method, while some artefacts impede exact evaluation of the position of the apical electrode in temporal bone and other radiological techniques should be preferred in ex vivo studies.

  19. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  20. Design Consideration and Reconstruction Method for Double-source Double-multislice Spiral CT

    Institute of Scientific and Technical Information of China (English)

    LIU Zun-gang; ZHAO Jun; ZHUANG Tian-ge

    2007-01-01

    To accelerate the scan speed and improve the image quality, a new type of CT configuration, "doublesource double-multislice spiral CT" (DSDMS-CT), which is based on two sets of single-source multislice spiral CT was proposed with a special reconstruction algorithm.Simulation results using the fan-beam filtered backprojection algorithm with a special interpolation method were presented for both single-source multislice spiral CT and DSDMS-CT.The results of new CT model show that it scans faster than the traditional spiral CT and has a better slice sensitivity profile (SSP) with larger pitch value.

  1. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    Science.gov (United States)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  2. Techniques in Iterative Proton CT Image Reconstruction

    CERN Document Server

    Penfold, Scott

    2015-01-01

    This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed to predict the scattered trajectory from measurements of individual proton location and direction before and after the object. Iterative algorithms provide a flexible tool with which to incorporate these models into image reconstruction. The modeling leads to a large and sparse linear system of equations that can efficiently be solved by projection methods-based iterative algorithms. Such algorithms perform projections of the iterates onto the hyperlanes that are represented by the linear equations of the system. They perform these projections in possibly various algorithmic structures, such as block-iterative projections (BIP), string-averaging...

  3. A Statistical Approach to Motion Compensated Cone Beam Reconstruction

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    One of the problems arising in radiotherapy planning is the quality of CT planning data. In the following attention is giving to the cone-beam scanning geometry where reconstruction of a 3D volume based on 2D projections, using the classic Feldkamp-Davis-Kress (FDK) algorithm requires a large...

  4. Resolution-enhancing hybrid, spectral CT reconstruction

    Science.gov (United States)

    Clark, D. P.; Badea, C. T.

    2016-04-01

    Spectral x-ray imaging based on photon-counting x-ray detectors (PCXD) is an area of growing interest. By measuring the energy of x-ray photons, a spectral CT system can better differentiate elements using a single scan. However, the spatial resolution achievable with most PCXDs limits their application, particularly in preclinical CT imaging. Consequently, our group is developing a hybrid micro-CT scanner based on a high-resolution, energy-integrating (EID) detector and a lower-resolution, PCXD. To complement this system, we propose and demonstrate a hybrid, spectral CT reconstruction algorithm which robustly combines the spectral contrast of the PCXD with the spatial resolution of the EID. Specifically, the high-resolution, spectrally resolved data (X) is recovered as the sum of two matrices: one with low column rank (XL) determined from the EID data and one with intensity gradient sparse columns (XS) corresponding to the upsampled spectral contrast obtained from the PCXD data. We test the proposed algorithm in a feasibility study focused on molecular imaging of atherosclerotic plaque using activatable iodine and gold nanoparticles. The results show accurate estimation of material concentrations at increased spatial resolution for a voxel size ratio between the PCXD and the EID of 500 μm3:100 μm3. Specifically, regularized, iterative reconstruction of the MOBY mouse phantom around the K-edges of iodine (33.2 keV) and gold (80.7 keV) reduces the reconstruction error by more than a factor of three relative to least-squares, algebraic reconstruction. Likewise, the material decomposition accuracy into iodine, gold, calcium, and water improves by more than a factor of two.

  5. Beam distribution reconstruction simulation for electron beam probe

    CERN Document Server

    Feng, Yongchun; Li, Peng; Kang, Xincai; Yin, Yan; Liu, Tong; You, Yaoyao; Chen, Yucong; Zhao, Tiecheng; Xu, Zhiguo; Wang, Yanyu; Yuan, Youjin

    2016-01-01

    Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain parallel electron beam is introduced and a simulation code is developed. And then, EBP as a profile monitor for dense beam is simulated using fast scan method under various target beam profile, such as KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory...

  6. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model

    Science.gov (United States)

    Song, Jin-Myoung; Cho, Jin-Hyoung

    2016-01-01

    Purpose The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Materials and Methods Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Results Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement. PMID:27065238

  7. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  8. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Lee

    Full Text Available The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D reconstruction with cone-beam computed tomography (CBCT scan.Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left and 2 vertical rotations (upward/downward. Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion.Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05. Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05.Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.

  9. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  10. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  11. 电子束CT三维重建技术与颅颌面外科%Three-dimensional Electron BeamCT Reconstruction Image and Cranio-Maxiilo-Facial Surgery

    Institute of Scientific and Technical Information of China (English)

    归来; 罗茂萍; 滕利; 张智勇; 黄绿萍; 戴汝平; 何沙

    2000-01-01

    目的 探讨电子束CT三维重建技术在颅颌面外科的适应症和应用价值。方法 采用美国Imatron公司的电子束CT(electron beam CT,以下简称EBCT)C-150,对76例严重颅颌面病人实行薄层CT容积扫描。将所获CT图象经数字接口传至加拿大ISG公司生产的Allegro工作站进行三维重建。结果EBCT成像技术能立体的、详尽和精确的显示机体组织三维解剖结构极其相互关系。其再现畸形或病体模型的程度可以达到近乎解剖学的精度,为准确了解和掌握病情并制定合理的手术治疗计划提供了极为重要的依据,提高了手术治疗效果。结论EBCT三维重建技术是现代颅颌面外科最主要的诊断方法之一并具有重要的临床应用价值。%Successful execution of a surgical treatment necessitates knowledge of the relevant anatomy, physiology, and pathology, as well as the technical specifics of the operation. At this time, the Cranio-maxillo-facial three-dimensional reconstruction can display bone change and relationship with adjacent structure, which is very useful for clinical assistance examination and more favorable and more accurate for establishing surgical operation planning. Since 1996, 76 patients have undergone this technique at the Service of Plastic and Cranio-maxillo-facial surgery in Beijing. We adapted our clinical results to four main indications: I.Congenitally cranio-maxillo-facial deformity; 2. Cranio-maxillo-facial trauma or post-traumatic reconstructive Surgery; 3. Cranio-maxillo-facial tumors surgery and 4. Cranio-maxillo-facial esthetic surgery. The indication of using the three-dimensional electron beam CT reconstruction technique in Cranio-maxillo-facial surgery with these managements is discussed and some cases of clinic are demonstrated.

  12. Measuring temporal resolution of cardiac CT reconstructions

    Science.gov (United States)

    Matthews, David; Heuscher, Dominic

    2005-04-01

    Multi-slice CT today is capable of imaging the heart with excellent temporal resolution. Algorithms have been developed to perform reconstructions combining data from multiple cardiac cycles. This paper presents a simulation phantom that enables a direct measurement of the actual temporal resolution achieved by these algorithms. This is not only useful for assessing the temporal resolution but also for validating the algorithms themselves. A simulation phantom was developed that consists of a 20 cm. diameter water phantom containing an array of cylinders whose intensities are pulsed for various durations ranging from 10 msec. to 250 msec. The intensity varied between the background value of water (0 HU) and 800 HU. By measuring the nominal attenuation value at the center of each cylinder, a curve can be derived representing the response over the given temporal range. A temporal resolution representing the FWHM value is determined based on the half-max value of this curve. Reconstructions were performed using a multi-cycle cardiac algorithm described previously in the literature. The measured FWHM values agree quite well to the temporal resolution predicted by the cardiac algorithm itself. Even the variation along the longitudinal axis can be accounted for by the predicted values. A simulated phantom can be used to accurately assess the temporal resolution of cardiac reconstruction algorithms. Excellent agreement was achieved between the predicted and measured temporal resolution values for the multi-cycle algorithm used in this study.

  13. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images.

  14. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis

    NARCIS (Netherlands)

    Bennink, Edwin; Oosterbroek, Jaap; Horsch, Alexander D.; Dankbaar, Jan Willem; Velthuis, BK; Viergever, Max A.; de Jong, Hugo W. A. M.

    2015-01-01

    Objectives Although CT scanners generally allow dynamic acquisition of thin slices (1 mm), thick slice (>= 5 mm) reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP) reconstruction may suffer less from partial volume effec

  15. Impact of iterative reconstruction on CT coronary calcium quantification

    DEFF Research Database (Denmark)

    Kurata, Akira; Dharampal, Anoeshka; Dedic, Admir;

    2013-01-01

    We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT).......We evaluated the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on the coronary artery calcium (CAC) score by computed tomography (CT)....

  16. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations.

    Science.gov (United States)

    Stolzmann, Paul; Winklhofer, Sebastian; Schwendener, Nicole; Alkadhi, Hatem; Thali, Michael J; Ruder, Thomas D

    2013-09-01

    The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.

  17. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  18. Deformable registration of CT and cone-beam CT with local intensity matching

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  19. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali; Singh, Sarabjeet; Otrakji, Alexi; Padole, Atul; Lim, Ruth; Nimkin, Katherine; Westra, Sjirk; Kalra, Mannudeep K.; Gee, Michael S. [MGH Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Dose reduction in children undergoing CT scanning is an important priority for the radiology community and public at large. Drawbacks of radiation reduction are increased image noise and artifacts, which can affect image interpretation. Iterative reconstruction techniques have been developed to reduce noise and artifacts from reduced-dose CT examinations, although reconstruction algorithm, magnitude of dose reduction and effects on image quality vary. We review the reconstruction principles, radiation dose potential and effects on image quality of several iterative reconstruction techniques commonly used in clinical settings, including 3-D adaptive iterative dose reduction (AIDR-3D), adaptive statistical iterative reconstruction (ASIR), iDose, sinogram-affirmed iterative reconstruction (SAFIRE) and model-based iterative reconstruction (MBIR). We also discuss clinical applications of iterative reconstruction techniques in pediatric abdominal CT. (orig.)

  20. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    Science.gov (United States)

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  1. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  2. SU-C-207-04: Reconstruction Artifact Reduction in X-Ray Cone Beam CT Using a Treatment Couch Model

    Energy Technology Data Exchange (ETDEWEB)

    Lasio, G; Hu, E; Zhou, J; Lee, M; Yi, B [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: to mitigate artifacts induced by the presence of the RT treatment couch in on-board CBCT and improve image quality Methods: a model of a Varian IGRT couch is constructed using a CBCT scan of the couch in air. The model is used to generate a set of forward projections (FP) of the treatment couch at specified gantry angles. The model couch forward projections are then used to process CBCT scan projections which contain the couch in addition to the scan object (Catphan phantom), in order to remove the attenuation component of the couch at any given gantry angle. Prior to pre-processing with the model FP, the Catphan projection data is normalized to an air scan with bowtie filter. The filtered Catphan projections are used to reconstruct the CBCT with an in-house FDK algorithm. The artifact reduction in the processed CBCT scan is assessed visually, and the image quality improvement is measured with the CNR over a few selected ROIs of the Catphan modules. Results: Sufficient match between the forward projected data and the x-ray projections is achieved to allow filtering in attenuation space. Visual improvement of the couch induced artifacts is achieved, with a moderate expense of CNR. Conclusion: Couch model-based correction of CBCT projection data has a potential for qualitative improvement of clinical CBCT scans, without requiring position specific correction data. The technique could be used to produce models of other artifact inducing devices, such as immobilization boards, and reduce their impact on patient CBCT images.

  3. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware

    Science.gov (United States)

    Kole, J. S.; Beekman, F. J.

    2006-02-01

    Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.

  4. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware

    Energy Technology Data Exchange (ETDEWEB)

    Kole, J S; Beekman, F J [Image Sciences Institute, Department of Nuclear Medicine and Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, UMC Utrecht, Universiteitsweg 100, STR5.203, 3584 CG Utrecht (Netherlands)

    2006-02-21

    Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.

  5. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    Energy Technology Data Exchange (ETDEWEB)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People' s Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  6. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  7. Reconstructing misaligned x-ray CT data

    Energy Technology Data Exchange (ETDEWEB)

    Divin, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-24

    Misalignment errors for x-ray computed tomography (CT) systems can manifest as artifacts and a loss of spatial and contrast resolution. To mitigate artifacts, significant effort is taken to determine the system geometry and minimizing any residual error in the system alignment. This project improved our ability to post-correct data which was acquired on a misaligned CT system.

  8. Performance evaluation of the backprojection filtered (BPF) algorithm in circular fan-beam and cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article we introduce an exact backprojecfion filtered (BPF) type reconstruction algorithm for cone-beam scans based on Zou and Pan's work. The algorithm can reconstruct images using only the projection data passing through the parallel PI-line segments in reduced scans. Computer simulations and practical experiments are carried out to evaluate this algorithm. The BPF algorithm has a higher computational efficiency than the famous FDK algorithm. The BPF algorithm is evaluated using the practical CT projection data on a 450 keV X-ray CT system with a flat-panel detector (FPD). From the practical experiments, we get the spatial resolution of this CT system. The algorithm could achieve the spatial resolution of 2.4 lp/mm and satisfies the practical applications in industrial CT inspection.

  9. Dynamic Bowtie for Fan-beam CT

    CERN Document Server

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  10. Auto calibration of a cone-beam-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich [Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden, Germany and Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Oral Surgery (and Oral Radiology), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz (Germany); Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden (Germany)

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of

  11. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  12. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  13. 锥形束CT三维影像在口腔正畸头影测量中的数据构建和应用%The data reconstruction and application of cone-beam CT three-dimensional impacts in orthodontic cephalometric measurement

    Institute of Scientific and Technical Information of China (English)

    吴海苗; 陈栋; 潘杰; 陈骊

    2012-01-01

    Objective To investigate methods of three -dimensional images data reconstruction and application in orthodontic cephalometry based on cone-beam CT. Methods Cone-beam CT images data are stored and transmissed by IP SAN.and construction of threee -dimensional impacts and cephalometry are achieved through using Invivo 5.0 software. Results It is feasible to store and transmiss cone-beam CT images data by using IP SAN.Which combined with Invivo 5.0 software can realize three-dimensional data reconstructing and be used for orthodontic application. Conclusion IP SAN is a kind of mature and relatively cheap cone-beam CT technology.and Invivo 5.0 software in orthodontic cephalometry has better clinical value and application prospect.%目的:探索锥形束CT三维影像数据的构建方法及在正畸科头影测量方面的应用价值.方法:通 过IP SAN技术实现锥形束CT图像数据的存储和传输,并利用Invivo 5.0软件实现影像的三维构建和头影测量.结果:IP SAN技术用于锥形 束CT图像数据的存储和传输具有可行性,结合Invivo 5.0软件可以实现影像数据的三维构建并用于正畸科临床.结论:IP SAN技术是一种成熟可靠和相对价廉的锥形束CT影像存储和传输技术,Invivo 5.0软件在正畸科头影测量方面具有较好的临 床价值和应用前景.

  14. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five......-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs...

  15. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm

  16. Quantitative image quality evaluation for cardiac CT reconstructions

    Science.gov (United States)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  17. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  18. Tensor decomposition and nonlocal means based spectral CT reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Yu, Hengyong

    2016-10-01

    As one of the state-of-the-art detectors, photon counting detector is used in spectral CT to classify the received photons into several energy channels and generate multichannel projection simultaneously. However, the projection always contains severe noise due to the low counts in each energy channel. How to reconstruct high-quality images from photon counting detector based spectral CT is a challenging problem. It is widely accepted that there exists self-similarity over the spatial domain in a CT image. Moreover, because a multichannel CT image is obtained from the same object at different energy, images among channels are highly correlated. Motivated by these two characteristics of the spectral CT, we employ tensor decomposition and nonlocal means methods for spectral CT iterative reconstruction. Our method includes three basic steps. First, each channel image is updated by using the OS-SART. Second, small 3D volumetric patches (tensor) are extracted from the multichannel image, and higher-order singular value decomposition (HOSVD) is performed on each tensor, which can help to enhance the spatial sparsity and spectral correlation. Third, in order to employ the self-similarity in CT images, similar patches are grouped to reduce noise using the nonlocal means method. These three steps are repeated alternatively till the stopping criteria are met. The effectiveness of the developed algorithm is validated on both numerically simulated and realistic preclinical datasets. Our results show that the proposed method achieves promising performance in terms of noise reduction and fine structures preservation.

  19. Implementation of efficient image reconstruction for CT

    Institute of Scientific and Technical Information of China (English)

    Jie Liu; Guangfei Wang

    2005-01-01

    @@ The operational procedures for efficiently reconstructing the two-dimensional image of a body by the filtered back projection are described in this paper. The projections are interpolated for four times of original projection by zero-padding the original projection in frequency-domain and then inverse fast Fourier transform (FFT) is taken to improve accuracy.

  20. Filtered backprojection proton CT reconstruction along most likely paths

    Energy Technology Data Exchange (ETDEWEB)

    Rit, Simon; Dedes, George; Freud, Nicolas; Sarrut, David; Letang, Jean Michel [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Universite Lyon 1, Centre Leon Berard, 69008 Lyon (France)

    2013-03-15

    Purpose: Proton CT (pCT) has the potential to accurately measure the electron density map of tissues at low doses but the spatial resolution is prohibitive if the curved paths of protons in matter is not accounted for. The authors propose to account for an estimate of the most likely path of protons in a filtered backprojection (FBP) reconstruction algorithm. Methods: The energy loss of protons is first binned in several proton radiographs at different distances to the proton source to exploit the depth-dependency of the estimate of the most likely path. This process is named the distance-driven binning. A voxel-specific backprojection is then used to select the adequate radiograph in the distance-driven binning in order to propagate in the pCT image the best achievable spatial resolution in proton radiographs. The improvement in spatial resolution is demonstrated using Monte Carlo simulations of resolution phantoms. Results: The spatial resolution in the distance-driven binning depended on the distance of the objects from the source and was optimal in the binned radiograph corresponding to that distance. The spatial resolution in the reconstructed pCT images decreased with the depth in the scanned object but it was always better than previous FBP algorithms assuming straight line paths. In a water cylinder with 20 cm diameter, the observed range of spatial resolutions was 0.7 - 1.6 mm compared to 1.0 - 2.4 mm at best with a straight line path assumption. The improvement was strongly enhanced in shorter 200 Degree-Sign scans. Conclusions: Improved spatial resolution was obtained in pCT images with filtered backprojection reconstruction using most likely path estimates of protons. The improvement in spatial resolution combined with the practicality of FBP algorithms compared to iterative reconstruction algorithms makes this new algorithm a candidate of choice for clinical pCT.

  1. Application of CT 3D reconstruction in diagnosing atlantoaxial subluxation

    Institute of Scientific and Technical Information of China (English)

    段少银; 林清池; 庞瑞麟

    2004-01-01

    Objective:To evaluate and compare the diagnostic value in atlantoaxial subluxation by CT three-dimensional (3D) reconstruction.Methods:3D reconstruction fimdings of 41 patients with atlantoaxiai subluxation were retrospectively analyzed, and comparisons were made among images of transverse section, multiplanar reformorting (MPR), surface shade display (SSD), maximum intensity project (MIP), and volume rendering (VR). Results:Of 41 patients with atlantoaxial subluxation, 31 belonged to rotary dislocation, 5 antedislocation, and 5 hind dislocation. All the cases showed the dislocated joint panel of atlantoaxial articulation.Fifteen cases showed deviation of the odontoid process and 8 cases widened distance between the dens and anterior arch of the atlas. The dislocated joint panel of atlantoaxial articulation was more clearly seen with SSD-3D imaging than any other methods. Conclusions:Atlantoaxial subluxation can well be diagnosed by CT 3D reconstruction, in which SSD-3D imaging is optimal.

  2. Accuracy of quantitative reconstructions in SPECT/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbinin, S; Celler, A [Department of Radiology, University of British Columbia, 366-828 West 10th Avenue, Vancouver BC, V5Z 1L8 (Canada); Belhocine, T; Vanderwerf, R; Driedger, A [Department of Nuclear Medicine, London Health Sciences Centre, 375 South Street, PO Box 5375, London ON, N6A 4G5 (Canada)], E-mail: shcher2@interchange.ubc.ca

    2008-09-07

    The goal of this study was to determine the quantitative accuracy of our OSEM-APDI reconstruction method based on SPECT/CT imaging for Tc-99m, In-111, I-123, and I-131 isotopes. Phantom studies were performed on a SPECT/low-dose multislice CT system (Infinia-Hawkeye-4 slice, GE Healthcare) using clinical acquisition protocols. Two radioactive sources were centrally and peripherally placed inside an anthropometric Thorax phantom filled with non-radioactive water. Corrections for attenuation, scatter, collimator blurring and collimator septal penetration were applied and their contribution to the overall accuracy of the reconstruction was evaluated. Reconstruction with the most comprehensive set of corrections resulted in activity estimation with error levels of 3-5% for all the isotopes.

  3. Iodine contrast cone beam CT imaging of breast cancer

    Science.gov (United States)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  4. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  5. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  6. CT Reconstruction from Simultaneous Projections: A Step towards Capturing CT in One Go

    CERN Document Server

    Saha, Sajib; Lambert, Andrew; Pickering, Mark

    2014-01-01

    This paper focuses on minimizing the time requirement for CT capture through innovative simultaneous x-ray capture method. The state-of-the-art CT imaging methodology captures a sequence of projections during which the internal organ movements may lead to poor reconstruction due to motion artefacts. Traditional CT scanners' minimize such effect by taking more projections than necessary. In this work we focus on an innovative CT capture method that captures projections simultaneously, promising super fast scans along with possible radiation dose reductions. While the simultaneous CT capture model has already been proposed in our earlier work 'Multi-axial CT Reconstruction from Few View Projections' (in SPIE Optical Engineering and Applications, pp. 85000A-85000A. International Society for Optics and Photonics, 2012) and 'A New Imaging Method for Real-time 3D X-ray Reconstruction' (in SPIE Medical Imaging, pp. 86685G-86685G. International Society for Optics and Photonics, 2013), in this work we enhance the mode...

  7. Filtered back-projection reconstruction for attenuation proton CT along most likely paths.

    Science.gov (United States)

    Quiñones, C T; Létang, J M; Rit, S

    2016-05-07

    This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West-Sherwood effect.

  8. Efficient iterative image reconstruction algorithm for dedicated breast CT

    Science.gov (United States)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  9. Spectrotemporal CT data acquisition and reconstruction at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Darin P.; Badea, Cristian T., E-mail: cristian.badea@duke.edu [Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710 (United States); Lee, Chang-Lung [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2015-11-15

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  10. Image artefact propagation in motion estimation and reconstruction in interventional cardiac C-arm CT.

    Science.gov (United States)

    Müller, K; Maier, A K; Schwemmer, C; Lauritsch, G; De Buck, S; Wielandts, J-Y; Hornegger, J; Fahrig, R

    2014-06-21

    The acquisition of data for cardiac imaging using a C-arm computed tomography system requires several seconds and multiple heartbeats. Hence, incorporation of motion correction in the reconstruction step may improve the resulting image quality. Cardiac motion can be estimated by deformable three-dimensional (3D)/3D registration performed on initial 3D images of different heart phases. This motion information can be used for a motion-compensated reconstruction allowing the use of all acquired data for image reconstruction. However, the result of the registration procedure and hence the estimated deformations are influenced by the quality of the initial 3D images. In this paper, the sensitivity of the 3D/3D registration step to the image quality of the initial images is studied. Different reconstruction algorithms are evaluated for a recently proposed cardiac C-arm CT acquisition protocol. The initial 3D images are all based on retrospective electrocardiogram (ECG)-gated data. ECG-gating of data from a single C-arm rotation provides only a few projections per heart phase for image reconstruction. This view sparsity leads to prominent streak artefacts and a poor signal to noise ratio. Five different initial image reconstructions are evaluated: (1) cone beam filtered-backprojection (FDK), (2) cone beam filtered-backprojection and an additional bilateral filter (FFDK), (3) removal of the shadow of dense objects (catheter, pacing electrode, etc) before reconstruction with a cone beam filtered-backprojection (cathFDK), (4) removal of the shadow of dense objects before reconstruction with a cone beam filtered-backprojection and a bilateral filter (cathFFDK). The last method (5) is an iterative few-view reconstruction (FV), the prior image constrained compressed sensing combined with the improved total variation algorithm. All reconstructions are investigated with respect to the final motion-compensated reconstruction quality. The algorithms were tested on a mathematical

  11. Fast reconstruction of low dose proton CT by sinogram interpolation

    Science.gov (United States)

    Hansen, David C.; Sangild Sørensen, Thomas; Rit, Simon

    2016-08-01

    Proton computed tomography (CT) has been demonstrated as a promising image modality in particle therapy planning. It can reduce errors in particle range calculations and consequently improve dose calculations. Obtaining a high imaging resolution has traditionally required computationally expensive iterative reconstruction techniques to account for the multiple scattering of the protons. Recently, techniques for direct reconstruction have been developed, but these require a higher imaging dose than the iterative methods. No previous work has compared the image quality of the direct and the iterative methods. In this article, we extend the methodology for direct reconstruction to be applicable for low imaging doses and compare the obtained results with three state-of-the-art iterative algorithms. We find that the direct method yields comparable resolution and image quality to the iterative methods, even at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction time over previously published iterative algorithms.

  12. Influence of Thin Slice Reconstruction on CT Brain Perfusion Analysis.

    Directory of Open Access Journals (Sweden)

    Edwin Bennink

    Full Text Available Although CT scanners generally allow dynamic acquisition of thin slices (1 mm, thick slice (≥5 mm reconstruction is commonly used for stroke imaging to reduce data, processing time, and noise level. Thin slice CT perfusion (CTP reconstruction may suffer less from partial volume effects, and thus yield more accurate quantitative results with increased resolution. Before thin slice protocols are to be introduced clinically, it needs to be ensured that this does not affect overall CTP constancy. We studied the influence of thin slice reconstruction on average perfusion values by comparing it with standard thick slice reconstruction.From 50 patient studies, absolute and relative hemisphere averaged estimates of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT, and permeability-surface area product (PS were analyzed using 0.8, 2.4, 4.8, and 9.6 mm slice reconstructions. Specifically, the influence of Gaussian and bilateral filtering, the arterial input function (AIF, and motion correction on the perfusion values was investigated.Bilateral filtering gave noise levels comparable to isotropic Gaussian filtering, with less partial volume effects. Absolute CBF, CBV and PS were 22%, 14% and 46% lower with 0.8 mm than with 4.8 mm slices. If the AIF and motion correction were based on thin slices prior to reconstruction of thicker slices, these differences reduced to 3%, 4% and 3%. The effect of slice thickness on relative values was very small.This study shows that thin slice reconstruction for CTP with unaltered acquisition protocol gives relative perfusion values without clinically relevant bias. It does however affect absolute perfusion values, of which CBF and CBV are most sensitive. Partial volume effects in large arteries and veins lead to overestimation of these values. The effects of reconstruction slice thickness should be taken into account when absolute perfusion values are used for clinical decision making.

  13. Joint regularization for spectro-temporal CT reconstruction

    Science.gov (United States)

    Clark, D. P.; Badea, C. T.

    2016-03-01

    X-ray CT is widely used, both clinically and preclinically, for fast, high-resolution, anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. In previous work, we proposed and demonstrated a projection acquisition and reconstruction strategy for 5D CT (3D + dual-energy + time) which recovered spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. The approach relied on the approximate separability of the temporal and spectral reconstruction sub-problems, which enabled substantial projection undersampling and effective regularization. Here, we extend this previous work to more general, nonseparable 5D CT reconstruction cases (3D + muti-energy + time) with applicability to K-edge imaging of exogenous contrast agents. We apply the newly proposed algorithm in phantom simulations using a realistic system and noise model for a photon counting x-ray detector with six energy thresholds. The MOBY mouse phantom used contains realistic concentrations of iodine, gold, and calcium in water. Relative to weighted least-squares reconstruction, the proposed 5D reconstruction algorithm improved reconstruction and material decomposition accuracy by 3-18 times. Furthermore, by exploiting joint, low rank image structure between time points and energies, ~80 HU of contrast associated with the Kedge of gold and ~35 HU of contrast associated with the blood pool and myocardium were recovered from more than 400 HU of noise.

  14. A LabVIEW based user-friendly nano-CT image alignment and 3D reconstruction platform

    CERN Document Server

    Wang, Shenghao; Wang, Zhili; Gao, Kun; Wu, Zhao; Zhu, Peiping; Wu, Ziyu

    2014-01-01

    X-ray nanometer computed tomography (nano-CT) offers applications and opportunities in many scientific researches and industrial areas. Here we present a user-friendly and fast LabVIEW based package running, after acquisition of the raw projection images, a procedure to obtain the inner structure of the sample under analysis. At first, a reliable image alignment procedure fixes possible misalignments among image series due to mechanical errors, thermal expansion and other external contributions, then a novel fast parallel beam 3D reconstruction performs the tomographic reconstruction. The remarkable improved reconstruction after the image calibration confirms the fundamental role of the image alignment procedure. It minimizes blurring and additional streaking artifacts present in a reconstructed slice that cause loss of information and faked structures in the observed material. The nano-CT image alignment and 3D reconstruction LabVIEW package significantly reducing the data process, makes faster and easier th...

  15. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  16. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  17. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christian [Institute of Medical Physics, Friedrich-Alexander University (FAU), Erlangen 91052 (Germany); Sawall, Stefan; Knaup, Michael [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz-heidelberg [Institute of Medical Physics, Friedrich-Alexander University (FAU), Erlangen 91052, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany)

    2014-06-15

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast

  18. Towards an inline reconstruction architecture for micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, David [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Humbert, Bernard [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France); Mathelin, Carole [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Rio, Marie-Christine [Institut de genetique et de biologie moleculaire et cellulaire, Illkirch-Graffenstaden (France); Guyonnet, Jean-Louis [Institut de Recherches Subatomiques, IN2P3-CNRS/ULP, Strasbourg (France)

    2005-12-21

    Recent developments in micro-CT have revolutionized the ability to examine in vivo living experimental animal models such as mouse with a spatial resolution less than 50 {mu}m. The main requirements of in vivo imaging for biological researchers are a good spatial resolution, a low dose induced to the animal during the full examination and a reduced acquisition and reconstruction time for screening purposes. We introduce inline acquisition and reconstruction architecture to obtain in real time the 3D attenuation map of the animal fulfilling the three previous requirements. The micro-CT system is based on commercially available x-ray detector and micro-focus x-ray source. The reconstruction architecture is based on a cluster of PCs where a dedicated communication scheme combining serial and parallel treatments is implemented. In order to obtain high performance transmission rate between the detector and the reconstruction architecture, a dedicated data acquisition system is also developed. With the proposed solution, the time required to filter and backproject a projection of 2048 x 2048 pixels inside a volume of 140 mega voxels using the Feldkamp algorithm is similar to 500 ms, the time needed to acquire the same projection.

  19. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    DEFF Research Database (Denmark)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell;

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring...

  20. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    Science.gov (United States)

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  1. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  2. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  3. Cone beam CT for dental and maxillofacial imaging: dose matters

    OpenAIRE

    Pauwels, Ruben

    2015-01-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiogr...

  4. Timing-invariant reconstruction for deriving high-quality CT angiographic data from cerebral CT perfusion data.

    NARCIS (Netherlands)

    Smit, E.J.; Vonken, E.J.; Schaaf, I.C. van der; Mendrik, A.M.; Dankbaar, J.W.; Horsch, A.D.; Seeters, T. van; Ginneken, B. van; Prokop, M.

    2012-01-01

    PURPOSE: To suggest a simple and robust technique used to reconstruct high-quality computed tomographic (CT) angiographic images from CT perfusion data and to compare it with currently used CT angiography techniques. MATERIALS AND METHODS: Institutional review board approval was waived for this retr

  5. High-dose-rate prostate brachytherapy based on registered transrectal ultrasound and in-room cone-beam CT images

    NARCIS (Netherlands)

    Even, Aniek J.G.; Nuver, Tonnis T.; Westendorp, Hendrik; Hoekstra, Carel J.; Slump, C.H.; Minken, Andre W.

    2014-01-01

    Purpose To present a high-dose-rate (HDR) brachytherapy procedure for prostate cancer using transrectal ultrasound (TRUS) to contour the regions of interest and registered in-room cone-beam CT (CBCT) images for needle reconstruction. To characterize the registration uncertainties between the two ima

  6. Likelihood-based CT reconstruction of objects containing known components

    Energy Technology Data Exchange (ETDEWEB)

    Stayman, J. Webster [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Biomedical Engineering; Otake, Yoshito; Uneri, Ali; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2011-07-01

    There are many situations in medical imaging where there are known components within the imaging volume. Such is the case in diagnostic X-ray CT imaging of patients with implants, in intraoperative CT imaging where there may be surgical tools in the field, or in situations where the patient support (table or frame) or other devices are outside the (truncated) reconstruction FOV. In such scenarios it is often of great interest to image the relation between the known component and the surrounding anatomy, or to provide high-quality images at the boundary of these objects, or simply to minimize artifacts arising from such components. We propose a framework for simultaneously estimating the position and orientation of a known component and the surrounding volume. Toward this end, we adopt a likelihood-based objective function with an image volume jointly parameterized by a known object, or objects, with unknown registration parameters and an unknown background attenuation volume. The objective is solved iteratively using an alternating minimization approach between the two parameter types. Because this model integrates a substantial amount of prior knowledge about the overall volume, we expect a number of advantages including the reduction of metal artifacts, potential for more sparse data acquisition (decreased time and dose), and/or improved image quality. We illustrate this approach using simulated spine CT data that contains pedicle screws placed in a vertebra, and demonstrate improved performance over traditional filtered-backprojection and penalized-likelihood reconstruction techniques. (orig.)

  7. An investigation into factors affecting electron density calibration for a megavoltage cone-beam CT system.

    Science.gov (United States)

    Hughes, Jessica; Holloway, Lois C; Quinn, Alexandra; Fielding, Andrew

    2012-09-06

    There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

  8. A temporal interpolation approach for dynamic reconstruction in perfusion CT.

    Science.gov (United States)

    Montes, Pau; Lauritsch, Günter

    2007-07-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes.

  9. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    Science.gov (United States)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  10. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  11. 3D Reconstruction in Spiral Multislice CT Scans

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: The rapid development of spiral (helical computed tomography (CT has resulted in exciting new applications for CT. One of these applications, three-dimensional (3D CT with volume ren-dering, is now a major area of clinical and academic interest. One of the greatest advantages of spiral CT with 3D volume rendering is that it provides all the necessary information in a single radiologic study (and there-fore at the lowest possible price in cases that previously required two or more studies. Three-dimensional vol-ume rendering generates clinically accurate and immediately available images from the full CT data set with-out extensive editing. It allows the radiologist and clinician to address specific questions concerning patient care by interactively exploring different aspects of the data set. Three-dimensional images integrate a series of axial CT sections into a form that is often easier to interpret than the sections themselves and can be made to appear similar to other more familiar images such as catheter angiograms. The data are organized into a 3D matrix of volume elements (voxels. The screen of the computer monitor is a 2D-surface composed of discrete picture elements (pixels. Presenting what is stored in memory (ie, floating within the monitor on a 2D-screen is a challenge, but it is the very problem that 3D reconstruc-tion software has creatively solved. Voxel selection is usually accomplished by projecting lines (rays through the data set that correspond to the pixel matrix of the desired 2D image. Differences in the images produced with various 3D rendering techniques are the result of variations in how voxels are selected and weighted. In this article, I compare 3D volume rendering of spiral CT data with other rendering techniques (shaded surface display, maximum intensity projection and present a brief history of 3D volume rendering and discuss the im-plementation of this promising technology in terms of

  12. Cone-beam CT-guidance in Interventional Radiology

    NARCIS (Netherlands)

    Braak, S.J.

    2012-01-01

    OBJECTIVE. CBCT-guidance (CBCT-guidance) is a new stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planningsoftware, and real-time fluoroscopy. Our objective was to evaluate the use, feasibility and outcome of this technique. To determine the effectiv

  13. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  14. Dose reconstruction for real-time patient-specific dose estimation in CT

    Energy Technology Data Exchange (ETDEWEB)

    De Man, Bruno, E-mail: deman@ge.com; Yin, Zhye [Image Reconstruction Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Wu, Mingye [X-ray and CT Laboratory, GE Global Research, Shanghai 201203 (China); FitzGerald, Paul [Radiation Systems Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Kalra, Mannudeep [Divisions of Thoracic and Cardiac Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  15. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    Science.gov (United States)

    Alaei, Parham; Spezi, Emiliano

    2012-11-08

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.

  16. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT.

    Science.gov (United States)

    Maltz, Jonathan S; Gangadharan, Bijumon; Bose, Supratik; Hristov, Dimitre H; Faddegon, Bruce A; Paidi, Ajay; Bani-Hashemi, Ali R

    2008-12-01

    Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.

  17. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  18. The PRIMA collaboration: Preliminary results in FBP reconstruction of pCT data

    Energy Technology Data Exchange (ETDEWEB)

    Vanzi, Eleonora, E-mail: eleonora.vanzi@unifi.it [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); Bruzzi, Mara [INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Energetica, Università degli Studi di Firenze, Firenze (Italy); Bucciolini, Marta [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Fisiopatologia Clinica, Università degli Studi di Firenze, Firenze (Italy); Cirrone, G.A. Pablo [INFN-Laboratori Nazionali del Sud, Catania (Italy); Civinini, Carlo [INFN-Sezione di Firenze, Firenze (Italy); Cuttone, Giacomo [INFN-Laboratori Nazionali del Sud, Catania (Italy); Lo Presti, Domenico [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Università degli Studi di Catania, Catania (Italy); Pallotta, Stefania [Fisica Medica, Azienda Ospedaliero-Universitaria Careggi, Firenze (Italy); INFN-Sezione di Firenze, Firenze (Italy); Dipartimento di Fisiopatologia Clinica, Università degli Studi di Firenze, Firenze (Italy); Pugliatti, Cristina [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica, Università degli Studi di Catania, Catania (Italy); Randazzo, Nunzio [INFN-Sezione di Catania, Catania (Italy); Romano, Francesco [INFN-Laboratori Nazionali del Sud, Catania (Italy); Centro Studi e Ricerche e Museo Storico della Fisica, Roma (Italy); Scaringella, Monica [Dipartimento di Energetica, Università degli Studi di Firenze, Firenze (Italy); Sipala, Valeria [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari (Italy); INFN-Sezione di Cagliari, Cagliari (Italy); Stancampiano, Concetta [INFN-Laboratori Nazionali del Sud, Catania (Italy); and others

    2013-12-01

    A first prototype of proton Computed Tomography (pCT) scanner, made of four planes and a calorimeter, has been developed by the PRIMA (PRoton IMAging) Italian collaboration and first results concerning tomographic image reconstruction of experimentally acquired data are discussed in this paper. The Filtered Back-Projection (FBP) algorithm was used to reconstruct projections of a phantom acquired with a 62 MeV proton beam. Image noise and spatial resolution were assessed for different parameters of the filter used, with and without selection strategies on proton directions. A satisfactory image quality (0.88 mm resolution and 2.5% noise) was achieved even when the backprojection line was defined using only the line connecting the impact points on the second and third planes and all the data were used, irrespective of the proton direction and residual energy. Probably due to the specific detector-phantom arrangement used in this experiment and due to the substantial reduction of the number of useful events, cuts on proton directions did not increase the image resolution significantly. The results confirm the good performances of the PRIMA scanner prototype. They also demonstrate that FBP can produce images of sufficient quality to be used for patient positioning and to initialize iterative pCT reconstruction methods. -- Highlights: •pCT data have been acquired with the PRIMA scanner and 62 MeV protons. •FBP reconstruction strategies have been analyzed in terms of resolution and noise. •Even the simplest strategy for data rebinning gave <1mm resolution and <3% noise. •FBP image quality could be sufficient for patient positioning verification.

  19. Cone-beam local reconstruction based on a Radon inversion transformation

    Institute of Scientific and Technical Information of China (English)

    Wang Xian-Chao; Yan Bin; Li Lei; Hu Guo-En

    2012-01-01

    The local reconstruction from truncated projection data is one area of interest in image reconstruction for computed tomography (CT),which creates the possibility for dose reduction.In this paper,a filtered-backprojection (FBP)algorithm based on the Radon inversion transform is presented to deal with the three-dimensional (3D) local reconstruction in the circular geometry.The algorithm achieves the data filtering in two steps.The first step is the derivative of projections,which acts locally on the data and can thus be carried out accurately even in the presence of data truncation.The second step is the nonlocal Hilbert filtering.The numerical simulations and the real data reconstructions have been conducted to validate the new reconstruction algorithm.Compared with the approximate truncation resistant algorithm for computed tomography (ATRACT),not only it has a comparable ability to restrain truncation artifacts,but also its reconstruction efficiency is improved.It is about twice as fast as that of the ATRACT.Therefore,this work provides a simple and efficient approach for the approximate reconstruction from truncated projections in the circular cone-beam CT.

  20. Implementation and evaluation of two helical CT reconstruction algorithms in CIVA

    Science.gov (United States)

    Banjak, H.; Costin, M.; Vienne, C.; Kaftandjian, V.

    2016-02-01

    The large majority of industrial CT systems reconstruct the 3D volume by using an acquisition on a circular trajec-tory. However, when inspecting long objects which are highly anisotropic, this scanning geometry creates severe artifacts in the reconstruction. For this reason, the use of an advanced CT scanning method like helical data acquisition is an efficient way to address this aspect known as the long-object problem. Recently, several analytically exact and quasi-exact inversion formulas for helical cone-beam reconstruction have been proposed. Among them, we identified two algorithms of interest for our case. These algorithms are exact and of filtered back-projection structure. In this work we implemented the filtered-backprojection (FBP) and backprojection-filtration (BPF) algorithms of Zou and Pan (2004). For performance evaluation, we present a numerical compari-son of the two selected algorithms with the helical FDK algorithm using both complete (noiseless and noisy) and truncated data generated by CIVA (the simulation platform for non-destructive testing techniques developed at CEA).

  1. Limited-angle reverse helical cone-beam CT for pipeline with low rank decomposition

    Science.gov (United States)

    Wu, Dong; Zeng, Li

    2014-10-01

    In this paper, tomographic imaging of pipeline in service by cone-beam computed tomography (CBCT) is studied. With the developed scanning strategy and image model, the quality of reconstructed image is improved. First, a limited-angle reverse helical scanning strategy based on C-arm computed tomography (C-arm CT) is developed for the projection data acquisition of pipeline in service. Then, an image model which considering the resemblance among slices of pipeline is developed. Finally, split Bregman method based algorithm is implemented in solving the model aforementioned. Preliminary results of simulation experiments show that the projection data acquisition strategy and reconstruction method are efficient and feasible, and our method is superior to Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART).

  2. High Energy Electron Reconstruction in the BeamCal

    CERN Document Server

    Sailer, Andre

    2016-01-01

    This note discusses methods of particle reconstruction in the forward region detectors of future e+ e− linear colliders such as ILC or CLIC. At the nominal luminosity the innermost electromagnetic calorimeters undergo high particle fluxes from the beam-induced background. In this prospect, different methods of the background simulation and signal electron reconstruction are described.

  3. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  4. Volume-of-change cone-beam CT for image-guided surgery

    Science.gov (United States)

    Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-08-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.

  5. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Jed D [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Kudo, H [Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba (Japan)

    2004-06-07

    This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction at any point in a large volume. The reconstruction can be achieved either using a new algorithm presented herein or using a formula recently introduced by Katsevich (2003 Int. J. Math. Math. Sci. 21 1305-21). The shape of the reconstructed volume and the properties of saddles make saddles attractive for cardiac imaging. Three examples of saddles are presented with a discussion of implementation on devices similar to modern C-arm systems and multislice CT scanners. Reconstruction with one of these saddles has been tested using computer-simulated data, with and without truncation. The imaged phantom for the truncated data is a FORBILD head phantom (representing the heart) that has been modified and embedded inside the FORBILD thorax phantom. The non-truncated data were generated by excluding the thorax. The reconstructed images demonstrate the accuracy of the mathematical results.

  6. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  7. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  8. Cone beam CT in radiology; DVT in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, Florian [ALB FILS KLINIKEN GmbH, Klinik am Eichert, Goeppingen (Germany). Inst. fuer Radiologie

    2013-06-15

    Cone beam computed tomography (CBCT) is a cross-sectional X-ray modality using an imaging system with cone-beam geometry. Unlike CT, the data set is acquired in a single circulation of a C-arm shaped tube-detector unit. Image characteristics vs. exposure dose ratio is similar to conventional CT, but varies widely depending on the CBVT device and the selected settings, and is limited to low dose/high noise applications. Up to now, only few data is available to estimate the clinical value of CBCT. Nevertheless, the use of CBCT is increasing drastically in the recent years, especially in the dental and ENT diagnostic field. For this reason the European Commission recently published guidelines concerning the clinical application of CBCT. These guidelines, as well as clinically relevant technical features of CBCT and examples of the most frequent dental applications are presented in the following article. (orig.)

  9. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    , several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... improvements in clinical CBCT imaging achieved through post-processing of the clinical image data. A Monte Carlo model was established to predict patient specific scattered radiation in CBCT imaging, based on anatomical information from the planning CT scan. This allowed the time consuming Monte Carlo......Cone beam CT (CBCT) imaging is frequently used in modern radiotherapy to ensure the proper positioning of the patient prior to each treatment fraction. With the increasing use of CBCT imaging for image guidance, interest has grown in exploring the potential use of these 3– or 4–D medical images...

  10. Feasibility of GPU-assisted iterative image reconstruction for mobile C-arm CT

    Science.gov (United States)

    Pan, Yongsheng; Whitaker, Ross; Cheryauka, Arvi; Ferguson, Dave

    2009-02-01

    Computed tomography (CT) has been extensively studied and widely used for a variety of medical applications. The reconstruction of 3D images from a projection series is an important aspect of the modality. Reconstruction by filtered backprojection (FBP) is used by most manufacturers because of speed, ease of implementation, and relatively few parameters. Iterative reconstruction methods have a significant potential to provide superior performance with incomplete or noisy data, or with less than ideal geometries, such as cone-beam systems. However, iterative methods have a high computational cost, and regularization is usually required to reduce the effects of noise. The simultaneous algebraic reconstruction technique (SART) is studied in this paper, where the Feldkamp method (FDK) for filtered back projection is used as an initialization for iterative SART. Additionally, graphics hardware is utilized to increase the speed of SART implementation. Nvidia processors and compute unified device architecture (CUDA) form the platform for GPU computation. Total variation (TV) minimization is applied for the regularization of SART results. Preliminary results of SART on 3-D Shepp-Logan phantom using using TV regularization and GPU computation are presented in this paper. Potential improvements of the proposed framework are also discussed.

  11. Evaluation of algebraic iterative image reconstruction methods for tetrahedron beam computed tomography systems.

    Science.gov (United States)

    Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi

    2013-01-01

    Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  12. Evaluation of Algebraic Iterative Image Reconstruction Methods for Tetrahedron Beam Computed Tomography Systems

    Directory of Open Access Journals (Sweden)

    Joshua Kim

    2013-01-01

    Full Text Available Tetrahedron beam computed tomography (TBCT performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT, it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.

  13. Bayesian reconstruction strategy of fluorescence-mediated tomography using an integrated SPECT-CT-OT system

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2010-05-01

    Following the assembly of a triple-modality SPECT-CT-OT small animal imaging system providing intrinsically co-registered projection data of all three submodalities and under the assumption and investigation of dual-labeled probes consisting of both fluorophores and radionuclides, a novel multi-modal reconstruction strategy is presented in this paper aimed at improving fluorescence-mediated tomography (FMT). The following reconstruction procedure is proposed: firstly, standard x-ray CT image reconstruction is performed employing the FDK algorithm. Secondly, standard SPECT image reconstruction is performed using OSEM. Thirdly, from the reconstructed CT volume data the surface boundary of the imaged object is extracted for finite element definition. Finally, the reconstructed SPECT data are used as a priori information within a Bayesian reconstruction framework for optical (FMT) reconstruction. We provide results of this multi-modal approach using phantom experimental data and illustrate that this strategy does suppress artifacts and facilitates quantitative analysis for optical imaging studies.

  14. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications.

  15. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    Science.gov (United States)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  16. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    Science.gov (United States)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  17. TV-constrained incremental algorithms for low-intensity CT image reconstruction

    DEFF Research Database (Denmark)

    Rose, Sean D.; Andersen, Martin S.; Sidky, Emil Y.;

    2015-01-01

    Low-dose X-ray computed tomography (CT) has garnered much recent interest as it provides a method to lower patient dose and simultaneously reduce scan time. In non-medical applications the possibility of preventing sample damage makes low-dose CT desirable. Reconstruction in low-dose CT poses...

  18. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Wei, J [Landauer Medical Physics, Newnan, GA (United States)

    2015-06-15

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity.

  19. Total variation superiorization in dual-energy CT reconstruction for proton therapy treatment planning

    Science.gov (United States)

    Zhu, Jiahua; Penfold, Scott

    2017-04-01

    Proton therapy is a precise form of radiotherapy in which the range of an energetic beam of protons within a patient must be accurately known. The current approach based on single-energy computed tomography (SECT) can lead to uncertainties in the proton range of approximately 3%. This range of uncertainty may lead to under-dosing of the tumour or over-dosing of healthy tissues. Dual-energy CT (DECT) theoretically has the potential to reduce these range uncertainties by quantifying electron density and the effective atomic number. In practice, however, DECT images reconstructed with filtered backprojection (FBP) tend to suffer from high levels of noise. The objective of the current work was to examine the effect of total variation superiorization (TVS) on proton therapy planning accuracy when compared with FBP. A virtual CT scanner was created with the Monte Carlo toolkit Geant4. Tomographic images were reconstructed with FBP and TVS combined with diagonally relaxed orthogonal projections (TVS-DROP). A total variation minimization (TVM) filter was also applied to the image reconstructed with FBP (FBP-TVM). Quantitative accuracy and variance of proton relative stopping power (RSP) derived from each image set was assessed. Mean RSPs were comparable with each image; however, the standard deviation of pixel values with TVS-DROP was reduced by a factor of 0.44 compared with the FBP image and a factor of 0.66 when compared with the FBP-TVM image. Proton doses calculated with the TVS-DROP image set were also better able to predict a reference dose distribution when compared with the FBP and FBP-TVM image sets. The study demonstrated the potential advantages of TVS-DROP as an image reconstruction method for DECT applied to proton therapy treatment planning.

  20. A feature refinement approach for statistical interior CT reconstruction

    Science.gov (United States)

    Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong

    2016-07-01

    Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)—minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.

  1. Pre-reconstruction three-material decomposition in dual-energy CT

    Science.gov (United States)

    Yu, Lifeng; Liu, Xin; McCollough, Cynthia H.

    2009-02-01

    It is of clinical interest to quantify the concentration of materials in a three-component mixture with known chemical compositions, such as bone-mineral density (BMD) in a trabecular bone composed of calcium hydroxyappitite (CaHA), yellow- and red-marrow, and iron content in the liver composed of soft tissue, fat, and iron. Both pre- and postreconstruction dual-energy CT methods have been used to achieve this goal. The pre-reconstruction method is more accurate due to the elimination of beam-hardening artifacts. After obtaining the equivalent densities of the two basis materials, however, it is unclear how to accurately estimate the concentration of each material in the presence of the third material in the mixture. In this work, we present a pre-reconstruction three-material decomposition method in dualenergy CT to quantify the concentration of each material in a three-component mixture with known chemical compositions. This method employs a specific physical constraint on the equivalent densities of the two basis materials obtained from the conventional basis-material decomposition. We evaluated this method using simulation studies on two types of three-component mixtures: bone-water-fat and Iron-water-CaHA. The results demonstrated that an accurate estimation of the concentration for each material can be achieved with the proposed method.

  2. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  3. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  4. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    Science.gov (United States)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  5. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    Science.gov (United States)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  6. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T. [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R. [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T. [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  7. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  8. Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system

    Science.gov (United States)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2008-03-01

    The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.

  9. The Relationships of the Maxillary Sinus With the Superior Alveolar Nerves and Vessels as Demonstrated by Cone-Beam CT Combined With μ-CT and Histological Analyses.

    Science.gov (United States)

    Kasahara, Norio; Morita, Wataru; Tanaka, Ray; Hayashi, Takafumi; Kenmotsu, Shinichi; Ohshima, Hayato

    2016-05-01

    There are no available detailed data on the three-dimensional courses of the human superior alveolar nerves and vessels. This study aimed to clarify the relationships of the maxillary sinus with the superior alveolar nerves and vessels using cone-beam computed tomography (CT) combined with μ-CT and histological analyses. Digital imaging and communication in medicine data obtained from the scanned heads/maxillae of cadavers used for undergraduate/postgraduate dissection practice and skulls using cone-beam CT were reconstructed into three-dimensional (3D) images using software. The 3D images were compared with μ-CT images and histological sections. Cone-beam CT clarified the relationships of the maxillary sinus with the superior alveolar canals/grooves. The main anterior superior alveolar canal/groove ran anteriorly through the upper part of the sinus and terminated at the bottom of the nasal cavity near the piriform aperture. The main middle alveolar canal ran downward from the upper part of the sinus to ultimately join the anterior one. The main posterior alveolar canal ran through the lateral lower part of the sinus and communicated with the anterior one. Histological analyses demonstrated the existence of nerves and vessels in these canals/grooves, and the quantities of these structures varied across each canal/groove. Furthermore, the superior dental nerve plexus exhibited a network that was located horizontally to the occlusal plane, although these nerve plexuses appeared to be the vertical network that is described in most textbooks. In conclusion, cone-beam CT is suggested to be a useful method for clarifying the superior alveolar canals/grooves including the nerves and vessels.

  10. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Science.gov (United States)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  11. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    OpenAIRE

    AlJehani, Yousef A.

    2014-01-01

    Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT) in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014), PubMed (using medical subject headings), and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplem...

  12. Clinical investigation of flat panel CT following middle ear reconstruction: a study of 107 patients

    Energy Technology Data Exchange (ETDEWEB)

    Zaoui, K. [University Hospital Heidelberg, Ruprecht Karls University, Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg (Germany); Kromeier, J. [St. Josefs Hospital, RkK, Department of Radiology, Freiburg (Germany); Neudert, M.; Beleites, T.; Zahnert, T. [University Hospital Dresden, Technical University, Department of Otorhinolaryngology, Head and Neck Surgery, Dresden (Germany); Laszig, R.; Offergeld, C. [University Hospital Freiburg, Albert Ludwigs University, Department of Otorhinolaryngology, Head and Neck Surgery, Freiburg (Germany)

    2014-03-15

    After middle ear reconstruction using partial or total ossicular replacement prostheses (PORP/TORP), an air-bone gap (ABG) may persist because of prosthesis displacement or malposition. So far, CT of the temporal bone has played the main role in the diagnosis of reasons for postoperative insufficient ABG improvement. Recent experimental and clinical studies have evaluated flat panel CT (fpCT) as an alternative imaging technique that provides images with high isovolumetric resolution, fewer metal-induced artefacts and lower irradiation doses. One hundred and seven consecutive patients with chronic otitis media with or without cholesteatoma underwent reconstruction by PORP (n = 52) or TORP (n = 55). All subjects underwent preoperative and postoperative audiometric testing and postoperative fpCT. Statistical evaluation of all 107 patients as well as the sole sub-assembly groups (PORP or TORP) showed a highly significant correlation between hearing improvement and fpCT-determined prosthesis position. FpCT enables detailed postoperative information on patients with middle ear reconstruction. FpCT is a new imaging technique that provides immediate feedback on surgical results after reconstructive middle ear surgery. Specific parameters evaluated by fpCT may serve as a predictive tool for estimated postoperative hearing improvement. Therefore this imaging technique is suitable for postoperative quality control in reconstructive middle ear surgery. (orig.)

  13. A user-friendly nano-CT image alignment and 3D reconstruction platform based on LabVIEW

    Science.gov (United States)

    Wang, Sheng-Hao; Zhang, Kai; Wang, Zhi-Li; Gao, Kun; Wu, Zhao; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-01-01

    X-ray computed tomography at the nanometer scale (nano-CT) offers a wide range of applications in scientific and industrial areas. Here we describe a reliable, user-friendly, and fast software package based on LabVIEW that may allow us to perform all procedures after the acquisition of raw projection images in order to obtain the inner structure of the investigated sample. A suitable image alignment process to address misalignment problems among image series due to mechanical manufacturing errors, thermal expansion, and other external factors has been considered, together with a novel fast parallel beam 3D reconstruction procedure that was developed ad hoc to perform the tomographic reconstruction. We have obtained remarkably improved reconstruction results at the Beijing Synchrotron Radiation Facility after the image calibration, the fundamental role of this image alignment procedure was confirmed, which minimizes the unwanted blurs and additional streaking artifacts that are always present in reconstructed slices. Moreover, this nano-CT image alignment and its associated 3D reconstruction procedure are fully based on LabVIEW routines, significantly reducing the data post-processing cycle, thus making the activity of the users faster and easier during experimental runs.

  14. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  15. Enhancement of mobile C-arm cone-beam reconstruction using prior anatomical models

    Science.gov (United States)

    Sadowsky, Ofri; Lee, Junghoon; Sutter, Edward G.; Wall, Simon J.; Prince, Jerry L.; Taylor, Russell H.

    2009-02-01

    We demonstrate an improvement to cone-beam tomographic imaging by using a prior anatomical model. A protocol for scanning and reconstruction has been designed and implemented for a conventional mobile C-arm: a 9 inch image-intensifier OEC-9600. Due to the narrow field of view (FOV), the reconstructed image contains strong truncation artifacts. We propose to improve the reconstructed images by fusing the observed x-ray data with computed projections of a prior 3D anatomical model, derived from a subject-specific CT or from a statistical database (atlas), and co-registered (3D/2D) to the x-rays. The prior model contains a description of geometry and radiodensity as a tetrahedral mesh shape and density polynomials, respectively. A CT-based model can be created by segmentation, meshing and polynomial fitting of the object's CT study. The statistical atlas is created through principal component analysis (PCA) of a collection of mesh instances deformably-registered (3D/3D) to patient datasets. The 3D/2D registration method optimizes a pixel-based similarity score (mutual information) between the observed x-rays and the prior. The transformation involves translation, rotation and shape deformation based on the atlas. After registration, the image intensities of observed and prior projections are matched and adjusted, and the two information sources are blended as inputs to a reconstruction algorithm. We demonstrate recostruction results of three cadaveric specimens, and the effect of fusing prior data to compensate for truncation. Further uses of hybrid reconstruction, such as compensation for the scan's limited arc length, are suggested for future research.

  16. Quantifying Admissible Undersampling for Sparsity-Exploiting Iterative Image Reconstruction in X-Ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2013-01-01

    Iterative image reconstruction with sparsity-exploiting methods, such as total variation (TV) minimization, investigated in compressive sensing claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is nontrivial, because both full sampling...

  17. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  18. Helical mode lung 4D-CT reconstruction using Bayesian model.

    Science.gov (United States)

    He, Tiancheng; Xue, Zhong; Nitsch, Paige L; Teh, Bin S; Wong, Stephen T

    2013-01-01

    4D computed tomography (CT) has been widely used for treatment planning of thoracic and abdominal cancer radiotherapy. Current 4D-CT lung image reconstruction methods rely on respiratory gating to rearrange the large number of axial images into different phases, which may be subject to external surrogate errors due to poor reproducibility of breathing cycles. New image-matching-based reconstruction works better for the cine mode of 4D-CT acquisition than the helical mode because the table position of each axial image is different in helical mode and image matching might suffer from bigger errors. In helical mode, not only the phases but also the un-uniform table positions of images need to be considered. We propose a Bayesian method for automated 4D-CT lung image reconstruction in helical mode 4D scans. Each axial image is assigned to a respiratory phase based on the Bayesian framework that ensures spatial and temporal smoothness of surfaces of anatomical structures. Iterative optimization is used to reconstruct a series of 3D-CT images for subjects undergoing 4D scans. In experiments, we compared visually and quantitatively the results of the proposed Bayesian 4D-CT reconstruction algorithm with the respiratory surrogate and the image matching-based method. The results showed that the proposed algorithm yielded better 4D-CT for helical scans.

  19. Self-calibration of a cone-beam micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); The Supercomputing Institute for Advanced Computational Research, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only

  20. Hybrid and Model-Based Iterative Reconstruction Techniques for Pediatric CT

    NARCIS (Netherlands)

    den Harder, Annemarie M.; Willemink, Martin J.; Budde, Ricardo P. J.; Schilham, Arnold M. R.; Leiner, Tim; de Jong, Pim A.

    2015-01-01

    OBJECTIVE. Radiation exposure from CT examinations should be reduced to a minimum in children. Iterative reconstruction (IR) is a method to reduce image noise that can be used to improve CT image quality, thereby allowing radiation dose reduction. This article reviews the use of hybrid and model-bas

  1. Diagnostic value of 3 D CT surface reconstruction in spinal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koesling, S. [Department of Radiology, Univ. of Leipzig (Germany); Dietrich, K. [Department of Radiology, Univ. of Leipzig (Germany); Steinecke, R. [Department of Radiology, Univ. of Leipzig (Germany); Kloeppel, R. [Department of Radiology, Univ. of Leipzig (Germany); Schulz, H.G. [Department of Radiology, Univ. of Leipzig (Germany)

    1997-02-01

    Our purpose was to evaluate the diagnostic value of three-dimensional (3 D) CT surface reconstruction in spinal fractures in comparison with axial and reformatted images. A total of 50 patients with different CT-proven spinal fractures were analysed retrospectively. Based on axial scans and reformatted images, the spinal fractures were classified according to several classifications as Magerl for the thoraco-lumbar and lower cervical spine by one radiologist. Another radiologist performed 3 D CT surface reconstructions with the aim of characterizing the different types of spinal fractures. A third radiologist classified the 3 D CT surface reconstruction according to the Magerl classification. The results of the blinded reading process were compared. It was checked to see in which type and subgroup 3 D surface reconstructions were helpful. Readers one and two obtained the same results in the classification. The 3 D surface reconstruction did not yield any additional diagnostic information concerning type A and B injuries. Indeed, the full extent of the fracture could be easier recognized with axial and reformatted images in all cases. In 10 cases of C injuries, the dislocation of parts of vertebrae could be better recognized with the help of 3 D reconstructions. A 3 D CT surface reconstruction is only useful in rotational and shear vertebral injuries (Magerl type C injury). (orig.). With 4 figs., 1 tab.

  2. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  3. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    Liang, X.; Lambrichts, I.; Sun, Y.; Denis, K.; Hassan, B.; Li, L.; Pauwels, R.; Jacobs, R.

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  4. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  5. Rapidly converging multigrid reconstruction of cone-beam tomographic data

    Science.gov (United States)

    Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.

    2016-10-01

    In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.

  6. MicroCT: Semi-Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to R and D work - for production applications, use [4].

  7. MicroCT: Automated Analysis of CT Reconstructed Data of Home Made Explosive Materials Using the Matlab MicroCT Analysis GUI

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, I M; Brown, W D; Kallman, J S; Martz, H E; White, W T

    2011-09-22

    This Standard Operating Procedure (SOP) provides the specific procedural steps for analyzing reconstructed CT images obtained under the IDD Standard Operating Procedures for data acquisition [1] and MicroCT image reconstruction [2], per the IDD Quality Assurance Plan for MicroCT Scanning [3]. Although intended to apply primarily to MicroCT data acquired in the HEAFCAT Facility at LLNL, these procedures may also be applied to data acquired at Tyndall from the YXLON cabinet and at TSL from the HEXCAT system. This SOP also provides the procedural steps for preparing the tables and graphs to be used in the reporting of analytical results. This SOP applies to production work - for R and D there are two other semi-automated methods as given in [4, 5].

  8. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  9. Influence of iterative image reconstruction on CT-based calcium score measurements

    NARCIS (Netherlands)

    van Osch, Jochen A. C.; Mouden, Mohamed; van Dalen, Jorn A.; Timmer, Jorik R.; Reiffers, Stoffer; Knollema, Siert; Greuter, Marcel J. W.; Ottervanger, Jan Paul; Jager, Piet L.

    2014-01-01

    Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the corona

  10. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  11. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-07

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  12. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  13. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    OpenAIRE

    Cai, Weixing; zhao,binghui; Conover, David; Liu, Jiangkun; Ning, Ruola

    2012-01-01

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan.

  14. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  15. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    Yousef A. AlJehani

    2014-01-01

    Full Text Available Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014, PubMed (using medical subject headings, and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Conclusions. Bony defects, caters, and furcation involvements seem to be better depicted on CBCT, whereas bone quality and periodontal ligament space scored better on conventional intraoral radiography. CBCT does not offer a significant advantage over conventional radiography for assessing the periodontal bone levels.

  16. Fan beam image reconstruction with generalized Fourier slice theorem.

    Science.gov (United States)

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  17. Computer and Modernization%Low-dose CT Image Reconstruction Based on Adaptive Kernel Regression Method and Algebraic Reconstruction Technique

    Institute of Scientific and Technical Information of China (English)

    钟志威

    2016-01-01

    针对稀疏角度投影数据CT图像重建问题,TV-ART算法将图像的梯度稀疏先验知识引入代数重建法( ART)中,对分段平滑的图像具有较好的重建效果。但是,该算法在边界重建时会产生阶梯效应,影响重建质量。因此,本文提出自适应核回归函数结合代数重建法的重建算法( LAKR-ART),不仅在边界重建时不会产生阶梯效应,而且对细节纹理重建具有更好的重建效果。最后对shepp-logan标准CT图像和实际CT头颅图像进行仿真实验,并与ART、TV-ART算法进行比较,实验结果表明本文算法有效。%To the problem of sparse angular projection data of CT image reconstruction, TV-ART algorithm introduces the gradient sparse prior knowledge of image to algebraic reconstruction, and the local smooth image gets a better reconstruction effect. How-ever, the algorithm generates step effect when the borders are reconstructed, affecting the quality of the reconstruction. Therefore, this paper proposes an adaptive kernel regression function combined with Algebraic Reconstruction Technique reconstruction algo-rithm ( LAKR-ART) , it does not produce the step effect on the border reconstruction, and has a better effect to detail reconstruc-tion. Finally we use the shepp-logan CT image and the actual CT image to make the simulation experiment, and compare with ART and TV-ART algorithm. The experimental results show the algorithm is of effectiveness.

  18. Cone beam CT for dental and maxillofacial imaging: dose matters.

    Science.gov (United States)

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications.

  19. A study of the reconstruction of pectus excavatum using 3-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, Genichirou; Maruyama, Kiyoji; Iwahara, Susumu; Nakazawa, Toshitaka; Maezumi, Kazuo; Aoki, Hiroshi; Kondou, Yoshiaki; Noguchi, Akihiko [Nagano Children`s Hospital, Toyoshina (Japan)

    1997-06-01

    The rate of excavation of sternum was calculated from 3-D CT images of patients with pectus excavatum for reconstruction surgery. Subjects were 45 children of ages of 1-11 (mean 5) year. CT was performed with Toshiba TCT-900S (HELIX V9.1) with the procedure of: 120 kV, 50-100 mA, bed speed 5-7.5 mm/sec, image reconstruction interval 2-2.5 mm, slice thickness 5 mm, scanning rate 1 sec/round, 30 sec at longest scanning, Boxel reconstruction method for 3-D and Macintosh image analyzer. The rate of excavation was calculated using the reported index. Reconstruction was evaluated by the rate before and after surgery. The calculation based on the 3-D CT was found useful for the surgery. (K.H.)

  20. Iterative reconstruction technique with reduced volume CT dose index: diagnostic accuracy in pediatric acute appendicitis

    Energy Technology Data Exchange (ETDEWEB)

    Didier, Ryne A. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Vajtai, Petra L. [Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Hopkins, Katharine L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States)

    2014-07-05

    Iterative reconstruction technique has been proposed as a means of reducing patient radiation dose in pediatric CT. Yet, the effect of such reductions on diagnostic accuracy has not been thoroughly evaluated. This study compares accuracy of diagnosing pediatric acute appendicitis using contrast-enhanced abdominopelvic CT scans performed with traditional pediatric weight-based protocols and filtered back projection reconstruction vs. a filtered back projection/iterative reconstruction technique blend with reduced volume CT dose index (CTDI{sub vol}). Results of pediatric contrast-enhanced abdominopelvic CT scans done for pain and/or suspected appendicitis were reviewed in two groups: A, 192 scans performed with the hospital's established weight-based CT protocols and filtered back projection reconstruction; B, 194 scans performed with iterative reconstruction technique and reduced CTDI{sub vol}. Reduced CTDI{sub vol} was achieved primarily by reductions in effective tube current-time product (mAs{sub eff}) and tube peak kilovoltage (kVp). CT interpretation was correlated with clinical follow-up and/or surgical pathology. CTDI{sub vol}, size-specific dose estimates (SSDE) and performance characteristics of the two CT techniques were then compared. Between groups A and B, mean CTDI{sub vol} was reduced by 45%, and mean SSDE was reduced by 46%. Sensitivity, specificity and diagnostic accuracy were 96%, 97% and 96% in group A vs. 100%, 99% and 99% in group B. Accuracy in diagnosing pediatric acute appendicitis was maintained in contrast-enhanced abdominopelvic CT scans that incorporated iterative reconstruction technique, despite reductions in mean CTDI{sub vol} and SSDE by nearly half as compared to the hospital's traditional weight-based protocols. (orig.)

  1. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging

    Science.gov (United States)

    2015-01-01

    For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components. PMID:26544723

  2. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT reconstruction is proposed. For this new method, the tube's voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.

  3. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  4. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  5. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  6. An experimental cone-beam micro-CT system for small animal imaging

    Science.gov (United States)

    Zhu, Shouping; Tian, Jie; Yan, Guorui; Qin, Chenghu; Liu, Junting

    2009-02-01

    An experimental cone-beam Micro-CT system for small animal imaging is presented in the paper. The system is designed to obtain high-resolution anatomic information and will be integrated with our bioluminescence tomography system. A flat panel X-ray detector (CMOS technology with a column CsI scintillator plate, 50 micron pixel size, 120 mm × 120 mm photodiode area) and a micro-focus X-ray source (13 to 40 μm of focal spot size) are used in the system. The object (mouse or rat) is placed on a three-degree (two translations and one rotation) programming stage and could be located to an accurate position in front of the detector. The large field of view (FOV) of the system allows us to acquire the whole body imaging of a normal mouse in one scanning which usually takes about 6 to 15 minutes. Raw data from X-ray detector show spatial variation caused by dark image offset, pixel gain and defective pixels, therefore data pre-processing is needed before reconstruction. Geometry calibrations are also used to reduce the artifacts caused by geometric misalignment. In order to accelerate FDK filtered backprojection method, we develop a reconstruction software using GPU hardware in our system. System spacial resolution and image uniformity and voxel noise have been assessed and mouse reconstruction images are illuminated in the paper. Experiment results show that this system is suitable for small animal imaging.

  7. CT metal artifact reduction method correcting for beam hardening and missing projections

    Science.gov (United States)

    Verburg, Joost M.; Seco, Joao

    2012-05-01

    We present and validate a computed tomography (CT) metal artifact reduction method that is effective for a wide spectrum of clinical implant materials. Projections through low-Z implants such as titanium were corrected using a novel physics correction algorithm that reduces beam hardening errors. In the case of high-Z implants (dental fillings, gold, platinum), projections through the implant were considered missing and regularized iterative reconstruction was performed. Both algorithms were combined if multiple implant materials were present. For comparison, a conventional projection interpolation method was implemented. In a blinded and randomized evaluation, ten radiation oncologists ranked the quality of patient scans on which the different methods were applied. For scans that included low-Z implants, the proposed method was ranked as the best method in 90% of the reviews. It was ranked superior to the original reconstruction (p = 0.0008), conventional projection interpolation (p implants, and better as compared to the original reconstruction (p combining algorithms tailored to specific types of implant materials.

  8. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  9. 锥束CT系统的3D Shepp-Logan体模仿真及其投影数据重建%The simulation and projection data reconstruction on 3D Shepp-Logan phantom for cone-beam CT system

    Institute of Scientific and Technical Information of China (English)

    曹涵; 胡战利; 方方; 胡信菊

    2014-01-01

    In order to verify the performance of cone-beam CT imaging algorithm, 3D Shepp-Logan phantom produced by For-tran is presented as the reference model for algorithm performance verification, and introduces the parameter of 3D Shepp-Logan phantom and programming method detailedly. Then, we put it in the projection process directly and get the projection data. Fin-ally, simulation experiments of 3D medical image reconstruction are carried out by the projection data. After experimental veri-fication, it is shown that the performance of the algorithms verifying through 3D Shepp-Logan phantom produced by Fortran is accurate and feasible.%为了验证锥束CT成像算法的性能,提出了使用Fortran语言编写的3D Shepp-Logan体模作为算法性能验证的参考模型,并详细介绍了3D Shepp-Logan体模的参数设置及编程方法。然后,直接加入到正投影程序中得到投影数据。最后,利用得到的投影数据进行了三维医学图像重建的仿真实验。经过实验验证,表明了使用Fortran语言编写的3D Shepp-Logan体模来验证算法性能是准确可行的。

  10. Filtered Iterative Reconstruction (FIR) via Proximal Forward-Backward Splitting: A Synergy of Analytical and Iterative Reconstruction Method for CT

    CERN Document Server

    Gao, Hao

    2015-01-01

    This work is to develop a general framework, namely filtered iterative reconstruction (FIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality. Specifically, FIR is formulated as a combination of filtered data fidelity and sparsity regularization, and then solved by proximal forward-backward splitting (PFBS) algorithm. As a result, the image reconstruction decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is in turn weighted together with previous image iterate to form next image iterate. Since the eigenvalues of AR-projection operator are close to the unity, PFBS based FIR has a fast convergenc...

  11. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Kunisaki, Shaun M. [University of Michigan Health System, Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States)

    2015-07-15

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI{sub vol} was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  12. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  13. Can CT measurements of femoral varus be performed reliably – even between reconstructions?

    DEFF Research Database (Denmark)

    Miles, James Edward; Berg-Sørensen, Kristina; Buelund, Lene Elisabeth

    reconstructions, a situation with more real-life applicability. CT scans of 20 canine femora underwent 3D reconstruction by 3 independent observers. Reconstruction spin and tilt data were used to assess reconstruction variability. Two observers of differing experience levels made 3 independent readings...... and tilt data obtained above were used to specify a model to predict the effect of reconstruction variability on varus measurements. Intraobserver repeatability coefficients were 2.4° and 2.6°, and the interobserver repeatability coefficient was 3.5°. Reconstruction variability yielded a spin-tilt ellipse...... area of 0.59 deg2. Surprisingly, reconstruction variability produced minimal effects on simulated varus measurements in contrast to previous experimental reports. Possible explanations include changing landmark appearance which cannot be modelled and lower magnitude of femoral subtense (procurvatum...

  14. Recent advances in iterative reconstruction for clinical SPECT/PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Brian F. (Inst. of Nuclear Medicine, Univ. College London, London (United Kingdom)), e-mail: brian.hutton@uclh.nhs.uk

    2011-08-15

    Statistical iterative reconstruction is now widely used in clinical practice and has contributed to significant improvement in image quality in recent years. Although primarily used for reconstruction in emission tomography (both single photon emission computed tomography (SPECT) and positron emission tomography (PET)) there is increasing interest in also applying similar algorithms to x-ray computed tomography (CT). There is increasing complexity in the factors that are included in the reconstruction, a demonstration of the versatility of the approach. Research continues with exploration of methods for further improving reconstruction quality with effective correction for various sources of artefact

  15. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    Energy Technology Data Exchange (ETDEWEB)

    Meilinger, Manuel [Regensburg Univ. (Germany). CIML Group; Siemens Healthcare, Erlangen (Germany); Schmidgunst, Christian; Schuetz, Oliver [Siemens Healthcare, Erlangen (Germany); Lang, Elmar W. [Regensburg Univ. (Germany). CIML Group

    2011-07-01

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  16. Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction.

    Science.gov (United States)

    Kim, Donghwan; Ramani, Sathish; Fessler, Jeffrey A

    2015-01-01

    Statistical X-ray computed tomography (CT) reconstruction can improve image quality from reduced dose scans, but requires very long computation time. Ordered subsets (OS) methods have been widely used for research in X-ray CT statistical image reconstruction (and are used in clinical PET and SPECT reconstruction). In particular, OS methods based on separable quadratic surrogates (OS-SQS) are massively parallelizable and are well suited to modern computing architectures, but the number of iterations required for convergence should be reduced for better practical use. This paper introduces OS-SQS-momentum algorithms that combine Nesterov's momentum techniques with OS-SQS methods, greatly improving convergence speed in early iterations. If the number of subsets is too large, the OS-SQS-momentum methods can be unstable, so we propose diminishing step sizes that stabilize the method while preserving the very fast convergence behavior. Experiments with simulated and real 3D CT scan data illustrate the performance of the proposed algorithms.

  17. IMAGE RECONSTRUCTION AND OBJECT CLASSIFICATION IN CT IMAGING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    张晓明; 蒋大真; 等

    1995-01-01

    By obtaining a feasible filter function,reconstructed images can be got with linear interpolation and filtered backoprojection techniques.Considering the gray and spatial correlation neighbour informations of each pixel,a new supervised classification method is put forward for the reconstructed images,and an experiment with noise image is done,the result shows that the method is feasible and accurate compared with ideal phantoms.

  18. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    Science.gov (United States)

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  19. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  20. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  1. [Metal artefact on head and neck cone-beam CT images].

    Science.gov (United States)

    Kovacs, Miklós; Fejérdy, Pál; Dobó, Nagy Csaba

    2008-10-01

    There are only a few factors, where the properties of the CBCT is inferior compared to conventional CT. One of these properties is the low contrast resolution, which has an importance in the discrimination of different soft tissues. Another difference is the image quality degrading effect by metal objects. This latter factor has much higher importance in head and neck region CBCT application. The metal artifact is closely related to other types of artifacts, like beam-hardening and x-ray photon scattering artifacts. In some of the cases, metal artifacts can be avoided by the proper adjustment of the scanning parameters, but sometimes the problem overgrows the possibilities. The current pre- and post-processing algorithms used for the correction of different artifacts can improve the image quality, but these algorithms are not the ultimate solution to the problem. The introduction of iterative reconstruction algorithms into the CBCT market will effectively reduce the most CT artifacts, however, the spread of this algorithms are set back because of the insufficient computational power of today's PCs. Another advantage of the use of iterative algorithms is that the patient dose could be significantly reduced.

  2. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  3. GPU-accelerated few-view CT reconstruction using the OSC and TV techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri [Montreal Univ., QC (Canada). Dept. de Physique; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Centre Hospitalier Univ. de Quebec, QC (Canada). Dept. de Radio-Oncologie

    2011-07-01

    The present work proposes a promising iterative reconstruction technique designed specifically for X-ray transmission computed tomography (CT). The main objective is to reduce diagnostic radiation dose through the reduction of the number of CT projections, while preserving image quality. The second objective is to provide a fast implementation compatible with clinical activities. The proposed tomographic reconstruction technique is a combination of the Ordered Subsets Convex (OSC) algorithm and the Total Variation minimization (TV) regularization technique. The results in terms of image quality and computational speed are discussed. Using this technique, it was possible to obtain reconstructed slices of relatively good quality with as few as 100 projections, leading to potential dose reduction factors of up to an order of magnitude depending on the application. The algorithm was implemented on a Graphical Processing Unit (GPU) and yielded reconstruction times of approximately 185 ms per slice. (orig.)

  4. Reconstructions with identical filling (RIF) of the heart: a physiological approach to image reconstruction in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Reinartz, S.D.; Diefenbach, B.S.; Kuhl, C.K.; Mahnken, A.H. [University Hospital, RWTH Aachen University, Department of Diagnostic and Interventional Radiology, Aachen (Germany); Allmendinger, T. [Siemens Healthcare Sector, Department of Computed Tomography, Forchheim (Germany)

    2012-12-15

    To compare image quality in coronary artery computed tomography angiography (cCTA) using reconstructions with automated phase detection and Reconstructions computed with Identical Filling of the heart (RIF). Seventy-four patients underwent ECG-gated dual source CT (DSCT) between November 2009 and July 2010 for suspected coronary heart disease (n = 35), planning of transcatheter aortic valve replacement (n = 34) or evaluation of ventricular function (n = 5). Image data sets by the RIF formula and automated phase detection were computed and evaluated with the AHA 15-segment model and a 5-grade Likert scale (1: poor, 5: excellent quality). Subgroups regarding rhythm (sinus rhythm = SR; arrhythmia = ARR) and potential premedication were evaluated by a per-segment, per-vessel and per-patient analysis. RIF significantly improved image quality in 10 of 15 coronary segments (P < 0.05). More diagnostic segments were provided by RIF regarding the entire cohort (n = 693 vs. 590, P < 0.001) and all of the subgroups (e.g. ARR: n = 143 vs. 72, P < 0.001). In arrhythmic patients (n = 19), more diagnostic vessels (e.g. LAD: n = 10 vs. 3; P < 0.014) and complete data sets (n = 7 vs. 1; P < 0.001) were produced. RIF reconstruction is superior to automatic diastolic non-edited reconstructions, especially in arrhythmic patients. RIF theory provides a physiological approach for determining the optimal image reconstruction point in ECG-gated CT angiography. (orig.)

  5. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  6. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  7. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    Science.gov (United States)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and

  8. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  9. Quantitatively assessed CT imaging measures of pulmonary interstitial pneumonia: Effects of reconstruction algorithms on histogram parameters

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu [Department of Radiology, Hyogo Kaibara Hospital, 5208-1 Kaibara, Kaibara-cho, Tanba 669-3395 (Japan)], E-mail: hisanobu19760104@yahoo.co.jp; Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: yosirad@kobe-u.ac.jp; Yamazaki, Youichi [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: y.yamazk@sahs.med.osaka-u.ac.jp; Nogami, Munenobu [Division of PET, Institute of Biomedical Research and Innovation, 2-2 MInamimachi, Minatojima, Chu0-ku, Kobe 650-0047 (Japan)], E-mail: aznogami@fbri.org; Kusaka, Akiko [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: a.kusaka@hosp.kobe-u.ac.jp; Murase, Kenya [Department of Medical Physics and Engineering, Faculty of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita 565-0871 (Japan)], E-mail: murase@sahs.med.osaka-u.ac.jp; Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)], E-mail: sugimura@med.kobe-u.ac.jp

    2010-04-15

    This study aimed the influences of reconstruction algorithm for quantitative assessments in interstitial pneumonia patients. A total of 25 collagen vascular disease patients (nine male patients and 16 female patients; mean age, 57.2 years; age range 32-77 years) underwent thin-section MDCT examinations, and MDCT data were reconstructed with three kinds of reconstruction algorithm (two high-frequencies [A and B] and one standard [C]). In reconstruction algorithm B, the effect of low- and middle-frequency space was suppressed compared with reconstruction algorithm A. As quantitative CT parameters, kurtosis, skewness, and mean lung density (MLD) were acquired from a frequency histogram of the whole lung parenchyma in each reconstruction algorithm. To determine the difference of quantitative CT parameters affected by reconstruction algorithms, these parameters were compared statistically. To determine the relationships with the disease severity, these parameters were correlated with PFTs. In the results, all the histogram parameters values had significant differences each other (p < 0.0001) and those of reconstruction algorithm C were the highest. All MLDs had fair or moderate correlation with all parameters of PFT (-0.64 < r < -0.45, p < 0.05). Though kurtosis and skewness in high-frequency reconstruction algorithm A had significant correlations with all parameters of PFT (-0.61 < r < -0.45, p < 0.05), there were significant correlations only with diffusing capacity of carbon monoxide (DLco) and total lung capacity (TLC) in reconstruction algorithm C and with forced expiratory volume in 1 s (FEV1), DLco and TLC in reconstruction algorithm B. In conclusion, reconstruction algorithm has influence to quantitative assessments on chest thin-section MDCT examination in interstitial pneumonia patients.

  10. Applicability of 3D-CT facial reconstruction for forensic individual identification.

    Science.gov (United States)

    Rocha, Sara dos Santos; Ramos, Dalton Luiz; Cavalcanti, Marcelo de Gusmão Paraíso

    2003-01-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using craniometric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) craniometric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution.

  11. Applicability of 3D-CT facial reconstruction for forensic individual identification

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Sara dos Santos [Sao Paulo Univ., SP (Brazil). Odontologia Forense; Ramos, Dalton Luiz de Paula [Sao Paulo Univ., SP (Brazil). Dept. of Odontologia Social; Cavalcanti, Marcelo de Gusmao Paraiso [Sao Paulo Univ., SP (Brazil). Dept. de Radiologia

    2003-03-01

    Computed tomography (CT) is used in several clinical dentistry applications even by axial slices and two and three-dimensional reconstructed images (2D-CT and 3D-CT). The purpose of the current study is to assess the precision of linear measurements made in 3D-CT using cranio metric patterns for individual identification in Forensic Dentistry. Five cadaver heads were submitted to a spiral computed tomography using axial slices, and 3D-CT reconstructions were obtained by volume rendering technique with computer graphics tools. Ten (10) cranio metric measurements were determined in 3D-CT images by two examiners independently, twice each, and the standard error of intra- and inter-examiner measurements was assessed. The results demonstrated a low standard error of those measurements, from 0.85% to 3.09%. In conclusion, the linear measurements obtained in osseous and soft tissue structures were considered to be precise in 3D-CT with high imaging quality and resolution. (author)

  12. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  13. Constrain static target kinetic iterative image reconstruction for 4D cardiac CT imaging

    Science.gov (United States)

    Alessio, Adam M.; La Riviere, Patrick J.

    2011-03-01

    Iterative image reconstruction offers improved signal to noise properties for CT imaging. A primary challenge with iterative methods is the substantial computation time. This computation time is even more prohibitive in 4D imaging applications, such as cardiac gated or dynamic acquisition sequences. In this work, we propose only updating the time-varying elements of a 4D image sequence while constraining the static elements to be fixed or slowly varying in time. We test the method with simulations of 4D acquisitions based on measured cardiac patient data from a) a retrospective cardiac-gated CT acquisition and b) a dynamic perfusion CT acquisition. We target the kinetic elements with one of two methods: 1) position a circular ROI on the heart, assuming area outside ROI is essentially static throughout imaging time; and 2) select varying elements from the coefficient of variation image formed from fast analytic reconstruction of all time frames. Targeted kinetic elements are updated with each iteration, while static elements remain fixed at initial image values formed from the reconstruction of data from all time frames. Results confirm that the computation time is proportional to the number of targeted elements; our simulations suggest that 3 times reductions in reconstruction time. The images reconstructed with the proposed method have matched mean square error with full 4D reconstruction. The proposed method is amenable to most optimization algorithms and offers the potential for significant computation improvements, which could be traded off for more sophisticated system models or penalty terms.

  14. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  15. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  16. Volumetric measurement of pulmonary nodules at low-dose chest CT : effect of reconstruction setting on measurement variability

    NARCIS (Netherlands)

    Wang, Y.; de Bock, G.H.; van Klaveren, R.J.; van Ooyen, P.; Tukker, W.; Zhao, Y.; Dorrius, M.D.; Proenca, R.V.; Post, W.J.; Oudkerk, M.

    2010-01-01

    To assess volumetric measurement variability in pulmonary nodules detected at low-dose chest CT with three reconstruction settings. The volume of 200 solid pulmonary nodules was measured three times using commercially available semi-automated software of low-dose chest CT data-sets reconstructed wit

  17. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  18. WE-G-207-02: Full Sequential Projection Onto Convex Sets (FS-POCS) for X-Ray CT Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L; Han, Y [Tianjin University, Tianjin (China); Jin, M [University of Texas at Arlington, Arlington, TX (United States)

    2015-06-15

    Purpose: To develop an iterative reconstruction method for X-ray CT, in which the reconstruction can quickly converge to the desired solution with much reduced projection views. Methods: The reconstruction is formulated as a convex feasibility problem, i.e. the solution is an intersection of three convex sets: 1) data fidelity (DF) set – the L2 norm of the difference of observed projections and those from the reconstructed image is no greater than an error bound; 2) non-negativity of image voxels (NN) set; and 3) piecewise constant (PC) set - the total variation (TV) of the reconstructed image is no greater than an upper bound. The solution can be found by applying projection onto convex sets (POCS) sequentially for these three convex sets. Specifically, the algebraic reconstruction technique and setting negative voxels as zero are used for projection onto the DF and NN sets, respectively, while the projection onto the PC set is achieved by solving a standard Rudin, Osher, and Fatemi (ROF) model. The proposed method is named as full sequential POCS (FS-POCS), which is tested using the Shepp-Logan phantom and the Catphan600 phantom and compared with two similar algorithms, TV-POCS and CP-TV. Results: Using the Shepp-Logan phantom, the root mean square error (RMSE) of reconstructed images changing along with the number of iterations is used as the convergence measurement. In general, FS- POCS converges faster than TV-POCS and CP-TV, especially with fewer projection views. FS-POCS can also achieve accurate reconstruction of cone-beam CT of the Catphan600 phantom using only 54 views, comparable to that of FDK using 364 views. Conclusion: We developed an efficient iterative reconstruction for sparse-view CT using full sequential POCS. The simulation and physical phantom data demonstrated the computational efficiency and effectiveness of FS-POCS.

  19. Hardware-accelerated cone-beam reconstruction on a mobile C-arm

    Science.gov (United States)

    Churchill, Michael; Pope, Gordon; Penman, Jeffrey; Riabkov, Dmitry; Xue, Xinwei; Cheryauka, Arvi

    2007-03-01

    The three-dimensional image reconstruction process used in interventional CT imaging is computationally demanding. Implementation on general-purpose computational platforms requires a substantial time, which is undesirable during time-critical surgical and minimally invasive procedures. Field Programmable Gate Arrays (FPGA)s and Graphics Processing Units (GPU)s have been studied as a platform to accelerate 3-D imaging. FPGA and GPU devices offer a reprogrammable hardware architecture, configurable for pipelining and high levels of parallel processing to increase computational throughput, as well as the benefits of being off-the-shelf and effective 'performance-to-watt' solutions. The main focus of this paper is on the backprojection step of the image reconstruction process, since it is the most computationally intensive part. Using the popular Feldkamp-Davis-Kress (FDK) cone-beam algorithm, our studies indicate the entire 256 3 image reconstruction process can be accelerated to real or near real-time (i.e. immediately after a finished scan of 15-30 seconds duration) on a mobile X-ray C-arm system using available resources on built-in FPGA board. High resolution 512 3 image backprojection can be also accomplished within the same scanning time on a high-end GPU board comprising up to 128 streaming processors.

  20. Optimized image reconstruction for detection of deep venous thrombosis at multidetector-row CT venography

    Energy Technology Data Exchange (ETDEWEB)

    Das, Marco; Muehlenbruch, Georg; Mahnken, Andreas Horst; Guenther, Rolf W.; Wildberger, Joachim Ernst [University Hospital, University of Technology (RWTH), Department of Diagnostic Radiology, Aachen (Germany); Weiss, Claudia [RWTH Aachen, Institute of Medical Statistics, Aachen (Germany); Schoepf, U. Joseph [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Leidecker, Christianne [Institute of Medical Physics, University of Erlangen, Erlangen (Germany)

    2006-02-01

    The aims of this study were to optimize image quality for indirect CT venography (sequential versus spiral), and to evaluate different image reconstruction parameters for patients with suspected deep venous thrombosis (DVT). Fifty-one patients (26/25 with/without DVT) were prospectively evaluated for pulmonary embolism (PE) with standard multidetector-row computed tomography (MDCT) protocols. Retrospective image reconstruction was done with different slice thicknesses and reconstruction increments in sequential and spiral modes. All reconstructions were read for depiction of DVT and to evaluate best reconstruction parameters in comparison with the thinnest reconstruction (''gold standard''). Image noise and venous enhancement were measured as objective criteria for image quality. Subjective image quality was rated on a four-point scale. Effective dose was estimated for all reconstructions. In sequential 10/50 reconstruction DVT was completely detected in 13/26 cases, partially in 10/26 cases and was not detected at all in 3/26 cases, and 15/26, 9/26 and 2/26 cases for the 10/20 reconstruction, respectively. DVT was completely detected in all spiral reconstructions. Image noise ranged between 14.8-29.1 HU. Median image quality was 2. Estimated effective dose ranged between 2.3 mSv and 11.8 mSv. Gaps in sequential protocols may lead to false negative results. Therefore, spiral scanning protocols for complete depiction of DVT are mandatory. (orig.)

  1. Information extraction and CT reconstruction of liver images based on diffraction enhanced imaging

    Institute of Scientific and Technical Information of China (English)

    Chunhong Hu; Tao Zhao; Lu Zhang; Hui Li; Xinyan Zhao; Shuqian Luo

    2009-01-01

    X-ray phase-contrast imaging (PCI) is a new emerging imaging technique that generates a high spatial resolution and high contrast of biological soft tissues compared to conventional radiography. Herein a biomedical application of diffraction enhanced imaging (DEI) is presented. As one of the PCI methods, DEI derives contrast from many different kinds of sample information, such as the sample's X-ray absorption, refraction gradient and ultra-small-angle X-ray scattering (USAXS) properties, and the sample information is expressed by three parametric images. Combined with computed tomography (CT), DEI-CT can produce 3D volumetric images of the sample and can be used for investigating micro-structures of biomedical samples. Our DEI experiments for fiver samples were implemented at the topog-raphy station of Beijing Synchrotron Radiation Facility (BSRF). The results show that by using our provided information extraction method and DEI-CT reconstruction approach, the obtained parametric images clearly display the inner structures of liver tissues and the morphology of blood vessels. Furthermore, the reconstructed 3D view of the fiver blood vessels exhibits the micro blood vessels whose minimum diameter is on the order of about tens of microns, much better than its conventional CT reconstruction at a millimeter resolution.In conclusion, both the information extraction method and DEI-CT have the potential for use in biomedical micro-structures analysis.

  2. Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.

    Science.gov (United States)

    Nien, Hung; Fessler, Jeffrey A

    2016-04-01

    Statistical image reconstruction (SIR) methods are studied extensively for X-ray computed tomography (CT) due to the potential of acquiring CT scans with reduced X-ray dose while maintaining image quality. However, the longer reconstruction time of SIR methods hinders their use in X-ray CT in practice. To accelerate statistical methods, many optimization techniques have been investigated. Over-relaxation is a common technique to speed up convergence of iterative algorithms. For instance, using a relaxation parameter that is close to two in alternating direction method of multipliers (ADMM) has been shown to speed up convergence significantly. This paper proposes a relaxed linearized augmented Lagrangian (AL) method that shows theoretical faster convergence rate with over-relaxation and applies the proposed relaxed linearized AL method to X-ray CT image reconstruction problems. Experimental results with both simulated and real CT scan data show that the proposed relaxed algorithm (with ordered-subsets [OS] acceleration) is about twice as fast as the existing unrelaxed fast algorithms, with negligible computation and memory overhead.

  3. Region-Based 4D Tomographic Image Reconstruction: Application to Cardiac X-ray CT

    NARCIS (Netherlands)

    Eyndhoven, G. Van; Batenburg, K.J.; Sijbers, J.

    2015-01-01

    X-ray computed tomography (CT) is a powerful tool for noninvasive cardiac imaging. However, radiation dose is a major issue. In this paper, we propose an iterative reconstruction method that reduces the radiation dose without compromising image quality. This is achieved by exploiting prior knowledge

  4. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization.

    Science.gov (United States)

    Zhang, Hao; Ma, Jianhua; Wang, Jing; Liu, Yan; Lu, Hongbing; Liang, Zhengrong

    2014-09-01

    Low-dose computed tomography (CT) imaging without sacrifice of clinical tasks is desirable due to the growing concerns about excessive radiation exposure to the patients. One common strategy to achieve low-dose CT imaging is to lower the milliampere-second (mAs) setting in data scanning protocol. However, the reconstructed CT images by the conventional filtered back-projection (FBP) method from the low-mAs acquisitions may be severely degraded due to the excessive noise. Statistical image reconstruction (SIR) methods have shown potentials to significantly improve the reconstructed image quality from the low-mAs acquisitions, wherein the regularization plays a critical role and an established family of regularizations is based on the Markov random field (MRF) model. Inspired by the success of nonlocal means (NLM) in image processing applications, in this work, we propose to explore the NLM-based regularization for SIR to reconstruct low-dose CT images from low-mAs acquisitions. Experimental results with both digital and physical phantoms consistently demonstrated that SIR with the NLM-based regularization can achieve more gains than SIR with the well-known Gaussian MRF regularization or the generalized Gaussian MRF regularization and the conventional FBP method, in terms of image noise reduction and resolution preservation.

  5. Evaluation of dose reduction and image quality in CT colonography: Comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Koichi [Kameda Medical Center, Department of Radiology, Kamogawa, Chiba (Japan); Jichi Medical University, Department of Radiology, Tochigi (Japan); National Cancer Center, Cancer Screening Technology Division, Research Center for Cancer Prevention and Screening, Tokyo (Japan); Fujiwara, Masanori; Mogi, Tomohiro; Iida, Nao [Kameda Medical Center Makuhari, Department of Radiology, Chiba (Japan); Kanazawa, Hidenori; Sugimoto, Hideharu [Jichi Medical University, Department of Radiology, Tochigi (Japan); Mitsushima, Toru [Kameda Medical Center Makuhari, Department of Gastroenterology, Chiba (Japan); Lefor, Alan T. [Jichi Medical University, Department of Surgery, Tochigi (Japan)

    2015-01-15

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p < 0.01). Overall image quality and noise of low-dose CTC with iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1 % without image quality degradation compared to routine-dose CTC with filtered back projection. (orig.)

  6. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows.

    Science.gov (United States)

    Brun, Francesco; Massimi, Lorenzo; Fratini, Michela; Dreossi, Diego; Billé, Fulvio; Accardo, Agostino; Pugliese, Roberto; Cedola, Alessia

    2017-01-01

    When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.

  7. Accelerated gradient methods for total-variation-based CT image reconstruction

    CERN Document Server

    Jørgensen, Jakob Heide; Hansen, Per Christian; Jensen, Søren Holdt; Sidky, Emil Y; Pan, Xiaochuan

    2011-01-01

    Total-variation (TV)-based Computed Tomography (CT) image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large-scale systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits slow convergence. In the present work we consider the use of two accelerated gradient-based methods, GPBB and UP...

  8. Application of incremental algorithms to CT image reconstruction for sparse-view, noisy data

    DEFF Research Database (Denmark)

    Rose, Sean; Andersen, Martin Skovgaard; Sidky, Emil Y.;

    2014-01-01

    This conference contribution adapts an incremental framework for solving optimization problems of interest for sparse-view CT. From the incremental framework two algorithms are derived: one that combines a damped form of the algebraic reconstruction technique (ART) with a total-variation (TV) pro......) projection, and one that employs a modified damped ART, accounting for a weighted-quadratic data fidelity term, combined with TV projection. The algorithms are demonstrated on simulated, noisy, sparseview CT data.......This conference contribution adapts an incremental framework for solving optimization problems of interest for sparse-view CT. From the incremental framework two algorithms are derived: one that combines a damped form of the algebraic reconstruction technique (ART) with a total-variation (TV...

  9. An adaptive reconstruction algorithm for spectral CT regularized by a reference image

    Science.gov (United States)

    Wang, Miaoshi; Zhang, Yanbo; Liu, Rui; Guo, Shuxu; Yu, Hengyong

    2016-12-01

    The photon counting detector based spectral CT system is attracting increasing attention in the CT field. However, the spectral CT is still premature in terms of both hardware and software. To reconstruct high quality spectral images from low-dose projections, an adaptive image reconstruction algorithm is proposed that assumes a known reference image (RI). The idea is motivated by the fact that the reconstructed images from different spectral channels are highly correlated. If a high quality image of the same object is known, it can be used to improve the low-dose reconstruction of each individual channel. This is implemented by maximizing the patch-wise correlation between the object image and the RI. Extensive numerical simulations and preclinical mouse study demonstrate the feasibility and merits of the proposed algorithm. It also performs well for truncated local projections, and the surrounding area of the region- of-interest (ROI) can be more accurately reconstructed. Furthermore, a method is introduced to adaptively choose the step length, making the algorithm more feasible and easier for applications.

  10. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  11. Visual C++ Implementation of Sinogram-based Adaptive Iterative Reconstruction for Sparse View X-Ray CT

    CERN Document Server

    Trinca, D; Wang, Y; Mamyrbayev, T; Libin, E

    2016-01-01

    With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this report, we describe our proposal of an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. Implementation code in the C language is provided, along with example of user interface.

  12. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus;

    2010-01-01

    , especially when transferring data across the (network-) borders of different hospitals. Overall, the most important precondition for successful integration of functional imaging in RT treatment planning is the goal orientated as well as close and thorough communication between nuclear medicine......The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non......-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy...

  13. Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT

    Science.gov (United States)

    Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.

    2015-03-01

    Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).

  14. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  15. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Barnhart, Huiman [Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27705 (United States); Richard, Samuel [Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Robins, Marthony [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Colsher, James [Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Department of Biomedical Engineering, and Department of Electronic and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2013-11-15

    Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of

  16. Three-Dimensional Reconstruction from Cone-Beam Projections for Flat and Curved Detectors: Reconstruction Method Development.

    Science.gov (United States)

    Hu, Hui

    This dissertation is principally concerned with improving the performance of a prototype image-intensifier -based cone-beam volume computed tomography system by removing or partially removing two of its restricting factors, namely, the inaccuracy of current cone-beam reconstruction algorithm and the image distortion associated with the curved detecting surface of the image intensifier. To improve the accuracy of cone-beam reconstruction, first, the currently most accurate and computationally efficient cone-beam reconstruction method, the Feldkamp algorithm, is investigated by studying the relation of an original unknown function with its Feldkamp estimate. From this study, a partial knowledge on the unknown function can be derived in the Fourier domain from its Feldkamp estimate. Then, based on the Gerchberg-Papoulis algorithm, a modified iterative algorithm efficiently incorporating the Fourier knowledge as well as the a priori spatial knowledge on the unknown function is devised and tested to improve the cone-beam reconstruction accuracy by postprocessing the Feldkamp estimate. Two methods are developed to remove the distortion associated with the curved surface of image intensifier. A calibrating method based on a rubber-sheet remapping is designed and implemented. As an alternative, the curvature can be considered in the reconstruction algorithm. As an initial effort along this direction, a generalized convolution -backprojection reconstruction algorithm for fan-beam and any circular detector arrays is derived and studied.

  17. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  18. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Ung Bae Jeon; Jun Woo Lee; Ki Seok Choo; Chang Won Kim; Suk Kim; Tae Hong Lee; Yeon Joo Jeong; Dae Hwan Kang

    2009-01-01

    AIM: To evaluate the utility of assessing iodized oil uptake with cone-beam computed tomography (CT) in transarterial chemoembolization (TACE) for small hepatocellular carcinoma (HCC). METHODS: Cone-beam CT provided by a biplane flatpanel detector angiography suite was performed on eighteen patients (sixteen men and two women; 41-76 years; mean age, 58.9 years) directly after TACE for small HCC (26 nodules under 30 mm; mean diameter, 11.9 mm; range, 5-28 mm). The pre-procedural locations of the tumors were evaluated using triphasic multi-detector row helical computed tomography (MDCT). The tumor locations on MDCT and the iodized oil uptake by the tumors were analyzed on cone-beam CT and on spot image directly after the procedures. RESULTS: All lesions on preprocedural MDCT were detected using iodized oil uptake in the lesions on conebeam CT (sensitivity 100%, 26/26). Spot image depicted iodized oil uptake in 22 of the lesions (sensitivity 85%). The degree of iodized oil uptake was overestimated (9%, 2/22) or underestimated (14%, 3/22) on spot image in five nodules compared with that of cone-beam CT. CONCLUSION: Cone-beam CT is a useful and convenient tool for assessing the iodized oil uptake of small hepatic tumors (< 3 cm) directly after TACE.

  19. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    Science.gov (United States)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  20. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  1. CT Reconstruction for Limited Angle%有限角度CT重建方法

    Institute of Scientific and Technical Information of China (English)

    李镜; 卢孝强; 孙怡

    2011-01-01

    Computed Tomography (CT) has made a revolutionary impact on medical diagnosis and industrial non-destructive testing. However, it is not always possible to acquire projection data through a complete CT angular range in some real applications, such as imaging system design constraints. The conventional and most commonly used method for reconstruction from tomographic projections is the analytical reconstruction technique which is not so adaptable to incomplete projection data and results in poor reconstructions with severe artifacts in limited angle cases. Two reconstruction algorithms for limited angle cases are illustrated and the performance of algorithms is shown.%计算机断层成像技术(Computed Tomography,CT)技术已经被广泛应用于医学诊断、工业无损探伤以及安全检查等领域.然而在实际应用中,很多情况下并不能采集到完全角度下的投影数据,例如成像系统设计的限制等.利用有限角度下的投影数据进行图像重建被称为X射线成像有限角度重建.本文介绍了两种有限角度CT迭代重建方法,并对其重建结果进行了比较和评价.

  2. Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment

    Science.gov (United States)

    Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.

    2016-03-01

    The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.

  3. Non-uniform noise spatial distribution in CT myocardial perfusion and a potential solution: statistical image reconstruction

    Science.gov (United States)

    Thériault Lauzier, Pascal; Tang, Jie; Chen, Guang-Hong

    2012-03-01

    Myocardial perfusion scans are an important tool in the assessment of myocardial viability following an infarction. Cardiac perfusion analysis using CT datasets is limited by the presence of so-called partial scan artifacts. These artifacts are due to variations in beam hardening and scatter between different short-scan angular ranges. In this research, another angular range dependent effect is investigated: non-uniform noise spatial distribution. Images reconstructed using filtered backprojection (FBP) are subject to this effect. Statistical image reconstruction (SIR) is proposed as a potential solution. A numerical phantom with added Poisson noise was simulated and two swines were scanned in vivo to study the effect of FBP and SIR on the spatial uniformity of the noise distribution. It was demonstrated that images reconstructed using FBP often show variations in noise on the order of 50% between different time frames. This variation is mitigated to about 10% using SIR. The noise level is also reduced by a factor of 2 in SIR images. Finally, it is demonstrated that the measurement of quantitative perfusion metrics are generally more accurate when SIR is used instead of FBP.

  4. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  5. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  6. Novel iterative reconstruction method with optimal dose usage for partially redundant CT-acquisition

    Science.gov (United States)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Allmendinger, T.; Klotz, E.; Stierstorfer, K.; Flohr, T.

    2015-11-01

    In CT imaging, a variety of applications exist which are strongly SNR limited. However, in some cases redundant data of the same body region provide additional quanta. Examples: in dual energy CT, the spatial resolution has to be compromised to provide good SNR for material decomposition. However, the respective spectral dataset of the same body region provides additional quanta which might be utilized to improve SNR of each spectral component. Perfusion CT is a high dose application, and dose reduction is highly desirable. However, a meaningful evaluation of perfusion parameters might be impaired by noisy time frames. On the other hand, the SNR of the average of all time frames is extremely high. In redundant CT acquisitions, multiple image datasets can be reconstructed and averaged to composite image data. These composite image data, however, might be compromised with respect to contrast resolution and/or spatial resolution and/or temporal resolution. These observations bring us to the idea of transferring high SNR of composite image data to low SNR ‘source’ image data, while maintaining their resolution. It has been shown that the noise characteristics of CT image data can be improved by iterative reconstruction (Popescu et al 2012 Book of Abstracts, 2nd CT Meeting (Salt Lake City, UT) p 148). In case of data dependent Gaussian noise it can be modelled with image-based iterative reconstruction at least in an approximate manner (Bruder et al 2011 Proc. SPIE 7961 79610J). We present a generalized update equation in image space, consisting of a linear combination of the previous update, a correction term which is constrained by the source image data, and a regularization prior, which is initialized by the composite image data. This iterative reconstruction approach we call bimodal reconstruction (BMR). Based on simulation data it is shown that BMR can improve low contrast detectability, substantially reduces the noise power and has the potential to recover

  7. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.; Chen Guanghong [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705-2275 (United States); Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705-2275 (United States)

    2012-07-15

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution

  8. Adaptive Adjustment of Relaxation Parameters for Algebraic Reconstruction Technique and its Possible Application to Sparsity Prior X-ray CT Reconstruction

    CERN Document Server

    Saha, Sajib; Lambert, Andrew; Pickering, Mark

    2015-01-01

    In this paper, we systematically evaluate the performance of adaptive adjustment of the relaxation parameters of various iterative algorithms for X-ray CT reconstruction relying on sparsity priors. Sparsity prior has been found to be an efficient strategy in CT reconstruction where significantly fewer attenuation measurements are available. Sparsity prior CT reconstruction relies on iterative algorithms such as the algebraic reconstruction technique (ART) to produce a crude reconstruction based on which a sparse approximation is performed. Data driven adjustment of relaxation has been found to ensure better convergence than traditional relaxation for ART. In this paper, we study the performance of such data driven relaxation on a (CS) compressed sensing environment. State-of-the-art algorithms are implemented and their performance analyzed in regard to conventional and data-driven relaxation. Experiments are performed both on simulated and real environments. For the simulated case, experiments are conducted w...

  9. Performance analysis of model based iterative reconstruction with dictionary learning in transportation security CT

    Science.gov (United States)

    Haneda, Eri; Luo, Jiajia; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    In this study, we implement and compare model based iterative reconstruction (MBIR) with dictionary learning (DL) over MBIR with pairwise pixel-difference regularization, in the context of transportation security. DL is a technique of sparse signal representation using an over complete dictionary which has provided promising results in image processing applications including denoising,1 as well as medical CT reconstruction.2 It has been previously reported that DL produces promising results in terms of noise reduction and preservation of structural details, especially for low dose and few-view CT acquisitions.2 A distinguishing feature of transportation security CT is that scanned baggage may contain items with a wide range of material densities. While medical CT typically scans soft tissues, blood with and without contrast agents, and bones, luggage typically contains more high density materials (i.e. metals and glass), which can produce severe distortions such as metal streaking artifacts. Important factors of security CT are the emphasis on image quality such as resolution, contrast, noise level, and CT number accuracy for target detection. While MBIR has shown exemplary performance in the trade-off of noise reduction and resolution preservation, we demonstrate that DL may further improve this trade-off. In this study, we used the KSVD-based DL3 combined with the MBIR cost-minimization framework and compared results to Filtered Back Projection (FBP) and MBIR with pairwise pixel-difference regularization. We performed a parameter analysis to show the image quality impact of each parameter. We also investigated few-view CT acquisitions where DL can show an additional advantage relative to pairwise pixel difference regularization.

  10. Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Leschka, Sebastian; Husmann, Lars; Desbiolles, Lotus M.; Boehm, Thomas; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic Radiology, Zurich (Switzerland); Gaemperli, Oliver; Schepis, Tiziano; Koepfli, Pascal [University Hospital Zurich, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiovascular Center, Zurich (Switzerland); University of Zurich, Center for Integrative Human Physiology, Zurich (Switzerland)

    2006-09-15

    The reconstruction intervals providing best image quality for non-invasive coronary angiography with 64-slice computed tomography (CT) were evaluated. Contrast-enhanced, retrospectively electrocardiography (ECG)-gated 64-slice CT coronary angiography was performed in 80 patients (47 male, 33 female; mean age 62.1{+-}10.6 years). Thirteen data sets were reconstructed in 5% increments from 20 to 80% of the R-R interval. Depending on the average heart rate during scanning, patients were grouped as <65 bpm (n=49) and {>=}65 bpm (n=31). Two blinded and independent readers assessed the image quality of each coronary segment with a diameter {>=}1.5 mm using the following scores: 1, no motion artifacts; 2, minor artifacts; 3, moderate artifacts; 4, severe artifacts; and 5, not evaluative. The average heart rate was 63.3{+-}13.1 bpm (range 38-102). Acceptable image quality (scores 1-3) was achieved in 99.1% of all coronary segments (1,162/1,172; mean image quality score 1.55{+-}0.77) in the best reconstruction interval. Best image quality was found at 60% and 65% of the R-R interval for all patients and for each heart rate subgroup, whereas motion artifacts occurred significantly more often (P<0.01) at other reconstruction intervals. At heart rates <65 bpm, acceptable image quality was found in all coronary segments at 60%. At heart rates {>=}65 bpm, the whole coronary artery tree could be visualized with acceptable image quality in 87% (27/31) of the patients at 60%, while ten segments in four patients were rated as non-diagnostic (scores 4-5) at any reconstruction interval. In conclusion, 64-slice CT coronary angiography provides best overall image quality in mid-diastole. At heart rates <65 bpm, diagnostic image quality of all coronary segments can be obtained at a single reconstruction interval of 60%. (orig.)

  11. Benign Prostatic Hyperplasia: Cone-Beam CT in Conjunction with DSA for Identifying Prostatic Arterial Anatomy.

    Science.gov (United States)

    Wang, Mao Qiang; Duan, Feng; Yuan, Kai; Zhang, Guo Dong; Yan, Jieyu; Wang, Yan

    2017-01-01

    Purpose To describe findings in prostatic arteries (PAs) at digital subtraction angiography (DSA) and cone-beam computed tomography (CT) that allow identification of benign prostatic hyperplasia and to determine the value added with the use of cone-beam CT. Materials and Methods This retrospective single-institution study was approved by the institutional review board, and the requirement for written informed consent was waived. From February 2009 to December 2014, a total of 148 patients (mean age ± standard deviation, 70.5 years ± 14.5) underwent DSA of the internal iliac arteries and cone-beam CT with a flat-detector angiographic system before they underwent prostate artery embolization. Both the DSA and cone-beam CT images were evaluated by two interventional radiologists to determine the number of independent PAs and their origins and anastomoses with adjacent arteries. The exact McNemar test was used to compare the detection rate of the PAs and the anastomoses with DSA and with cone-beam CT. Results The PA anatomy was evaluated successfully by means of cone-beam CT in conjunction with DSA in all patients. Of the 296 pelvic sides, 274 (92.6%) had only one PA. The most frequent PA origin was the common gluteal-pudendal trunk with the superior vesicular artery in 118 (37.1%), followed by the anterior division of the internal iliac artery in 99 (31.1%), and the internal pudendal artery in 77 (24.2%) pelvic sides. In 67 (22.6%) pelvic sides, anastomoses to adjacent arteries were documented. The numbers of PA origins and anastomoses, respectively, that could be identified were significantly higher with cone-beam CT (301 of 318 [94.7%] and 65 of 67 [97.0%]) than with DSA (237 [74.5%] and 39 [58.2%], P Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients. Conclusion Cone-beam CT is a useful adjunctive technique to DSA for identification of the PA anatomy and provides information to help treatment planning during

  12. An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction

    Science.gov (United States)

    2016-01-01

    Compressive Sensing (CS) theory has great potential for reconstructing Computed Tomography (CT) images from sparse-views projection data and Total Variation- (TV-) based CT reconstruction method is very popular. However, it does not directly incorporate prior images into the reconstruction. To improve the quality of reconstructed images, this paper proposed an improved TV minimization method using prior images and Split-Bregman method in CT reconstruction, which uses prior images to obtain valuable previous information and promote the subsequent imaging process. The images obtained asynchronously were registered via Locally Linear Embedding (LLE). To validate the method, two studies were performed. Numerical simulation using an abdomen phantom has been used to demonstrate that the proposed method enables accurate reconstruction of image objects under sparse projection data. A real dataset was used to further validate the method. PMID:27689076

  13. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  14. Technical Note: Proximal Ordered Subsets Algorithms for TV Constrained Optimization in CT Image Reconstruction

    CERN Document Server

    Rose, Sean; Sidky, Emil Y; Pan, Xiaochuan

    2016-01-01

    This article is intended to supplement our 2015 paper in Medical Physics titled "Noise properties of CT images reconstructed by use of constrained total-variation, data-discrepancy minimization", in which ordered subsets methods were employed to perform total-variation constrained data-discrepancy minimization for image reconstruction in X-ray computed tomography. Here we provide details regarding implementation of the ordered subsets algorithms and suggestions for selection of algorithm parameters. Detailed pseudo-code is included for every algorithm implemented in the original manuscript.

  15. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  16. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    Directory of Open Access Journals (Sweden)

    Bence Tamas Szabo

    2012-01-01

    Full Text Available The aim of this study was to compare three different cone-beam CT (CBCT instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL. After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 root canals were selected and analysed by three observers at RL and following cross sectional parameters were determined: area of the lumen, major and minor diameters, aspect ratio and mean thickness. Results suggest that only high resolution CBCT instruments allow dentists detecting the full length of the root canal.

  17. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  18. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  19. Pseudo super-resolution for improved calcification characterization for cone beam breast CT (CBBCT)

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing

    2010-04-01

    Cone Beam Breast CT imaging (CBBCT) is a promising tool for diagnosis of breast tumors and calcifications. However, as the sizes of calcifications in early stages are very small, it is not easy to distinguish them from background tissues because of the relatively high noise level. Therefore, it is necessary to enhance the visualization of calcifications for accurate detection. In this work, the Papoulis-Gerchberg (PG) method was introduced and modified to improve calcification characterization. PG method is an iterative algorithm of signal extrapolation and has been demonstrated to be very effective in image restoration like super-resolution (SR) and inpainting. The projection images were zoomed by bicubic interpolation method, then the modified PG method were applied to improve the image quality. The reconstruction from processed projection images showed that this approach can effectively improve the image quality by improving the Modulation Transfer Function (MTF) with a limited increase in noise level. As a result, the detectability of calcifications was improved in CBBCT images.

  20. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    Science.gov (United States)

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-07

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  1. Beam hardening and motion artifacts in cardiac CT: evaluation and iterative correction method

    Science.gov (United States)

    Shen, Zeyang; Lee, Okkyun; Taguchi, Katsuyuki

    2016-03-01

    For myocardial perfusion CT exams, beam hardening (BH) artifacts may degrade the accuracy of myocardial perfusion defect detection. Meanwhile, cardiac motion may make BH process inconsistent, which makes conventional BH correction (BHC) methods ineffective. The aims of this study were to assess the severity of BH artifacts and motion artifacts and propose a projection-based iterative BHC method which has a potential to handle the motion-induced inconsistency better than conventional methods. In this study, four sets of forward projection data were first acquired using both cylindrical phantoms and cardiac images as objects: (1) with monochromatic x-rays without motion; (2) with polychromatic x-rays without motion; (3) with monochromatic x-rays with motion; and (4) with polychromatic x-rays with motion. From each dataset, images were reconstructed using filtered back projection; for datasets 2 and 4, one of the following BHC methods was also performed: (A) no BHC; (B) BHC that concerns water only; and (C) BHC that takes both water and iodine into account, which is an iterative method we developed in this work. Biases of images were quantified by the mean absolute difference (MAD). The MAD of images with BH artifacts alone (dataset 2, without BHC) was comparable or larger than that of images with motion artifacts alone (dataset 3): In the study of cardiac image, BH artifacts account for over 80% of the total artifacts. The use of BHC was effective: with dataset 4, MAD values were 170 HU with no BHC, 54 HU with water BHC, and 42 HU with the proposed BHC. Qualitative improvements in image quality were also noticeable in reconstructed images.

  2. Four-Dimensional Computerized Tomography (4D-CT) Reconstruction Based on the Similarity Measure of Spatial Adjacent Images

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-xu; ZHOU Ling-hong; CHEN Guang-jie; LIN Sheng-qu; YE Yu-sheng; ZHANG Hai-nan

    2008-01-01

    Objective:To investigate the feasibility of a 4D-CT reconstruction method based on the similarity principle of spatial adjacent images and mutual information measure. Methods:A motor driven sinusoidal motion platform made in house was used to create one-dimensional periodical motion that was along the longitudinal axis of the CT couch. The amplitude of sinusoidal motion was set to an amplitude of ±1 cm. The period of the motion was adjustable and set to 3.5 s. Phantom objects of two eggs were placed in a Styrofoam block, which in turn were placed on the motion platform. These objects were used to simulate volumes of interest undergoing ideal periodic motion. CT data of static phantom were acquired using a multi-slice general electric (GE) LightSpeed 16-slice CT scanner in an axial mode. And the CT data of periodical motion phantom were acquired in an axial and cine-mode scan. A software program was developed by using VC++ and VTK software tools to resort the CT data and reconstruct the 4D-CT. Then all of the CT data with same phase were sorted by the program into the same series based on the similarity principle of spatial adjacent images and mutual information measure among them, and 3D reconstruction of different phase CT data were completed by using the software. Results:All of the CT data were sorted accurately into different series based on the similarity principle of spatial adjacent images and mutual information measures among them. Compared with the unsorted CT data, the motion artifacts in the 3D reconstruction of sorted CT data were reduced significantly, and all of the sorted CT series result in a 4D-CT that reflected the characteristic of the periodical motion phantom. Conclusion:Time-resolved 4D-CT reconstruction can be implemented with any general multi-slice CT scanners based on the similarity principle of spatial adjacent images and mutual information measure.The process of the 4D-CT data acquisition and reconstruction were not restricted to the

  3. CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization

    CERN Document Server

    Zhan, Ruohan

    2016-01-01

    This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of \\cite{Dong2013X} and that of the data-driven tight frames for image denoising \\cite{cai2014data}. It is different from existing models in that both CT image and its corresponding high quality projection image are reconstructed simultaneously using sparsity priors by tight frames that are adaptively learned from the data to provide optimal sparse approximations. An alternative minimization algorithm is designed to solve the proposed model which is nonsmooth and nonconvex. Convergence analysis of the algorithm is provided. Numerical experiments showed that the SRD-DDTF model is superior to the model by \\cite{Dong2013X} especially in recovering some subtle structures in the images.

  4. Synthetic Hounsfield units from spectral CT data

    Science.gov (United States)

    Bornefalk, Hans

    2012-04-01

    Beam-hardening-free synthetic images with absolute CT numbers that radiologists are used to can be constructed from spectral CT data by forming ‘dichromatic’ images after basis decomposition. The CT numbers are accurate for all tissues and the method does not require additional reconstruction. This method prevents radiologists from having to relearn new rules-of-thumb regarding absolute CT numbers for various organs and conditions as conventional CT is replaced by spectral CT. Displaying the synthetic Hounsfield unit images side-by-side with images reconstructed for optimal detectability for a certain task can ease the transition from conventional to spectral CT.

  5. Deduction of the global density of plasmasphere reconstructed from the EUV images using CT method 2.Three dimensional parallel-beam ART reconstruction%利用EUV模拟观测和CT方法重建均匀等离子体层全球密度分布——三维ART重建和地球遮挡效应研究

    Institute of Scientific and Technical Information of China (English)

    金鑫; 李亮; 陈志强; 徐荣栏; 黄娅; 张丽

    2011-01-01

    In this paper we built up a three dimensional model for the density distribution of earth plasmasphere. According to the physical procedure of 30. 4 nm EUV detection, a numerical method was proposed which simulates the satellite imaging the plasmasphere along a circular orbit. To reconstruct the density distribution in such occasion a modified ART reconstruction method was worked out. Results showed that our method reconstructs the model very well.%本文对地球等离子体层和电离层进行了三维建模,并模拟卫星对30.4 nm极紫外线的探测过程,取得圆轨道平行束情况下的投影数据.采用改进的ART算法对所得数据进行三维重建,获得等离子体层的空间密度分布.结果表明,在投影角度覆盖180°的情况下,重建结果很好地再现了模型中空间各点的数值.文章对实验结果从CT重建方法的角度进行了讨论及分析.

  6. Optimal image reconstruction for detection and characterization of small pulmonary nodules during low-dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, SayedMasoud; Cobbold, Richard S.C. [University of Toronto, Institute of Biomaterial and Biomedical Engineering, Toronto, ON (Canada); Mehrez, Hatem [Toshiba of Canada Ltd, Markham, ON (Canada); Paul, Narinder S. [University Health Network, Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2014-06-15

    To optimize the slice thickness/overlap parameters for image reconstruction and to study the effect of iterative reconstruction (IR) on detectability and characterization of small non-calcified pulmonary nodules during low-dose thoracic CT. Data was obtained from computer simulations, phantom, and patient CTs. Simulations and phantom CTs were performed with 9 nodules (5, 8, and 10 mm with 100, -630, and -800 HU). Patient data were based on 11 ground glass opacities (GGO) and 9 solid nodules. For each analysis the nodules were reconstructed with filtered back projection and IR algorithms using 10 different combinations of slice thickness/overlap (0.5-5 mm). The attenuation (CT) and the contrast to noise ratio (CNR) were measured. Spearman's coefficient was used to correlate the error in CT measurements and slice thickness. Paired Student's t test was used to measure the significance of the errors. CNR measurements: CNR increases with increasing slice thickness/overlap for large nodules and peaks at 4.0/2.0 mm for smaller ones. Use of IR increases the CNR of GGOs by 60 %. CT measurements: Increasing slice thickness/overlap above 3.0/1.5 mm results in decreased CT measurement accuracy. Optimal detection of small pulmonary nodules requires slice thickness/overlap of 4.0/2.0 mm. Slice thickness/overlap of 2.0/2.0 mm is required for optimal nodule characterization. IR improves conspicuity of small ground glass nodules through a significant increase in nodule CNR. (orig.)

  7. Diagnostic value of multiplanar reconstruction in CT recognition of lumbar spinal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Im, S. K.; Choi, J. H.; Kim, C. H.; Sohn, M. H.; Lim, K. Y.; Choi, K. C. [Chonbuk National University College of Medicine, Chonju (Korea, Republic of)

    1984-12-15

    The computer tomography is useful in evaluation of bony structures and adjacent soft tissues of the lumbar spine. Recently, the multiplanar reconstruction of lumbar spine of CT of significant value for the anatomical localization and for the myelographic and surgical correlation. We observed 177 cases of lumbar spine CT, who complains of spinal symptom, during the period from Dec. 1982 to Aug. 1984. The results were as follows: 1. The sex distribution of cases were 113 males and 44 females. The CT diagnosis showed 152 cases of herniated lumbar disc, 15 cases of degenerative disease, 5 cases of spine tbc., 3 cases of spine trauma and 2 cases of meningocele. 2. CT findings of herniated disc were as follows: focal protrusion of posterior disc margin and obliteration of anterior epidural fat in all cases, indentation on dural sac in 92 cases (60.5%) soft tissue mass in epidural fat in 85 cases (55.9%), compression or displacement of nerve root sheath in 22 cases(14.4%). 3. Sites of herniated lumbar disc were at L4-L5 level in 100 cases(59.1%) and at L5-S1 level in 65 cases (38.4%). Location of it were central type in 70 cases(41.1%), left-central type in 46 cases (27.2%), right-central type in 44 cases(26.0%) and lateral type in 9 cases (5.1%). 4. The sagittal reconstruction images were helpful in evaluating neural foramina, size of disc bluge into spinal canal, especially at L5-S1, and patients with spondylolisthesis. The coronal reconstruction images were the least informative, although they contributed to the evaluation of lumbar nerve roots of course, the axial CT scans were the most sensitive and specific.

  8. Determination of optimal parameters for three-dimensional reconstruction images of central airways using helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takahumi; Akata, Soichi; Matsuno, Naoto; Nagao, Takeshi; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    2002-01-01

    Three-dimensional (3D) image reconstruction of central airways using helical CT requires several user-defined parameters that exceed the requirements of conventional CT. The purpose of this study was to evaluate the optimal parameters for 3D images of central airways using helical CT. In our experimental study using a piglet immediately after sacrifice, 3D images of the central airway were evaluated with changes of 3D imaging parameters, such as detector collimation (1, 2, 3 and 6 mm), table speed (1, 2, 3 and 5 mm/sec), tube electric current (50, 100, 150, 200 and 250 mA), reconstruction interval (0.3, 0.5, 1, 2 and 3 mm), algorithm (mediastinum and lung) and interpolation method (180 deg and 360 deg). To minimize detector collimation, table speed, and reconstruction interval could provide the best 3D images of the central airway. Stair-step artifacts could also be reduced with a slow table speed. However, decreasing the collimation and table speed decreases not only the effective section thickness but also the scan coverage that can be achieved with a helical CT. For routine diagnosis, we conclude that optimal parameters for 3D images of the central airway are to minimize the table speed necessary to cover the volume of interest and to set detector collimation to 1/2 of the table speed. The reconstruction intervals should also be selected at up to 1/2 of the detector collimation, but with trade-offs of increased image processing time, data storage requirements, and physician time for image review. Regarding to tube electric current, 200 mA or more was necessary. Pixel noise increased with the algorithm for the lung. The 180 deg interpolation is better than 360 deg interpolation due to thin effective section thickness. (author)

  9. Application of incremental algorithms to CT image reconstruction for sparse-view, noisy data

    OpenAIRE

    Rose, Sean; Andersen, Martin Skovgaard; Sidky, Emil Y.; Pan, Xiaochuan

    2014-01-01

    This conference contribution adapts an incremental framework for solving optimization problems of interest for sparse-view CT. From the incremental framework two algorithms are derived: one that combines a damped form of the algebraic reconstruction technique (ART) with a total-variation (TV) projection, and one that employs a modified damped ART, accounting for a weighted-quadratic data fidelity term, combined with TV projection. The algorithms are demonstrated on simulated, noisy, sparsevie...

  10. Asymmetric wavelet reconstruction of particle hologram with an elliptical Gaussian beam illumination.

    Science.gov (United States)

    Wu, Xuecheng; Wu, Yingchun; Zhou, Binwu; Wang, Zhihua; Gao, Xiang; Gréhan, Gérard; Cen, Kefa

    2013-07-20

    We propose an asymmetric wavelet method to reconstruct a particle from a hologram illuminated by an elliptical, astigmatic Gaussian beam. The particle can be reconstructed by a convolution of the asymmetric wavelet and hologram. The reconstructed images have the same size and resolution as the recorded hologram; therefore, the reconstructed 3D field is convenient for automatic particle locating and sizing. The asymmetric wavelet method is validated by both simulated holograms of spherical particles and experimental holograms of opaque, nonspherical coal particles.

  11. Reducing radiation dose in adult head CT using iterative reconstruction. A clinical study in 177 patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, D. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Kahn, J.; Huizing, L.; Wiener, E.; Grupp, U.; Boening, G.; Streitparth, F. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiology; Ghadjar, P. [Charite School of Medicine and University Hospital, Berlin (Germany). Dept. of Radiation Oncology; Renz, D.M. [Jena University Hospital (Germany). Dept. of Radiology

    2016-02-15

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n=71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n=86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n=74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n=20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n=20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Conclusion: Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up.

  12. Hepatic CT perfusion measurements: A feasibility study for radiation dose reduction using new image reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Negi, Noriyuki, E-mail: noriyuki@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Yoshikawa, Takeshi, E-mail: yoshikawa0816@aol.com [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Ohno, Yoshiharu, E-mail: yosirad@kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Somiya, Yuichiro, E-mail: somiya13@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sekitani, Toshinori, E-mail: atieinks-toshi@nifty.com [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sugihara, Naoki, E-mail: naoki.sugihara@toshiba.co.jp [Toshiba Medical Systems Co., 1385 Shimoishigami, Otawara 324-0036 (Japan); Koyama, Hisanobu, E-mail: hkoyama@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kanda, Tomonori, E-mail: k_a@hotmail.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kanata, Naoki, E-mail: takikina12345@yahoo.co.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Murakami, Tohru, E-mail: mura@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Kawamitsu, Hideaki, E-mail: kawamitu@med.kobe-u.ac.jp [Division of Radiology, Kobe University Hospital, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan); Sugimura, Kazuro, E-mail: sugimura@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuoku, Kobe 650-0017 (Japan)

    2012-11-15

    Objectives: To assess the effects of image reconstruction method on hepatic CT perfusion (CTP) values using two CT protocols with different radiation doses. Materials and methods: Sixty patients underwent hepatic CTP and were randomly divided into two groups. Tube currents of 210 or 250 mA were used for the standard dose group and 120 or 140 mA for the low dose group. The higher currents were selected for large patients. Demographic features of the groups were compared. CT images were reconstructed by using filtered back projection (FBP), image filter (quantum de-noising, QDS), and adaptive iterative dose reduction (AIDR). Hepatic arterial and portal perfusion (HAP and HPP, ml/min/100 ml) and arterial perfusion fraction (APF, %) were calculated using the dual-input maximum slope method. ROIs were placed on each hepatic segment. Perfusion and Hounsfield unit (HU) values, and image noises (standard deviations of HU value, SD) were measured and compared between the groups and among the methods. Results: There were no significant differences in the demographic features of the groups, nor were there any significant differences in mean perfusion and HU values for either the groups or the image reconstruction methods. Mean SDs of each of the image reconstruction methods were significantly lower (p < 0.0001) for the standard dose group than the low dose group, while mean SDs for AIDR were significantly lower than those for FBP for both groups (p = 0.0006 and 0.013). Radiation dose reductions were approximately 45%. Conclusions: Image reconstruction method did not affect hepatic perfusion values calculated by dual-input maximum slope method with or without radiation dose reductions. AIDR significantly reduced images noises.

  13. Comparison of flat-panel detector and image-intensifier detector for cone-beam CT.

    Science.gov (United States)

    Baba, Rika; Konno, Yasutaka; Ueda, Ken; Ikeda, Shigeyuki

    2002-01-01

    We evaluated a flat-panel detector (FPD) (scintillator screen and a-Si photo-sensor array) for use in a cone-beam computed tomography (CT) detector and compared it with an image-intensifier detector (IID). The FPD cone-beam CT system has a higher spatial resolution than the IID system. At equal pixel sizes, the standard deviation of noise intensity of the FPD system is equal to that of the IID system. However, the circuit noise of the FPD must be reduced, especially at low doses. Our evaluations show that the FPD system has a strong potential for use as a cone-beam CT detector because of high-spatial resolution.

  14. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  15. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, Nicola; Imperatori, Andrea; Arlant, Veronica; Dominioni, Lorenzo [Insubria University, Center for Thoracic Surgery, Varese (Italy); Floridi, Chiara; Fontana, Federico; Ierardi, Anna Maria; Mangini, Monica; De Marchi, Giuseppe; Fugazzola, Carlo; Carrafiello, Gianpaolo [Insubria University, Radiology Department, Varese (Italy); Novario, Raffaele [Insubria University, Medical Physics Department, Varese (Italy)

    2016-02-15

    To compare the diagnostic performance of cone-beam CT (CBCT)-guided and CT fluoroscopy (fluoro-CT)-guided technique for transthoracic needle biopsy (TNB) of lung nodules. The hospital records of 319 consecutive patients undergoing 324 TNBs of lung nodules in a single radiology unit in 2009-2013 were retrospectively evaluated. The newly introduced CBCT technology was used to biopsy 123 nodules; 201 nodules were biopsied by conventional fluoro-CT-guided technique. We assessed the performance of the two biopsy systems for diagnosis of malignancy and the radiation exposure. Nodules biopsied by CBCT-guided and by fluoro-CT-guided technique had similar characteristics: size, 20 ± 6.5 mm (mean ± standard deviation) vs. 20 ± 6.8 mm (p = 0.845); depth from pleura, 15 ± 15 mm vs. 15 ± 16 mm (p = 0.595); malignant, 60 % vs. 66 % (p = 0.378). After a learning period, the newly introduced CBCT-guided biopsy system and the conventional fluoro-CT-guided system showed similar sensitivity (95 % and 92 %), specificity (100 % and 100 %), accuracy for diagnosis of malignancy (96 % and 94 %), and delivered non-significantly different median effective doses [11.1 mSv (95 % CI 8.9-16.0) vs. 14.5 mSv (95 % CI 9.5-18.1); p = 0.330]. The CBCT-guided and fluoro-CT-guided systems for lung nodule biopsy are similar in terms of diagnostic performance and effective dose, and may be alternatively used to optimize the available technological resources. (orig.)

  16. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  17. 3D-guided CT reconstruction using time-of-flight camera

    Science.gov (United States)

    Ismail, Mahmoud; Taguchi, Katsuyuki; Xu, Jingyan; Tsui, Benjamin M. W.; Boctor, Emad M.

    2011-03-01

    We propose the use of a time-of-flight (TOF) camera to obtain the patient's body contour in 3D guided imaging reconstruction scheme in CT and C-arm imaging systems with truncated projection. In addition to pixel intensity, a TOF camera provides the 3D coordinates of each point in the captured scene with respect to the camera coordinates. Information from the TOF camera was used to obtain a digitized surface of the patient's body. The digitization points are transformed to X-Ray detector coordinates by registering the two coordinate systems. A set of points corresponding to the slice of interest are segmented to form a 2D contour of the body surface. Radon transform is applied to the contour to generate the 'trust region' for the projection data. The generated 'trust region' is integrated as an input to augment the projection data. It is used to estimate the truncated, unmeasured projections using linear interpolation. Finally the image is reconstructed using the combination of the estimated and the measured projection data. The proposed method is evaluated using a physical phantom. Projection data for the phantom were obtained using a C-arm system. Significant improvement in the reconstructed image quality near the truncation edges was observed using the proposed method as compared to that without truncation correction. This work shows that the proposed 3D guided CT image reconstruction using a TOF camera represents a feasible solution to the projection data truncation problem.

  18. Optimisation of reconstruction for the registration of CT liver perfusion sequences

    Science.gov (United States)

    Romain, B.; Letort, V.; Lucidarme, O.; d'Alché-Buc, F.; Rouet, L.

    2012-02-01

    Objective. CT abdominal perfusion is frequently used to evaluate tumor evolution when patients are undergoing antiangiogenic therapy. Parameters depending on longer-term dynamics of the diffusion of the contrast medium (e. g. permeability) could help assessing the treatment efficacy. To this end, dynamic image sequences are obtained while patients breath freely. Prior to any analysis, one needs to compensate the respiratory motion. The goal of our study is to optimize the CT reconstruction parameters (filter of reconstruction, thickness of image volumes) for our registration method. We also aim at proposing relevant criteria allowing to quantify the registration quality. Methods. Registration is computed in 4 steps: z-global rigid registration, local refinements with multiresolution blockmatching, regularization and warping. Two new criteria are defined to evaluate the quality of registration: one for spatial evaluation and the other for temporal evaluation. Results. The two measures decrease after registration (58% and 10% average decrease for the best reconstruction parameters for the spatial and temporal criteria respectively) which is consistent with visual inspection of the images. They are therefore used to determine the best combination of reconstruction parameters.

  19. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  20. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  1. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  2. Application of spiral CT image 3D reconstruction in severe talar neck fracture

    Institute of Scientific and Technical Information of China (English)

    HE Fei; HUANG He; DENG Ya-min; Wang Bing; ZHANG Chun-qiang; ZHAO Zhi; TANG Xi-zhang; ZHOU Zhao-wen; ZHAO Xue-ling

    2007-01-01

    Objective:To explore the application of the spiral computerized tomography (CT) image three-dimensional(3D ) reconstruction technique associated with the conventional radiography in the diagnosis and treatment of severe talar neck fracture. Methods:Using the multi-slice spiral CT image 3D reconstruction technique,we analysed 11 cases of talar neck fracture.The fractures were reduced and fixed through a minimal incision and internal fixation with titanium cannulated lag screws. Results:In the 11 cases,the results of CT image 3D reconstruction were in concordance with plain radiograph in 6 case of Hawkins type H.And the remaining 5 cases of Hawkins types Ⅲ and Ⅳ could not be classified exactly only by radiographs,one of whom was misdiagnosed.After using the CT image 3D reconstruction,the 5 cases were classified exactly before osteosynthesis.The classifications of these 11 cases were confirmed finally by surgical findings.The duration of operation were 45-140 min,averaging 81min (including the duration of C-arm fluoroscopy).X-ray exposure time was 6-58 seconds,averaging 22 seconds.The blood loss was less than 100 ml.The fracture union was achieved in 3 months. No nonunion, talus avascular necrosis or joint surface collapse occurred.Postoperative follow-up was from 1 to 25 months.According to Hawkins score,excellent result was found in 6 type Ⅱ cases and 1type Ⅲ case;good result in 1 type Ⅲ case with both medial and lateral malleolar fracture,1 type Ⅲ with medial malleolus fractures and 1 open type Ⅲ;fair result in 1 open type Ⅳ with lateral malleolus fracture. Conclusions:By using the multi-slice spiral CT image 3D reconstruction associated with radiography to diagnose and treat severe talar neck fractures,the accuracy of diagnosis can be improved obviously. Based on this technique,more consummate operational plan can be designed and performed so as to achieve a better therapeutic effect.

  3. Joint Reconstruction of Multi-channel, Spectral CT Data via Constrained Total Nuclear Variation Minimization

    CERN Document Server

    Rigie, David

    2014-01-01

    We explore the use of the recently proposed "total nuclear variation" (TNV) \\cite{Rigie2014,Holt2014} as a regularizer for reconstructing multi-channel, spectral CT images. This convex penalty is a natural extension of the total variation (TV) to vector-valued images and has the advantage of encouraging common edge locations and a shared gradient direction among image channels. We show how it can be incorporated into a general, data-constrained reconstruction framework and derive update equations based on the first-order, primal-dual algorithm of Chambolle and Pock. Early simulation studies based on the numerical XCAT phantom indicate that the inter-channel coupling introduced by the TNV leads to better preservation of image features at high levels of regularization, compared to independent, channel-by-channel TV reconstructions.

  4. Value of three-dimensional reconstructions in pancreatic carcinoma using multidetector CT: Initial results

    Institute of Scientific and Technical Information of China (English)

    Miriam Klauβ; Max Sch(o)binger; Ivo Wolf; Jens Werner; Hans-Peter Meinzer; Hans-Ulrich Kauczor; Lars Grenacher

    2009-01-01

    AIM: To evaluate the use of three-dimensional imaging of pancreatic carcinoma using multidetector computed tomography (CT) in a prospective study. METHODS: Ten patients with suspected pancreatic tumors were examined prospectively using multidetector CT (Somatom Sensation 16, Siemens, Erlangen, Germany). The images were evaluated for the presence of a pancreatic carcinoma and invasion of the peripancreatic vessels and surrounding organs. Using the isotropic CT data sets, a three-dimensional image was created with automatic vascular analysis and semiautomatic segmentation of the organs and pancreatic tumor by a radiologist. The CT examinations and the three-dimensional images were presented to the surgeon directly before and during the patient's operation using the Medical Imaging Interaction Toolkit-based software "ReLiver". Immediately after surgery, the value of the two images was judged by the surgeon. The operation and the histological results served as the gold standard. RESULTS: Nine patients had a pancreatic carcinoma (all pT3), and one patient had a serous cystadenoma. One tumor infiltrated the superior mesenteric vein. The infiltration was correctly evaluated. All carcinomas were resectable. In comparison to the CT image with axial and coronal reconstructions, the three-dimensional image was judged by the surgeons as better for operation planning and consistently described as useful. CONCLUSION: A 3D-image of the pancreas represents an invaluable aid to the surgeon. However, the 3D-software must be further developed in order to be integrated into daily clinical routine.

  5. TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  6. Corrected knife-edge-based reconstruction of tightly focused higher order beams

    CERN Document Server

    Orlov, S; Marchenko, P; Banzer, P; Leuchs, G

    2016-01-01

    The knife-edge method is an established technique for profiling of even tightly focused light beams. However the straightforward implementation of this method fails if the materials and geometry of the knife-edges are not chosen carefully or in particular if knife-edges are used that are made of pure materials. In these cases artifacts are introduced in the shape and position of the reconstructed beam profile due to the interaction of the light beam under study with the knife. Hence, corrections to the standard knife-edge evaluation method are required. Here we investigate the knife-edge method for highly focused radially and azimuthally polarized beams and their linearly polarized constituents. We introduce relative shifts for those constituents and report on the consistency with the case of a linearly polarized Gaussian beam. An adapted knife-edge reconstruction technique is presented and proof-of-concept tests demonstrating the reconstruction of beam profiles are shown.

  7. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yinghua [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Chen, Guang-Hong [Department of Medical Physics and Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Hacker, Timothy A.; Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Van Lysel, Michael S.; Speidel, Michael A., E-mail: speidel@wisc.edu [Department of Medical Physics and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  8. Automatic selection of an optimal systolic and diastolic reconstruction windows for dual-source CT coronary angiography

    Science.gov (United States)

    Seifarth, H.; Puesken, M.; Wienbeck, S.; Maintz, D.; Heindel, W.; Juergens, K.-U.

    2008-03-01

    Purpose: To assess the performance of a motion map algorithm to automatically determine the optimal systolic and diastolic reconstruction window for coronary CT Angiography using Dual Source CT. Materials and Methods: Dual Source coronary CT angiography data sets (Somatom Definition, Siemens Medical Solutions) from 50 consecutive patients were included in the analysis. Optimal systolic and diastolic reconstruction windows were determined using a motion map algorithm (BestPhase, Siemens Medical Solutions). Additionally data sets were reconstructed in 5% steps throughout the RR-interval. For each major vessel (RCA, LAD and LCX) an optimal systolic and diastolic reconstruction window was manually determined by two independent readers using volume rendering displays. Image quality was rated using a five-point scale (1 = no motion artifacts, 5 = severe motion artifacts over entire length of the vessel). Results: The mean heart rate during the scan was 72.4bpm (+/-15.8bpm). Median systolic and diastolic reconstruction windows using the BestPhase algorithm were at 37% and 73% RR. The median manually selected systolic reconstruction window was 35 %, 30% and 35% for RCA, LAD, and LCX. For all vessels the median observer selected diastolic reconstruction window was 75%. Mean image quality using the BestPhase algorithm was 2.4 +/-0.9 for systolic reconstructions and 1.9 +/-1.1 for diastolic reconstructions. Using the manual approach, the mean image quality was 1.9 +/-0.5 and 1.7 +/-0.8 respectively. There was a significant difference in image quality between automatically and manually determined systolic reconstructions (p<0.01) but there was no significant difference in image quality in diastolic reconstructions. Conclusion: Automatic determination of the optimal reconstruction interval using the BestPhase algorithm is feasible and yields reconstruction windows similar to observer selected reconstruction windows. In diastolic reconstructions overall image quality is similar

  9. Renal Tumor Cryoablation Planning. The Efficiency of Simulation on Reconstructed 3D CT Scan

    Directory of Open Access Journals (Sweden)

    Ciprian Valerian LUCAN

    2010-12-01

    Full Text Available Introduction & Objective: Nephron-sparing surgical techniques risks are related to tumor relationships with adjacent anatomic structures. Complexity of the renal anatomy drives the interest to develop tools for 3D reconstruction and surgery simulation. The aim of the article was to assess the simulation on reconstructed 3D CT scan used for planning the cryoablation. Material & Method: A prospective randomized study was performed between Jan. 2007 and July 2009 on 27 patients who underwent retroperitoneoscopic T1a renal tumors cryoablation (RC. All patients were assessed preoperatively by CT scan, also used for 3D volume rendering. In the Gr.A, the patients underwent surgery planning by simulation on 3D CT scan. In the Gr.B., patients underwent standard RC. The two groups were compared in terms of surgical time, bleeding, postoperative drainage, analgesics requirement, hospital stay, time to socio-professional reintegration. Results: Fourteen patients underwent preoperative cryoablation planning (Gr.A and 13 patients underwent standard CR (Gr.B. All parameters analyzed were shorter in the Gr.A. On multivariate logistic regression, only shortens of the surgical time (138.79±5.51 min. in Gr.A. vs. 140.92±5.54 min in Gr.B. and bleeding (164.29±60.22 mL in Gr.A. vs. 215.38±100.80 mL in Gr.B. achieved statistical significance (p<0.05. The number of cryoneedles assessed by simulation had a 92.52% accuracy when compared with those effectively used. Conclusions: Simulation of the cryoablation using reconstructed 3D CT scan improves the surgical results. The application used for simulation was able to accurately assess the number of cryoneedles required for tumor ablation, their direction and approach.

  10. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  11. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    Science.gov (United States)

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  12. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    Science.gov (United States)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Rossi, Michael; Knox, Chris; Brown, Kevin; Gros, Uwe; Boda-Heggemann, Judit; Walter, Cornelia; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2010-08-01

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90° kV- and 90° MV-CBCT (180° kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180° kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm-1 (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of ~33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  13. Investigation of optimal parameters for penalized maximum-likelihood reconstruction applied to iodinated contrast-enhanced breast CT

    Science.gov (United States)

    Makeev, Andrey; Ikejimba, Lynda; Lo, Joseph Y.; Glick, Stephen J.

    2016-03-01

    Although digital mammography has reduced breast cancer mortality by approximately 30%, sensitivity and specificity are still far from perfect. In particular, the performance of mammography is especially limited for women with dense breast tissue. Two out of every three biopsies performed in the U.S. are unnecessary, thereby resulting in increased patient anxiety, pain, and possible complications. One promising tomographic breast imaging method that has recently been approved by the FDA is dedicated breast computed tomography (BCT). However, visualizing lesions with BCT can still be challenging for women with dense breast tissue due to the minimal contrast for lesions surrounded by fibroglandular tissue. In recent years there has been renewed interest in improving lesion conspicuity in x-ray breast imaging by administration of an iodinated contrast agent. Due to the fully 3-D imaging nature of BCT, as well as sub-optimal contrast enhancement while the breast is under compression with mammography and breast tomosynthesis, dedicated BCT of the uncompressed breast is likely to offer the best solution for injected contrast-enhanced x-ray breast imaging. It is well known that use of statistically-based iterative reconstruction in CT results in improved image quality at lower radiation dose. Here we investigate possible improvements in image reconstruction for BCT, by optimizing free regularization parameter in method of maximum likelihood and comparing its performance with clinical cone-beam filtered backprojection (FBP) algorithm.

  14. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Roquet, Florian, E-mail: florianroquet@hotmail.com [Gustave Roussy, Biostatistics Department (France); Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Dreuil, Serge, E-mail: serge.dreuil@gustaveroussy.fr [Gustave Roussy, Medical Physics Department (France); Hakimé, Antoine, E-mail: thakime@yahoo.com; Teriitehau, Christophe, E-mail: cteriitehau@me.com [Gustave Roussy, Interventional Radiology Department (France); Auperin, Anne, E-mail: anne.auperin@gustaveroussy.fr [Gustave Roussy, Biostatistics Department (France); Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, Frederic, E-mail: frederic.deschamps@gustaveroussy.fr [Gustave Roussy, Interventional Radiology Department (France)

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  15. Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, Georg; Sterzer, Sergej; Kahraman, Deniz; Dietlein, Markus; Drzezga, Alexander; Kobe, Carsten [University Hospital of Cologne, Department of Nuclear Medicine, Cologne (Germany); Boellaard, Ronald [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Scheffler, Matthias; Wolf, Juergen [University Hospital of Cologne, Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology Cologne Bonn, Cologne (Germany)

    2016-02-15

    In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT. (orig.)

  16. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;

    2010-01-01

    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  17. ASSESSMENT OF EFFECTIVE DOSE FROM CONE BEAM CT IMAGING IN SPECT/CT EXAMINATION IN COMPARISON WITH OTHER MODALITIES.

    Science.gov (United States)

    Tonkopi, Elena; Ross, Andrew A

    2016-12-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose.

  18. Reduced-dose abdominopelvic CT using hybrid iterative reconstruction in suspected left-sided colonic diverticulitis

    Energy Technology Data Exchange (ETDEWEB)

    Laqmani, Azien; Dulz, Simon; Behzadi, Cyrus; Schmidt-Holtz, Jakob; Wassenberg, Felicia; Adam, Gerhard; Regier, Marc [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Veldhoen, Simon [University Medical Center Wuerzburg, Department of Diagnostic and Interventional Radiology, Wuerzburg (Germany); Derlin, Thorsten [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Sehner, Susanne [University Medical Center Hamburg-Eppendorf, Department of Medical Biometry and Epidemiology, Hamburg (Germany); Nagel, Hans-Dieter [Scientific and Application-oriented Studies and Consulting in Radiology (SASCRAD), Buchholz (Germany)

    2016-01-15

    To assess the effect of hybrid iterative reconstruction (HIR) and filtered back projection (FBP) on abdominopelvic CT with reduced-dose (RD-APCT) in the evaluation of acute left-sided colonic diverticulitis (ALCD). Twenty-five consecutive patients with suspected ALCD who underwent RD-APCT (mean CTDIvol 11.2 ± 4.2 mGy) were enrolled in this study. Raw data were reconstructed using FBP and two increasing HIR levels, L4 and L6. Two radiologists assessed image quality, image noise and reviewer confidence in interpreting findings of ALCD, including wall thickening, pericolic fat inflammation, pericolic abscess, and contained or free extraluminal air. Objective image noise (OIN) was measured. OIN was reduced up to 54 % with HIR compared to FBP. Subjective image quality of HIR images was superior to FBP; subjective image noise was reduced. The detection rate of extraluminal air was higher with HIR L6. Reviewer confidence in interpreting CT findings of ALCD significantly improved with application of HIR. RD-APCT with HIR offers superior image quality and lower image noise compared to FBP, allowing a high level of reviewer confidence in interpreting CT findings in ALCD. HIR facilitates detection of ALCD findings that may be missed with the FBP algorithm. (orig.)

  19. Planning of External Beam Radiotherapy for Prostate Cancer Guided by PET/CT.

    Science.gov (United States)

    von Eyben, Finn Edler; Kairemo, Kalevi; Kiljunen, Timo; Joensuu, Timo

    2015-01-01

    In this paper, we give an overview of articles on non-choline tracers for PET/CT for patients with prostate cancer and planning of radiotherapy guided by PET/CT. Nineteen articles described (11)C-Acetate PET/CT. Of 629 patients 483 (77%, 95% CI 74% - 80%) had positive (11)C-Acetate PET/CT scans. Five articles described (18)F-FACBC PET/CT. Of 174 patients, 127 (73%, 95% CI 68% - 78%) had positive scans. Both tracers detected local lesions, lesions in regional lymph nodes, and distant organs. Ten articles described (18)F-NaF PET/CT and found that 1289 of 3918 patients (33%) had positive reactive lesions in bones. PET/CT scan can guide external beam radiotherapy (EBRT) planning for patients with loco-regional prostate cancer. In six studies with 178 patients with localized prostate cancer, PET/CT pointed out dominant intraprostatic lesions (DIL). Oncologists gave EBRT to the whole prostate and a simultaneously integrated boost to the DIL. Four studies with 254 patients described planning of EBRT for patients with PETpositive lymph nodes. After the EBRT, 15 of 29 node-positive patients remained in remission for median 28 months (range 14 to 50 months). Most articles describe (11)C- and (18)F-Choline PET/CT. However, (11)C-Acetate and (18)F-FACBC may also be useful tracers for PET/CT. Planning of radiotherapy guided by MRI or PET/CT is an investigational method for localized prostate cancer. Current clinical controlled trials evaluate whether the method improves overall survival.

  20. ECG-gated HYPR reconstruction for undersampled CT myocardial perfusion imaging

    Science.gov (United States)

    Speidel, Michael A.; Van Lysel, Michael S.; Reeder, Scott B.; Supanich, Mark; Nett, Brian E.; Zambelli, Joseph; Chang, Su Min; Hsieh, Jiang; Chen, Guang-Hong; Mistretta, Charles A.

    2007-03-01

    In this study we develop a novel ECG-gated method of HYPR (HighlY constrained backPRojection) CT reconstruction for low-dose myocardial perfusion imaging and present its first application in a porcine model. HYPR is a method of reconstructing time-resolved images from view-undersampled projection data. Scanning and reconstruction techniques were explored using x-ray projections from a 50 sec contrast-enhanced axial scan of a 47 kg swine on a 64-slice MDCT system. Scans were generated with view undersampling factors from 2 to 10. A HYPR reconstruction algorithm was developed in which a fully-sampled composite image is generated from views collected from multiple cardiac cycles within a diastolic window. A time frame image for a heartbeat was produced by modifying the composite with projections from the cycle of interest. Heart rate variations were handled by automatically selecting cardiac window size and number of cycles per composite within defined limits. Cardiac window size averaged 35% of the R-R interval for 2x undersampling and increased to 64% R-R using 10x undersampling. The selected window size and cycles per composite was sensitive to synchrony between heart rate, gantry rate, and the view undersampling pattern. Temporal dynamics and perfusion metrics measured in conventional short-scan (FBP) images were well-reproduced in the undersampled HYPR time series. Mean transit times determined from HYPR myocardial time-density curves agreed to within 8% with the FBP results. The results indicate potential for an order of magnitude reduction in dose requirement per image in cardiac perfusion CT via undersampled scanning and ECG-gated HYPR reconstruction.

  1. Improved Scatter Correction in X-Ray Cone Beam CT with Moving Beam Stop Array Using Johns' Equation

    CERN Document Server

    Yan, Hao; Tang, Shaojie; Xu, Qiong

    2014-01-01

    In this paper, an improved scatter correction with moving beam stop array (BSA) for x-ray cone beam (CB) CT is proposed. Firstly, correlation between neighboring CB views is deduced based on John's Equation. Then, correlation-based algorithm is presented to complement the incomplete views by using the redundancy (over-determined information) in CB projections. Finally, combining the algorithm with scatter correction method using moving BSA, where part of primary radiation is blocked and incomplete projections are acquired, an improved correction method is proposed. Effectiveness and robustness is validated by Monte Carlo (MC) simulation with EGSnrc on humanoid phantom.

  2. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    Directory of Open Access Journals (Sweden)

    Kai Zeng

    2007-01-01

    Full Text Available Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT angiography (BCA that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  3. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification

    Energy Technology Data Exchange (ETDEWEB)

    Berkovitz, Nadav; Simanovsky, Natalia; Hiller, Nurith [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Radiology, Jerusalem (Israel); Katz, Ran [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Urology, Jerusalem (Israel); Salama, Shaden [Hadassah Mount Scopus - Hebrew University Medical Center, Department of Emergency Medicine, Jerusalem (Israel)

    2010-05-15

    To determine whether size measurement of a urinary calculus in coronal reconstruction of computed tomography (CT) differs from stone size measured in the axial plane, and whether the difference alters clinical decision making. We retrospectively reviewed unenhanced CT examinations of 150 patients admitted to the emergency room (ER) with acute renal colic. Maximal ureteral calculus size was measured on axial slices and coronal reconstructions. Clinical significance was defined as an upgrading or downgrading of stone size according to accepted thresholds of treatment: {<=}5 mm, 6-9 mm and {>=}10 mm. There were 151 stones in 150 patients (male:female 115:34, mean age 41 years). Transverse stone diameters ranged from 1 to 11 mm (mean 4 mm). On coronal images, 56 (37%) stones were upgraded in severity; 46 (30%) from below 5 mm to 6 mm or more, and ten (7%) from 6-9 mm to 10 mm or more. Transverse measurement on the axial slices enabled correct categorization of 95 stones (63%). Transverse calculus measurement on axial slices often underestimates stone size and provides incorrect clinical classification of the true maximal stone diameter. Coronal reconstruction provides additional information in patients with renal colic that may alter treatment strategy. (orig.)

  4. Low-dose multiphase abdominal CT reconstruction with phase-induced swap prior

    Science.gov (United States)

    Selim, Mona; Rashed, Essam A.; Kudo, Hiroyuki

    2016-10-01

    Multiphase abdominal CT is an imaging protocol in which the patient is scanned at different phases before and after the injection of a contrast agent. Reconstructed images with different concentrations of contrast material provide useful information for effective detection of abnormalities. However, several scanning during a short period of time eventually increase the patient radiation dose to a remarkable value up to a risky level. Reducing the patient dose by modulating the x-ray tube current or acquiring the projection data through a small number of views are known to degrade the image quality and reduce the possibility to be useful for diagnosis purpose. In this work, we propose a novel multiphase abdominal CT imaging protocol with patient dose reduction and high image quality. The image reconstruction cost function consists of two terms, namely the data fidelity term and penalty term to enforce the anatomical similarity in successive contrast phase reconstruction. The prior information, named phase-induced swap prior (PISP) is computed using total variation minimization of image acquired from different contrast phases. The new method is evaluated through a simulation study using digital abdominal phantom and real data and results are promising.

  5. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method.

  6. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    Science.gov (United States)

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation.

  7. Comparison of percutaneous radiologic gastrostomy by using cone beam CT and endoscopic gastrostomy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Nyeong; Han, Young Min; Jin, Gong Yong; Choi, Eun Jeong; Song, Ji Soo [Chonbuk National University Hospital and Medical School, Jeonju (Korea, Republic of)

    2014-01-15

    To compare the effectiveness of percutaneous radiologic gastrostomy (PRG) by using cone beam CT and percutaneous endoscopic gastrostomy (PEG). This study retrospectively reviewed 129 patients who underwent PRG (n = 53) and PEG (n = 76) over a 2-years period. The C-arm cone beam CT images were obtained from all PRG patients before the procedure in order to decide the safest accessing routes. The parameters including technical success rates, complication rates and tube migration rates were all analyzed according to statistical methods. The success rate of tube placement was higher in PRG than in PEG (100% to 93%, p = 0.08). Minor complications occurred in 5 patients of the PRG group (10%; 5/53, 3 wound infection, 2 blood oozing), and occurred in 6 patients of PEG group (7.9%; 6/76, 5 wound infection, 1 esophageal ulcer). Major complications occurred only in 5 patients of PEG group (6.6%; 5/76, 1 panperitonitis, 4 buried bumper syndrome). There were no statistical differences of minor and major complication rates in the two groups (respectively, p = 0.759, p = 0.078). Tube migration rate was lower in PRG than PEG group (7.5% vs. 38.2%, p < 0.005). PRG using cone beam CT is the effective and safe method, the cone beam CT provides the safest accessing route during gastrostomy. Less tube migration occurs in the PRG than in PEG.

  8. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank

    2013-01-01

    Industrial X-ray CT systems are increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable yet. The measurement accuracy is influenced by many factors, such as workpiece properties, X-ray settings, beam hardening and calibration methods [1-4]. Since...

  9. Segmentation of the mandibular canal in cone-beam CT data

    NARCIS (Netherlands)

    Kroon, Dirk-Jan

    2011-01-01

    Accurate information about the location of the mandibular canal is essential in case of dental implant surgery. The goal of our research is to find an automatic method which can segment the mandibular canal in Cone-beam CT (CBCT). Mandibular canal segmentation methods in literature using a priori

  10. Time-resolved cardiac cone beam CT using an interventional C-arm system

    NARCIS (Netherlands)

    Schomberg, H.

    2012-01-01

    It is both desirable and challenging to make interventional C-arm systems fit for cardiac cone beam CT. A number of methods towards thisgoal have been proposed, some of which even attempt to generate 4Dimages of the beating heart. A promising candidate of this type, proposed earlier by this author,

  11. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    NARCIS (Netherlands)

    Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.A.C.; Suetens, P.; Steenberghe, D van

    2006-01-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging techno

  12. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Justin, E-mail: justin.solomon@duke.edu [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Biomedical Engineering and Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  13. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media

    Science.gov (United States)

    Fahrbach, Florian O.; Rohrbach, Alexander

    2012-01-01

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  14. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective

    Energy Technology Data Exchange (ETDEWEB)

    Brady, S. L.; Yee, B. S.; Kaufman, R. A. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2012-09-15

    Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metric was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more

  15. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  16. TU-EF-207-05: Dedicated Cone-beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S. [Univ. of Massachusetts Medical School (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  17. Boundary Element Method for Reconstructing Absorption and Diffusion Coefficients of Biological Tissues in DOT/MicroCT Imaging.

    Science.gov (United States)

    Xie, Wenhao; Deng, Yong; Lian, Lichao; Yan, Dongmei; Yang, Xiaoquan; Luo, Qingming

    2016-01-01

    The functional information, the absorption and diffusion coefficients, as well as the structural information of biological tissues can be provided by the DOT(Diffuse Optical Tomograph)/MicroCT. In this paper, we use boundary element method to calculate the forward problem of DOT based on the structure prior given by the MicroCT, and then we reconstruct the absorption and diffusion coefficients of different biological tissues by the Levenberg-Marquardt algorithm. The method only needs surface meshing, reducing the complexity of calculation; in addition, it reconstructs a single value within an organ, which reduces the ill-posedness of the inverse problem to make reconstruction results have good noise stability. This indicates that the boundary element method-based reconstruction can serve as an new scheme for getting absorption and diffusion coefficients in DOT/MicroCT multimodality imaging.

  18. Evaluations of multiplanar reconstruction in CT recognition of lumbar disk disease

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, D.I.; Stauffer, A.E.; Davis, K.R.; Ganott, M.; Taveras, J.M.

    1984-07-01

    Axial computed tomographic (CT) images were compared with sagittal and coronal reformations and myelograms in 60 patients to evaluate the diagnostic usefulness of multiplanar reconstructions for the recognition of lumbar disk disease. The axial CT scans were most sensitive and specific. The sagittal scans were helpful in evaluating the neural foramina, the size of the disk bulge into the spinal canal, especially at L5-S1, and patients with spondylolisthesis. The coronal images were the least informative, although they contributed to the evaluation of lumbar nerve roots. The myelograms and the sagittal images were equally useful in the detection of herniated disk, but axial scans were superior to either. It was concluded that reformatted sagittal and coronal images are not required if all axial images are normal.

  19. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  20. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    Science.gov (United States)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  1. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu (China)

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  2. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  3. Cone beam CT for diagnosis and treatment planning in trauma cases.

    Science.gov (United States)

    Palomo, Leena; Palomo, J Martin

    2009-10-01

    Three-dimensional imaging offers many advantages in making diagnoses and planning treatment. This article focuses on cone beam CT (CBCT) for making diagnoses and planning treatment in trauma-related cases. CBCT equipment is smaller and less expensive than traditional medical CT equipment and is tailored to address challenges specific to the dentoalveolar environment. Like medical CT, CBCT offers a three-dimensional view that conventional two-dimensional dental radiography fails to provide. CBCT combines the strengths of medical CT with those of conventional dental radiography to accommodate unique diagnostic and treatment-planning applications that have particular utility in dentoalveolar trauma cases. CBCT is useful, for example, in identifying tooth fractures relative to surrounding alveolar bone, in determining alveolar fracture location and morphology, in analyzing ridge-defect height and width, and in imaging temporomandibular joints. Treatment-planning applications include those involving extraction of fractured teeth, placement of implants, exposure of impacted teeth, and analyses of airways.

  4. Applications of the Medipix3-CT in combination with iterative reconstruction techniques

    Science.gov (United States)

    Fischer, F.; Procz, S.; Fauler, A.; Fiederle, M.

    2016-02-01

    The pixelated semiconductor detectors of the Medipix family with their photon-counting abilities offer the possibility of high quality X-ray radiography as well as computed tomography. The generated signal from each photon is amplified and shaped before it is compared to an energy threshold. For a photon with an energy above the threshold the counter is incremented by one count. Photons below the operator-defined threshold do not increment the counter and therefore do not participate in the image formation. Furthermore, compared to other detectors like scintillators, an additional conversion step is dispensed due to the direct converting nature of photon-counting detectors, leading to a higher signal-to-noise-ratio. Additionally, the photon processing capabilities of photon-counting detectors allow photons to be weighted equally and not proportional to their energy as it is the case for charge integrating devices, where high energy photons are weighted stronger than low energy photons. Compared to integrating devices, this leads to an increase in contrast for images of both high and low contrast objects, hence improve object information. The use of photon-counting detectors in combination with iterative reconstruction techniques based on OSEM (ordered subset expectation maximization) algorithms is the basis of our computed tomography scans for material analysis. Due to its ability to operate with highly undersampled data sets, iterative reconstruction offers the possibility to decrease dose in CT scans. In order to identify the limits of the data set reduction, a first series of scans was performed to test, under real conditions, the CT-image quality when a strongly reduced amount of projections is used for reconstruction. In addition, the effect of a total variation minimization tool on these undersampled data sets was evaluated. Furthermore, this paper includes a number of recent CT-results with scans performed at two different setups within our facility.

  5. Cone beam CT in orthodontics: the current picture.

    Science.gov (United States)

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored.

  6. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  7. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  8. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 pmeasured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; pBH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  9. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    LENUS (Irish Health Repository)

    McLaughlin, P D

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR).

  10. Studies on the Electron Reconstruction Efficiency for the Beam Calorimeter of an ILC Detector

    CERN Document Server

    Novgorodova, Olga

    2010-01-01

    In this talk recent simulation results on the single high energy electron reconstruction with the Beam Calorimeter for the ILD detector are presented. Guinea Pig is used to generate the e+e- pair background and GEANT4 for the simulation of electron showers in the calorimeter. An algorithm was developed for the sHEe reconstruction on top of the large e+e- background. The efficiency of the sHEe reconstruction is estimated for the nominal and SB-2009 ILC beam parameters.

  11. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    CERN Document Server

    Jørgensen, Jakob H; Pan, Xiaochuan

    2011-01-01

    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low-dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization, shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task. This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic...

  12. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Science.gov (United States)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  13. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution m

  14. A prototype fan-beam optical CT scanner for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    flask registration technique was shown to achieve submillimetre and subdegree placement accuracy. Dosimetry protocol investigations emphasize the need to allow gel dosimeters to cool gradually and to be scanned while at room temperature. Preliminary tests show that considerable noise reduction can be achieved with sinogram filtering and by binning image pixels into more clinically relevant grid sizes. Conclusions: This paper describes a new optical CT scanner for 3D radiation dosimetry. Tests demonstrate that it is capable of imaging both absorption-based and scatter-based samples of high opacities. Imaging protocol and gel dosimeter manufacture techniques have been adapted to produce optimal reconstruction results. These optimal results will require suitable filtering and binning techniques for noise reduction purposes.

  15. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T; Cho, S [KAIST, Daejon (Korea, Republic of); Kim, I; Han, B [EB Tech Co., Ltd., Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  16. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  17. Beaming the columns for Charcot diabetic foot reconstruction: a retrospective analysis.

    Science.gov (United States)

    Grant, William P; Garcia-Lavin, Silvia; Sabo, Roy

    2011-01-01

    This study explored the concept of "beaming" the medial and lateral longitudinal columns as a variation of the current technique for hindfoot and Lisfranc Charcot reconstruction. We reviewed radiographic changes and outcomes for patients who underwent Charcot foot reconstruction at our facility over the 14-year period from January 1994 to January 2008. Beaming was performed on 71 Charcot foot deformities in 70 patients, 22 (31%) of which displayed an isolated hindfoot deformity, 20 (28%) an isolated Lisfranc deformity, and 29 (41%) with a combination of hindfoot and Lisfranc deformities. The average radiographic follow up was 31.00 ± 22.97 months. Group 1 consisted of reconstructions that involved only medial and lateral column beams and showed significant improvements in radiographic alignment between the preoperative and postoperative measurements, including Meary's angle (P Charcot reconstruction. Complications included pin tract infections, broken pin, osteomyelitis, transfer lesions, and ulcerations.

  18. Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction

    Science.gov (United States)

    Kim, Hojin; Chen, Josephine; Wang, Adam; Chuang, Cynthia; Held, Mareike; Pouliot, Jean

    2016-09-01

    The compressed sensing (CS) technique has been employed to reconstruct CT/CBCT images from fewer projections as it is designed to recover a sparse signal from highly under-sampled measurements. Since the CT image itself cannot be sparse, a variety of transforms were developed to make the image sufficiently sparse. The total-variation (TV) transform with local image gradient in L1-norm was adopted in most cases. This approach, however, which utilizes very local information and penalizes the weight at a constant rate regardless of different degrees of spatial gradient, may not produce qualified reconstructed images from noise-contaminated CT projection data. This work presents a new non-local operator of total-variation (NLTV) to overcome the deficits stated above by utilizing a more global search and non-uniform weight penalization in reconstruction. To further improve the reconstructed results, a reweighted L1-norm that approximates the ideal sparse signal recovery of the L0-norm is incorporated into the NLTV reconstruction with additional iterates. This study tested the proposed reconstruction method (reweighted NLTV) from under-sampled projections of 4 objects and 5 experiments (1 digital phantom with low and high noise scenarios, 1 pelvic CT, and 2 CBCT images). We assessed its performance against the conventional TV, NLTV and reweighted TV transforms in the tissue contrast, reconstruction accuracy, and imaging resolution by comparing contrast-noise-ratio (CNR), normalized root-mean square error (nRMSE), and profiles of the reconstructed images. Relative to the conventional NLTV, combining the reweighted L1-norm with NLTV further enhanced the CNRs by 2-4 times and improved reconstruction accuracy. Overall, except for the digital phantom with low noise simulation, our proposed algorithm produced the reconstructed image with the lowest nRMSEs and the highest CNRs for each experiment.

  19. Beam hardening correction using iterative total variation (ITV)-based algorithm in CBCT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young [Converged Medical Device Research Center, Advanced Medical Device Research Division, KERI, Gyeonggido 426-910 (Korea, Republic of)

    2015-07-01

    Recently, beam hardening reduction is required to produce high-quality reconstructions of X-ray cone-beam computed tomography (CBCT) system for medical applications. This paper introduces the iterative total variation (ITV) for filtered-backprojection suffering from the serious beam hardening problems. Feldkamp, Davis, and Kress (FDK) reconstruction algorithm for CBCT system is widely used reconstruction technique. FDK reconstruction algorithm could be realized by generating the weighted projection data, filtering the projection images, and back-projecting the filtered projection data into the volume. However, FDK algorithm suffers from the beam hardening artifacts by X-ray attenuation coefficients. Recently, total variation (TV) method for compressed sensing (CS) has been particularly useful in exploiting the prior knowledge of minimal variation in the X-ray attenuation characteristics across object or human body. But a practical implementation of this method still remains a challenge. The main problem is the iterative nature of solving the TV-based CS formulation, which generally requires multiple iterations of forward and backward projections of a large dataset in clinically or industrially feasible time frame. In this paper, we propose ITV method after FDK reconstruction for reducing the beam hardening artifacts. The beam hardening problems are reduced by the ITV method to promote sparsity inherent in the X-ray attenuation characteristics. (authors)

  20. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  1. Construction and analysis of a head CT-scan database for craniofacial reconstruction.

    Science.gov (United States)

    Tilotta, Françoise; Richard, Frédéric; Glaunès, Joan; Berar, Maxime; Gey, Servane; Verdeille, Stéphane; Rozenholc, Yves; Gaudy, J F

    2009-10-30

    This paper is devoted to the construction of a complete database which is intended to improve the implementation and the evaluation of automated facial reconstruction. This growing database is currently composed of 85 head CT-scans of healthy European subjects aged 20-65 years old. It also includes the triangulated surfaces of the face and the skull of each subject. These surfaces are extracted from CT-scans using an original combination of image-processing techniques which are presented in the paper. Besides, a set of 39 referenced anatomical skull landmarks were located manually on each scan. Using the geometrical information provided by triangulated surfaces, we compute facial soft-tissue depths at each known landmark positions. We report the average thickness values at each landmark and compare our measures to those of the traditional charts of [J. Rhine, C.E. Moore, Facial Tissue Thickness of American Caucasoïds, Maxwell Museum of Anthropology, Albuquerque, New Mexico, 1982] and of several recent in vivo studies [M.H. Manhein, G.A. Listi, R.E. Barsley, et al., In vivo facial tissue depth measurements for children and adults, Journal of Forensic Sciences 45 (1) (2000) 48-60; S. De Greef, P. Claes, D. Vandermeulen, et al., Large-scale in vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction, Forensic Science International 159S (2006) S126-S146; R. Helmer, Schödelidentifizierung durch elektronische bildmischung, Kriminalistik Verlag GmbH, Heidelberg, 1984].

  2. CT reconstruction from few-views with anisotropic edge-guided total variance

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Jiao, Chun [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); Ma, Jianhua [School of Biomedical Engineering, Southern Medical University, Guangzhou 510515 (China); Lu, Hongbing, E-mail: luhb@fmmu.edu.cn [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China)

    2016-06-01

    To overcome the oversmoothing drawback in the edge areas when reconstructing few-view CT with total variation (TV) minimization, in this paper, we propose an anisotropic edge-guided TV minimization framework for few-view CT reconstruction. In the framework, anisotropic TV is summed with pre-weighted image gradient and then used as the object function for minimizing. It includes edge-guided TV minimization (EGTV) and edge-guided adaptive-weighted TV minimization (EGAwTV) algorithms. For EGTV algorithm, the weights of the TV discretization term are updated by anisotropic edge information detected from the image, whereas the weights for EGAwTV are determined based on edge information and local image-intensity gradients. To solve the minimization problem of the proposed algorithm, a similar TV-based minimization implementation is developed to address the raw data fidelity and other constraints. The evaluation results using both computer simulations with the Shepp-Logan phantom and experimental data from a physical phantom demonstrate that the proposed algorithms exhibit noticeable gains in the merits of spatial resolution compared with the conventional TV and other modified TV algorithms.

  3. Effect of reconstruction parameters on defect detection in fan-beam SPECT

    Science.gov (United States)

    Gregoriou, George K.

    2002-05-01

    The effect of reconstruction parameters on the fan-beam filtered backprojection method in myocardial defect detection was investigated using an observer performance study and receiver operating characteristics (ROC) analysis. A mathematical phantom of the human torso was used to model the anatomy and Thallium-201 (Tl-201) uptake in humans. Half-scan fan-beam realistic projections were simulated using a low-energy high resolution (LEHR) collimator that incorporated the effects of photon attenuation, spatially varying detector response, scatter, and Poison noise. A focal length of 55 cm and a radius of rotation of 25 cm were used, which resulted to a magnification of two at the center of rotation and a maximum magnification of three in the reconstructed region of interest. By changing the reconstruction pixel size, five different projection bin width to reconstruction pixel size (PBWRPS) ratios were obtained which resulted in five classes of reconstructed images. Myocardial defects were simulated as Gaussian-shaped decreases in Tl-201 uptake distribution. The total projection count per 3 mm image slice was 44,000. A total of 96 reconstructed transaxial images from each one of the five classes were shown to eight observers for evaluation. The results indicate that the reconstruction pixel size has a significant effect on the quality of fan-beam SPECT images. Moreover, the study indicated that in order to ensure best image quality the PBWRPS ratio should be at least as large as the maximum possible magnification inside the reconstructed image array.

  4. Adaptive statistical iterative reconstruction: reducing dose while preserving image quality in the pediatric head CT examination

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Colin D.; Watcharotone, Kuanwong; Ibrahim, Mohannad; Christodoulou, Emmanuel; Baer, Aaron H.; Parmar, Hemant A. [University of Michigan, Department of Radiology, Ann Arbor, MI (United States)

    2014-08-15

    Over the last decade there has been escalating concern regarding the increasing radiation exposure stemming from CT exams, particularly in children. Adaptive statistical iterative reconstruction (ASIR) is a relatively new and promising tool to reduce radiation dose while preserving image quality. While encouraging results have been found in adult head and chest and body imaging, validation of this technique in pediatric population is limited. The objective of our study was to retrospectively compare the image quality and radiation dose of pediatric head CT examinations obtained with ASIR compared to pediatric head CT examinations without ASIR in a large patient population. Retrospective analysis was performed on 82 pediatric head CT examinations. This group included 33 pediatric head CT examinations obtained with ASIR and 49 pediatric head CT examinations without ASIR. Computed tomography dose index (CTDI{sub vol}) was recorded on all examinations. Quantitative analysis consisted of standardized measurement of attenuation and the standard deviation at the bilateral centrum semiovale and cerebellar white matter to evaluate objective noise. Qualitative analysis consisted of independent assessment by two radiologists in a blinded manner of gray-white differentiation, sharpness and overall diagnostic quality. The average CTDI{sub vol} value of the ASIR group was 21.8 mGy (SD = 4.0) while the average CTDI{sub vol} for the non-ASIR group was 29.7 mGy (SD = 13.8), reflecting a statistically significant reduction in CTDI{sub vol} in the ASIR group (P < 0.01). There were statistically significant reductions in CTDI for the 3- to 12-year-old ASIR group as compared to the 3- to 12-year-old non-ASIR group (21.5 mGy vs. 30.0 mGy; P = 0.004) as well as statistically significant reductions in CTDI for the >12-year-old ASIR group as compared to the >12-year-old non-ASIR group (29.7 mGy vs. 49.9 mGy; P = 0.0002). Quantitative analysis revealed no significant difference in the

  5. Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations.

    Directory of Open Access Journals (Sweden)

    Peter B Noël

    Full Text Available PURPOSE: Evaluation of 15,000 computed tomography (CT examinations to investigate if iterative reconstruction (IR reduces sustainably radiation exposure. METHOD AND MATERIALS: Information from 15,000 CT examinations was collected, including all aspects of the exams such as scan parameter, patient information, and reconstruction instructions. The examinations were acquired between January 2010 and December 2012, while after 15 months a first generation IR algorithm was installed. To collect the necessary information from PACS, RIS, MPPS and structured reports a Dose Monitoring System was developed. To harvest all possible information an optical character recognition system was integrated, for example to collect information from the screenshot CT-dose report. The tool transfers all data to a database for further processing such as the calculation of effective dose and organ doses. To evaluate if IR provides a sustainable dose reduction, the effective dose values were statistically analyzed with respect to protocol type, diagnostic indication, and patient population. RESULTS: IR has the potential to reduce radiation dose significantly. Before clinical introduction of IR the average effective dose was 10.1±7.8mSv and with IR 8.9±7.1mSv (p*=0.01. Especially in CTA, with the possibility to use kV reduction protocols, such as in aortic CTAs (before IR: average14.2±7.8mSv; median11.4mSv /with IR:average9.9±7.4mSv; median7.4mSv, or pulmonary CTAs (before IR: average9.7±6.2mSV; median7.7mSv /with IR: average6.4±4.7mSv; median4.8mSv the dose reduction effect is significant(p*=0.01. On the contrary for unenhanced low-dose scans of the cranial (for example sinuses the reduction is not significant (before IR:average6.6±5.8mSv; median3.9mSv/with IR:average6.0±3.1mSV; median3.2mSv. CONCLUSION: The dose aspect remains a priority in CT research. Iterative reconstruction algorithms reduce sustainably and significantly radiation dose in the clinical routine

  6. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mark [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Norwich Radiology Academy, Norwich (United Kingdom); Reid, Karen [Norfolk and Norwich University Hospital, Norwich (United Kingdom); Toms, Andoni P. [Norfolk and Norwich University Hospital and University of East Anglia, Norwich (United Kingdom)

    2013-02-15

    The aim of this study was to determine whether high keV monoenergetic reconstruction of dual energy computed tomography (DECT) could be used to overcome the effects of beam hardening artefact that arise from preferential deflection of low energy photons. Two phantoms were used: a Charnley total hip replacement set in gelatine and a Catphan 500. DECT datasets were acquired at 100, 200 and 400 mA (Siemens Definition Flash, 100 and 140 kVp) and reconstructed using a standard combined algorithm (1:1) and then as monoenergetic reconstructions at 10 keV intervals from 40 to 190 keV. Semi-automated segmentation with threshold inpainting was used to obtain the attenuation values and standard deviation (SD) of the streak artefact. High contrast line pair resolution and background noise were assessed using the Catphan 500. Streak artefact is progressively reduced with increasing keV monoenergetic reconstructions. Reconstruction of a 400 mA acquisition at 150 keV results in reduction in the volume of streak artefact from 65 cm{sup 3} to 17 cm{sup 3} (74 %). There was a decrease in the contrast to noise ratio (CNR) at higher tube voltages, with the peak CNR seen at 70-80 keV. High contrast spatial resolution was maintained at high keV values. Monoenergetic reconstruction of dual energy CT at increasing theoretical kilovoltages reduces the streak artefact produced by beam hardening from orthopaedic prostheses, accompanied by a modest increase in heterogeneity of background image attenuation, and decrease in contrast to noise ratio, but no deterioration in high contrast line pair resolution. (orig.)

  7. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stephane; Maldague, Baudouin [Department of Radiology, St. Luc Hospital, UCL, Avenue Hippocrate, 10, 1200 Brussels (Belgium)

    2003-04-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries. (orig.)

  8. Peripheral pulmonary arteries: identification at multi-slice spiral CT with 3D reconstruction.

    Science.gov (United States)

    Coche, Emmanuel; Pawlak, Sebastien; Dechambre, Stéphane; Maldague, Baudouin

    2003-04-01

    Our objective was to analyze the peripheral pulmonary arteries using thin-collimation multi-slice spiral CT. Twenty consecutive patients underwent enhanced-spiral multi-slice CT using 1-mm collimation. Two observers analyzed the pulmonary arteries by consensus on a workstation. Each artery was identified on axial and 3D shaded-surface display reconstruction images. Each subsegmental artery was measured at a mediastinal window setting and compared with anatomical classifications. The location and branching of every subsegmental artery was recorded. The number of well-visualized sub-subsegmental arteries at a mediastinal window setting was compared with those visualized at a lung window setting. Of 800 subsegmental arteries, 769 (96%) were correctly visualized and 123 accessory subsegmental arteries were identified using the mediastinal window setting. One thousand ninety-two of 2019 sub-subsegmental arteries (54%) identified using the lung window setting were correctly visualized using the mediastinal window setting. Enhanced multi-slice spiral CT with thin collimation can be used to analyze precisely the subsegmental pulmonary arteries and may identify even more distal pulmonary arteries.

  9. Reconstruction of IP Beam Parameters at the ILC from Beamstraahlung

    CERN Document Server

    White, Glen

    2005-01-01

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  10. Reconstruction of IP Beam Parameters at the ILC From Beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    White, G.; /SLAC /Queen Mary, U. of London

    2005-07-11

    The luminosity performance of the ILC will be very sensitive to the parameters of the colliding bunches. Only some of these parameters can be measured using planned instrumentation. This analysis aims to access some of the colliding beam parameters not available by other means and to improve on the resolution of those that are. GUINEA-PIG is used to simulate the beam-beam interactions and produce beamstrahlung radiation (e+/e- pairs and photons). These are tracked to a simulation of the low-angle Beam Calorimeter and a photon detector and event shapes are produced. A Taylor map is produced to transform from the event shapes to the simulated beam parameters. This paper reports on the progress of this analysis, examining the usefulness of the proposed fitting technique.

  11. Mapping the nasal airways: using histology to enhance CT-based three-dimensional reconstruction in Nycticebus.

    Science.gov (United States)

    Deleon, Valerie Burke; Smith, Timothy D

    2014-11-01

    Three-dimensional reconstructions of imaging data are an increasingly common approach for studying anatomical structure. However, certain aspects of anatomy, including microscopic structure and differentiating tissue types, continue to benefit from traditional histological analyses. We present here a detailed methodology for combining data from microCT and histological imaging to create 3D virtual reconstructions for visualization and further analyses. We used this approach to study the distribution of olfactory mucosa on ethmoturbinal I of an adult pygmy slow loris, Nycticebus pygmaeus. MicroCT imaging of the specimen was followed by processing, embedding, and sectioning for histological analysis. We identified corresponding features in the CT and histological data, and used these to reconstruct the plane of section in the CT volume. The CT volume was then digitally re-sliced, such that orthogonal sections of the CT image corresponded to histological sections. Histological images were annotated for the features of interest (in this case, the contour of soft tissue on ethmoturbinal I and the extent of olfactory mucosa), and annotations were transferred to binary masks in the CT volume. These masks were combined with density-based surface reconstructions of the skull to create an enhanced 3D virtual reconstruction, in which the bony surfaces are coded for mucosal function. We identified a series of issues that may be raised in this approach, for example, deformation related to histological processing, and we make recommendations for addressing these issues. This method provides an evidence-based approach to 3D visualization and analysis of microscopic features in an anatomic context.

  12. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  13. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  14. Statistical model based iterative reconstruction in myocardial CT perfusion: exploitation of the low dimensionality of the spatial-temporal image matrix

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Chen, Guang-Hong

    2015-03-01

    Time-resolved CT imaging methods play an increasingly important role in clinical practice, particularly, in the diagnosis and treatment of vascular diseases. In a time-resolved CT imaging protocol, it is often necessary to irradiate the patients for an extended period of time. As a result, the cumulative radiation dose in these CT applications is often higher than that of the static CT imaging protocols. Therefore, it is important to develop new means of reducing radiation dose for time-resolved CT imaging. In this paper, we present a novel statistical model based iterative reconstruction method that enables the reconstruction of low noise time-resolved CT images at low radiation exposure levels. Unlike other well known statistical reconstruction methods, this new method primarily exploits the intrinsic low dimensionality of time-resolved CT images to regularize the reconstruction. Numerical simulations were used to validate the proposed method.

  15. Reporducibilities of cephalometric measurements of three-dimensional CT images reconstructed in the personal computer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Kug Jin; Park, Hyok; Lee, Hee Cheol; Kim, Kee Deog; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2003-09-15

    The purpose of this study was to report the reproducibility of intra-observer and inter-observer consistency of cephalometric measurements using three-dimensional (3D) computed tomography (CT), and the degree of difference of the cephalometric measurements. CT images of 16 adult patients with normal class I occlusion were sent to personal computer and reconstructed into 3D images using V-Works 3.5{sup TM} (Cybermed Inc., Seoul, Korea). With the internal program of V-Works 3.5{sup TM}, 12 landmarks on regular cephalograms were transformed into 21 analytic categories and measured by 2 observers and in addition, one of the observers repeated their measurements. Intra-observer difference was calculated using paired t-test, and inter-observer by two sample test. There were significant differences in the intra-observer measurements (p<0.05) in four of the categories which included ANS-Me, ANS-PNS, Cdl-GO (Lt), GoL-GoR, but with the exception of Cdl-Go (Lt), ZmL-ZmR, Zyo-Zyo, the average differences were within 2 mm of each other. The inter-observer observations also showed significant differences in the measurements of the ZmL-ZmR and Zyo-Zyo categories (p<0.05). With the exception of the Cdl-Me (Rt), ZmL-ZmR, Zyo-Zyo categories, the average differences between the two observers were within 2mm, but the ZmL-ZmR and Zyo-Zyo values differed greatly with values of 8.10 and 19.8 mm respectively. In general, 3D CT images showed greater accuracy and reproducibility, with the exception of suture areas such as Zm and Zyo, than regular cephalograms in orthodontic measurement, showing differences of less than 2 mm, therefore 3D CT images can be useful in cephalometric measurements and treatment planning.

  16. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    Science.gov (United States)

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  17. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  18. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.

    Science.gov (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B; Jia, Xun

    2015-05-07

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  19. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Saowapak S. Thongvigitmanee; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  20. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics

    OpenAIRE

    Mota de Almeida, F J; Knutsson, K.; Flygare, Lennart

    2014-01-01

    Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with cu...

  1. Direct aneurysm sac catheterization and embolization of an enlarging internal iliac aneurysm using cone-beam CT

    Science.gov (United States)

    Merchant, Monish; Shah, Rohan; Resnick, Scott

    2015-01-01

    Since cone-beam computed tomography (CT) has been adapted for use with a C-arm system it has brought volumetric CT capabilities in the interventional suite. Although cone-beam CT image resolution is far inferior to that generated by traditional CT scanners, the system offers the ability to place an access needle into position under tomographic guidance and use the access to immediately begin a fluoroscopic procedure without moving the patient. We describe a case of a “jailed” enlarging internal iliac artery aneurysm secondary to abdominal aortic aneurysm repair, in which direct percutaneous puncture of the internal iliac artery aneurysm sac was performed under cone-beam CT guidance. PMID:25858522

  2. 变电压 CT 重建的灰度加权算法%Gray weighted algorithm for variable voltage CT reconstruction

    Institute of Scientific and Technical Information of China (English)

    李权; 陈平; 潘晋孝

    2014-01-01

    In conventional computed tomography (CT) reconstruction based on fixed voltage ,the projective data often ap-pear overexposed or underexposed ,as a result ,the reconstructive results are poor .To solve this problem ,variable voltage CT reconstruction has been proposed .The effective projective sequences of a structural component are obtained through the variable voltage .The total variation is adjusted and minimized to optimize the reconstructive results on the basis of iterative image using algebraic reconstruction technique (ART) .In the process of reconstruction ,the reconstructive image of low voltage is used as an initial value of the effective projective reconstruction of the adjacent high voltage ,and so on until to the highest voltage according to the gray weighted algorithm .Thereby the complete structural information is reconstructed . Simulation results show that the proposed algorithm can completely reflect the information of a complicated structural com -ponent ,and the pixel values are more stable than those of the conventional .%常规固定电压的 CT 重建,因成像系统动态范围受限,投影数据易出现过曝光和欠曝光共存现象,造成信息缺失多,成像质量差,为此提出变电压 CT 重建。通过变电压获得跟工件有效厚度相匹配的有效投影序列,在 ART 迭代图像的基础上,调整全变差使其最小化,从而优化重建。在重建过程中,依据灰度加权,把低电压的重建图像作为初值,应用在相邻高电压有效投影重建中,得到相邻高电压的重建图像,依次类推直至最高电压。至此,工件的全部结构信息重建完毕。仿真结果表明,灰度加权算法不仅实现了变电压图像信息的完整重建,而且像素值更加稳定。

  3. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Boda-Heggemann, Judit; Hesser, Juergen; Lohr, Frank; Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Rossi, Michael; Gros, Uwe [Elekta Ltd, Hamburg (Germany); Knox, Chris; Brown, Kevin [Elekta Ltd, Crawley (United Kingdom); Walter, Cornelia, E-mail: hansjoerg.wertz@umm.d [Department of Radiation Oncology, Marienhospital Stuttgart (Germany)

    2010-08-07

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to {<=}15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90{sup 0} kV- and 90{sup 0} MV-CBCT (180{sup 0} kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180{sup 0} kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm{sup -1} (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of {approx}33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  4. Iterative CT reconstruction on limited angle trajectories applied to robotic inspection

    Science.gov (United States)

    Banjak, H.; Costin, M.; Vienne, C.; Guillamet, R.; Kaftandjian, V.

    2017-02-01

    Robotic inspection is one of the acknowledged new trends in X-ray Non Destructive testing (NDT) since it allows more flexibility in the acquisition trajectory and therefore a valued adaptability to object and environment constraints. In this context, we are developing an advanced Computed Tomography (CT) robotic platform consisting of two robots equipped, with a micro-focus X-ray tube and a flat panel detector, respectively. In parallel to the equipment installation, we propose to address the new challenges brought by this robotic inspection. In particular we focus on 3D iterative reconstruction algorithms that deal with few and limited-angle data. For this purpose, we consider regularized algebraic methods. In particular, we propose two algorithms named SART-FISTA-TV and DART-FISTA-TV. The first one is based on the common used SART [1] algorithm and the second is based on Discrete Algebraic Reconstruction Technique (DART) [2] which is an algebraic algorithm that incorporates prior knowledge about the different materials (attenuation coefficient) of the scanned object into the reconstruction process. The two proposed algorithms use Total Variation (TV) regularization and Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) to increase the convergence speed. For performance evaluation, we illustrate a numerical comparison of these algorithms from both complete (noiseless and noisy) and truncated data generated on a reverse helix of angular range limited to 150 degrees. CIVA [3] software is used to simulate these projection data. We also show reconstruction results using the robotic inspection platform with a view angle limited to 150 degrees and a reduced number of projections.

  5. Hybrid single-beam reconstruction technique for slow and fast varying wave fields.

    Science.gov (United States)

    Falaggis, Konstantinos; Kozacki, Tomasz; Kujawinska, Malgorzata

    2015-06-01

    An iterative single-beam wave field reconstruction technique that employs both non-paraxial, wave propagation based and paraxial deterministic phase retrieval techniques is presented. This approach overcomes two major obstacles that exist in the current state of the art techniques: iterative methods do not reconstruct slowly varying wave fields due to slow convergence and stagnation, and deterministic methods have paraxial limits, making the reconstructions of quickly varying object features impossible. In this work, a hybrid approach is reported that uses paraxial wave field corrections within iterative phase retrieval solvers. This technique is suitable for cases ranging from slow to fast varying wave fields, and unlike the currently available methods, can also reconstruct measurement objects with different regions of both slowly and quickly varying object features. It is further shown that this technique gives a higher accuracy than current single-beam phase retrieval techniques, and in comparison to the iterative methods, has a higher convergence speed.

  6. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  7. Contrast adaptive total p-norm variation minimization approach to CT reconstruction for artifact reduction in reduced-view brain perfusion CT

    Science.gov (United States)

    Kim, Chang-Won; Kim, Jong-Hyo

    2011-03-01

    Perfusion CT (PCT) examinations are getting more frequently used for diagnosis of acute brain diseases such as hemorrhage and infarction, because the functional map images it produces such as regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV), and mean transit time (MTT) may provide critical information in the emergency work-up of patient care. However, a typical PCT scans the same slices several tens of times after injection of contrast agent, which leads to much increased radiation dose and is inevitability of growing concern for radiation-induced cancer risk. Reducing the number of views in projection in combination of TV minimization reconstruction technique is being regarded as an option for radiation reduction. However, reconstruction artifacts due to insufficient number of X-ray projections become problematic especially when high contrast enhancement signals are present or patient's motion occurred. In this study, we present a novel reconstruction technique using contrast-adaptive TpV minimization that can reduce reconstruction artifacts effectively by using different p-norms in high contrast and low contrast objects. In the proposed method, high contrast components are first reconstructed using thresholded projection data and low p-norm total variation to reflect sparseness in both projection and reconstruction spaces. Next, projection data are modified to contain only low contrast objects by creating projection data of reconstructed high contrast components and subtracting them from original projection data. Then, the low contrast projection data are reconstructed by using relatively high p-norm TV minimization technique, and are combined with the reconstructed high contrast component images to produce final reconstructed images. The proposed algorithm was applied to numerical phantom and a clinical data set of brain PCT exam, and the resultant images were compared with those using filtered back projection (FBP) and conventional TV

  8. Design and characterization of a dedicated cone-beam CT scanner for detection of acute intracranial hemorrhage

    Science.gov (United States)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Prompt and reliable detection of intracranial hemorrhage (ICH) has substantial clinical impact in diagnosis and treatment of stroke and traumatic brain injury. This paper describes the design, development, and preliminary performance characterization of a dedicated cone-beam CT (CBCT) head scanner prototype for imaging of acute ICH. Methods: A task-based image quality model was used to analyze the detectability index as a function of system configuration, and hardware design was guided by the results of this model-based optimization. A robust artifact correction pipeline was developed using GPU-accelerated Monte Carlo (MC) scatter simulation, beam hardening corrections, detector veiling glare, and lag deconvolution. An iterative penalized weighted least-squares (PWLS) reconstruction framework with weights adjusted for artifact-corrected projections was developed. Various bowtie filters were investigated for potential dose and image quality benefits, with a MC-based tool providing estimates of spatial dose distribution. Results: The initial prototype will feature a source-detector distance of 1000 mm and source-axis distance of 550 mm, a 43x43 cm2 flat panel detector, and a 15° rotating anode x-ray source with 15 kW power and 0.6 focal spot size. Artifact correction reduced image nonuniformity by ~250 HU, and PWLS reconstruction with modified weights improved the contrast to noise ratio by 20%. Inclusion of a bowtie filter can potentially reduce dose by 50% and improve CNR by 25%. Conclusions: A dedicated CBCT system capable of imaging millimeter-scale acute ICH was designed. Preliminary findings support feasibility of point-of-care applications in TBI and stroke imaging, with clinical studies beginning on a prototype.

  9. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  10. Absolute calibration and beam reconstruction of MITO (a ground-based instrument in the millimetric region)

    CERN Document Server

    Savini, G; Battistelli, E S; De Petris, M; Lamagna, L; Luzzi, G; Palladino, E

    2003-01-01

    An efficient sky data reconstruction derives from a precise characterization of the observing instrument. Here we describe the reconstruction of performances of a single-pixel 4-band photometer installed at MITO (Millimeter and Infrared Testagrigia Observatory) focal plane. The strategy of differential sky observations at millimeter wavelengths, by scanning the field of view at constant elevation wobbling the subreflector, induces a good knowledge of beam profile and beam-throw amplitude, allowing efficient data recovery. The problems that arise estimating the detectors throughput by drift scanning on planets are shown. Atmospheric transmission, monitored by skydip technique, is considered for deriving final responsivities for the 4 channels using planets as primary calibrators.

  11. Evaluation of hybrid SART  +  OS  +  TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging

    Science.gov (United States)

    Du, Yi; Wang, Xiangang; Xiang, Xincheng; Wei, Zhouping

    2016-12-01

    Optical computed tomography (optical-CT) is a high-resolution, fast, and easily accessible readout modality for gel dosimeters. This paper evaluates a hybrid iterative image reconstruction algorithm for optical-CT gel dosimeter imaging, namely, the simultaneous algebraic reconstruction technique (SART) integrated with ordered subsets (OS) iteration and total variation (TV) minimization regularization. The mathematical theory and implementation workflow of the algorithm are detailed. Experiments on two different optical-CT scanners were performed for cross-platform validation. For algorithm evaluation, the iterative convergence is first shown, and peak-to-noise-ratio (PNR) and contrast-to-noise ratio (CNR) results are given with the cone-beam filtered backprojection (FDK) algorithm and the FDK results followed by median filtering (mFDK) as reference. The effect on spatial gradients and reconstruction artefacts is also investigated. The PNR curve illustrates that the results of SART  +  OS  +  TV finally converges to that of FDK but with less noise, which implies that the dose-OD calibration method for FDK is also applicable to the proposed algorithm. The CNR in selected regions-of-interest (ROIs) of SART  +  OS  +  TV results is almost double that of FDK and 50% higher than that of mFDK. The artefacts in SART  +  OS  +  TV results are still visible, but have been much suppressed with little spatial gradient loss. Based on the assessment, we can conclude that this hybrid SART  +  OS  +  TV algorithm outperforms both FDK and mFDK in denoising, preserving spatial dose gradients and reducing artefacts, and its effectiveness and efficiency are platform independent.

  12. Reduction in radiation dose with reconstruction technique in the brain perfusion CT

    Science.gov (United States)

    Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.

    2011-12-01

    The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.

  13. Cone beam x-ray luminescence computed tomography reconstruction with a priori anatomical information

    Science.gov (United States)

    Lo, Pei-An; Lin, Meng-Lung; Jin, Shih-Chun; Chen, Jyh-Cheng; Lin, Syue-Liang; Chang, C. Allen; Chiang, Huihua Kenny

    2014-09-01

    X-ray luminescence computed tomography (XLCT) is a novel molecular imaging modality that reconstructs the optical distribution of x-ray-excited phosphor particles with prior informational of anatomical CT image. The prior information improves the accuracy of image reconstruction. The system can also present anatomical CT image. The optical system based on a high sensitive charge coupled device (CCD) is perpendicular with a CT system. In the XLCT system, the xray was adopted to excite the phosphor of the sample and CCD camera was utilized to acquire luminescence emitted from the sample in 360 degrees projection free-space. In this study, the fluorescence diffuse optical tomography (FDOT)-like algorithm was used for image reconstruction, the structural prior information was incorporated in the reconstruction by adding a penalty term to the minimization function. The phosphor used in this study is Gd2O2S:Tb. For the simulation and experiments, the data was collected from 16 projections. The cylinder phantom was 40 mm in diameter and contains 8 mm diameter inclusion; the phosphor in the in vivo study was 5 mm in diameter at a depth of 3 mm. Both the errors were no more than 5%. Based on the results from these simulation and experimental studies, the novel XLCT method has demonstrated the feasibility for in vivo animal model studies.

  14. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    Science.gov (United States)

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  15. The diagnostic value of the sagittal multiplanar reconstruction CT images for nasal bone fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.H. [Department of Radiology, Korea University Ansan Hospital, 516 Gojan1-dong, Danwon-gu, Ansan-si, Gyunggi-do, 425-707 (Korea, Republic of); Seo, H.S., E-mail: seohs@korea.ac.k [Department of Radiology, Korea University Ansan Hospital, 516 Gojan1-dong, Danwon-gu, Ansan-si, Gyunggi-do, 425-707 (Korea, Republic of); Kim, A.-Y.; Lee, Y.S. [Department of Radiology, Dongguk University International Hospital, Gyunggi-do (Korea, Republic of); Lee, Y.H. [Department of Radiology, Korea University Ansan Hospital, 516 Gojan1-dong, Danwon-gu, Ansan-si, Gyunggi-do, 425-707 (Korea, Republic of); Suh, S.-I. [Department of Diagnostic Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, D.H. [Department of Radiology, Seoul Medical Center, Seoul (Korea, Republic of)

    2010-04-15

    Aim: To compare the diagnostic performance of sagittal multiplanar reconstruction (MPR) images and axial images for the detection of a nasal bone fracture. Materials and methods: This prospective study included 533 consecutive patients who underwent three-dimensional images with 64-section multidetector-row CT for the evaluation of a facial bone fracture between June 2007 and May 2008 (366 males; 167 females; mean age +- standard deviation 31.1 +- 21.2 years; age range 1-92 years). Two observers independently scored the possibility of a nasal bone fracture on axial and sagittal images. Receiver operating characteristic (ROC) curve analysis was performed. Results: The Az values of the sagittal images were higher than those of the axial images for both observers (p = 0.002 and 0.010, respectively) with higher accuracy (p < 0.001 and 0.016, respectively). The sensitivities of sagittal images were superior to those of axial images, especially for type 1 simple nasal bone fractures with no or minimal displacement (observer 1, 98.6 versus 72.8%; observer 2, 84.9 versus 71%). Conclusion: Sagittal MPR facial bone CT images provided superior diagnostic performance, and their addition to axial images is useful for the evaluation of nasal bone fractures.

  16. 宽排CT探测器CT剂量指数应用初探%Discussion on CT dose index for wide beam CT scanner

    Institute of Scientific and Technical Information of China (English)

    刘彬; 白玫

    2013-01-01

    Objective: With the increasing of beam width of CT scanner, traditional CT dose index (CTDI) encountered difficulties when expressing dosimetry for wide beam CT scanner. This article discussed the evolution and application of CTDI for wide beam CT scanners. Method: This article demonstrated principles of traditional CTDI and the limitation of it as a dosimetry for wide beam CT scanners, and introduced the evolution of CTDI for wide beam CT scanners and their principles and measurements. Results: IEC amended traditional CTDI and recommended a tiered approach to the definition of CTDI to be more adaptive for wide beam CT scanners. And with the approach of several time measurements at different locations, 150mm long PMMA phantom and 100mm long ion chamber could still be used for the measurements of new tiered CTDI. Conclusion: New tiered CTDI provided a more accurate dosimetry for wide beam CT scanners with a reservation of basic concept and measurement conditions of traditional CTDI.%目的:随着射线宽度的不断增加,传统CT剂量指数(CTDI)在表征CT剂量时遇到瓶颈问题,不能够很好地表征宽排CT探测器的剂量水平.本文探讨CTDI在CT宽排探测器剂量表征量方面的概念演化和应用方式.方法:介绍传统CTDI表征CT剂量的原理和方式,展示传统CTDI在表征宽排CT探测器时的局限性,阐述宽排CT探测器CTDI剂量表征量方式的演变过程,初步探讨宽排CTDI探测器CTDI表征和测量.结果:IEC在对传统CTDI进行修正的基础上推出分层次CTDI表征的方式,能更好适应宽排CT探测器的剂量表征.通过多点分次测量,新定义的分层次CTDI仍然可采用传统的150mm有机玻璃CT剂量体模和100mm电离室进行测量.结论:分层次CTDI表征方式能在保留传统CTDI基本概念和常规测试条件的基础上较好地表征宽排CT探测器的剂量水平.

  17. Clinical use of cone beam CT in impacted maxillary tooth extraction and artifistulation%锥形束CT定位埋伏牙的临床应用

    Institute of Scientific and Technical Information of China (English)

    董辉; 冯春丽; 孙蕾; 祁森荣; 夏登胜

    2011-01-01

    目的 探讨锥形束CT影像和三维重建技术在辅助埋伏牙拔除和正畸开窗牙牵引术中的作用.方法 选择53颗常规曲面断层片难以确定埋伏牙空间位置的患者进行锥形束CT扫描,其中对5例复杂埋伏牙的CT图像进行三维重建.45例埋伏牙依据CT图像选择不同手术入路行拔牙术,8例埋伏牙采用颌骨开窗牵引术.结果 螺旋CT影像对正确选择埋伏牙拔除的手术入路具有良好的指导作用;CT三维重建图像能清楚地显示埋伏牙的牙体形态、唇腭向位置以及和邻牙的关系,正确指导手术开窗牵引的入路和开窗牵引装置的固定.结论 锥形束CT和三维重建技术在显示埋伏牙的位置和牙体形态上明显优于传统的曲面断层和根尖片.%Objective To evaluate the value of cone beam CT and three-dimensional reconstruction in impacted maxillary tooth extraction and artifistulation. Methods Fifty-three patients with impacted maxillary teeth were included and examined by cone beam CT, and 3D reconstruction was conducted in five of them . Results The cone beam CT images clearly denmonstrated the location of the teeth and provided help in the impacted tooth extraction. The threedimensional reconstruction technique guided and simplified the procedure of artifistulation. Conclusion Cone beam CT has more advantages in assistance of impacted tooth extraction and artifistulation in orthodontics compared with traditional panoramic radiography.

  18. The impact of CT radiation dose reduction and iterative reconstruction algorithms from four different vendors on coronary calcium scoring

    NARCIS (Netherlands)

    Willemink, M.J.; Takx, R.A.P.; Jong, P.A. de; Budde, R.P.; Bleys, R.L.; Das, M.; Wildberger, J.E.; Prokop, M.; Buls, N.; Mey, J. de; Schilham, A.M.; Leiner, T.

    2014-01-01

    o analyse the effects of radiation dose reduction and iterative reconstruction (IR) algorithms on coronary calcium scoring (CCS).Fifteen ex vivo human hearts were examined in an anthropomorphic chest phantom using computed tomography (CT) systems from four vendors and examined at four dose levels us

  19. Influence of dose reduction and iterative reconstruction on CT calcium scores : a multi-manufacturer dynamic phantom study

    NARCIS (Netherlands)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    2017-01-01

    To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s correspond

  20. Cardiac CT for planning redo cardiac surgery: effect of knowledge-based iterative model reconstruction on image quality

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro [MedStar Washington Hospital Center, Department of Cardiology, Washington, DC (United States); Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Weissman, Gaby; Weigold, W. Guy [MedStar Washington Hospital Center, Department of Cardiology, Washington, DC (United States); Vembar, Mani [Philips Healthcare, CT Clinical Science, Cleveland, OH (United States)

    2015-01-15

    The purpose of this study was to investigate the effects of knowledge-based iterative model reconstruction (IMR) on image quality in cardiac CT performed for the planning of redo cardiac surgery by comparing IMR images with images reconstructed with filtered back-projection (FBP) and hybrid iterative reconstruction (HIR). We studied 31 patients (23 men, 8 women; mean age 65.1 ± 16.5 years) referred for redo cardiac surgery who underwent cardiac CT. Paired image sets were created using three types of reconstruction: FBP, HIR, and IMR. Quantitative parameters including CT attenuation, image noise, and contrast-to-noise ratio (CNR) of each cardiovascular structure were calculated. The visual image quality - graininess, streak artefact, margin sharpness of each cardiovascular structure, and overall image quality - was scored on a five-point scale. The mean image noise of FBP, HIR, and IMR images was 58.3 ± 26.7, 36.0 ± 12.5, and 14.2 ± 5.5 HU, respectively; there were significant differences in all comparison combinations among the three methods. The CNR of IMR images was better than that of FBP and HIR images in all evaluated structures. The visual scores were significantly higher for IMR than for the other images in all evaluated parameters. IMR can provide significantly improved qualitative and quantitative image quality at in cardiac CT for planning of reoperative cardiac surgery. (orig.)

  1. CT angiography after carotid artery stenting: assessment of the utility of adaptive statistical iterative reconstruction and model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kuya, Keita; Shinohara, Yuki; Fujii, Shinya; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological Therapeutic Science, Faculty of Medicine, Yonago (Japan); Sakamoto, Makoto; Watanabe, Takashi [Tottori University, Division of Neurosurgery, Department of Brain and Neurosciences, Faculty of Medicine, Yonago (Japan); Iwata, Naoki; Kishimoto, Junichi [Tottori University, Division of Clinical Radiology Faculty of Medicine, Yonago (Japan); Kaminou, Toshio [Osaka Minami Medical Center, Department of Radiology, Osaka (Japan)

    2014-11-15

    Follow-up CT angiography (CTA) is routinely performed for post-procedure management after carotid artery stenting (CAS). However, the stent lumen tends to be underestimated because of stent artifacts on CTA reconstructed with the filtered back projection (FBP) technique. We assessed the utility of new iterative reconstruction techniques, such as adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR), for CTA after CAS in comparison with FBP. In a phantom study, we evaluated the differences among the three reconstruction techniques with regard to the relationship between the stent luminal diameter and the degree of underestimation of stent luminal diameter. In a clinical study, 34 patients who underwent follow-up CTA after CAS were included. We compared the stent luminal diameters among FBP, ASIR, and MBIR, and performed visual assessment of low attenuation area (LAA) in the stent lumen using a three-point scale. In the phantom study, stent luminal diameter was increasingly underestimated as luminal diameter became smaller in all CTA images. Stent luminal diameter was larger with MBIR than with the other reconstruction techniques. Similarly, in the clinical study, stent luminal diameter was larger with MBIR than with the other reconstruction techniques. LAA detectability scores of MBIR were greater than or equal to those of FBP and ASIR in all cases. MBIR improved the accuracy of assessment of stent luminal diameter and LAA detectability in the stent lumen when compared with FBP and ASIR. We conclude that MBIR is a useful reconstruction technique for CTA after CAS. (orig.)

  2. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    Source identification in an enclosure is not an easy task due to complicated wave interference and wall reflections, in particular, at mid-high frequencies. In this study, a phased beam tracing method was applied to the reconstruction of source pressures inside an enclosure at medium frequencies......-directional sphere and a cubic source in a rectangular enclosure were taken as examples in the simulation tests. A reconstruction error was investigated by Monte Carlo simulation in terms of field point locations. When the source information was reconstructed by the present method, it was shown that the sound power...

  3. Axial 3D region of interest reconstruction using weighted cone beam BPF/DBPF algorithm cascaded with adequately oriented orthogonal butterfly filtering

    Science.gov (United States)

    Tang, Shaojie; Tang, Xiangyang

    2016-03-01

    Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).

  4. Whole-organ CT perfusion of the pancreas: impact of iterative reconstruction on image quality, perfusion parameters and radiation dose in 256-slice CT-preliminary findings.

    Directory of Open Access Journals (Sweden)

    Qian Xie

    Full Text Available BACKGROUND: This study was performed to assess whether iterative reconstruction can reduce radiation dose while maintaining acceptable image quality, and to investigate whether perfusion parameters vary from conventional filtered back projection (FBP at the low-tube-voltage (80-kVp during whole-pancreas perfusion examination using a 256-slice CT. METHODS: 76 patients with known or suspected pancreatic mass underwent whole-pancreas perfusion by a 256-slice CT. High- and low-tube-voltage CT images were acquired. 120-kVp image data (protocol A and 80-kVp image data (protocol B were reconstructed with conventional FBP, and 80-kVp image data were reconstructed with iDose(4 (protocol C iterative reconstruction. The image noise; contrast-to-noise ratio (CNR relative to muscle for the pancreas, liver, and aorta; and radiation dose of each protocol were assessed quantitatively. Overall image quality was assessed qualitatively. Among 76 patients, 23 were eventually proven to have a normal pancreas. Perfusion parameters of normal pancreas in each protocol including blood volume, blood flow, and permeability-surface area product were measured. RESULTS: In the quantitative study, protocol C reduced image noise by 36.8% compared to protocol B (P<0.001. Protocol C yielded significantly higher CNR relative to muscle for the aorta, pancreas and liver compared to protocol B (P<0.001, and offered no significant difference compared to protocol A. In the qualitative study, protocols C and A gained similar scores and protocol B gained the lowest score for overall image quality (P<0.001. Mean effective doses were 23.37 mSv for protocol A and 10.81 mSv for protocols B and C. There were no significant differences in the normal pancreas perfusion values among three different protocols. CONCLUSION: Low-tube-voltage and iDose(4 iterative reconstruction can dramatically decrease the radiation dose with acceptable image quality during whole-pancreas CT perfusion and have no

  5. Modified convolution method to reconstruct particle hologram with an elliptical Gaussian beam illumination.

    Science.gov (United States)

    Wu, Xuecheng; Wu, Yingchun; Yang, Jing; Wang, Zhihua; Zhou, Binwu; Gréhan, Gérard; Cen, Kefa

    2013-05-20

    Application of the modified convolution method to reconstruct digital inline holography of particle illuminated by an elliptical Gaussian beam is investigated. Based on the analysis on the formation of particle hologram using the Collins formula, the convolution method is modified to compensate the astigmatism by adding two scaling factors. Both simulated and experimental holograms of transparent droplets and opaque particles are used to test the algorithm, and the reconstructed images are compared with that using FRFT reconstruction. Results show that the modified convolution method can accurately reconstruct the particle image. This method has an advantage that the reconstructed images in different depth positions have the same size and resolution with the hologram. This work shows that digital inline holography has great potential in particle diagnostics in curvature containers.

  6. Coronary stent on coronary CT angiography: Assessment with model-based iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chae; Kim, Yeo Koon; Chun, Eun Ju; Choi, Sang IL [Dept. of of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-05-15

    To assess the performance of model-based iterative reconstruction (MBIR) technique for evaluation of coronary artery stents on coronary CT angiography (CCTA). Twenty-two patients with coronary stent implantation who underwent CCTA were retrospectively enrolled for comparison of image quality between filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR) and MBIR. In each data set, image noise was measured as the standard deviation of the measured attenuation units within circular regions of interest in the ascending aorta (AA) and left main coronary artery (LM). To objectively assess the noise and blooming artifacts in coronary stent, we additionally measured the standard deviation of the measured attenuation and intra-luminal stent diameters of total 35 stents with dedicated software. All image noise measured in the AA (all p < 0.001), LM (p < 0.001, p = 0.001) and coronary stent (all p < 0.001) were significantly lower with MBIR in comparison to those with FBP or ASIR. Intraluminal stent diameter was significantly higher with MBIR, as compared with ASIR or FBP (p < 0.001, p = 0.001). MBIR can reduce image noise and blooming artifact from the stent, leading to better in-stent assessment in patients with coronary artery stent.

  7. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    Directory of Open Access Journals (Sweden)

    Qingsong Yang

    Full Text Available The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV. The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved.

  8. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    Science.gov (United States)

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved.

  9. Tomographic reconstruction of the beam emissivity profile in the negative ion source NIO1

    Science.gov (United States)

    Fonnesu, N.; Agostini, M.; Pasqualotto, R.; Serianni, G.; Veltri, P.

    2016-12-01

    A versatile negative hydrogen ion source named NIO1 of a moderate size (130 mA total extracted H- current, 9 apertures, 60 kV total acceleration) has been developed and installed at Consorzio RFX. It will allow great experimental flexibility, very beneficial for studying several important issues related to beam extraction, optics and performance optimization, in view of SPIDER and MITICA, the two full-scale experiments for the ITER neutral beam injector under construction at RFX. The main target of emission tomography applied to an ion beam is the reconstruction of the emissivity profile, from which the ion density distribution can be obtained. The measurement of the beam density profile and of its uniformity throughout the pulse duration with a non-invasive diagnostic, such as tomography, would represent an effective method for monitoring the ion source operation and for malfunction detection. The application of this diagnostic to the NIO1 beam will represent the experimental verification of the possibility to reconstruct a multi-beamlet profile, in the interest of the next tomography systems for SPIDER and MITICA. In this paper, a feasibility study of the tomographic diagnostic for NIO1 is presented. A tomography code based on algebraic reconstruction techniques has been developed for this purpose and the transport of the nine H- beamlets is simulated with a Monte Carlo particle tracking code from the ion source to the tomography plane, where the beam emissivity profile to be reconstructed is calculated. The reference emissivity profile is reconstructed by the tomography code considering different possible layouts of the detection system, in order to find the best compromise between the quality of reconstructions and the complexity of the diagnostic. Results show that a tomography system based on six linear CCD cameras should be capable of reconstructing the NIO1 emissivity profile with an rms error lower than 10%. How instrumental noise in the integrated

  10. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  11. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-H [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec.1, Jianguo N.Rd, Taichung City 40201, Taiwan (China); Liang, C-H [Agfa Healthcare Systems Taiwan Co., Ltd., 6F, 237 Sung Chiang Road, Taipei, 104 Taiwan (China); Wu, J-K [Division of Radiation Oncology, Department of Oncology, and Cancer Research Center, National Taiwan University Hospital, No.7 Chung San South Road, Taipei, 104 Taiwan (China); Lien, C-Y [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Yang, B-H; Lee, J J S [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Huang, Y-H [Department of Medical Imaing and Radiological Sciences, I-Shou University, No. 8, Yida Rd., Yanchao Township, Kaohsiung County 82445, Taiwan (China)], E-mail: jslee@ym.edu.tw

    2009-07-15

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT

  12. Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Sidky, Emil Y.; Pan, Xiaochuan

    2011-01-01

    , shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important diagnostic image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction......, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task....... This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic breast phantom with microcalcifications we investigate the issue of ensuring sufficiently converged solution for reliable reconstruction. Our results show that it can...

  13. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gordic, Sonja; Husarik, Daniela B.; Alkadhi, Hatem [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Desbiolles, Lotus; Leschka, Sebastian [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Sedlmair, Martin; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Manka, Robert [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Hospital Zurich, University of Zurich, Clinic of Cardiology, Zurich (Switzerland); University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Plass, Andre; Maisano, Francesco [University Hospital Zurich, University of Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland); Wildermuth, Simon [Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland)

    2016-02-15

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84 %, 21/25) as preferred data set; at this level noise reduction was 40 % compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. (orig.)

  14. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP, and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV, muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR was calculated. RESULT: In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP. CONCLUSION: Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.

  15. Experimental realization of fluence field modulated CT using digital beam attenuation

    Science.gov (United States)

    Szczykutowicz, T. P.; Mistretta, C. A.

    2014-03-01

    Tailoring CT scan acquisition parameters to individual patients is a topic of much research in the CT imaging community. It is now common place to find automatically adjusted tube current options for modern CT scanners. In addition, the use of beam shaping filters, commonly called bowtie filters, is available on most CT systems and allows for different body regions to receive different incident x-ray fluence distributions. However, no method currently exists which allows for the form of the incident x-ray fluence distribution to change as a function of the view angle. This study represents the first experimental realization of fluence field modulated CT (FFMCT) for a c-arm geometry CT scan. X-ray fluence modulation is accomplished using a digital beam attenuator (DBA). The device is composed of ten iron wedge pairs that modulate the thickness of iron, the x-rays must traverse before reaching a patient. Using this device, experimental data was taken using a Siemens Zeego c-arm scanner. Scans were performed on a cylindrical polyethylene phantom and on two different sections of an anthropomorphic phantom. The DBA was used to equalize the x-ray fluence striking the detector for each scan. Non DBA, or ‘flat field’ scans were also acquired of the same phantom objects for comparison. In addition, a scan was performed in which the DBA was used to enable volume of interest (VOI) imaging. In VOI, only a small sub-volume within a patient receives full dose and the rest of the patient receives a much lower dose. Data corrections unique to using a piece-wise constant modulator were also developed. The feasibility of FFMCT implemented using a DBA device has been demonstrated. Initial results suggest dose reductions of up to 3.6 times relative to ‘flat field’ CT. In addition to dose reduction, the DBA enables a large improvement in image noise uniformity and the ability to provide regionally enhanced signal to noise using VOI imaging techniques. The results presented in

  16. Computed tomography from photon statistics to modern cone-beam CT

    CERN Document Server

    Buzug, T M

    2008-01-01

    Tis book provides an overview of X-ray technology, the historic developmental milestones of modern CT systems, and gives a comprehensive insight into the main reconstruction methods used in computed tomography. Te basis of reconstr- tion is, undoubtedly, mathematics. However, the beauty of computed tomography cannot be understood without a detailed knowledge of X-ray generation, photon- matter interaction, X-ray detection, photon statistics, as well as fundamental signal processing concepts and dedicated measurement systems. Terefore, the reader will ?nd a number of references to these basic d

  17. Painful knee joint after ACL reconstruction using biodegradable interference screws- SPECT/CT a valuable diagnostic tool? A case report

    Directory of Open Access Journals (Sweden)

    Hirschmann Michael T

    2010-09-01

    Full Text Available Abstract With the presented case we strive to introduce combined single photon emission computerized tomography and conventional computer tomography (SPECT/CT as new diagnostic imaging modality and illustrate the possible clinical value in patients after ACL reconstruction. We report the case of a painful knee due to a foreign body reaction and delayed degradation of the biodegradable interference screws after ACL reconstruction. The MRI showed an intact ACL graft, a possible tibial cyclops lesion and a patella infera. There was no increased fluid collection within the bone tunnels. The 99mTc-HDP-SPECT/CT clearly identified a highly increased tracer uptake around and within the tibial and femoral tunnels and the patellofemoral joint. On 3D-CT out of the SPECT/CT data the femoral graft attachment was shallow (50% along the Blumensaat's line and high in the notch. At revision arthroscopy a diffuse hypertrophy of the synovium, scarring of the Hoffa fat pad and a cyclops lesion of the former ACL graft was found. The interference screws were partially degraded and under palpation and pressure a grey fluid-like substance drained into the joint. The interference screws and the ACL graft were removed and an arthrolysis performed. In the case presented it was most likely a combination of improper graft placement, delayed degradation of the interference screws and unknown biological factors. The too shallow and high ACL graft placement might have led to roof impingement, chronic intraarticular inflammation and hence the delayed degradation of the screws. SPECT/CT has facilitated the establishment of diagnosis, process of decision making and further treatment in patients with knee pain after ACL reconstruction. From the combination of structural (tunnel position in 3D-CT and metabolic information (tracer uptake in SPECT/CT the patient's cause of the pain was established.

  18. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    Science.gov (United States)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  19. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    Science.gov (United States)

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  20. Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC

    CERN Document Server

    Deile, Mario; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Salvant, Benoit; Valentino, Gianluca

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the lu...

  1. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, K [Cleveland State University, Cleveland, OH (United States); Godley, A [Cleveland Clinic, Cleveland, OH (United States)

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  2. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT

    Energy Technology Data Exchange (ETDEWEB)

    Fieselmann, Andreas; Hornegger, Joachim [Department of Computer Science, Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen (Germany); Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan [Siemens AG, Healthcare Sector, Angiography and Interventional X-Ray Systems, Siemensstr. 1, 91301 Forchheim (Germany); Fahrig, Rebecca, E-mail: andreas.fieselmann@informatik.uni-erlangen.de [Department of Radiology, Lucas MRS Center, Stanford University, 1201 Welch Road, Palo Alto, CA 94305 (United States)

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  3. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT

    Science.gov (United States)

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-01

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  4. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  5. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London, London (United Kingdom); Massachusetts General Hospital, Boston, MA (United States); Sharp, G; Testa, M; Lu, H-M [Massachusetts General Hospital, Boston, MA (United States); Bentefour, E [Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Royle, G [University College London, London (United Kingdom)

    2014-06-15

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences

  6. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  7. Overview of multisource CT systems and methods

    Science.gov (United States)

    Zhao, Jun; Lu, Yang; Zhuang, Tiange; Wang, Ge

    2010-09-01

    Multiple-source cone-beam scanning is a promising mode for dynamic volumetric CT/micro-CT. The first dynamic CT system is the Dynamic Spatial Reconstructor (DSR) built in 1979. The pursuance for higher temporal resolution has largely driven the development of CT technology, and recently led to the emergence of Siemens dual-source CT scanner. Given the impact and limitation of dual-source cardiac CT, triple-source cone-beam CT seems a natural extension for future cardiac CT. Our work shows that trinity (triple-source architecture) is superior to duality (dual-source architecture) for helical cone-beam CT in terms of exact reconstruction. In particular, a triple-source helical scan allows a perfect mosaic of longitudinally truncated cone-beam data to satisfy the Orlov condition and yields better noise performance than the dual-source counterpart. In the (2N+1)-source helical CT case, the more sources, the higher temporal resolution. In the N-source saddle CT case, a triple-source scan offers the best temporal resolution for continuous dynamic exact reconstruction of a central volume. The recently developed multi-source cone-beam algorithms include an exact backprojection-filtration (BPF) approach and a "slow" exact filtered-backprojection (FBP) algorithm for (2N+1)-source helical CT, two fast quasi-exact FBP algorithms for triple-source helical CT, as well as a fast exact FBP algorithm for triple-source saddle CT. Some latest ideas will be also discussed, such as multi-source interior tomography and multi-beam field-emission x-ray CT.

  8. A three-dimensional reconstruction of the temporal bone by the helical scanning CT and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Yonekawa, Hiroyuki; Ohashi, Masami; Miyashita, Souji; Gotoh, Mizuho; Nemoto, Satohiko; Kikuchi, Hideki (Azabu Triology Hospital, Sapporo (Japan)); Sakai, Noboru; Inuyama, Yukio

    1993-09-01

    The current availability of 3 dimensional (3-D) imaging from Computed Tomography (CT) has yielded new anatomical information and pre- and postoperative evaluations. However, little discussion as to the 3-D structural image of the temporal bone has been reported because conventional CT does provide sufficient data to produce such images. The helical scanning CT gathers continuous and multiple slice image data since it consists of an X-ray tube that continuously rotates around the patient while the patient moves continuously into the CT scanner. Thus, application of the helical scanning CT has made it possible to reconstruct 3-D images of the minute and complicated structure of the temporal bone. We evaluated 3-D images from 9 typical cases, examined from February to October 1992. As a result, we found that the 3-D images reconstructed with this system are useful for evaluation of the postoperative state of tympanoplasty, the diagnosis of anomalies of the bony labyrinth, and examining the extent of bone destruction induced by trauma, cholesteatoma, etc. (author).

  9. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  10. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Science.gov (United States)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  11. Influence of dose reduction and iterative reconstruction on CT calcium scores: a multi-manufacturer dynamic phantom study.

    Science.gov (United States)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    2017-01-19

    To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s corresponding to heart rates between 60 and 75 bpm. The inserts were scanned five times with routinely used CCS protocols at reference dose and 40 and 80% dose reduction on four high-end CT systems. Filtered back projection (FBP) and increasing levels of IR were applied. Noise levels were determined. CCS, quantified as Agatston and mass scores, were compared to physical mass and scores at FBP reference dose. For the reference dose in combination with FBP, noise level variation between CT systems was less than 18%. Decreasing dose almost always resulted in increased CCS, while at increased levels of IR, CCS decreased again. The influence of IR on CCS was smaller than the influence of dose reduction. At reference dose, physical mass was underestimated 3-30%. All CT systems showed similar CCS at 40% dose reduction in combinations with specific reconstructions. For some CT systems CCS was not affected at 80% dose reduction, in combination with IR. This multivendor study showed that radiation dose reductions of 40% did not influence CCS in a dynamic phantom using state-of-the-art CT systems in combination with specific reconstruction settings. Dose reduction resulted in increased noise and consequently increased CCS, whereas increased IR resulted in decreased CCS.

  12. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Haesung; Kim, Myung-Joon; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung [Yonsei University College of Medicine, Department of Radiology and Research Institute of Radiological Science, Severance Children' s Hospital, Seoul (Korea, Republic of); Yoon, Choon-Sik [Yonsei University College of Medicine, Department of Radiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Choi, Jiin [Yonsei University College of Medicine, Biostatistics Collaboration Unit, Seoul (Korea, Republic of)

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique. (orig.)

  13. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  14. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR)

    Science.gov (United States)

    Wang, Tonghe; Zhu, Lei

    2016-09-01

    Conventional dual-energy CT (DECT) reconstruction requires two full-size projection datasets with two different energy spectra. In this study, we propose an iterative algorithm to enable a new data acquisition scheme which requires one full scan and a second sparse-view scan for potential reduction in imaging dose and engineering cost of DECT. A bilateral filter is calculated as a similarity matrix from the first full-scan CT image to quantify the similarity between any two pixels, which is assumed unchanged on a second CT image since DECT scans are performed on the same object. The second CT image from reduced projections is reconstructed by an iterative algorithm which updates the image by minimizing the total variation of the difference between the image and its filtered image by the similarity matrix under data fidelity constraint. As the redundant structural information of the two CT images is contained in the similarity matrix for CT reconstruction, we refer to the algorithm as structure preserving iterative reconstruction (SPIR). The proposed method is evaluated on both digital and physical phantoms, and is compared with the filtered-backprojection (FBP) method, the conventional total-variation-regularization-based algorithm (TVR) and prior-image-constrained-compressed-sensing (PICCS). SPIR with a second 10-view scan reduces the image noise STD by a factor of one order of magnitude with same spatial resolution as full-view FBP image. SPIR substantially improves over TVR on the reconstruction accuracy of a 10-view scan by decreasing the reconstruction error from 6.18% to 1.33%, and outperforms TVR at 50 and 20-view scans on spatial resolution with a higher frequency at the modulation transfer function value of 10% by an average factor of 4. Compared with the 20-view scan PICCS result, the SPIR image has 7 times lower noise STD with similar spatial resolution. The electron density map obtained from the SPIR-based DECT images with a second 10-view scan has an

  15. Effects of voxel size and iterative reconstruction parameters on the spatial resolution of 99mTc SPECT/CT

    OpenAIRE

    Kappadath, S. Cheenu

    2011-01-01

    The purpose of this study was to evaluate the effects of voxel size and iterative reconstruction parameters on the radial and tangential resolution for 99mTc SPECT as a function of radial distance from isocenter. SPECT/CT scans of eight coplanar point sources of size smaller than 1 mm3 containing high concentration 99mTc solution were acquired on a SPECT/CT system with 5/8 inch NaI(Tl) detector and low-energy, high-resolution collimator. The tomographic projection images were acquired in step...

  16. Image quality of low mA CT pulmonary angiography reconstructed with model based iterative reconstruction versus standard CT pulmonary angiography reconstructed with filtered back projection: an equivalency trial

    Energy Technology Data Exchange (ETDEWEB)

    Montet, Xavier; Hachulla, Anne-Lise; Neroladaki, Angeliki; Botsikas, Diomidis; Becker, Christoph D. [Geneva University Hospital, Division of Radiology, Geneva 4 (Switzerland); Lador, Frederic; Rochat, Thierry [Geneva University Hospital, Division of Pulmonary Medicine, Geneva 4 (Switzerland)

    2015-06-01

    To determine whether CT pulmonary angiography (CTPA) using low mA setting reconstructed with model-based iterative reconstruction (MBIR) is equivalent to routine CTPA reconstructed with filtered back projection (FBP). This prospective study was approved by the institutional review board and patients provided written informed consent. Eighty-two patients were examined with a low mA MBIR-CTPA (100 kV, 20 mA) and 82 patients with a standard FBP-CTPA (100 kV, 250 mA). Region of interests were drawn in nine pulmonary vessels; signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate the image quality of FBP-CTPA and low mA MBIR-CTPA. Compared to routine FBP-CTPA, low mA MBIR-CTPA showed no differences in the attenuation measured in nine pulmonary vessels, higher SNR (56 ± 19 vs 43 ± 20, p < 0.0001) and higher CNR (50 ± 17 vs 38 ± 18, p < 0.0001) despite a dose reduction of 93 % (p < 0.0001). The subjective image quality of low mA MBIR-CTPA was quoted as diagnostic in 98 % of the cases for patient with body mass index less than 30 kg/m{sup 2}. Low mA MBIR-CTPA is equivalent to routine FBP-CTPA and allows a significant dose reduction while improving SNR and CNR in the pulmonary vessels, as compared with routine FBP-CTPA. (orig.)

  17. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  18. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    Science.gov (United States)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  19. Optimization of image reconstruction for yttrium-90 SIRT on a LYSO PET/CT system using a Bayesian penalized likelihood reconstruction algorithm.

    Science.gov (United States)

    Rowley, Lisa M; Bradley, Kevin M; Boardman, Philip; Hallam, Aida; McGowan, Daniel R

    2016-09-29

    Imaging on a gamma camera with Yttrium-90 ((90)Y) following selective internal radiotherapy (SIRT) may allow for verification of treatment delivery but suffers relatively poor spatial resolution and imprecise dosimetry calculation. (90)Y Positron Emission Tomography (PET) / Computed Tomography (CT) imaging is possible on 3D, time-of-flight machines however images are usually poor due to low count statistics and noise. A new PET reconstruction software using a Bayesian penalized likelihood (BPL) reconstruction algorithm (termed Q.Clear) released by GE was investigated using phantom and patient scans to optimize the reconstruction for post-SIRT imaging and clarify if this leads to an improvement in clinical image quality using (90)Y.

  20. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  1. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi, E-mail: hiro.orad@tmd.ac.jp [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan); Honda, Eiichi [Oral and Maxillofacial Radiology, Division of Oral Health Sciences, The University of Tokushima Graduate School (Japan); Tetsumura, Akemi; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan)

    2011-03-15

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  2. Implementation of strip-area system model for fan-beam collimator SPECT reconstruction

    Science.gov (United States)

    Ye, Hongwei; Krol, Andrzej; Feiglin, David H.; Lipson, Edward D.; Lee, Wei; Coman, Ioana L.

    2006-03-01

    We have implemented a more accurate physical system representation, a strip-area system model (SASM), for improved fan-beam collimator (FBC) SPECT reconstruction. This approach required implementation of modified ray tracing and attenuation compensation in comparison to a line-length system model (LLSM). We have compared performance of SASM with LLSM using Monte Carlo and analytical simulations of FBC SPECT from a thorax phantom. OSEM reconstruction was performed with OS=3 in a 64×64 matrix with attenuation compensation (assuming uniform attenuation of 0.13 cm -1). Scatter correction and smoothing were not applied. We observe overall improvement in SPECT image bias, visual image quality and an improved hot myocardium contrast for SASM vs. LLSM. In contrast to LLSM, the sensitivity pattern artifacts are not present in the SASM reconstruction. In both reconstruction methods, cross-talk image artifacts (e.g. inverse images of the lungs) can be observed, due to the uniform attenuation map used. SASM applied to fan-beam collimator SPECT results in better image quality and improved hot target contrast, as compared to LLSM, but at the expense of 1.5-fold increase in reconstruction time.

  3. Ring artifacts removal via spatial sparse representation in cone beam CT

    Science.gov (United States)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  4. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  5. Multiplanar reconstructed CT images increased depiction of intracranial hemorrhages in pediatric head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Langford, Stacey; Panigrahy, Ashok; Narayanan, Srikala; Hwang, Misun; Fitz, Charles; Flom, Lynda; Lee, Vincent Kyu; Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Department of Radiology, Section of Neuroradiology, Pittsburgh, PA (United States)

    2015-12-15

    The benefits of multiplanar reconstructed images (MPR) of unenhanced axial head computed tomography (CT) data have not been established in trauma patients younger than 3 years old, a population in which a reliable history and physical examination may be most difficult. We retrospectively evaluated unenhanced head CTs in pediatric trauma patients to investigate the various benefits of MPR in this age group. A total of 221 unenhanced head CTs performed for any case of head trauma (HT) on children younger than 3 years old were independently reviewed by two radiologists. Studies were reviewed first in the standard axial plane alone and then with the addition of MPR. Reviewers were asked to determine if the MPR affected the ability to make findings of hemorrhage, incidental findings, and artifacts. MPR improved the detection of hemorrhage in 14 cases (6.5 %, p-value < 0.01) and incidental findings in five cases (2.3 %, p-value < 0.05) as well as helped prove artifacts in five cases (2.3 %, p-value < 0.05). Routine use of MPR in HT patients younger than 3 years old has the potential to increase the detection of acute and incidental imaging findings. (orig.)

  6. 锥束X-CT系统校准方法的实际应用分析%Analysis on Application of Calibration Method for Cone-beam X-CT

    Institute of Scientific and Technical Information of China (English)

    侯颖; 孙怡

    2011-01-01

    FDK算法是应用在锥束CT系统中最有代表性的重建算法之一,该算法是在假设CT成像系统满足理想成像关系的条件下得到的.然而实际的锥束CT成像系统很难完全满足理想成像关系的要求,系统的几何失配会极大影响重建图像的质量,因此必须在重建之前对成像系统进行校准,获得系统的几何失配参数,并在重建过程中修正几何失配参数造成的影响.本文以之前所提出的锥束CT系统校准方法为基础,分析了在实际应用这种校准方法时需要注意的关键问题,然后利用所搭建的锥束XCT系统得到实际的校准结果和重建结果.结果证明之前所提出的应用于锥束XCT系统的校准方法对于测量系统的几何失配参数是有效可行的.%The FDK algorithm is a classic cone-beam approximate reconstruction algorithm, which has been widely used in practice. Ideal imaging geometry is a basic condition in the application of the FDK algorithm.However, it is difficult to satisfy this condition in a practical cone-beam CT system. Reconstructed images will suffer from artifacts caused by the misaligned geometry of the CT system. Therefore, calibration of the CT system in advance is an important and necessary task. Misaligned parameters of the CT system will be taken into the reconstruction algorithm after calibration to improve image qualities in the case of the misaligned CT system. Key points on application of the proposed calibration method for cone-beam CT are discussed deeply in this paper. And calibration result and reconstructed results of an X-ray cone-beam CT are given which prove the validity of the proposed calibration method.

  7. Modeling shift-variant X-ray focal spot blur for high-resolution flat-panel cone-beam CT

    CERN Document Server

    Tilley, Steven; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional