WorldWideScience

Sample records for beam ct kv

  1. Potential of 80-kV high-resolution cone-beam CT imaging combined with an optimized protocol for neurological surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, Seisaku; Hara, Takayuki [Toranomon Hospital, Department of Neurosurgery, Tokyo (Japan); Hamada, Yusuke [Toranomon Hospital, Department of Radiology, Tokyo (Japan); Matsumaru, Yuji [Toranomon Hospital, Department of Neuro-Endovascular Therapy, Tokyo (Japan)

    2014-11-05

    With the development of computed tomography (CT) and magnetic resonance imaging (MRI), the use of conventional X-ray angiography including digital subtraction angiography (DSA) for diagnosis has decreased, as it is an invasive technique with a risk of neurological complications. However, X-ray angiography imaging technologies have progressed markedly, along with the development of endovascular treatments. A newly developed angiography technique using cone-beam CT (CBCT) technology provides higher spatial resolution than conventional CT. Herein, we describe the potential of this technology for neurosurgical operations with reference to clinical cases. Two hundred twenty-five patients who received 80-kV high-resolution CBCT from July 2011 to June 2014 for preoperative examinations were included in this study. For pathognomonical cases, images were taken with suitable reconstruction modes and contrast protocols. Cases were compared with intraoperative findings or images from other modalities. We observed the following pathognomonical types: (1) imaging of the distal dural ring (DDR) and the surrounding structure for paraclinoid aneurysms, (2) imaging of thin blood vessels, and (3) imaging of both brain tumors and their surrounding anatomy. Our devised 80-kV high-resolution CBCT imaging system provided clear visualization of detailed anatomy when compared with other modalities in almost all cases. Only two cases provided poor visualization due to movement artifact. Eighty-kilovolt high-resolution CBCT has the potential to provide detailed anatomy for neurosurgical operations when utilizing suitable modes and contrast protocols. (orig.)

  2. Evaluation of the effects of sagging shifts on isocenter accuracy and image quality of cone-beam CT from kV on-board imagers.

    Science.gov (United States)

    Ali, Imad; Ahmad, Salahuddin

    2009-07-17

    To investigate the effects of sagging shifts of three on-board kV imaging systems (OBI) on the isocenter positioning accuracy and image quality of cone-beam CT (CBCT). A cubical phantom having a metal marker in the center that can be aligned with the radiation isocenter was used to measure sagging shifts and their variation with gantry angle on three Varian linacs with kV on-board imaging systems. A marker-tracking algorithm was applied to detect the shadow of the metal marker and localize its center in the two-dimensional cone-beam radiographic projections. This tracking algorithm is based on finding the position of maximum cross-correlation between a region-of-interest from a template image (including the metal marker) and the projections containing the shadow of the metal marker. Sagging shifts were corrected by mapping the center of the metal marker to a reference position for all projections acquired over a full gantry rotation (0-360 degrees). The sag-corrected radiographic projections were then used to reconstruct CBCT using Feldkamp back-projection. A standard quality assurance phantom was used to evaluate the image quality of CBCT before and after sagging correction. Sagging affects both the positioning accuracy of the OBI isocenter and the CBCT image quality. For example, on one linac, the position of the marker on the cone-beam radiographic projections depends on the angular view and has maximal shifts of about 2 mm along the imager x-direction (patient's cross-plane). Sagging produces systematic shifts of the OBI isocenter as large as 1 mm posterior and 1 mm left in patient coordinates relative to the radiation isocenter. Further, it causes spatial distortion and blurring in CBCT image reconstructed from radiographic projections that are not corrected for OBI sagging. CBCT numbers vary by about 1% in full-fan scans and up to 3.5% in half-fan scans because of sagging. In order to achieve better localization accuracy in image-guided radiation therapy

  3. Experimental validation of a Monte Carlo-based kV x-ray projection model for the Varian linac-mounted cone-beam CT imaging system

    Science.gov (United States)

    Lazos, Dimitrios; Pokhrel, Damodar; Su, Zhong; Lu, Jun; Williamson, Jeffrey F.

    2008-03-01

    Fast and accurate modeling of cone-beam CT (CBCT) x-ray projection data can improve CBCT image quality either by linearizing projection data for each patient prior to image reconstruction (thereby mitigating detector blur/lag, spectral hardening, and scatter artifacts) or indirectly by supporting rigorous comparative simulation studies of competing image reconstruction and processing algorithms. In this study, we compare Monte Carlo-computed x-ray projections with projections experimentally acquired from our Varian Trilogy CBCT imaging system for phantoms of known design. Our recently developed Monte Carlo photon-transport code, PTRAN, was used to compute primary and scatter projections for cylindrical phantom of known diameter (NA model 76-410) with and without bow-tie filter and antiscatter grid for both full- and half-fan geometries. These simulations were based upon measured 120 kVp spectra, beam profiles, and flat-panel detector (4030CB) point-spread function. Compound Poisson- process noise was simulated based upon measured beam output. Computed projections were compared to flat- and dark-field corrected 4030CB images where scatter profiles were estimated by subtracting narrow axial-from full axial width 4030CB profiles. In agreement with the literature, the difference between simulated and measured projection data is of the order of 6-8%. The measurement of the scatter profiles is affected by the long tails of the detector PSF. Higher accuracy can be achieved mainly by improving the beam modeling and correcting the non linearities induced by the detector PSF.

  4. Monitoring Dosimetric Impact of Weight Loss With Kilovoltage (KV) Cone Beam CT (CBCT) During Parotid-Sparing IMRT and Concurrent Chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Kean Fatt, E-mail: hokeanfatt@hotmail.com [Academic Radiation Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); Marchant, Tom; Moore, Chris; Webster, Gareth; Rowbottom, Carl [North Western Medical Physics, The Christie NHS Foundation Trust, Manchester (United Kingdom); Penington, Hazel [Wade Radiotherapy Research Centre, The Christie NHS Foundation Trust, Manchester (United Kingdom); Lee, Lip; Yap, Beng; Sykes, Andrew; Slevin, Nick [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom)

    2012-03-01

    Purpose: Parotid-sparing head-and-neck intensity-modulated radiotherapy (IMRT) can reduce long-term xerostomia. However, patients frequently experience weight loss and tumor shrinkage during treatment. We evaluate the use of kilovoltage (kV) cone beam computed tomography (CBCT) for dose monitoring and examine if the dosimetric impact of such changes on the parotid and critical neural structures warrants replanning during treatment. Methods and materials: Ten patients with locally advanced oropharyngeal cancer were treated with contralateral parotid-sparing IMRT concurrently with platinum-based chemotherapy. Mean doses of 65 Gy and 54 Gy were delivered to clinical target volume (CTV)1 and CTV2, respectively, in 30 daily fractions. CBCT was prospectively acquired weekly. Each CBCT was coregistered with the planned isocenter. The spinal cord, brainstem, parotids, larynx, and oral cavity were outlined on each CBCT. Dose distributions were recalculated on the CBCT after correcting the gray scale to provide accurate Hounsfield calibration, using the original IMRT plan configuration. Results: Planned contralateral parotid mean doses were not significantly different to those delivered during treatment (p > 0.1). Ipsilateral and contralateral parotids showed a mean reduction in volume of 29.7% and 28.4%, respectively. There was no significant difference between planned and delivered maximum dose to the brainstem (p = 0.6) or spinal cord (p = 0.2), mean dose to larynx (p = 0.5) and oral cavity (p = 0.8). End-of-treatment mean weight loss was 7.5 kg (8.8% of baseline weight). Despite a {>=}10% weight loss in 5 patients, there was no significant dosimetric change affecting the contralateral parotid and neural structures. Conclusions: Although patient weight loss and parotid volume shrinkage was observed, overall, there was no significant excess dose to the organs at risk. No replanning was felt necessary for this patient cohort, but a larger patient sample will be investigated

  5. [New methods in the treatment of localized prostate cancer: use of dynamic arc therapy and kV cone-beam CT positioning].

    Science.gov (United States)

    Szappanos, Szabolcs; Farkas, Róbert; Lőcsei, Zoltán; László, Zoltán; Kalincsák, Judit; Bellyei, Szabolcs; Sebestyén, Zsolt; Csapó, László; Sebestyén, Klára; Halász, Judit; Musch, Zoltán; Beöthe, Tamás; Farkas, László; Mangel, László

    2014-08-10

    Bevezetés: A prosztatarák az idősebb életkor és a fejlett világ daganatos megbetegedése. Lokalizált prosztatarák esetében a műtéti ellátás mellett komoly szerepe van a definitív sugárkezelésnek. Célkitűzés: A szerzők intézetében telepített Novalis TX gyorsító segítségével úgynevezett intenzitásmodulált sugárterápia, annak dinamikus ívbesugárzással elvégzett formája, illetve verifikáció során háromdimenziós lágy szöveti képellenőrzést biztosító, integrált kilovoltos cone-beam komputertomográfiával végzett képvezérelt sugárterápia került bevezetésre, amely módszerekkel szerzett első tapasztalataikat ismertetik a szerzők. Módszer: 2011 decembere és 2013 februárja között, dóziseszkalációt követően, 102 dinamikus ívbesugárzással elvégzett kezelést végeztek, majd 10-10 szelektált, alacsony és magas kockázatú betegnél (átlagéletkor 72,5 év) elkészítették a háromdimenziós konformális besugárzási terveket is. Azonos célterület-lefedettség mellett összevetették a rizikószervek dózisterhelését. Eredmények: A dinamikus ívbesugárzással elvégzett kezelések mellett a rizikószervek szignifikánsan alacsonyabb dózisterhelését érték el, amelyet a kedvező korai mellékhatásprofil is alátámaszt. Következtetések: Az intenzitásmodulált sugárterápia dinamikus ívbesugárzással elvégzett formája biztonsággal alkalmazott standard kezelési módozattá vált a szerzők intézetében. Késői mellékhatások és lokális kontroll további vizsgálata szükséges. Orv. Hetil., 2014, 155(32), 1265–1272.

  6. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V; Zhang, J [University of Kentucky, Lexington, KY (United States)

    2015-06-15

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.

  7. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    Science.gov (United States)

    Alaei, Parham; Spezi, Emiliano

    2012-11-08

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.

  8. A 20 kV, 5 A, 1 ns Risetime Pulsed Electron Beam Source

    Institute of Scientific and Technical Information of China (English)

    Chen Yulan; Zeng Zhengzhong; Wang Haiyang; Ma Lianying

    2005-01-01

    A 20 kV, 1 ns risetime pulsed electron beam source was developed using an extremely small gap (0.1 mm) diode driven by a sub-nanosecond risetime, 10 kV rectangular pulse generator. A beam current of 5 A was detected by using a fast response Faraday cup at a distance of 2 cm away from a grid anode. The shot to shot variation of the electron beam pulse was less than 10%.

  9. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    Science.gov (United States)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  10. Radiation dose reduction sinogram affirmed iterative reconstruction and automatic tube voltage modulation(CARE kV) in abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Joo; Chung, Yong Eun; Lee, Young Han; Choi, Jin Young; Park, Mi Suk; Kim, Myeong Jin; Kim, Ki Whang [Dept. of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images.

  11. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tuecking, Thomas; Oelfke, Uwe [DKFZ, Heidelberg (Germany)

    2009-07-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed, image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping

  12. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.

    Science.gov (United States)

    Reitz, Irmtraud; Hesse, Bernd-Michael; Nill, Simeon; Tücking, Thomas; Oelfke, Uwe

    2009-01-01

    The problem of the enormous amount of scattered radiation in kV CBCT (kilo voltage cone beam computer tomography) is addressed. Scatter causes undesirable streak- and cup-artifacts and results in a quantitative inaccuracy of reconstructed CT numbers, so that an accurate dose calculation might be impossible. Image contrast is also significantly reduced. Therefore we checked whether an appropriate implementation of the fast iterative scatter correction algorithm we have developed for MV (mega voltage) CBCT reduces the scatter contribution in a kV CBCT as well. This scatter correction method is based on a superposition of pre-calculated Monte Carlo generated pencil beam scatter kernels. The algorithm requires only a system calibration by measuring homogeneous slab phantoms with known water-equivalent thicknesses. In this study we compare scatter corrected CBCT images of several phantoms to the fan beam CT images acquired with a reduced cone angle (a slice-thickness of 14 mm in the isocenter) at the same system. Additional measurements at a different CBCT system were made (different energy spectrum and phantom-to-detector distance) and a first order approach of a fast beam hardening correction will be introduced. The observed image quality of the scatter corrected CBCT images is comparable concerning resolution, noise and contrast-to-noise ratio to the images acquired in fan beam geometry. Compared to the CBCT without any corrections the contrast of the contrast-and-resolution phantom with scatter correction and additional beam hardening correction is improved by a factor of about 1.5. The reconstructed attenuation coefficients and the CT numbers of the scatter corrected CBCT images are close to the values of the images acquired in fan beam geometry for the most pronounced tissue types. Only for extreme dense tissue types like cortical bone we see a difference in CT numbers of 5.2%, which can be improved to 4.4% with the additional beam hardening correction. Cupping is

  13. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT.

    Science.gov (United States)

    Maltz, Jonathan S; Gangadharan, Bijumon; Bose, Supratik; Hristov, Dimitre H; Faddegon, Bruce A; Paidi, Ajay; Bani-Hashemi, Ali R

    2008-12-01

    Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.

  14. Empirical beam hardening correction (EBHC) for CT

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc [Institute of Medical Physics, University of Erlangen-Nuernberg, 91052 Erlangen (Germany)

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  15. Cone beam CT, wat moet ik ermee?

    NARCIS (Netherlands)

    R. Hoogeveen

    2013-01-01

    De cone beam-ct-scan (cbct-scan) maakt een opmars in de tandheelkunde vanwege de toegevoegde waarde van de derde dimensie in de diagnostiek. Deze extra informatie wordt verkregen ten koste van een hogere stralenbelasting en een daarmee gepaard gaand hoger risico voor de patiënt. Om de clinicus te he

  16. Sci—Thur AM: YIS - 09: Validation of a General Empirically-Based Beam Model for kV X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Y. [CancerCare Manitoba (Canada); University of Calgary (Canada); Sommerville, M.; Johnstone, C.D. [San Diego State University (United States); Gräfe, J.; Nygren, I.; Jacso, F. [Tom Baker Cancer Centre (Canada); Khan, R.; Villareal-Barajas, J.E. [University of Calgary (Canada); Tom Baker Cancer Centre (Canada); Tambasco, M. [University of Calgary (Canada); San Diego State University (United States)

    2014-08-15

    Purpose: To present an empirically-based beam model for computing dose deposited by kilovoltage (kV) x-rays and validate it for radiographic, CT, CBCT, superficial, and orthovoltage kV sources. Method and Materials: We modeled a wide variety of imaging (radiographic, CT, CBCT) and therapeutic (superficial, orthovoltage) kV x-ray sources. The model characterizes spatial variations of the fluence and spectrum independently. The spectrum is derived by matching measured values of the half value layer (HVL) and nominal peak potential (kVp) to computationally-derived spectra while the fluence is derived from in-air relative dose measurements. This model relies only on empirical values and requires no knowledge of proprietary source specifications or other theoretical aspects of the kV x-ray source. To validate the model, we compared measured doses to values computed using our previously validated in-house kV dose computation software, kVDoseCalc. The dose was measured in homogeneous and anthropomorphic phantoms using ionization chambers and LiF thermoluminescent detectors (TLDs), respectively. Results: The maximum difference between measured and computed dose measurements was within 2.6%, 3.6%, 2.0%, 4.8%, and 4.0% for the modeled radiographic, CT, CBCT, superficial, and the orthovoltage sources, respectively. In the anthropomorphic phantom, the computed CBCT dose generally agreed with TLD measurements, with an average difference and standard deviation ranging from 2.4 ± 6.0% to 5.7 ± 10.3% depending on the imaging technique. Most (42/62) measured TLD doses were within 10% of computed values. Conclusions: The proposed model can be used to accurately characterize a wide variety of kV x-ray sources using only empirical values.

  17. High resolution 100 kV electron beam lithography in SU-8

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Jakobsen, S.; Schmidt, M.S.

    2006-01-01

    High resolution 100 kV electron beam lithography in thin layers of the negative resist SU-8 is demonstrated. Sub-30 nm lines with a pitch down to 300 nm are written in 100 nm thick SU-8. Two reactive ion etch processes are developed in order to transfer the SU-8 structures into a silicon substrat...

  18. Re-capacitance of 230 kV circuits using the expanded beam concept; Recapacitacao de circuitos 230 kV com o conceito de feixe expandido

    Energy Technology Data Exchange (ETDEWEB)

    Regis Junior, Oswaldo; Cavalcanti, Sebastiao J. Gusmao; Wavrik, Jose Felipe A.G. [Companhia Hidroeletrica do Sao Francisco (CHESF), Recife, PE (Brazil); Maia, Marcelo J. Albuquerque [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Podporkin, Georgij Viktorovich [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil)

    1995-12-31

    Using the concept of high natural power transmission line, this technical report presents a new alternative for the re capacitance of existent transmission lines through the expansion of conductor beams. It is related the experience of CHESF (Sao Francisco Hydroelectric Power Public Utility) in the study, project and pursuance of an experimental stretch energized in december 1994. It is also presented technical and economical evaluations in order to approve expanded beams in the 230 kV power transmission line, changeable to 500 kV 4 refs., 9 figs., 6 tabs.

  19. Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam

    Science.gov (United States)

    Feng, X.; Nornberg, M. D.; Craig, D.; Den Hartog, D. J.; Oliva, S. P.

    2016-11-01

    A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened Hβ emission and the spectrum of Doppler-shifted Hα emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.

  20. SU-E-I-29: Care KV: Dose It Influence Radiation Dose in Non-Contrast Examination of CT Abdomen/pelvis?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Ganesh, H [University of Kentucky, Lexington, KY (United States); Weir, V [Baylor University Medical Center, Plano, TX (United States)

    2015-06-15

    Purpose: CARE kV is a tool that automatically recommends optimal kV setting for individual patient for specific CT examination. The use of CARE kV depends on topogram and the user-selected contrast behavior. CARE kV is expected to reduce radiation dose while improving image quality. However, this may work only for certain groups of patients and/or certain CT examinations. This study is to investigate the effects of CARE kV on radiation dose of non-contrast examination of CT abdomen/pelvis. Methods: Radiation dose (CTDIvol and DLP) from patients who underwent abdomen/pelvis non-contrast examination with and without CARE kV were retrospectively reviewed. All patients were scanned in the same scanner (Siemens Somatom AS64). To mitigate any possible influences due to technologists’ unfamiliarity with the CARE kV, the data with CARE kV were retrieved 1.5 years after the start of CARE kV usage. T-test was used for significant difference in radiation dose. Results: Volume CTDIs and DLPs from 18 patients before and 24 patients after the use of CARE kV were obtained in a duration of one month. There is a slight increase in both average CTDIvol and average DLP with CARE kV compared to those without CARE kV (25.52 mGy vs. 22.65 mGy for CTDIvol; 1265.81 mGy-cm vs. 1199.19 mGy-cm). Statistically there was no significant difference. Without CARE kV, 140 kV was used in 9 of 18 patients, while with CARE KV, 140 kV was used in 15 of 24 patients. 80kV was not used in either group. Conclusion: The use of CARE kV may save time for protocol optimization and minimize variability among technologists. Radiation dose reduction was not observed in non-contrast examinations of CT abdomen/pelvis. This was partially because our CT protocols were tailored according to patient size before CARE kV and partially because of large size patients.

  1. Development of a 300-kV Marx generator and its application to drive a relativistic electron beam

    Indian Academy of Sciences (India)

    Y Choyal; Lalit Gupta; Preeti Vyas; Prasad Deshpande; Anamika Chaturvedi; K C Mittal; K P Maheshwari

    2005-12-01

    We have indigenously developed a twenty-stage vertical structure type Marx generator. At a matched load of $90-100 \\Omega$, for 25 kV DC charging, an output voltage pulse of 230 kV, and duration 150 ns is obtained. This voltage pulse is applied to a relativistic electron beam (REB) planar diode. For a cathode-anode gap of 7·5 mm, an REB having beam voltage 160 kV and duration 150 ns is obtained. Brass as well as aluminum explosive electron emission-type cathodes have been used.

  2. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments.

    Science.gov (United States)

    Held, Mareike; Cremers, Florian; Sneed, Penny K; Braunstein, Steve; Fogh, Shannon E; Nakamura, Jean; Barani, Igor; Perez-Andujar, Angelica; Pouliot, Jean; Morin, Olivier

    2016-03-08

    A clinical workflow was developed for urgent palliative radiotherapy treatments that integrates patient simulation, planning, quality assurance, and treatment in one 30-minute session. This has been successfully tested and implemented clinically on a linac with MV CBCT capabilities. To make this approach available to all clin-ics equipped with common imaging systems, dose calculation accuracy based on treatment sites was assessed for other imaging units. We evaluated the feasibility of palliative treatment planning using on-board imaging with respect to image quality and technical challenges. The purpose was to test multiple systems using their commercial setup, disregarding any additional in-house development. kV CT, kV CBCT, MV CBCT, and MV CT images of water and anthropomorphic phantoms were acquired on five different imaging units (Philips MX8000 CT Scanner, and Varian TrueBeam, Elekta VersaHD, Siemens Artiste, and Accuray Tomotherapy linacs). Image quality (noise, contrast, uniformity, spatial resolution) was evaluated and compared across all machines. Using individual image value to density calibrations, dose calculation accuracies for simple treatment plans were assessed for the same phantom images. Finally, image artifacts on clinical patient images were evaluated and compared among the machines. Image contrast to visualize bony anatomy was sufficient on all machines. Despite a high noise level and low contrast, MV CT images provided the most accurate treatment plans relative to kV CT-based planning. Spatial resolution was poorest for MV CBCT, but did not limit the visualization of small anatomical structures. A comparison of treatment plans showed that monitor units calculated based on a prescription point were within 5% difference relative to kV CT-based plans for all machines and all studied treatment sites (brain, neck, and pelvis). Local dose differences > 5% were found near the phantom edges. The gamma index for 3%/3 mm criteria was ≥ 95% in most

  3. Dynamic Bowtie for Fan-beam CT

    CERN Document Server

    Liu, Fenglin; Cong, Wenxiang; Hsieh, Scott; Pelc, Norbert

    2013-01-01

    A bowtie is a filter used to shape an x-ray beam and equalize its flux reaching different detector channels. For development of spectral CT with energy-discriminative photon-counting (EDPC) detectors, here we propose and evaluate a dynamic bowtie for performance optimization based on a patient model or a scout scan. Our dynamic bowtie modifies an x-ray beam intensity profile by mechanical rotation and adaptive adjustment of the x-ray source flux. First, a mathematical model for dynamic bowtie filtering is established for an elliptical section in fan-beam geometry, and the contour of the optimal bowtie is derived. Then, numerical simulation is performed to compare the performance of the dynamic bowtie in the cases of an ideal phantom and a realistic cross-section relative to the counterparts without any bowtie and with a fixed bowtie respectively. Our dynamic bowtie can equalize the expected numbers of photons in the case of an ideal phantom. In practical cases, our dynamic bowtie can effectively reduce the dy...

  4. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T.; Ishii, Y.; Kamiya, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA) 1233 Watanuki-machi, Takasaki, Gunma, 370-1292 (Japan); Miyake, Y. [Beam Seiko Instruments Inc., 2-10-1 Kamata, Ohta-ku, Tokyo, 144-0052 (Japan)

    2013-04-19

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  5. Development of resist process for 5-KV multi-beam technology

    Science.gov (United States)

    Icard, B.; Rio, D.; Veltman, P.; Kampherbeek, B.; Constancias, C.; Pain, L.

    2009-03-01

    E-beam Maskless activities raised a lot of interest in the past years from semiconductor companies strongly concerned by the constant cost increase of masked-based lithography (1). Beginning of 2008, the European Commission started an integrated program called "MAGIC", Maskless lithography for IC manufacturing, which pushes the development and the insertion of the European multi-beam technology (2) in the semiconductor industry. This project supports also to develop the infrastructure for the use of this technology, including resist processes, data processing and proximity corrections. Within MAGIC, MAPPER develops its low energy (5keV) massively parallel concept (3). Compared to a standard single E-Beam machine working classically at 50kV, this low accelerating voltage requires the use of thin resist film to deal with the lower penetration depth of the electrons. This paper presents the resist development status, including Chemically Amplified Resist and non-CAR platforms. Comparisons of the performances of these resist platforms in terms of resolution, sensitivity, roughness and stability are detailed, including their potential integration into CMOS technological flow. Finally, a first review of the state of the art of resist performance for patterning at 5kV will be performed. Based on the level of achievements presented in this paper, a discussion is also engaged about the needs of resist developments to fulfill industry targets in 2011.

  6. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  7. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans; Avaliacao da variacao da tensao (kV) na dose absorvida em varreduras de TC torax

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P., E-mail: brunabgam@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais (CENEB/CEFET-MG), Belo Horionte, MG, (Brazil)

    2013-07-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography.

  8. Simulation of Cone Beam CT System Based on Monte Carlo Method

    CERN Document Server

    Wang, Yu; Cao, Ruifen; Hu, Liqin; Li, Bingbing

    2014-01-01

    Adaptive Radiation Therapy (ART) was developed based on Image-guided Radiation Therapy (IGRT) and it is the trend of photon radiation therapy. To get a better use of Cone Beam CT (CBCT) images for ART, the CBCT system model was established based on Monte Carlo program and validated against the measurement. The BEAMnrc program was adopted to the KV x-ray tube. Both IOURCE-13 and ISOURCE-24 were chosen to simulate the path of beam particles. The measured Percentage Depth Dose (PDD) and lateral dose profiles under 1cm water were compared with the dose calculated by DOSXYZnrc program. The calculated PDD was better than 1% within the depth of 10cm. More than 85% points of calculated lateral dose profiles was within 2%. The correct CBCT system model helps to improve CBCT image quality for dose verification in ART and assess the CBCT image concomitant dose risk.

  9. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  10. Scattering intensities for a white beam (120 kV) presenting a semi-empirical model to preview scattered beams

    Science.gov (United States)

    Gonçalves, O. D.; Boldt, S.; Kasch, K. U.

    2016-09-01

    This work aims at measuring the scattering cross sections for white beams and the verification of a semi-empirical model predicting scattered energy spectra of an X-ray beam produced by an industrial X-ray tube (Pantack Sievert, 120 kV, tungsten target) incident on a water sample. Both, theoretical and semi-empirical results presented are based on the form factor approach with results well corresponding to performed measurements. The elastic (Rayleigh) scattering cross sections are based on Thomson scattering with a form factor correction as published by Morin (1982). The inelastic (Compton) contribution is based on the Klein Nishina equation (Klein and Nishina, 1929) multiplied by the incoherent scattering factors calculated by Hubbel et al. (1975). Two major results are presented: first, the experimental integrated in energy cross sections corresponds with theoretical cross sections obtained at the mean energy of the measured scattered spectra at a given angle. Secondly, the measured scattered spectra at a given angle correspond to those obtained utilizing the semi-empirical model as proposed here. A good correspondence of experimental results and model predictions can be shown. The latter, therefore, proves to be a useful method to calculate the scattering contributions in a number of applications as for example cone beam tomography.

  11. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  12. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen-lin; Zhang, Kai; Li, Wang-jiang; Chen, Xian; Wu, Bin; Song, Bin [West China Hospital of Sichuan University, Department of Radiology, Chengdu, Sichuan (China); Li, Hang [Sichuan Provincial People' s Hospital, Department of Radiology, Chengdu, Sichuan (China)

    2014-08-15

    To investigate the feasibility of 70 kV cerebral CT perfusion by comparing image quality and radiation exposure to 80 kV. Thirty patients with suspected cerebral ischemia who underwent dual-source CT perfusion were divided into group A (80 kV, 150 mAs) and group B (70 kV, 150 mAs). Quantitative comparisons were used for maximum enhancement, signal-to-noise index (SNI), and values of cerebral blood flow (CBF), cerebral blood flow (CBV), mean transit time (MTT) on CBF, CBV, and MTT images, and radiation dose from these two groups. Qualitative perfusion images were assessed by two readers. Maximum enhancement for group B was higher than group A (P < 0.05). There were no significant differences between the two groups for SNI on CBF and CBV maps (P = 0.06 - 0.576), but significant differences for MTT when SNI was measured on frontal white matter and temporo-occipital white matter (P < 0.05). There were no differences among values of CBF, CBV, and MTT for both groups (P = 0.251-0.917). Mean image quality score in group B was higher than group A for CBF (P < 0.05), but no differences for CBV (P = 0.542) and MTT (P = 0.962). Radiation dose for group B decreased compared with group A. 70 kV cerebral CT perfusion reduces radiation dose without compromising image quality. (orig.)

  13. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    Science.gov (United States)

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  14. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  15. Cone beam CT for dental and maxillofacial imaging: dose matters

    OpenAIRE

    Pauwels, Ruben

    2015-01-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiogr...

  16. Monte Carlo electron beam lithography simulation of sub-0.1-mum T-gate process for millimeter-wave HEMTs considering 50-kV and 100-kV electron beam exposure systems

    Energy Technology Data Exchange (ETDEWEB)

    Son, Myung-Sik; Rhee, Jin-Koo [Dongguk University, Seoul (Korea, Republic of); Lee, Jun-Ha [Sangmyung University, Chonan (Korea, Republic of); Hwang, Ho-Jung [Chung-Ang University, Seoul (Korea, Republic of)

    2004-08-15

    A computationally efficient and accurate Monte Carlo (MC) simulator for electron beam lithography has been developed and applied for the sub-0.1-mum T-shaped gate (T-gate) process in HEMT devices for the millimeter-wave applications. The enhanced MC simulator for the electron trajectory includes elastic scattering and inelastic scatterings, which include inner-shell ionizations, outer-shell (free) excitations, and plasmon excitations in multi-layer resists and heterogeneous substrates. Our model has been applied to the structure of PMMA/P(MMA-MAA)/PMMA on a GaAs substrate to form the T-gate shape in resist layers. We considered and modeled a real fabrication process, such as the electron-beam double-exposure method, to obtain better reproducibility and controllability in the fabrication of high electron mobility transistor (HEMT) devices. To model an accurate T-gate process by using electron beam lithography, we have modeled three different developers using a string algorithm such as MCB, Methanol : IPA (1 : 1), and MIBK : IPA (1 : 3). Our simulations for the T-gate electron beam lithography have been verified by comparing them with the SEM measurements at a 50-keV electron beam exposure system. In this paper, we show and discuss the differences of exposure profiles and developed pattern shapes for the sub-0.1-mum T-gate formation process in trilayer resists using 50-kV and 100-kV electron beam exposure systems.

  17. Dose reduction in dynamic CT stress myocardial perfusion imaging: comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Makiko; Kitagawa, Kakuya; Ito, Tatsuro; Shiraishi, Yasuyuki; Kurobe, Yusuke; Nagata, Motonori; Ishida, Masaki; Sakuma, Hajime [Mie University School of Medicine, Department of Radiology, Tsu, Mie (Japan)

    2014-03-15

    To determine the effect of reduced 80-kV tube voltage with increased 370-mAs tube current on radiation dose, image quality and estimated myocardial blood flow (MBF) of dynamic CT stress myocardial perfusion imaging (CTP) in patients with a normal body mass index (BMI) compared with a 100-kV and 300-mAs protocol. Thirty patients with a normal BMI (<25 kg/m{sup 2}) with known or suspected coronary artery disease underwent adenosine-stress dual-source dynamic CTP. Patients were randomised to 80-kV/370-mAs (n = 15) or 100-kV/300-mAs (n = 15) imaging. Maximal enhancement and noise of the left ventricular (LV) cavity, contrast-to-noise ratio (CNR) and MBF of the two groups were compared. Imaging with 80-kV/370-mAs instead of 100-kV/300-mAs was associated with 40 % lower radiation dose (mean dose-length product, 359 ± 66 vs 628 ± 112 mGy.cm; P < 0.001) with no significant difference in CNR (34.5 ± 13.4 vs 33.5 ± 10.4; P = 0.81) or MBF in non-ischaemic myocardium (0.95 ± 0.20 vs 0.99 ± 0.25 ml/min/g; P = 0.66). Studies obtained using 80-kV/370-mAs were associated with 30.9 % higher maximal enhancement (804 ± 204 vs 614 ± 115 HU; P < 0.005), and 31.2 % greater noise (22.7 ± 3.5 vs 17.4 ± 2.6; P < 0.001). Dynamic CTP using 80-kV/370-mA instead of 100-kV/300-mAs allowed 40 % dose reduction without compromising image quality or MBF. Tube voltage of 80-kV should be considered for individuals with a normal BMI. (orig.)

  18. Calibration free beam hardening correction for cardiac CT perfusion imaging

    Science.gov (United States)

    Levi, Jacob; Fahmi, Rachid; Eck, Brendan L.; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) and coronary CTA have the potential to make CT an ideal noninvasive gate-keeper for invasive coronary angiography. However, beam hardening artifacts (BHA) prevent accurate blood flow calculation in MPI-CT. BH Correction (BHC) methods require either energy-sensitive CT, not widely available, or typically a calibration-based method. We developed a calibration-free, automatic BHC (ABHC) method suitable for MPI-CT. The algorithm works with any BHC method and iteratively determines model parameters using proposed BHA-specific cost function. In this work, we use the polynomial BHC extended to three materials. The image is segmented into soft tissue, bone, and iodine images, based on mean HU and temporal enhancement. Forward projections of bone and iodine images are obtained, and in each iteration polynomial correction is applied. Corrections are then back projected and combined to obtain the current iteration's BHC image. This process is iterated until cost is minimized. We evaluate the algorithm on simulated and physical phantom images and on preclinical MPI-CT data. The scans were obtained on a prototype spectral detector CT (SDCT) scanner (Philips Healthcare). Mono-energetic reconstructed images were used as the reference. In the simulated phantom, BH streak artifacts were reduced from 12+/-2HU to 1+/-1HU and cupping was reduced by 81%. Similarly, in physical phantom, BH streak artifacts were reduced from 48+/-6HU to 1+/-5HU and cupping was reduced by 86%. In preclinical MPI-CT images, BHA was reduced from 28+/-6 HU to less than 4+/-4HU at peak enhancement. Results suggest that the algorithm can be used to reduce BHA in conventional CT and improve MPI-CT accuracy.

  19. Cone-beam CT-guidance in Interventional Radiology

    NARCIS (Netherlands)

    Braak, S.J.

    2012-01-01

    OBJECTIVE. CBCT-guidance (CBCT-guidance) is a new stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planningsoftware, and real-time fluoroscopy. Our objective was to evaluate the use, feasibility and outcome of this technique. To determine the effectiv

  20. Development and validation of a measurement-based source model for kilovoltage cone-beam CT Monte Carlo dosimetry simulations

    Science.gov (United States)

    McMillan, Kyle; McNitt-Gray, Michael; Ruan, Dan

    2013-01-01

    Purpose: The purpose of this study is to adapt an equivalent source model originally developed for conventional CT Monte Carlo dose quantification to the radiation oncology context and validate its application for evaluating concomitant dose incurred by a kilovoltage (kV) cone-beam CT (CBCT) system integrated into a linear accelerator. Methods: In order to properly characterize beams from the integrated kV CBCT system, the authors have adapted a previously developed equivalent source model consisting of an equivalent spectrum module that takes into account intrinsic filtration and an equivalent filter module characterizing the added bowtie filtration. An equivalent spectrum was generated for an 80, 100, and 125 kVp beam with beam energy characterized by half-value layer measurements. An equivalent filter description was generated from bowtie profile measurements for both the full- and half-bowtie. Equivalent source models for each combination of equivalent spectrum and filter were incorporated into the Monte Carlo software package MCNPX. Monte Carlo simulations were then validated against in-phantom measurements for both the radiographic and CBCT mode of operation of the kV CBCT system. Radiographic and CBCT imaging dose was measured for a variety of protocols at various locations within a body (32 cm in diameter) and head (16 cm in diameter) CTDI phantom. The in-phantom radiographic and CBCT dose was simulated at all measurement locations and converted to absolute dose using normalization factors calculated from air scan measurements and corresponding simulations. The simulated results were compared with the physical measurements and their discrepancies were assessed quantitatively. Results: Strong agreement was observed between in-phantom simulations and measurements. For the radiographic protocols, simulations uniformly underestimated measurements by 0.54%–5.14% (mean difference = −3.07%, SD = 1.60%). For the CBCT protocols, simulations uniformly

  1. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    Science.gov (United States)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  2. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  3. Topogram-based automated selection of the tube potential and current in thoraco-abdominal trauma CT - a comparison to fixed kV with mAs modulation alone

    Energy Technology Data Exchange (ETDEWEB)

    Frellesen, Claudia; Stock, Wenzel; Kerl, J.M.; Lehnert, Thomas; Wichmann, Julian L.; Beeres, Martin; Schulz, Boris; Bodelle, Boris; Vogl, Thomas J. [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Nau, Christoph; Geiger, Emanuel; Wutzler, Sebastian [Clinic of the Goethe University, Department of Trauma, Hand and Reconstructive Surgery, Frankfurt (Germany); Ackermann, Hanns [Clinic of the Goethe University, Department of Biostatistics and Mathematical Modelling, Frankfurt (Germany); Bauer, Ralf W. [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Klinikum der Goethe-Universitaet, Institut fuer Diagnostische und Interventionelle Radiologie, Frankfurt am Main (Germany)

    2014-07-15

    To investigate the impact of automated attenuation-based tube potential selection on image quality and exposure parameters in polytrauma patients undergoing contrast-enhanced thoraco-abdominal CT. One hundred patients were examined on a 16-slice device at 120 kV with 190 ref.mAs and automated mA modulation only. Another 100 patients underwent 128-slice CT with automated mA modulation and topogram-based automated tube potential selection (autokV) at 100, 120 or 140 kV. Volume CT dose index (CTDI{sub vol}), dose-length product (DLP), body diameters, noise, signal-to-noise ratio (SNR) and subjective image quality were compared. In the autokV group, 100 kV was automatically selected in 82 patients, 120 kV in 12 patients and 140 kV in 6 patients. Patient diameters increased with higher kV settings. The median CTDI{sub vol} (8.3 vs. 12.4 mGy; -33 %) and DLP (594 vs. 909 mGy cm; -35 %) in the entire autokV group were significantly lower than in the group with fixed 120 kV (p < 0.05 for both). Image quality remained at a constantly high level at any selected kV level. Topogram-based automated selection of the tube potential allows for significant dose savings in thoraco-abdominal trauma CT while image quality remains at a constantly high level. (orig.)

  4. Cone beam CT in radiology; DVT in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, Florian [ALB FILS KLINIKEN GmbH, Klinik am Eichert, Goeppingen (Germany). Inst. fuer Radiologie

    2013-06-15

    Cone beam computed tomography (CBCT) is a cross-sectional X-ray modality using an imaging system with cone-beam geometry. Unlike CT, the data set is acquired in a single circulation of a C-arm shaped tube-detector unit. Image characteristics vs. exposure dose ratio is similar to conventional CT, but varies widely depending on the CBVT device and the selected settings, and is limited to low dose/high noise applications. Up to now, only few data is available to estimate the clinical value of CBCT. Nevertheless, the use of CBCT is increasing drastically in the recent years, especially in the dental and ENT diagnostic field. For this reason the European Commission recently published guidelines concerning the clinical application of CBCT. These guidelines, as well as clinically relevant technical features of CBCT and examples of the most frequent dental applications are presented in the following article. (orig.)

  5. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    , several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... improvements in clinical CBCT imaging achieved through post-processing of the clinical image data. A Monte Carlo model was established to predict patient specific scattered radiation in CBCT imaging, based on anatomical information from the planning CT scan. This allowed the time consuming Monte Carlo......Cone beam CT (CBCT) imaging is frequently used in modern radiotherapy to ensure the proper positioning of the patient prior to each treatment fraction. With the increasing use of CBCT imaging for image guidance, interest has grown in exploring the potential use of these 3– or 4–D medical images...

  6. 0.25-μm lithography using a 50-kV shaped electron-beam vector scan system

    Science.gov (United States)

    Gesley, Mark A.; Mulera, Terry; Nurmi, C.; Radley, J.; Sagle, Allan L.; Standiford, Keith P.; Tan, Zoilo C. H.; Thomas, John R.; Veneklasen, Lee

    1995-05-01

    Performance data from a prototype 50 kV shaped electron-beam (e-beam) pattern generator is presented. This technology development is targeted towards 180-130 nm device design rules. It will be able to handle 1X NIST X-ray membranes, glass reduction reticles, and 4- to 8-inch wafers. The prototype system uses a planar stage adapted from the IBM EL-4 design. The electron optics is an 50 kV extension of the AEBLE%+TM) design. Lines and spaces of 0.12 micrometers with dynamic corrections processor (DCP). Along with its normal role of coordinate transformation and dynamic correction of deflection distortion, astigmatism, and defocus; the DCP improves accuracy by modifying deflection conditions and focus according to measured substrate height variations. It also enables yaw calibration and correction for Write-on-the FlyTM motion. The electronics incorporates JTAG components for built-in self- test (BIST), as well as syndrome checking to ensure data integrity. The design includes diagnostic capabilities from offsite as well as from the operator console. A combination of third-party software and an internal job preparation software system is used to fracture patterns. It handles tone reversal, overlap removal, sizing, and proximity correction. Processing of large files in a commercial mask shop environment is made more efficient by retaining hierarchy and using parallel processing and data compression techniques. Large GDSIITM and MEBES data files can be processed. Data includes timing benchmarks for a 1 Gbit DRAM on both proximity and reduction reticles. The paper presents 50 kV results on silicon and quartz substrates along with examples of overlay to an external grid, field butting, and critical dimension (CD) control data. Selective experiments testing system stability, calibration accuracy, and local correction software implementation on a VAX control computer are also given.

  7. Beam hardening correction for a cone-beam CT system and its effect on spatial resolution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian

    2011-01-01

    In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.

  8. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    OpenAIRE

    AlJehani, Yousef A.

    2014-01-01

    Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT) in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014), PubMed (using medical subject headings), and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplem...

  9. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    Purpose: The polychromatic nature of the x-ray beams and their effects on the reconstructed image are often disregarded during standard image reconstruction. This leads to cupping and beam hardening artifacts inside the reconstructed volume. To correct for a general cupping, methods like water precorrection exist. They correct the hardening of the spectrum during the penetration of the measured object only for the major tissue class. In contrast, more complex artifacts like streaks between dense objects need other techniques of correction. If using only the information of one single energy scan, there are two types of corrections. The first one is a physical approach. Thereby, artifacts can be reproduced and corrected within the original reconstruction by using assumptions in a polychromatic forward projector. These assumptions could be the used spectrum, the detector response, the physical attenuation and scatter properties of the intersected materials. A second method is an empirical approach, which does not rely on much prior knowledge. This so-called empirical beam hardening correction (EBHC) and the previously mentioned physical-based technique are both relying on a segmentation of the present tissues inside the patient. The difficulty thereby is that beam hardening by itself, scatter, and other effects, which diminish the image quality also disturb the correct tissue classification and thereby reduce the accuracy of the two known classes of correction techniques. The herein proposed method works similar to the empirical beam hardening correction but does not require a tissue segmentation and therefore shows improvements on image data, which are highly degraded by noise and artifacts. Furthermore, the new algorithm is designed in a way that no additional calibration or parameter fitting is needed. Methods: To overcome the segmentation of tissues, the authors propose a histogram deformation of their primary reconstructed CT image. This step is essential for the

  10. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  11. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm

  12. Deformable registration of CT and cone-beam CT with local intensity matching

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  13. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    OpenAIRE

    Cai, Weixing; zhao,binghui; Conover, David; Liu, Jiangkun; Ning, Ruola

    2012-01-01

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan.

  14. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  15. Diagnostic Applications of Cone-Beam CT for Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    Yousef A. AlJehani

    2014-01-01

    Full Text Available Objectives. This paper aims to review the diagnostic application of cone beam computed tomography (CBCT in the field of periodontology. Data. Original articles that reported on the use of CBCT for periodontal disease diagnosis were included. Sources. MEDLINE (1990 to January 2014, PubMed (using medical subject headings, and Google Scholar were searched using the following terms in different combinations: “CBCT,” “volumetric CT,” “periodontal disease ,” and “periodontitis.” This was supplemented by hand-searching in peer-reviewed journals and cross-referenced with the articles accessed. Conclusions. Bony defects, caters, and furcation involvements seem to be better depicted on CBCT, whereas bone quality and periodontal ligament space scored better on conventional intraoral radiography. CBCT does not offer a significant advantage over conventional radiography for assessing the periodontal bone levels.

  16. Iodine contrast cone beam CT imaging of breast cancer

    Science.gov (United States)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  17. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  18. Cone beam CT for dental and maxillofacial imaging: dose matters.

    Science.gov (United States)

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications.

  19. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    Science.gov (United States)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Rossi, Michael; Knox, Chris; Brown, Kevin; Gros, Uwe; Boda-Heggemann, Judit; Walter, Cornelia; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2010-08-01

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90° kV- and 90° MV-CBCT (180° kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180° kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm-1 (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of ~33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  20. The clinical application value of CARE kV combined with CARE Dose 4D techniques in the orbital CT scan%智能最佳 kV 联合自动管电流调节技术在眼眶 CT 扫描中的应用价值

    Institute of Scientific and Technical Information of China (English)

    曾宪春; 付隽; 韩丹; 康绍磊; 王勇

    2014-01-01

    To explore the clinical application value of CARE Dose 4D (tube current regulation technique) combined with CARE kV (the smart kV scanning technology)in orbital CT scan,expecting to reduce the radiation dose. Methods:70 patients underwent plain orbital CT scan,they were randomly divided into two groups according to chronologi-cal sequence.In group A (n=35 cases),applied CARE Dose 4D technique was used only;In group B (n=35 cases),applied both CARE Dose 4D and CARE kV technique was used.Comparison of radiation dose and image quality (based on average CT values,Noise SD,SNR,CNR and quality score)between the two groups were made.Results:The difference of radiation dose between the two groups was statistically significant (P0.05);Also the image quality score and lesion detection rate demonstrated no significant difference among the two groups. Conclusion:On the premise of obtaining good quality of image for diagnosis,CARE kV combined with CARE Dose 4D tech-nology can be applied in orbital CT scan,which will reduce about 15.9% radiation dose.%_目的:探讨自动管电流调节(CARE Dose 4D)联合智能最佳 kV(CARE kV)技术在眼眶 CT 检查中的临床应用价值。方法:将行眼眶 CT 检查的70例患者分为两组,A 组(35例)采用 CARE Dose 4D 扫描技术,B 组(35例)采用CARE kV 联合 CARE Dose 4D 扫描技术。比较 A、B 两组图像质量(平均 CT 值、噪声 SD、SNR、CNR、图像质量主观评分)、患者所接受的辐射剂量及病变检出率。结果:A、B 两组辐射剂量差异有统计学意义(P<0.05),B 组[(0.59±1.55)mSv]较 A 组[(0.71±1.84)mSv]ED 较少约15.9%。两组平均 CT 值、噪声 SD、SNR、CNR、图像质量评分及病变检出率差异均无统计学意义(P>0.05)。结论:联合 CARE kV 与 CARE Dose 4D 技术行眼眶 CT 扫描,在保证图像质量的同时,可有效降低辐射剂量。

  1. Auto calibration of a cone-beam-CT

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich [Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden, Germany and Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Oral Surgery (and Oral Radiology), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz (Germany); Institute of Computer Science, Johannes Gutenberg University Mainz, 55128 Mainz (Germany); Department of Design, Computer Science and Media, RheinMain University of Applied Sciences, 65195 Wiesbaden (Germany)

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of

  2. Triple-rule-out dual-source CT angiography of patients with acute chest pain: Dose reduction potential of 100 kV scanning

    Energy Technology Data Exchange (ETDEWEB)

    Krissak, Radko, E-mail: radko.krissak@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Henzler, Thomas; Prechel, Anne; Reichert, Miriam [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Gruettner, Joachim; Sueselbeck, Tim [1st Department of Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Schoenberg, Stefan O.; Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-12-15

    Purpose: To investigate the dose reduction potential of low kV triple-rule-out dual-source CT angiography (TRO-CTA) in non-obese (BMI ≤ 25 kg/m{sup 2}) patients with acute chest pain. Materials and methods: Sixty consecutive patients were randomly assigned to two different retrospectively ECG-gated TRO-CTA protocols in this prospective trial: Thirty patients were examined with a 120-kV standard protocol (320 reference mAs with automatic tube current modulation, automatically adapted pitch and ECG-pulsing) and served as the control group (group 1), an otherwise identical 100 kV protocol was used in the other thirty patients (group 2) for a radiation dose reduction. Subjective image quality was assessed on a 5 point scale (1: excellent, 5: non-diagnostic) by two blinded observers. Quantitative image analysis assessed vascular attenuation, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in different vascular segments. The effective dose was calculated from the dose length product (DLP) using a conversion coefficient of 0.017 mSv mGy{sup −1} cm{sup −1}. Results: There was no significant difference of age, BMI, heart rate, pitch or scan length between both patient groups. Subjective image quality was rated similar in both groups (group 1: 1.2 ± 0.4, group 2: average score = 1.3 ± 0.5). Vessel attenuation was significantly higher in group 2 than in group 1 (ascending aorta: 456 ± 83 HU vs. 370 ± 78 HU, p < 0.001; pulmonary artery: 468 ± 118 HU vs. 411 ± 91 HU, p = 0.03; left coronary artery: 437 ± 110 HU vs. 348 ± 89 HU, p < 0.001), however, there was no significant difference in SNR (13.2 ± 7.6 vs. 14.5 ± 7.5, p = 0.49) or CNR (13.8 ± 6.6 vs. 15.9 ± 7.7, p = 0.25). The effective radiation dose of the 100 kV protocol was significantly lower (9.6 ± 3.2 mSv vs. 18.1 ± 9.4 mSv, p < 0.0001). Conclusion: TRO-CTA with 100 kV is feasible in non-obese patients and results in diagnostic image quality and significantly reduced radiation dose.

  3. Evaluation of patient dose using a virtual CT scanner: Applications to 4DCT simulation and Kilovoltage cone-beam imaging

    Science.gov (United States)

    DeMarco, J. J.; McNitt-Gray, M. F.; Cagnon, C. H.; Angel, E.; Agazaryan, N.; Zankl, M.

    2008-02-01

    This work evaluates the effects of patient size on radiation dose from simulation imaging studies such as four-dimensional computed tomography (4DCT) and kilovoltage cone-beam computed tomography (kV-CBCT). 4DCT studies are scans that include temporal information, frequently incorporating highly over-sampled imaging series necessary for retrospective sorting as a function of respiratory phase. This type of imaging study can result in a significant dose increase to the patient due to the slower table speed as compared with a conventional axial or helical scan protocol. Kilovoltage cone-beam imaging is a relatively new imaging technique that requires an on-board kilovoltage x-ray tube and a flat-panel detector. Instead of porting individual reference fields, the kV tube and flat-panel detector are rotated about the patient producing a cone-beam CT data set (kV-CBCT). To perform these investigations, we used Monte Carlo simulation methods with detailed models of adult patients and virtual source models of multidetector computed tomography (MDCT) scanners. The GSF family of three-dimensional, voxelized patient models, were implemented as input files using the Monte Carlo code MCNPX. The adult patient models represent a range of patient sizes and have all radiosensitive organs previously identified and segmented. Simulated 4DCT scans of each voxelized patient model were performed using a multi-detector CT source model that includes scanner specific spectra, bow-tie filtration, and helical source path. Standard MCNPX tally functions were applied to each model to estimate absolute organ dose based upon an air-kerma normalization measurement for nominal scanner operating parameters.

  4. Full Scale Earth Fault Experiments on 10 kV laboratory network with comparative Measurements on Conventional CT's and VT's

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove; Bak-Jensen, Birgitte

    2002-01-01

    . The necessity of high bandwidth measurement equipment for earth fault measurements on compensated distribution networks can be undermined, since it will be shown that the transient signal transfer through conventional CT?s and VT?s for further signal analysis is sufficient. Caused the inadequacy three phase...... transformers (CT?s) and voltage transformers (VT?s) by an optical link. Comparison with a similar earlier performed experiment caried out autumn 1998, where current and voltage measurements were measured with high bandwidth Rugowski-coils and high voltage Tektronix probes, gave remarkable results...

  5. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  6. Determination of size-specific exposure settings in dental cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Ruben [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand); University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Jacobs, Reinhilde [University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Bogaerts, Ria [University of Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Biomedical Sciences Group, Leuven (Belgium); Bosmans, Hilde [University of Leuven, Medical Physics and Quality Assessment, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Panmekiate, Soontra [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand)

    2017-01-15

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  7. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    Ung Bae Jeon; Jun Woo Lee; Ki Seok Choo; Chang Won Kim; Suk Kim; Tae Hong Lee; Yeon Joo Jeong; Dae Hwan Kang

    2009-01-01

    AIM: To evaluate the utility of assessing iodized oil uptake with cone-beam computed tomography (CT) in transarterial chemoembolization (TACE) for small hepatocellular carcinoma (HCC). METHODS: Cone-beam CT provided by a biplane flatpanel detector angiography suite was performed on eighteen patients (sixteen men and two women; 41-76 years; mean age, 58.9 years) directly after TACE for small HCC (26 nodules under 30 mm; mean diameter, 11.9 mm; range, 5-28 mm). The pre-procedural locations of the tumors were evaluated using triphasic multi-detector row helical computed tomography (MDCT). The tumor locations on MDCT and the iodized oil uptake by the tumors were analyzed on cone-beam CT and on spot image directly after the procedures. RESULTS: All lesions on preprocedural MDCT were detected using iodized oil uptake in the lesions on conebeam CT (sensitivity 100%, 26/26). Spot image depicted iodized oil uptake in 22 of the lesions (sensitivity 85%). The degree of iodized oil uptake was overestimated (9%, 2/22) or underestimated (14%, 3/22) on spot image in five nodules compared with that of cone-beam CT. CONCLUSION: Cone-beam CT is a useful and convenient tool for assessing the iodized oil uptake of small hepatic tumors (< 3 cm) directly after TACE.

  8. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Boda-Heggemann, Judit; Hesser, Juergen; Lohr, Frank; Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Rossi, Michael; Gros, Uwe [Elekta Ltd, Hamburg (Germany); Knox, Chris; Brown, Kevin [Elekta Ltd, Crawley (United Kingdom); Walter, Cornelia, E-mail: hansjoerg.wertz@umm.d [Department of Radiation Oncology, Marienhospital Stuttgart (Germany)

    2010-08-07

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to {<=}15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90{sup 0} kV- and 90{sup 0} MV-CBCT (180{sup 0} kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180{sup 0} kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm{sup -1} (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of {approx}33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  9. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  10. 千伏级 CBCT 图像 CT 值校正及在放疗剂量计算中应用%Investigation of CT numbers correction of kilo-voltage cone-beam CT images for accurate dose calculation

    Institute of Scientific and Technical Information of China (English)

    王雪桃; 柏森; 李光俊; 蒋晓芹; 苏晨; 李衍龙; 朱智慧

    2015-01-01

    目的:研究千伏级CBCT图像CT值校正方法,提高其用于剂量计算的准确性。方法以扇形束计划 CT 作为先验信息,将 CBCT 与计划 CT 图像进行刚性配准,通过将 CBCT 与计划 CT 图像相减得到 CBCT 散射背景估计,对散射背景进行低通滤波处理,最后将原始 CBCT 图像减去滤波后的散射背景得到校正的 CBCT 图像。对 Catphan600模体和4例盆腔恶性肿瘤患者的 CBCT 图像进行校正,配对 t 检验校正前后 CBCT 与计划 CT 的差异,评估校正后的 CBCT 图像质量并分析用于剂量计算的准确性。结果经 CT 值校正后 CBCT 图像伪影明显减少,空气、脂肪、肌肉、股骨头的平均值校正前与计划 CT 分别相差232、89、29、66 HU,而校正后平均值差别缩小至5 HU 内(P=0??39、0??66、0??59、1??00)。校正后 CBCT 图像用于剂量计算误差在2%内。结论校正后的 CBCT 图像 CT 值与计划 CTCT 值相似,用于剂量计算可得到准确的结果。%Objective To study CT numbers correction of kilo?voltage cone?beam CT (KV?CBCT) images for dose calculation. Method Aligning the CBCT images with plan CT images, then obtain the background scatter by subtracting CT images from CBCT images. The background scatter is then processed by low?pass filter. The final CBCT images are acquired by subtracting the background scatter from the raw CBCT. KV?CBCT images of Catphan600 phantom and four patients with pelvic tumors were obtained with the linac?integrated CBCT system. The CBCT images were modified to correct the CT numbers. Finally, compare HU numbers between corrected CBCT and planning CT by paired T test. Evaluate the image quality and accuracy of dose calculation of the modified CBCT images. Results The proposed method reduces the artifacts of CBCT images significantly. The differences of CT numbers were 232 HU, 89 HU, 29 HU and 66 HU for air, fat, muscle and femoral head between CT and CBCT

  11. Benign Prostatic Hyperplasia: Cone-Beam CT in Conjunction with DSA for Identifying Prostatic Arterial Anatomy.

    Science.gov (United States)

    Wang, Mao Qiang; Duan, Feng; Yuan, Kai; Zhang, Guo Dong; Yan, Jieyu; Wang, Yan

    2017-01-01

    Purpose To describe findings in prostatic arteries (PAs) at digital subtraction angiography (DSA) and cone-beam computed tomography (CT) that allow identification of benign prostatic hyperplasia and to determine the value added with the use of cone-beam CT. Materials and Methods This retrospective single-institution study was approved by the institutional review board, and the requirement for written informed consent was waived. From February 2009 to December 2014, a total of 148 patients (mean age ± standard deviation, 70.5 years ± 14.5) underwent DSA of the internal iliac arteries and cone-beam CT with a flat-detector angiographic system before they underwent prostate artery embolization. Both the DSA and cone-beam CT images were evaluated by two interventional radiologists to determine the number of independent PAs and their origins and anastomoses with adjacent arteries. The exact McNemar test was used to compare the detection rate of the PAs and the anastomoses with DSA and with cone-beam CT. Results The PA anatomy was evaluated successfully by means of cone-beam CT in conjunction with DSA in all patients. Of the 296 pelvic sides, 274 (92.6%) had only one PA. The most frequent PA origin was the common gluteal-pudendal trunk with the superior vesicular artery in 118 (37.1%), followed by the anterior division of the internal iliac artery in 99 (31.1%), and the internal pudendal artery in 77 (24.2%) pelvic sides. In 67 (22.6%) pelvic sides, anastomoses to adjacent arteries were documented. The numbers of PA origins and anastomoses, respectively, that could be identified were significantly higher with cone-beam CT (301 of 318 [94.7%] and 65 of 67 [97.0%]) than with DSA (237 [74.5%] and 39 [58.2%], P Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients. Conclusion Cone-beam CT is a useful adjunctive technique to DSA for identification of the PA anatomy and provides information to help treatment planning during

  12. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    Energy Technology Data Exchange (ETDEWEB)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca [Département de physique, de génie physique et d’optique, Université Laval, Québec, Québec G1V 0A6 (Canada); Goussard, Yves, E-mail: yves.goussard@polymtl.ca [Département de génie électrique/Institut de génie biomédical, École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Département de physique, de génie physique et d’optique and Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie and Centre de recherche du CHU de Québec, Québec, Québec G1R 2J6 (Canada)

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  13. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  14. Comparative evaluation of cone-beam CT equipment with micro-CT in the visualization of root canal system

    Directory of Open Access Journals (Sweden)

    Bence Tamas Szabo

    2012-01-01

    Full Text Available The aim of this study was to compare three different cone-beam CT (CBCT instruments used in dental clinical practice with micro-CT as gold standard. Three female monkeys’ (Macaca fascicularis skulls were selected and scanned by the tested CBCT-s. The most apical visible root canal level on the CBCT images was used as reference level (RL. After the image acquisition by CBCT-s dental jaw sections were scanned by micro-CT at a resolution of 17 μm. Out of the left second and third molars 25 root canals were selected and analysed by three observers at RL and following cross sectional parameters were determined: area of the lumen, major and minor diameters, aspect ratio and mean thickness. Results suggest that only high resolution CBCT instruments allow dentists detecting the full length of the root canal.

  15. Performance evaluation of the backprojection filtered (BPF) algorithm in circular fan-beam and cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article we introduce an exact backprojecfion filtered (BPF) type reconstruction algorithm for cone-beam scans based on Zou and Pan's work. The algorithm can reconstruct images using only the projection data passing through the parallel PI-line segments in reduced scans. Computer simulations and practical experiments are carried out to evaluate this algorithm. The BPF algorithm has a higher computational efficiency than the famous FDK algorithm. The BPF algorithm is evaluated using the practical CT projection data on a 450 keV X-ray CT system with a flat-panel detector (FPD). From the practical experiments, we get the spatial resolution of this CT system. The algorithm could achieve the spatial resolution of 2.4 lp/mm and satisfies the practical applications in industrial CT inspection.

  16. Comparison of flat-panel detector and image-intensifier detector for cone-beam CT.

    Science.gov (United States)

    Baba, Rika; Konno, Yasutaka; Ueda, Ken; Ikeda, Shigeyuki

    2002-01-01

    We evaluated a flat-panel detector (FPD) (scintillator screen and a-Si photo-sensor array) for use in a cone-beam computed tomography (CT) detector and compared it with an image-intensifier detector (IID). The FPD cone-beam CT system has a higher spatial resolution than the IID system. At equal pixel sizes, the standard deviation of noise intensity of the FPD system is equal to that of the IID system. However, the circuit noise of the FPD must be reduced, especially at low doses. Our evaluations show that the FPD system has a strong potential for use as a cone-beam CT detector because of high-spatial resolution.

  17. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  18. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, Nicola; Imperatori, Andrea; Arlant, Veronica; Dominioni, Lorenzo [Insubria University, Center for Thoracic Surgery, Varese (Italy); Floridi, Chiara; Fontana, Federico; Ierardi, Anna Maria; Mangini, Monica; De Marchi, Giuseppe; Fugazzola, Carlo; Carrafiello, Gianpaolo [Insubria University, Radiology Department, Varese (Italy); Novario, Raffaele [Insubria University, Medical Physics Department, Varese (Italy)

    2016-02-15

    To compare the diagnostic performance of cone-beam CT (CBCT)-guided and CT fluoroscopy (fluoro-CT)-guided technique for transthoracic needle biopsy (TNB) of lung nodules. The hospital records of 319 consecutive patients undergoing 324 TNBs of lung nodules in a single radiology unit in 2009-2013 were retrospectively evaluated. The newly introduced CBCT technology was used to biopsy 123 nodules; 201 nodules were biopsied by conventional fluoro-CT-guided technique. We assessed the performance of the two biopsy systems for diagnosis of malignancy and the radiation exposure. Nodules biopsied by CBCT-guided and by fluoro-CT-guided technique had similar characteristics: size, 20 ± 6.5 mm (mean ± standard deviation) vs. 20 ± 6.8 mm (p = 0.845); depth from pleura, 15 ± 15 mm vs. 15 ± 16 mm (p = 0.595); malignant, 60 % vs. 66 % (p = 0.378). After a learning period, the newly introduced CBCT-guided biopsy system and the conventional fluoro-CT-guided system showed similar sensitivity (95 % and 92 %), specificity (100 % and 100 %), accuracy for diagnosis of malignancy (96 % and 94 %), and delivered non-significantly different median effective doses [11.1 mSv (95 % CI 8.9-16.0) vs. 14.5 mSv (95 % CI 9.5-18.1); p = 0.330]. The CBCT-guided and fluoro-CT-guided systems for lung nodule biopsy are similar in terms of diagnostic performance and effective dose, and may be alternatively used to optimize the available technological resources. (orig.)

  19. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    Energy Technology Data Exchange (ETDEWEB)

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola [Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Radiology, Shanghai 6th People' s Hospital, 600 Yishan Road, Xuhui, Shanghai (China); Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States); Department of Imaging Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642 (United States) and Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive Suite 112, West Henrietta, New York 14586 (United States)

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  20. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  1. CT based treatment planning system of proton beam therapy for ocular melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Takashi E-mail: tnakano@med.gunma-u.ac.jp; Kanai, Tatsuaki; Furukawa, Shigeo; Shibayama, Kouichi; Sato, Sinichiro; Hiraoka, Takeshi; Morita, Shinroku; Tsujii, Hirohiko

    2003-09-01

    A computed tomography (CT) based treatment planning system of proton beam therapy was established specially for ocular melanoma treatment. A technique of collimated proton beams with maximum energy of 70 MeV are applied for treatment for ocular melanoma. The vertical proton beam line has a range modulator for spreading beams out, a multi-leaf collimator, an aperture, light beam localizer, field light, and X-ray verification system. The treatment planning program includes; eye model, selecting the best direction of gaze, designing the shape of aperture, determining the proton range and range modulation necessary to encompass the target volume, and indicating the relative positions of the eyes, beam center and creation of beam aperture. Tumor contours are extracted from CT/MRI images of 1 mm thickness by assistant by various information of fundus photography and ultrasonography. The CT image-based treatment system for ocular melanoma is useful for Japanese patients as having thick choroid membrane in terms of dose sparing to skin and normal organs in the eye. The characteristics of the system and merits/demerits were reported.

  2. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  3. 3D analytic cone-beam reconstruction for multiaxial CT acquisitions.

    Science.gov (United States)

    Yin, Zhye; De Man, Bruno; Pack, Jed

    2009-01-01

    A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.

  4. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Tselikas, Lambros, E-mail: lambros.tselikas@gmail.com; Joskin, Julien, E-mail: j.joskin@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Roquet, Florian, E-mail: florianroquet@hotmail.com [Gustave Roussy, Biostatistics Department (France); Farouil, Geoffroy, E-mail: g.farouil@gmail.com [Gustave Roussy, Interventional Radiology Department (France); Dreuil, Serge, E-mail: serge.dreuil@gustaveroussy.fr [Gustave Roussy, Medical Physics Department (France); Hakimé, Antoine, E-mail: thakime@yahoo.com; Teriitehau, Christophe, E-mail: cteriitehau@me.com [Gustave Roussy, Interventional Radiology Department (France); Auperin, Anne, E-mail: anne.auperin@gustaveroussy.fr [Gustave Roussy, Biostatistics Department (France); Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr; Deschamps, Frederic, E-mail: frederic.deschamps@gustaveroussy.fr [Gustave Roussy, Interventional Radiology Department (France)

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  5. Investigation of respiration induced intra- and inter-fractional tumour motion using a standard Cone Beam CT

    DEFF Research Database (Denmark)

    Gottlieb, Karina Lindberg; Hansen, Christian R; Hansen, Olfred;

    2010-01-01

    To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum.......To investigate whether a standard Cone beam CT (CBCT) scan can be used to determined the intra- and inter-fractional tumour motion for lung tumours that have infiltrated the mediastinum....

  6. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  7. ASSESSMENT OF EFFECTIVE DOSE FROM CONE BEAM CT IMAGING IN SPECT/CT EXAMINATION IN COMPARISON WITH OTHER MODALITIES.

    Science.gov (United States)

    Tonkopi, Elena; Ross, Andrew A

    2016-12-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose.

  8. Planning of External Beam Radiotherapy for Prostate Cancer Guided by PET/CT.

    Science.gov (United States)

    von Eyben, Finn Edler; Kairemo, Kalevi; Kiljunen, Timo; Joensuu, Timo

    2015-01-01

    In this paper, we give an overview of articles on non-choline tracers for PET/CT for patients with prostate cancer and planning of radiotherapy guided by PET/CT. Nineteen articles described (11)C-Acetate PET/CT. Of 629 patients 483 (77%, 95% CI 74% - 80%) had positive (11)C-Acetate PET/CT scans. Five articles described (18)F-FACBC PET/CT. Of 174 patients, 127 (73%, 95% CI 68% - 78%) had positive scans. Both tracers detected local lesions, lesions in regional lymph nodes, and distant organs. Ten articles described (18)F-NaF PET/CT and found that 1289 of 3918 patients (33%) had positive reactive lesions in bones. PET/CT scan can guide external beam radiotherapy (EBRT) planning for patients with loco-regional prostate cancer. In six studies with 178 patients with localized prostate cancer, PET/CT pointed out dominant intraprostatic lesions (DIL). Oncologists gave EBRT to the whole prostate and a simultaneously integrated boost to the DIL. Four studies with 254 patients described planning of EBRT for patients with PETpositive lymph nodes. After the EBRT, 15 of 29 node-positive patients remained in remission for median 28 months (range 14 to 50 months). Most articles describe (11)C- and (18)F-Choline PET/CT. However, (11)C-Acetate and (18)F-FACBC may also be useful tracers for PET/CT. Planning of radiotherapy guided by MRI or PET/CT is an investigational method for localized prostate cancer. Current clinical controlled trials evaluate whether the method improves overall survival.

  9. Improved Scatter Correction in X-Ray Cone Beam CT with Moving Beam Stop Array Using Johns' Equation

    CERN Document Server

    Yan, Hao; Tang, Shaojie; Xu, Qiong

    2014-01-01

    In this paper, an improved scatter correction with moving beam stop array (BSA) for x-ray cone beam (CB) CT is proposed. Firstly, correlation between neighboring CB views is deduced based on John's Equation. Then, correlation-based algorithm is presented to complement the incomplete views by using the redundancy (over-determined information) in CB projections. Finally, combining the algorithm with scatter correction method using moving BSA, where part of primary radiation is blocked and incomplete projections are acquired, an improved correction method is proposed. Effectiveness and robustness is validated by Monte Carlo (MC) simulation with EGSnrc on humanoid phantom.

  10. Comparison of percutaneous radiologic gastrostomy by using cone beam CT and endoscopic gastrostomy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Nyeong; Han, Young Min; Jin, Gong Yong; Choi, Eun Jeong; Song, Ji Soo [Chonbuk National University Hospital and Medical School, Jeonju (Korea, Republic of)

    2014-01-15

    To compare the effectiveness of percutaneous radiologic gastrostomy (PRG) by using cone beam CT and percutaneous endoscopic gastrostomy (PEG). This study retrospectively reviewed 129 patients who underwent PRG (n = 53) and PEG (n = 76) over a 2-years period. The C-arm cone beam CT images were obtained from all PRG patients before the procedure in order to decide the safest accessing routes. The parameters including technical success rates, complication rates and tube migration rates were all analyzed according to statistical methods. The success rate of tube placement was higher in PRG than in PEG (100% to 93%, p = 0.08). Minor complications occurred in 5 patients of the PRG group (10%; 5/53, 3 wound infection, 2 blood oozing), and occurred in 6 patients of PEG group (7.9%; 6/76, 5 wound infection, 1 esophageal ulcer). Major complications occurred only in 5 patients of PEG group (6.6%; 5/76, 1 panperitonitis, 4 buried bumper syndrome). There were no statistical differences of minor and major complication rates in the two groups (respectively, p = 0.759, p = 0.078). Tube migration rate was lower in PRG than PEG group (7.5% vs. 38.2%, p < 0.005). PRG using cone beam CT is the effective and safe method, the cone beam CT provides the safest accessing route during gastrostomy. Less tube migration occurs in the PRG than in PEG.

  11. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank

    2013-01-01

    Industrial X-ray CT systems are increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable yet. The measurement accuracy is influenced by many factors, such as workpiece properties, X-ray settings, beam hardening and calibration methods [1-4]. Since...

  12. Segmentation of the mandibular canal in cone-beam CT data

    NARCIS (Netherlands)

    Kroon, Dirk-Jan

    2011-01-01

    Accurate information about the location of the mandibular canal is essential in case of dental implant surgery. The goal of our research is to find an automatic method which can segment the mandibular canal in Cone-beam CT (CBCT). Mandibular canal segmentation methods in literature using a priori

  13. Time-resolved cardiac cone beam CT using an interventional C-arm system

    NARCIS (Netherlands)

    Schomberg, H.

    2012-01-01

    It is both desirable and challenging to make interventional C-arm systems fit for cardiac cone beam CT. A number of methods towards thisgoal have been proposed, some of which even attempt to generate 4Dimages of the beating heart. A promising candidate of this type, proposed earlier by this author,

  14. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    NARCIS (Netherlands)

    Guerrero, M.E.; Jacobs, R.; Loubele, M.; Schutyser, F.A.C.; Suetens, P.; Steenberghe, D van

    2006-01-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging techno

  15. Physical dose distribution due to multi-sliced kV X-ray beam in labeled tissue-like media: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, M., E-mail: mghasemi@nrcam.or [Agricultural Medical and Industrial Research School, NSTRI, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Kakuee, O.R.; Fathollahi, V. [Van de Graaff Laboratory, Nuclear Science Research School, NSTRI, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Shahvar, A.; Mohati, M.; Ghafoori, M. [Agricultural Medical and Industrial Research School, NSTRI, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2011-02-15

    Radiotherapy remains a major modality of cancer therapy. Thanks to high flux and high brilliance of synchrotron-generated X-ray, laboratory research with planar microscopically thin X-ray beam promise exciting new opportunities for treatment of cancer. High tolerance of normal tissues at doses up to several hundred Gy in a single dose fraction and preferential damage of tumors at very high doses have been uniquely observed in animal models exposed to microbeams. The fact that beams as thick as 0.68 mm could retain a part of these effects, opens the possibility that the required beam can be produced by high power X-ray tubes besides a dedicated synchrotron. Fortunately, dose distribution due to kilovolt X-rays could be enhanced by the introduction of high-Z contrast agents to tissue-like media. In this work, dose deposition in a phantom-partially loaded with Au and I as contrast agents-irradiated by multi-sliced kV X-ray beam was experimentally investigated in the peak and valley regions both on the surface and in the depth of phantom. The results of experimental dosimetry using Gaf-chromic films were compared with corresponding Monte-Carlo simulation. Relative reduction in the deposited dose in the peak regions downstream the area containing contrast agents in comparison with the adjacent areas was experimentally observed.

  16. Physical dose distribution due to multi-sliced kV X-ray beam in labeled tissue-like media: an experimental approach.

    Science.gov (United States)

    Ghasemi, M; Kakuee, O R; Fathollahi, V; Shahvar, A; Mohati, M; Ghafoori, M

    2011-02-01

    Radiotherapy remains a major modality of cancer therapy. Thanks to high flux and high brilliance of synchrotron-generated X-ray, laboratory research with planar microscopically thin X-ray beam promise exciting new opportunities for treatment of cancer. High tolerance of normal tissues at doses up to several hundred Gy in a single dose fraction and preferential damage of tumors at very high doses have been uniquely observed in animal models exposed to microbeams. The fact that beams as thick as 0.68 mm could retain a part of these effects, opens the possibility that the required beam can be produced by high power X-ray tubes besides a dedicated synchrotron. Fortunately, dose distribution due to kilovolt X-rays could be enhanced by the introduction of high-Z contrast agents to tissue-like media. In this work, dose deposition in a phantom--partially loaded with Au and I as contrast agents--irradiated by multi-sliced kV X-ray beam was experimentally investigated in the peak and valley regions both on the surface and in the depth of phantom. The results of experimental dosimetry using Gaf-chromic films were compared with corresponding Monte-Carlo simulation. Relative reduction in the deposited dose in the peak regions downstream the area containing contrast agents in comparison with the adjacent areas was experimentally observed.

  17. Cone beam CT for diagnosis and treatment planning in trauma cases.

    Science.gov (United States)

    Palomo, Leena; Palomo, J Martin

    2009-10-01

    Three-dimensional imaging offers many advantages in making diagnoses and planning treatment. This article focuses on cone beam CT (CBCT) for making diagnoses and planning treatment in trauma-related cases. CBCT equipment is smaller and less expensive than traditional medical CT equipment and is tailored to address challenges specific to the dentoalveolar environment. Like medical CT, CBCT offers a three-dimensional view that conventional two-dimensional dental radiography fails to provide. CBCT combines the strengths of medical CT with those of conventional dental radiography to accommodate unique diagnostic and treatment-planning applications that have particular utility in dentoalveolar trauma cases. CBCT is useful, for example, in identifying tooth fractures relative to surrounding alveolar bone, in determining alveolar fracture location and morphology, in analyzing ridge-defect height and width, and in imaging temporomandibular joints. Treatment-planning applications include those involving extraction of fractured teeth, placement of implants, exposure of impacted teeth, and analyses of airways.

  18. Cone beam CT in orthodontics: the current picture.

    Science.gov (United States)

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored.

  19. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  20. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Magnelli, A; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, a large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.

  1. Marker-free lung tumor trajectory estimation from a cone beam CT sinogram

    Science.gov (United States)

    Hugo, Geoffrey D.; Liang, Jian; Yan, Di

    2010-05-01

    An algorithm was developed to estimate the 3D lung tumor position using the projection data forming a cone beam CT sinogram and a template registration method. A pre-existing respiration-correlated CT image was used to generate templates of the target, which were then registered to the individual cone beam CT projections, and estimates of the target position were made for each projection. The registration search region was constrained based on knowledge of the mean tumor position during the cone beam CT scan acquisition. Several template registration algorithms were compared, including correlation coefficient and robust methods such as block correlation, robust correlation coefficient and robust gradient correlation. Robust registration metrics were found to be less sensitive to occlusions such as overlying tissue and the treatment couch. The mean accuracy of the position estimation was 1.4 mm in phantom with a robust registration algorithm. In two research subjects with peripheral tumors, the mean position and mean target excursion were estimated to within 2.0 mm compared to the results obtained with a '4D' registration of 4D image volumes.

  2. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  3. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  4. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  5. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    Science.gov (United States)

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  6. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  7. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    OpenAIRE

    Sorapong Aootaphao; Saowapak S. Thongvigitmanee; Jartuwat Rajruangrabin; Chalinee Thanasupsombat; Tanapon Srivongsa; Pairash Thajchayapong

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter ...

  8. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics

    OpenAIRE

    Mota de Almeida, F J; Knutsson, K.; Flygare, Lennart

    2014-01-01

    Objectives: The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. Methods: The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with cu...

  9. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT

    CERN Document Server

    Sidky, Emil Y; Pan, Xiaochuan

    2009-01-01

    In practical applications of tomographic imaging, there are often challenges for image reconstruction due to under-sampling and insufficient data. In computed tomography (CT), for example, image reconstruction from few views would enable rapid scanning with a reduced x-ray dose delivered to the patient. Limited-angle problems are also of practical significance in CT. In this work, we develop and investigate an iterative image reconstruction algorithm based on the minimization of the image total variation (TV) that applies to divergent-beam CT. Numerical demonstrations of our TV algorithm are performed with various insufficient data problems in fan-beam CT. The TV algorithm can be generalized to cone-beam CT as well as other tomographic imaging modalities.

  10. Direct aneurysm sac catheterization and embolization of an enlarging internal iliac aneurysm using cone-beam CT

    Science.gov (United States)

    Merchant, Monish; Shah, Rohan; Resnick, Scott

    2015-01-01

    Since cone-beam computed tomography (CT) has been adapted for use with a C-arm system it has brought volumetric CT capabilities in the interventional suite. Although cone-beam CT image resolution is far inferior to that generated by traditional CT scanners, the system offers the ability to place an access needle into position under tomographic guidance and use the access to immediately begin a fluoroscopic procedure without moving the patient. We describe a case of a “jailed” enlarging internal iliac artery aneurysm secondary to abdominal aortic aneurysm repair, in which direct percutaneous puncture of the internal iliac artery aneurysm sac was performed under cone-beam CT guidance. PMID:25858522

  11. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  12. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  13. 宽排CT探测器CT剂量指数应用初探%Discussion on CT dose index for wide beam CT scanner

    Institute of Scientific and Technical Information of China (English)

    刘彬; 白玫

    2013-01-01

    Objective: With the increasing of beam width of CT scanner, traditional CT dose index (CTDI) encountered difficulties when expressing dosimetry for wide beam CT scanner. This article discussed the evolution and application of CTDI for wide beam CT scanners. Method: This article demonstrated principles of traditional CTDI and the limitation of it as a dosimetry for wide beam CT scanners, and introduced the evolution of CTDI for wide beam CT scanners and their principles and measurements. Results: IEC amended traditional CTDI and recommended a tiered approach to the definition of CTDI to be more adaptive for wide beam CT scanners. And with the approach of several time measurements at different locations, 150mm long PMMA phantom and 100mm long ion chamber could still be used for the measurements of new tiered CTDI. Conclusion: New tiered CTDI provided a more accurate dosimetry for wide beam CT scanners with a reservation of basic concept and measurement conditions of traditional CTDI.%目的:随着射线宽度的不断增加,传统CT剂量指数(CTDI)在表征CT剂量时遇到瓶颈问题,不能够很好地表征宽排CT探测器的剂量水平.本文探讨CTDI在CT宽排探测器剂量表征量方面的概念演化和应用方式.方法:介绍传统CTDI表征CT剂量的原理和方式,展示传统CTDI在表征宽排CT探测器时的局限性,阐述宽排CT探测器CTDI剂量表征量方式的演变过程,初步探讨宽排CTDI探测器CTDI表征和测量.结果:IEC在对传统CTDI进行修正的基础上推出分层次CTDI表征的方式,能更好适应宽排CT探测器的剂量表征.通过多点分次测量,新定义的分层次CTDI仍然可采用传统的150mm有机玻璃CT剂量体模和100mm电离室进行测量.结论:分层次CTDI表征方式能在保留传统CTDI基本概念和常规测试条件的基础上较好地表征宽排CT探测器的剂量水平.

  14. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  15. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, T-H [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec.1, Jianguo N.Rd, Taichung City 40201, Taiwan (China); Liang, C-H [Agfa Healthcare Systems Taiwan Co., Ltd., 6F, 237 Sung Chiang Road, Taipei, 104 Taiwan (China); Wu, J-K [Division of Radiation Oncology, Department of Oncology, and Cancer Research Center, National Taiwan University Hospital, No.7 Chung San South Road, Taipei, 104 Taiwan (China); Lien, C-Y [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Yang, B-H; Lee, J J S [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, No. 155, Sec.2, Linong Street, Taipei, 112 Taiwan (China); Huang, Y-H [Department of Medical Imaing and Radiological Sciences, I-Shou University, No. 8, Yida Rd., Yanchao Township, Kaohsiung County 82445, Taiwan (China)], E-mail: jslee@ym.edu.tw

    2009-07-15

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT

  16. Investigation of the HU-density conversion method and comparison of dose distribution for dose calculation on MV cone beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Joo; Lee, Seu Ran; Suh, Tae Suk [Dept. of Biomedical Engineering, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2011-11-15

    Modern radiation therapy techniques, such as Image-guided radiation therapy (IGRT), Adaptive radiation therapy (ART) has become a routine clinical practice on linear accelerators for the increase the tumor dose conformity and improvement of normal tissue sparing at the same time. For these highly developed techniques, megavoltage cone beam computed tomography (MVCBCT) system produce volumetric images at just one rotation of the x-ray beam source and detector on the bottom of conventional linear accelerator for real-time application of patient condition into treatment planning. MV CBCT image scan be directly registered to a reference CT data set which is usually kilo-voltage fan-beam computed tomography (kVFBCT) on treatment planning system and the registered image scan be used to adjust patient set-up error. However, to use MV CBCT images in radiotherapy, reliable electron density (ED) distribution are required. Patients scattering, beam hardening and softening effect caused by different energy application between kVCT, MV CBCT can cause cupping artifacts in MV CBCT images and distortion of Houns field Unit (HU) to ED conversion. The goal of this study, for reliable application of MV CBCT images into dose calculation, MV CBCT images was modified to correct distortion of HU to ED using the relationship of HU and ED from kV FBCT and MV CBCT images. The HU-density conversion was performed on MV CBCT image set using Dose difference map was showing in Figure 1. Finally, percentage differences above 3% were reduced depending on applying density calibration method. As a result, total error co uld be reduced to under 3%. The present study demonstrates that dose calculation accuracy using MV CBCT image set can be improved my applying HU-density conversion method. The dose calculation and comparison of dose distribution from MV CBCT image set with/without HU-density conversion method was performed. An advantage of this study compared to other approaches is that HU

  17. SU-D-207-06: Clinical Validations of Shading Correction for Cone-Beam CT Using Planning CT as a Prior

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Wei, J [Landauer Medical Physics, Newnan, GA (United States)

    2015-06-15

    Purpose: Current cone-beam CT (CBCT) images contain severe shading artifacts mainly due to scatter, hindering their quantitative use in current radiation therapy. We have previously proposed an effective shading correction method for CBCT using planning CT (pCT) as prior knowledge. In this work, we investigate the method robustness via statistical analyses on studies of a large patient group and compare the performance with that of a state-of-the-art method implemented on the current commercial radiation therapy machine -- the Varian Truebeam system. Methods: Since radiotherapy patients routinely undergo multiple-detector CT (MDCT) scans in the planning procedure, we use the high-quality pCT as “free” prior knowledge for CBCT image improvement. The CBCT image with no correction is first spatially registered with the pCT. Primary CBCT projections are estimated via forward projections of the registered image. The low frequency errors in the projections, which stem from mainly scatter, are estimated by filtering the difference between original line integral and the estimated scatter projections. The corrected CBCT image is then reconstructed from the scatter corrected projections. The proposed method is evaluated on 40 cancer patients. Results: On all patient images, we compare errors on CT number, spatial non-uniformity (SNU) and image contrast, using pCT as the ground truth. T-tests show that our algorithm improves over the Varian method on CBCT accuracies of CT number and SNU with 90% confident. The average CT number error is reduced from 54.8 HU on the Varian method to 40.9 HU, and the SNU error is reduced from 7.7% to 3.8%. There is no obvious improvement on image contrast. Conclusion: Large-group patient studies show that the proposed pCT-based algorithm outperforms the Varian method of the Truebeam system on CBCT shading correction, by providing CBCT images with higher CT number accuracy and greater image uniformity.

  18. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Sorapong Aootaphao

    2016-01-01

    Full Text Available Soft tissue images from portable cone beam computed tomography (CBCT scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  19. Experimental realization of fluence field modulated CT using digital beam attenuation

    Science.gov (United States)

    Szczykutowicz, T. P.; Mistretta, C. A.

    2014-03-01

    Tailoring CT scan acquisition parameters to individual patients is a topic of much research in the CT imaging community. It is now common place to find automatically adjusted tube current options for modern CT scanners. In addition, the use of beam shaping filters, commonly called bowtie filters, is available on most CT systems and allows for different body regions to receive different incident x-ray fluence distributions. However, no method currently exists which allows for the form of the incident x-ray fluence distribution to change as a function of the view angle. This study represents the first experimental realization of fluence field modulated CT (FFMCT) for a c-arm geometry CT scan. X-ray fluence modulation is accomplished using a digital beam attenuator (DBA). The device is composed of ten iron wedge pairs that modulate the thickness of iron, the x-rays must traverse before reaching a patient. Using this device, experimental data was taken using a Siemens Zeego c-arm scanner. Scans were performed on a cylindrical polyethylene phantom and on two different sections of an anthropomorphic phantom. The DBA was used to equalize the x-ray fluence striking the detector for each scan. Non DBA, or ‘flat field’ scans were also acquired of the same phantom objects for comparison. In addition, a scan was performed in which the DBA was used to enable volume of interest (VOI) imaging. In VOI, only a small sub-volume within a patient receives full dose and the rest of the patient receives a much lower dose. Data corrections unique to using a piece-wise constant modulator were also developed. The feasibility of FFMCT implemented using a DBA device has been demonstrated. Initial results suggest dose reductions of up to 3.6 times relative to ‘flat field’ CT. In addition to dose reduction, the DBA enables a large improvement in image noise uniformity and the ability to provide regionally enhanced signal to noise using VOI imaging techniques. The results presented in

  20. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    DEFF Research Database (Denmark)

    Thing, Rune Slot; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2016-01-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five......-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs...

  1. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  2. Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC

    CERN Document Server

    Deile, Mario; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Salvant, Benoit; Valentino, Gianluca

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the lu...

  3. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, K [Cleveland State University, Cleveland, OH (United States); Godley, A [Cleveland Clinic, Cleveland, OH (United States)

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  4. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  5. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  6. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  7. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  8. The Relationships of the Maxillary Sinus With the Superior Alveolar Nerves and Vessels as Demonstrated by Cone-Beam CT Combined With μ-CT and Histological Analyses.

    Science.gov (United States)

    Kasahara, Norio; Morita, Wataru; Tanaka, Ray; Hayashi, Takafumi; Kenmotsu, Shinichi; Ohshima, Hayato

    2016-05-01

    There are no available detailed data on the three-dimensional courses of the human superior alveolar nerves and vessels. This study aimed to clarify the relationships of the maxillary sinus with the superior alveolar nerves and vessels using cone-beam computed tomography (CT) combined with μ-CT and histological analyses. Digital imaging and communication in medicine data obtained from the scanned heads/maxillae of cadavers used for undergraduate/postgraduate dissection practice and skulls using cone-beam CT were reconstructed into three-dimensional (3D) images using software. The 3D images were compared with μ-CT images and histological sections. Cone-beam CT clarified the relationships of the maxillary sinus with the superior alveolar canals/grooves. The main anterior superior alveolar canal/groove ran anteriorly through the upper part of the sinus and terminated at the bottom of the nasal cavity near the piriform aperture. The main middle alveolar canal ran downward from the upper part of the sinus to ultimately join the anterior one. The main posterior alveolar canal ran through the lateral lower part of the sinus and communicated with the anterior one. Histological analyses demonstrated the existence of nerves and vessels in these canals/grooves, and the quantities of these structures varied across each canal/groove. Furthermore, the superior dental nerve plexus exhibited a network that was located horizontally to the occlusal plane, although these nerve plexuses appeared to be the vertical network that is described in most textbooks. In conclusion, cone-beam CT is suggested to be a useful method for clarifying the superior alveolar canals/grooves including the nerves and vessels.

  9. CARE kV—智能最佳kV扫描技术——降低剂量的同时提高图像质量%CARE kV-Intelligent Optimal kV Scanning Technology: Reducing X-ray Dose and Improving CT Image Quality Synchronously

    Institute of Scientific and Technical Information of China (English)

    徐卓东

    2012-01-01

    本文介绍了CARE kV-智能最佳kV扫描技术的工作原理和应用意义.作为CT业界唯一地能够根据检查目的和受检者个体情况自动设置最佳kV值的CT扫描技术,CARE kV不但能够最优化CT扫描的个性化辐射剂量水平,降低受检者接受的辐射剂量,而且同时也能够提高CT图像质量.CARE kV的使用还可以减少造影剂使用的总量、浓度和注射速率.%The paper introduced CARE kV-Intelligent optimal kV scanning technology, mainly focusing on its principle and applications. CARE kV is an unique low dose technology that can optimize and patient's customized radiation dose by using optimized kV setting based on CT examination destination and patient's conditions. CARE kV can reduce patient's radiation dose and improve CT image quality synchronously. CARE kV also has positive function of reducing the volume/concentration/injection speed of contrast media during CT contrast examination.

  10. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications.

  11. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  12. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Hiroshi, E-mail: hiro.orad@tmd.ac.jp [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan); Honda, Eiichi [Oral and Maxillofacial Radiology, Division of Oral Health Sciences, The University of Tokushima Graduate School (Japan); Tetsumura, Akemi; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Division of Oral Restitution, Graduate School, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 1138549 (Japan)

    2011-03-15

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  13. Ring artifacts removal via spatial sparse representation in cone beam CT

    Science.gov (United States)

    Li, Zhongyuan; Li, Guang; Sun, Yi; Luo, Shouhua

    2016-03-01

    This paper is about the ring artifacts removal method in cone beam CT. Cone beam CT images often suffer from disturbance of ring artifacts which caused by the non-uniform responses of the elements in detectors. Conventional ring artifacts removal methods focus on the correlation of the elements and the ring artifacts' structural characteristics in either sinogram domain or cross-section image. The challenge in the conventional methods is how to distinguish the artifacts from the intrinsic structures; hence they often give rise to the blurred image results due to over processing. In this paper, we investigate the characteristics of the ring artifacts in spatial space, different from the continuous essence of 3D texture feature of the scanned objects, the ring artifacts are displayed discontinuously in spatial space, specifically along z-axis. Thus we can easily recognize the ring artifacts in spatial space than in cross-section. As a result, we choose dictionary representation for ring artifacts removal due to its high sensitivity to structural information. We verified our theory both in spatial space and coronal-section, the experimental results demonstrate that our methods can remove the artifacts efficiently while maintaining image details.

  14. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  15. An investigation into factors affecting electron density calibration for a megavoltage cone-beam CT system.

    Science.gov (United States)

    Hughes, Jessica; Holloway, Lois C; Quinn, Alexandra; Fielding, Andrew

    2012-09-06

    There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

  16. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  17. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders;

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...... of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT....

  18. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    Science.gov (United States)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  19. Analysis of axial spatial resolution in a variable resolution x-ray cone beam CT (VRX-CBCT) system

    Science.gov (United States)

    Dahi, Bahram; Keyes, Gary S.; Rendon, David A.; DiBianca, Frank A.

    2008-03-01

    The Variable Resolution X-ray (VRX) technique has been successfully used in a Cone-Beam CT (CBCT) system to increase the spatial resolution of CT images in the transverse plane. This was achieved by tilting the Flat Panel Detector (FPD) to smaller vrx y angles in a VRX Cone Beam CT (VRX-CBCT) system. In this paper, the effect on the axial spatial resolution of CT images created by the VRX-CBCT system is examined at different vrx x angles, where vrx x is the tilting angle of the FPD about its x-axis. An amorphous silicon FPD with a CsI scintillator is coupled with a micro-focus x-ray tube to form a CBCT. The FPD is installed on a rotating frame that allows rotation of up to 90° about x and y axes of the FPD. There is no rotation about the z-axis (i.e. normal to the imaging surface). Tilting the FPD about its x-axis (i.e. decreasing the vrx x angle) reduces both the width of the line-spread function and the sampling distance by a factor of sin vrx x, thereby increasing the theoretical detector pre-sampling spatial resolution proportionately. This results in thinner CT slices that in turn help increase the axial spatial resolution of the CT images. An in-house phantom is used to measure the MTF of the reconstructed CT images at different vrx x angles.

  20. Poster — Thur Eve — 10: Partial kV CBCT, complete kV CBCT and EPID in breast treatment: a dose comparison study for skin, breasts, heart and lungs

    Energy Technology Data Exchange (ETDEWEB)

    Roussin, E; Archambault, L K; Wierzbicki, W [Hopital Maisonneuve Rosemont, Montreal, Quebec (Canada)

    2014-08-15

    The advantages of kilovoltage cone beam CT (kV CBCT) imaging over electronic portal imaging device (EPID) such as accurate 3D anatomy, soft tissue visualization, fast rigid registration and enhanced precision on patient positioning has lead to its increasing use in clinics. The benefits of this imaging technique are at the cost of increasing the dose to healthy surrounding organs. Our center has moved toward the use of daily partial rotation kV CBCT to restrict the dose to healthy tissues. This study aims to better quantify radiation doses from different image-guidance techniques such as tangential EPID, complete and partial kV CBCT for breast treatments. Cross-calibrated ionization chambers and kV calibrated Gafchromic films were used to measure the dose to the heart, lungs, breasts and skin. It was found that performing partial kV CBCT decreases the heart dose by about 36%, the lungs dose by 31%, the contralateral breast dose by 41% and the ipsilateral breast dose by 43% when compared to a full rotation CBCT. The skin dose measured for a full rotation CBCT was about 0.8 cGy for the contralateral breast and about 0.3 cGy for the ipsilateral breast. The study is still ongoing and results on skin doses for partial rotation kV CBCT as well as for tangential EPID images are upcoming.

  1. Beam-specific planning target volumes incorporating 4D CT for pencil beam scanning proton therapy of thoracic tumors.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Huang, Sheng; Mayer, Rulon; Thomas, Andrew; Solberg, Timothy D; McDonough, James E; Simone, Charles B

    2015-11-08

    The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ± 3% uncertainty in stopping power and ± 3 mm uncertainty in patient setup in each direction, were used to create 8 × 12 × 10 = 960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p = 0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential.

  2. Dosimetric study on intensity-modulated radiotherapy plans -based on kilo-voltage cone beam computed tomography images from left-sided breast cancer patients receiving modified radical mastectomy%放疗过程中剂量学变化研究--基于 KV-CBCT 左侧乳腺癌根治术后图像

    Institute of Scientific and Technical Information of China (English)

    朱小杨; 王明

    2015-01-01

    The aim is to investigate the dosimetric characteristics of planning target volume (PTV) and organs at risk (OAR) during the radiotherapy of left-sided breast cancer treated with modified radical mastectomy by comparing IMRT plans based on CT images and kilo-voltage cone beam computed tomography (KV-CBCT) images. 18 patients with left-sided breast cancer treated with radical mastectomy were selected. Treatment plans (PCT) based on CT images were designed and performed. KV-CBCT images were also acquired on the 1st day, 6th day, 11th day, 16th day, and 21st day of radiotherapy. All structures on planning CT images including PTV and OAR were applied by bulk density assignment (BDA) and plan parameters of PCT were replanted to a copy of planning CT images, which generated a new plan (PBDA). The prescription dose of PBDA was 50 Gy with conventional fractionation: 2 Gy per fraction, 5 fractions per week, total 25 fractions. The prescription dose was 50 Gy/25 F/5 week, 90% of the target area were covered by the prescription dose. The 5 series of KV-CBCT images acquired were imported into the planning system and matched with the planning CT for the same treatment position. The same structures of planning CT images were copied and applied by BDA on 5 series of KV-CBCT images. 5 replanted plans (PREP) and 5 new KV-CBCT plans (PCBCT) were designed based on these KV-CBCT images. Radiation parameters of PREP were same to those of PCT, but all parameters of PCBCT were new. 5 Gy given to each PREPand PCBCT covered 90% PTV. Two composite plans (P∑REPand P∑CBCT)were compounded of the fivePREPs and five PCBCTs, respectively. Total prescription dose of P∑REP and P∑CBCTwere 50 Gy/25 F/5 week. According to dose volume histograms (DVHs), dose distribution of PCT, PBDA, P∑REPandP∑CBCT were compared and analyzed byt-test. The results showed that PBDAhas similar conform index (CI) and inhomogeneity coefficient (HI) to PCT(p>0.05). HI and CI of P∑REPwere significantly worse

  3. A Model-Based Scatter Artifacts Correction for Cone Beam CT

    CERN Document Server

    Zhao, Wei; Zhu, Jun; Wang, Luyao; Xing, Lei

    2016-01-01

    The purpose of this work is to provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profiles for a set of CBCT data in either image domain or projection domain. A denoising algorithm designed specifically for Poisson signals is then applied to derive the final scatter distribution. Qualitative and quantitative evaluations using thorax and abdomen phantoms with Monte Carlo (MC) simulations, experimental Catphan phantom data, and in vivo human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU in either projection domain or image domain. For the MC thorax phantom study, four components segmentation yield the best results, while the results of three components segmentation are still acceptable. For the Catphan phantom data, the mean value over all pixels in the residual image is...

  4. Limited-angle reverse helical cone-beam CT for pipeline with low rank decomposition

    Science.gov (United States)

    Wu, Dong; Zeng, Li

    2014-10-01

    In this paper, tomographic imaging of pipeline in service by cone-beam computed tomography (CBCT) is studied. With the developed scanning strategy and image model, the quality of reconstructed image is improved. First, a limited-angle reverse helical scanning strategy based on C-arm computed tomography (C-arm CT) is developed for the projection data acquisition of pipeline in service. Then, an image model which considering the resemblance among slices of pipeline is developed. Finally, split Bregman method based algorithm is implemented in solving the model aforementioned. Preliminary results of simulation experiments show that the projection data acquisition strategy and reconstruction method are efficient and feasible, and our method is superior to Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART).

  5. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  6. Scattering correction based on regularization de-convolution for Cone-Beam CT

    CERN Document Server

    Xie, Shi-peng

    2016-01-01

    In Cone-Beam CT (CBCT) imaging systems, the scattering phenomenon has a significant impact on the reconstructed image and is a long-lasting research topic on CBCT. In this paper, we propose a simple, novel and fast approach for mitigating scatter artifacts and increasing the image contrast in CBCT, belonging to the category of convolution-based method in which the projected data is de-convolved with a convolution kernel. A key step in this method is how to determine the convolution kernel. Compared with existing methods, the estimation of convolution kernel is based on bi-l1-l2-norm regularization imposed on both the intermediate the known scatter contaminated projection images and the convolution kernel. Our approach can reduce the scatter artifacts from 12.930 to 2.133.

  7. Fast Scatter Artifacts Correction for Cone-Beam CT without System Modification and Repeat Scan

    CERN Document Server

    Zhao, Wei; Wang, Luyao

    2015-01-01

    We provide a fast and accurate scatter artifacts correction algorithm for cone beam CT (CBCT) imaging. The method starts with an estimation of coarse scatter profile for a set of CBCT images. A total-variation denoising algorithm designed specifically for Poisson signal is then applied to derive the final scatter distribution. Qualitatively and quantitatively evaluations using Monte Carlo (MC) simulations, experimental CBCT phantom data, and \\emph{in vivo} human data acquired for a clinical image guided radiation therapy were performed. Results show that the proposed algorithm can significantly reduce scatter artifacts and recover the correct HU within either projection domain or image domain. Further test shows the method is robust with respect to segmentation procedure.

  8. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  9. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  10. [Metal artefact on head and neck cone-beam CT images].

    Science.gov (United States)

    Kovacs, Miklós; Fejérdy, Pál; Dobó, Nagy Csaba

    2008-10-01

    There are only a few factors, where the properties of the CBCT is inferior compared to conventional CT. One of these properties is the low contrast resolution, which has an importance in the discrimination of different soft tissues. Another difference is the image quality degrading effect by metal objects. This latter factor has much higher importance in head and neck region CBCT application. The metal artifact is closely related to other types of artifacts, like beam-hardening and x-ray photon scattering artifacts. In some of the cases, metal artifacts can be avoided by the proper adjustment of the scanning parameters, but sometimes the problem overgrows the possibilities. The current pre- and post-processing algorithms used for the correction of different artifacts can improve the image quality, but these algorithms are not the ultimate solution to the problem. The introduction of iterative reconstruction algorithms into the CBCT market will effectively reduce the most CT artifacts, however, the spread of this algorithms are set back because of the insufficient computational power of today's PCs. Another advantage of the use of iterative algorithms is that the patient dose could be significantly reduced.

  11. Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Mettivier, Giovanni, E-mail: mettivier@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Russo, Paolo, E-mail: russo@na.infn.i [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, I-80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy); Cesarelli, Mario; Ospizio, Roberto [Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni, Universita di Napoli Federico II, I-80125 Napoli (Italy); Passeggio, Giuseppe; Roscilli, Lorenzo; Pontoriere, Giuseppe; Rocco, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80126 Napoli (Italy)

    2011-02-11

    We describe the design, realization and basic tests of a prototype Cone-Beam Breast Computed Tomography (CBBCT) scanner, combined with a SPECT head consisting of a compact pinhole gamma camera based on a photon counting CdTe hybrid pixel detector. The instrument features a 40 {mu}m focal spot X-ray tube, a 50 {mu}m pitch flat panel detector and a 1-mm-thick, 55 {mu}m pitch CdTe pixel detector. Preliminary imaging tests of the separate CT and gamma-ray units are presented showing a resolution in CT of 3.2 mm{sup -1} at a radial distance of 50 mm from the rotation axis and that the 5 and 8 mm hot masses ({sup 99m}Tc labeled with a 15:1 activity ratio with respect to the background) can be detected in planar gamma-ray imaging with a contrast-to-noise ratio of about 4.

  12. A dual centre study of setup accuracy for thoracic patients based on Cone-Beam CT data

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Vibeke N; Westberg, Jonas;

    2011-01-01

    BACKGROUND AND PURPOSE: To compare setup uncertainties at two different institutions by using identical imaging and analysis techniques for thoracic patients with different fixation equipments. METHODS AND MATERIALS: Patient registration results from Cone-Beam CT (CBCT) scans of 174 patients were...

  13. Influence of object location in different FOVs on trabecular bone microstructure measurements of human mandible: a cone beam CT study

    NARCIS (Netherlands)

    Ibrahim, N.; Parsa, A.; Hassan, B.; van der Stelt, P.; Aartman, I.H.A.; Nambiar, P.

    2014-01-01

    The aim of this study was to assess the influence of different object locations in different fields of view (FOVs) of two cone beam CT (CBCT) systems on trabecular bone microstructure measurements of a human mandible. A block of dry human mandible was scanned at five different locations (centre, lef

  14. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M;

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  15. High-dose-rate prostate brachytherapy based on registered transrectal ultrasound and in-room cone-beam CT images

    NARCIS (Netherlands)

    Even, Aniek J.G.; Nuver, Tonnis T.; Westendorp, Hendrik; Hoekstra, Carel J.; Slump, C.H.; Minken, Andre W.

    2014-01-01

    Purpose To present a high-dose-rate (HDR) brachytherapy procedure for prostate cancer using transrectal ultrasound (TRUS) to contour the regions of interest and registered in-room cone-beam CT (CBCT) images for needle reconstruction. To characterize the registration uncertainties between the two ima

  16. Investigation of saddle trajectories for cardiac CT imaging in cone-beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Jed D [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT 84112 (United States); Kudo, H [Department of Computer Science, Graduate School of Systems and Information Engineering, University of Tsukuba (Japan)

    2004-06-07

    This paper investigates cone-beam tomography for a wide class of x-ray source trajectories called saddles. In particular, a mathematical analysis of the number of intersections between a saddle and an arbitrary plane is given. This analysis demonstrates that axially truncated cone-beam projections acquired along a saddle can be used for exact reconstruction at any point in a large volume. The reconstruction can be achieved either using a new algorithm presented herein or using a formula recently introduced by Katsevich (2003 Int. J. Math. Math. Sci. 21 1305-21). The shape of the reconstructed volume and the properties of saddles make saddles attractive for cardiac imaging. Three examples of saddles are presented with a discussion of implementation on devices similar to modern C-arm systems and multislice CT scanners. Reconstruction with one of these saddles has been tested using computer-simulated data, with and without truncation. The imaged phantom for the truncated data is a FORBILD head phantom (representing the heart) that has been modified and embedded inside the FORBILD thorax phantom. The non-truncated data were generated by excluding the thorax. The reconstructed images demonstrate the accuracy of the mathematical results.

  17. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  18. Differences between panoramic and Cone Beam-CT in the surgical evaluation of lower third molars

    Science.gov (United States)

    Rodriguez y Baena, Ruggero; Beltrami, Riccardo; Tagliabo, Angelo; Rizzo, Silvana

    2017-01-01

    Background The aim of this study was to evaluate the ability to identify the contiguity between the root of the mandibular third molar and the mandibular canal (MC) in panoramic radiographs compared with Cone Beam-CT. Material and Methods Panoramic radiographs of 326 third molars and CBCT radiographs of 86 cases indicated for surgery and considered at risk were evaluated. The following signs were assessed in panoramic radiographs as risk factors: radiolucent band, loss of MC border, change in MC direction, MC narrowing, root narrowing, root deviation, bifid apex, superimposition, and contact between the root third molar and the MC. Results Radiographic signs associated with absence of MC cortical bone are: radiolucent band, loss of MC border, change in MC direction, and superimposition. The number of risk factors was significantly increased with an increasing depth of inclusion. CBCT revealed a significant association between the absence of MC cortical bone and a lingual or interradicular position of the MC. Conclusions In cases in which panoramic radiographs do not exclude contiguity between the MC and tooth, careful assessment the signs and risks on CBCT radiographs is indicated for proper identification of the relationships between anatomic structures. Key words:Panoramic radiography, Cone-Beam computed tomography, third molar, mandibular nerve. PMID:28210446

  19. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  20. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  1. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam

  2. Comparison measurements of DQE for two flat panel detectors: fluoroscopic detector vs. cone beam CT detector

    Science.gov (United States)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David

    2006-03-01

    The physical performance of two flat panel detectors (FPD) has been evaluated using a standard x-ray beam quality set by IEC, namely RQA5. The FPDs evaluated in this study are based on an amorphous silicon photodiode array that is coupled to a thallium-doped Cesium Iodide scintillator and to a thin film transistor (TFT) array. One detector is the PaxScan 2520 that is designed for fluoro imaging, and has a small dynamic range and a large image lag. The other detector is the PaxScan 4030CB that is designed for cone beam CT, and has a large dynamic range (>16-bit), a reduced image lag and many imaging modes. Varian Medical Systems manufactured both detectors. The linearity of the FPDs was investigated by using an ionization chamber and aluminum filtration in order to obtain the beam quality. Since the FPDs are used in fluoroscopic mode, image lag of the FPD was measured in order to investigate its effect on this study, especially its effect on DQE. The spatial resolution of the FPDs was determined by obtaining the pre-sampling modulation transfer function for each detector. A sharp edge was used in accordance to IEC 62220-1. Next, the Normalized Noise Power Spectrum (NNPS) was calculated for various exposures levels at RQA5 radiation quality. Finally, the DQE of each FPD was obtained with a modified version of the international standard set by IEC 62220-1. The results show that the physical performance in DQE and MTF of the PaxScan 4030CB is superior to that of PaxScan2520.

  3. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    Science.gov (United States)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  4. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  5. Volume-of-change cone-beam CT for image-guided surgery

    Science.gov (United States)

    Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.

    2012-08-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.

  6. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  7. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Tolakanahalli, Ranjini [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Ramasubramanian, V. [School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States); Welsh, James S. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Rong, Yi, E-mail: rong@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States)

    2012-07-01

    This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each 'planning scan' to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.

  8. Task-driven image acquisition and reconstruction in cone-beam CT.

    Science.gov (United States)

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  9. Stereotactic radiosurgery for intradural spine tumors using cone-beam CT image guidance.

    Science.gov (United States)

    Monserrate, Andrés; Zussman, Benjamin; Ozpinar, Alp; Niranjan, Ajay; Flickinger, John C; Gerszten, Peter C

    2017-01-01

    OBJECTIVE Cone-beam CT (CBCT) image guidance technology has been widely adopted for spine radiosurgery delivery. There is relatively little experience with spine radiosurgery for intradural tumors using CBCT image guidance. This study prospectively evaluated a series of intradural spine tumors treated with radiosurgery. Patient setup accuracy for spine radiosurgery delivery using CBCT image guidance for intradural spine tumors was determined. METHODS Eighty-two patients with intradural tumors were treated and prospectively evaluated. The positioning deviations of the spine radiosurgery treatments in patients were recorded. Radiosurgery was delivered using a linear accelerator with a beam modulator and CBCT image guidance combined with a robotic couch that allows positioning correction in 3 translational and 3 rotational directions. To measure patient movement, 3 quality assurance CBCTs were performed and recorded in 30 patients: before, halfway, and after the radiosurgery treatment. The positioning data and fused images of planning CT and CBCT from the treatments were analyzed to determine intrafraction patient movements. From each of 3 CBCTs, 3 translational and 3 rotational coordinates were obtained. RESULTS The radiosurgery procedure was successfully completed for all patients. Lesion locations included cervical (22), thoracic (17), lumbar (38), and sacral (5). Tumor histologies included schwannoma (27), neurofibromas (18), meningioma (16), hemangioblastoma (8), and ependymoma (5). The mean prescription dose was 17 Gy (range 12-27 Gy) delivered in 1-3 fractions. At the halfway point of the radiation, the translational variations and standard deviations were 0.4 ± 0.5, 0.5 ± 0.8, and 0.4 ± 0.5 mm in the lateral (x), longitudinal (y), and anteroposterior (z) directions, respectively. Similarly, the variations immediately after treatment were 0.5 ± 0.4, 0.5 ± 0.6, and 0.6 ± 0.5 mm along x, y, and z directions, respectively. The mean rotational angles were 0

  10. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery.

    Science.gov (United States)

    Reaungamornrat, S; Wang, A S; Uneri, A; Otake, Y; Khanna, A J; Siewerdsen, J H

    2014-07-21

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  11. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    Science.gov (United States)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons

  12. Self-calibration of a cone-beam micro-CT system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S. [Toshiba Stroke Research Center, Department of Physics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); The Supercomputing Institute for Advanced Computational Research, University of Minnesota at Twin Cities, Minneapolis, Minnesota 55455 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, Department of Physics, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Neurosurgery, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physics, and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Toshiba Stroke Research Center, Department of Radiology, Department of Neurosurgery, Department of Physiology and Biophysics, Department of Mechanical and Aerospace Engineering, and Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only

  13. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands)

    2014-06-15

    Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different

  14. TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  15. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  16. On board imaging with cone beam C.B.C.T. kV VARIAN{sup TM}: Montauban's radiation therapy department experience; Systeme d'imagerie par tomographie conique de basse energie (kV)de Varian{sup TM}: experience de Montauban

    Energy Technology Data Exchange (ETDEWEB)

    Dudouet, P.; Boutry, C.; Mounie, G.; Thouveny, F.; Redon, A. [Clinique du Pont-de-Chaume, Groupe Oncorad Garonne, Service d' Oncologie, 82 - Montauban (France); Latorzeff, I. [Clinique Pasteur, L' Atrium, Service de Radiotherapie, Groupe Oncorad Garonne, 31 - Toulouse (France)

    2009-09-15

    Purpose: To describe our practice day to day with a Variant linac 'Clinac 2100' fully equipped with an On Board Imager (O.B.I.) for patients with prostate cancer. Materials and methods: A volumetric and dosimetric study was performed in 2006 using Artiview software (Aquilab) for nine patients and 76 Cone Beam CT kV (C.B.C.T. kV). We have contoured targets and organs at risk from C.B.C.T. kV slides acquisitions. Second, we achieved a dose-volume histogram (D.V.H.) study for a patient treated in 2007 with I.M.R.T. technique in comparison with the 2006 study. Results: 2006 analysis: The study showed a very important variability of organ measurements. Seminal vesicles were strongly influenced by adjacent organs; observed differences for prostate could be explained by contouring uncertainty on the apex. Inter-sessions motions could be observed for bladder, rectum and seminal vesicles (S.V.). Part of prostate volume not encompassed by P.T.V. is about 2.5%; V.S. volume outside P.T.V. is about 35%. Tumoral conformation index (T.C.I.) is inferior to 97.5% in 22% of all cases. Anteroposterior displacements of the prostate barycentre is superior to 5 mm. From this analysis, we recommended the strict respect of hygieno-dietetic rules, and we have adapted the system settings for better immobilization, which were applied for the 2007 study. For the 2007 analysis, since April 2007, most of patients are treated with I.M.R.T. for prostate cancer, at the second part of the radiation therapy to encompass only the prostate volume. Dose-volume histograms showed a great spreading out for 2006 patients, and not for the 2007 patient. Conclusions: Intensity modulation radiotherapy (I.M.R.T.) and image guided radiotherapy (I.G.R.T.) should permit a margin reduction for P.T.V.. Strict respect of hygieno-dietetics rules is necessary to avoid rectal distension and local recurrence. (authors)

  17. Automatic delineation of body contours on cone-beam CT images using a delineation booster

    Science.gov (United States)

    Stippel, G.; van Rooijen, D. C.; Crezee, J.; Bel, A.

    2012-07-01

    In radiotherapy, cone-beam computerized tomography (CBCT) scans are used for position correction for various tumour sites. At the start of the treatment, a CT scan that serves as input for a treatment planning is acquired. A CBCT scan is made prior to the irradiation of the tumour. Because there might be significant interfractional tumour movement, online recalculation of the dose improves decision making on how to proceed. A prerequisite for such recalculation is an accurately delineated body contour. In this note, we present an automatic delineation method for the body contour in the unprocessed CBCT scans, that employs a novel delineation boosting technique. The main idea of this technique is to construct an accurate delineation by combining the strength of several edge detectors in an innovative way. Quantitative validation reveals that the algorithm performs comparably with the manual delineations of two trained observers. Furthermore, because of the generic nature of the delineation boosting procedure, the algorithm can easily be extended with additional edge detectors to further increase the accuracy. Finally, the processing time of one scan when delineated manually is 3 h, and the total processing time is 24 min for one scan if the algorithm is used in its present form. Current investigation includes the conversion of the Matlab algorithm to C++ and the development of a visual tool to quickly detect which automatically delineated slices need manual correction. From this we expect further speeding up of the process, allowing online computation.

  18. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  19. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    Science.gov (United States)

    Gonzalez, Albin; Bauer, Lisa; Kinney, Vicki; Crooks, Cheryl

    2008-03-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as "Image Guided Radiation Therapy" or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  20. Implementation of the FDK algorithm for cone-beam CT on the cell broadband engine architecture

    Science.gov (United States)

    Scherl, Holger; Koerner, Mario; Hofmann, Hannes; Eckert, Wieland; Kowarschik, Markus; Hornegger, Joachim

    2007-03-01

    In most of today's commercially available cone-beam CT scanners, the well known FDK method is used for solving the 3D reconstruction task. The computational complexity of this algorithm prohibits its use for many medical applications without hardware acceleration. The brand-new Cell Broadband Engine Architecture (CBEA) with its high level of parallelism is a cost-efficient processor for performing the FDK reconstruction according to the medical requirements. The programming scheme, however, is quite different to any standard personal computer hardware. In this paper, we present an innovative implementation of the most time-consuming parts of the FDK algorithm: filtering and back-projection. We also explain the required transformations to parallelize the algorithm for the CBEA. Our software framework allows to compute the filtering and back-projection in parallel, making it possible to do an on-the-fly-reconstruction. The achieved results demonstrate that a complete FDK reconstruction is computed with the CBEA in less than seven seconds for a standard clinical scenario. Given the fact that scan times are usually much higher, we conclude that reconstruction is finished right after the end of data acquisition. This enables us to present the reconstructed volume to the physician in real-time, immediately after the last projection image has been acquired by the scanning device.

  1. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Benson, T M; Gregor, J [Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-3450 (United States)

    2006-09-21

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  2. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    Science.gov (United States)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  3. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas;

    2009-01-01

    and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...... error in the calibration of coronal isocentric laser. The observed SD of the systematic error in each direction is 1 mm if a correction is made after the third fraction with an action limit of 4 mm. The SD of the random errors of the patient group is approximately 1 mm in each direction. The rotational...... errors have a vanishing mean and a systematic error of 0.5 1.2 degrees and a random error of 0.40.7 degrees. The uncertainties from the first three treatment sessions (disregarding rotations) lead to a margin of 4 mm from ITV to PTV for Head-and-Neck patients (all directions) and Thorax patients (AP...

  4. An experimental cone-beam micro-CT system for small animal imaging

    Science.gov (United States)

    Zhu, Shouping; Tian, Jie; Yan, Guorui; Qin, Chenghu; Liu, Junting

    2009-02-01

    An experimental cone-beam Micro-CT system for small animal imaging is presented in the paper. The system is designed to obtain high-resolution anatomic information and will be integrated with our bioluminescence tomography system. A flat panel X-ray detector (CMOS technology with a column CsI scintillator plate, 50 micron pixel size, 120 mm × 120 mm photodiode area) and a micro-focus X-ray source (13 to 40 μm of focal spot size) are used in the system. The object (mouse or rat) is placed on a three-degree (two translations and one rotation) programming stage and could be located to an accurate position in front of the detector. The large field of view (FOV) of the system allows us to acquire the whole body imaging of a normal mouse in one scanning which usually takes about 6 to 15 minutes. Raw data from X-ray detector show spatial variation caused by dark image offset, pixel gain and defective pixels, therefore data pre-processing is needed before reconstruction. Geometry calibrations are also used to reduce the artifacts caused by geometric misalignment. In order to accelerate FDK filtered backprojection method, we develop a reconstruction software using GPU hardware in our system. System spacial resolution and image uniformity and voxel noise have been assessed and mouse reconstruction images are illuminated in the paper. Experiment results show that this system is suitable for small animal imaging.

  5. Clinical usefulness of c-arm cone-beam CT inpercutaneous drainage of inaccessible abscess

    Energy Technology Data Exchange (ETDEWEB)

    So, Young Ho; Choi, Young Ho; Woo, Hyun Sik; Moon, Min Hoan; Sung, Chang Kyu [Dept. of Radiology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Hur, Bo Yun [Dept. of Radiology, National Cancer Center, Goyang (Korea, Republic of)

    2015-08-15

    The objective of this study was to evaluate the usefulness of C-arm cone-beam CT (CBCT) in drainage of inaccessible abscesses. To identify the trajectory of the needle or guide wire, CBCT was performed on 21 patients having an inaccessible abscess. CBCT was repeated until proper targeting of the abscess was achieved, before the insertion of a large bore catheter. The etiology, location of the abscess, causes of inaccessibility, radiation dose, technical and clinical success rates of drainage, and any complications confronted, were evaluated. A total of 29 CBCTs were performed for 21 abscesses. Postoperative and non-postoperative abscesses were 9 (42.9%) and 12 (57.1%) in number, respectively. Direct puncture was performed in 18 cases. In 3 cases, the surgical drain or the fistula opening was used as an access route. The causes of inaccessibility were narrow safe window due to adjacent or overlying organs (n = 9), irregularly dispersed abscess (n = 7), deep location with poor sonographic visualization (n = 4), and remote location of the abscess from surgical drain (n = 1). Technical and clinical successes were 95.5% and 100%, respectively. Cumulative air kerma and dose-area product were 21.62 ± 5.41 mGy and 9179.87 ± 2337.70 mGycm2, respectively. There were no procedure related complications. CBCT is a useful technique for identifying the needle and guide wire during drainage of inaccessible abscess.

  6. Segmentation of cone-beam CT using a hidden Markov random field with informative priors

    Science.gov (United States)

    Moores, M.; Hargrave, C.; Harden, F.; Mengersen, K.

    2014-03-01

    Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.

  7. Pseudo super-resolution for improved calcification characterization for cone beam breast CT (CBBCT)

    Science.gov (United States)

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing

    2010-04-01

    Cone Beam Breast CT imaging (CBBCT) is a promising tool for diagnosis of breast tumors and calcifications. However, as the sizes of calcifications in early stages are very small, it is not easy to distinguish them from background tissues because of the relatively high noise level. Therefore, it is necessary to enhance the visualization of calcifications for accurate detection. In this work, the Papoulis-Gerchberg (PG) method was introduced and modified to improve calcification characterization. PG method is an iterative algorithm of signal extrapolation and has been demonstrated to be very effective in image restoration like super-resolution (SR) and inpainting. The projection images were zoomed by bicubic interpolation method, then the modified PG method were applied to improve the image quality. The reconstruction from processed projection images showed that this approach can effectively improve the image quality by improving the Modulation Transfer Function (MTF) with a limited increase in noise level. As a result, the detectability of calcifications was improved in CBBCT images.

  8. A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

    CERN Document Server

    Jia, Xun; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-01-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scali...

  9. GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    CERN Document Server

    Jia, Xun; Lou, Yifei; Jiang, Steve B

    2010-01-01

    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512x512x70 can be reconstructed in about ~139 sec. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm leads to much higher CBCT quality than those obtained from a conventional FDK algorithm in the context of undersamp...

  10. GPU-based Cone Beam CT Reconstruction via Total Variation Regularization

    CERN Document Server

    Jia, Xun; Lewis, John; Li, Ruijiang; Gu, Xuejun; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) reconstruction is of central importance in image guided radiation therapy due to its broad applications in many clinical contexts. However, the high image dose in CBCT scans is a clinical concern, especially when it is used repeatedly for patient setup purposes before each radiotherapy treatment fraction. A desire for lower imaging does has motivated a vast amount of interest in the CBCT reconstruction based on a small number of X-ray projections. Recently, advances in image processing and compressed sensing have led to tremendous success in recovering signals based on extremely low sampling rates, laying the mathematical foundation for reconstructing CBCT from few projections. In this paper, we present our recent development on a GPU-based iterative algorithm for the highly under-sampled CBCT reconstruction problem. We considered an energy functional consisting of a data fidelity term and a regularization term of a total variation norm. In order to solve our model, we developed a modified...

  11. CT metal artifact reduction method correcting for beam hardening and missing projections

    Science.gov (United States)

    Verburg, Joost M.; Seco, Joao

    2012-05-01

    We present and validate a computed tomography (CT) metal artifact reduction method that is effective for a wide spectrum of clinical implant materials. Projections through low-Z implants such as titanium were corrected using a novel physics correction algorithm that reduces beam hardening errors. In the case of high-Z implants (dental fillings, gold, platinum), projections through the implant were considered missing and regularized iterative reconstruction was performed. Both algorithms were combined if multiple implant materials were present. For comparison, a conventional projection interpolation method was implemented. In a blinded and randomized evaluation, ten radiation oncologists ranked the quality of patient scans on which the different methods were applied. For scans that included low-Z implants, the proposed method was ranked as the best method in 90% of the reviews. It was ranked superior to the original reconstruction (p = 0.0008), conventional projection interpolation (p implants, and better as compared to the original reconstruction (p combining algorithms tailored to specific types of implant materials.

  12. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam CT

    Science.gov (United States)

    de Oliveira, Ana Emilia F.; Cevidanes, Lucia Helena S.; Phillips, Ceib; Motta, Alexandre; Burke, Brandon; Tyndall, Donald

    2009-01-01

    Objective To evaluate reliability in 3D landmark identification using Cone-Beam CT. Study Design Twelve pre-surgery CBCTs were randomly selected from 159 orthognathic surgery patients. Three observers independently repeated three times the identification of 30 landmarks in the sagittal, coronal, and axial slices. A mixed effects ANOVA model estimated the Intraclass Correlations (ICC) and assessed systematic bias. Results The ICC was >0.9 for 86% of intra-observer assessments and 66% of inter-observer assessments. Only 1% of intra-observer and 3% of inter-observer coefficients were <0.45. The systematic difference among observers was greater in X and Z than in Y dimensions, but the maximum mean difference was quite small. Conclusion Overall, the intra- and inter-observer reliability was excellent. 3D landmark identification using CBCT can offer consistent and reproducible data, if a protocol for operator training and calibration is followed. This is particularly important for landmarks not easily specified in all three planes of space. PMID:18718796

  13. Predicting factors for conversion from fluoroscopy guided Percutaneous transthoracic needle biopsy to cone-beam CT guided Percutaneous transthoracic needle biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Ji; Han, Young Min; Jin, Gong Yong; Song, Ji Soo [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2015-10-15

    To evaluate the predicting factors for conversion from fluoroscopy guided percutaneous transthoracic needle biopsy (PTNB) to cone-beam CT guided PTNB. From January 2011 to December 2012, we retrospectively identified 38 patients who underwent cone-beam CT guided PTNB with solid pulmonary lesions, and 76 patients who underwent fluoroscopy guided PTNB were matched to the patients who underwent cone-beam CT guided PTNB for age, sex, and lesion location. We evaluated predicting factors such as, long-axis diameter, short-axis diameter, anterior-posterior diameter, and CT attenuation value of the solid pulmonary lesion affecting conversion from fluoroscopy guided PTNB to cone-beam CT guided PTNB. Pearson χ{sup 2} test, Fisher exact test, and independent t test were used in statistical analyses; in addition, we also used receiver operating characteristics curve to find the proper cut-off values affecting the conversion to cone-beam CT guided PTNB. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent fluoroscopy guided PTNB were 2.70 ± 1.57 cm, 3.40 ± 1.92 cm, 3.06 ± 1.81 cm, and 35.67 ± 15.70 Hounsfield unit (HU), respectively. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent cone-beam CT guided PTNB were 1.60 ± 1.30 cm, 2.20 ± 1.45 cm, 1.91 ± 1.99 cm, and 18.32 ± 23.11 HU, respectively. Short-axis, long-axis, anterior-posterior diameter, and CT attenuation value showed a significantly different mean value between the 2 groups (p = 0.001, p < 0.001, p = 0.003, p < 0.001, respectively). Odd ratios of CT attenuation value and short-axis diameter of the solid pulmonary lesion were 0.952 and 0.618, respectively. Proper cut-off values affecting the conversion to cone-beam CT guided PTNB were 1.65 cm (sensitivity 68.4%, specificity 71.1%) in short-axis diameter and 29.50 HU (sensitivity 65.8%, specificity 65

  14. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    Science.gov (United States)

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  15. Theoretical aspects of implementation of kilovoltage cone-beam CT onboard linear accelerator for image-guided radiotherapy.

    Science.gov (United States)

    Rodríguez Cordón, Marta; Ferrer Albiach, Carlos

    2009-08-01

    The main objective of image-guided radiation therapy (IGRT) equipment is to reduce and correct inherent errors in external radiotherapy processes. At the present time, there are different IGRT systems available, but here we will refer exclusively to the kilovoltage cone-beam CT onboard linear accelerator (CBkVCT) and the different aspects that, from a clinical point of view, should be taken into consideration before the implementation of this equipment.

  16. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T. [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R. [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T. [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  17. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mozzo, P. [Dept. of Medical Physics, University Hospital, Verona (Italy); Procacci, C.; Tacconi, A.; Tinazzi Martini, P.; Bergamo Andreis, I.A. [Dept. of Radiology, University Hospital, Verona (Italy)

    1998-12-01

    The objective of this paper is to present a new type of volumetric CT which uses the cone-beam technique instead of traditional fan-beam technique. The machine is dedicated to the dento-maxillo-facial imaging, particularly for planning in the field of implantology. The main characteristics of the unit are presented with reference to the technical parameters as well as the software performance. Images obtained are reported as various 2D sections of a volume reconstruction. Also, measurements of the geometric accuracy and the radiation dose absorbed by the patient are obtained using specific phantoms. Absorbed dose is compared with that given off by spiral CT. Geometric accuracy, evaluated with reference to various reconstruction modalities and different spatial orientations, is 0.8-1 % for width measurements and 2.2 % for height measurements. Radiation dose absorbed during the scan shows different profiles in central and peripheral axes. As regards the maximum value of the central profile, dose from the new unit is approximately one sixth that of traditional spiral CT. The new system appears to be very promising in dento-maxillo-facial imaging and, due to the good ratio between performance and low cost, together with low radiation dose, very interesting in view of large-scale use of the CT technique in such diagnostic applications. (orig.) With 10 figs., 3 tabs., 15 refs.

  18. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)

    2016-04-15

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  19. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    .9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

  20. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 pmeasured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; pBH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  1. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  2. Linac-integrated 4D cone beam CT: first experimental results

    Science.gov (United States)

    Dietrich, Lars; Jetter, Siri; Tücking, Thomas; Nill, Simeon; Oelfke, Uwe

    2006-06-01

    A new online imaging approach, linac-integrated cone beam CT (CBCT), has been developed over the past few years. It has the advantage that a patient can be examined in their treatment position directly before or during a radiotherapy treatment. Unfortunately, respiratory organ motion, one of the largest intrafractional organ motions, often leads to artefacts in the reconstructed 3D images. One way to take this into account is to register the breathing phase during image acquisition for a phase-correlated image reconstruction. Therefore, the main focus of this work is to present a system which has the potential to investigate the correlation between internal (movement of the diaphragm) and external (data of a respiratory gating system) information about breathing phase and amplitude using an inline CBCT scanner. This also includes a feasibility study about using the acquired information for a respiratory-correlated 4D CBCT reconstruction. First, a moving lung phantom was used to develop and to specify the required methods which are based on an image reconstruction using only projections belonging to a certain moving phase. For that purpose, the corresponding phase has to be detected for each projection. In the case of the phantom, an electrical signal allows one to track the movement in real time. The number of projections available for the image reconstruction depends on the breathing phase and the size of the position range from which projections should be used for the reconstruction. The narrower this range is, the better the inner structures can be located, but also the noise of the images increases due to the limited number of projections. This correlation has also been analysed. In a second step, the methods were clinically applied using data sets of patients with lung tumours. In this case, the breathing phase was detected by an external gating system (AZ-733V, Anzai Medical Co.) based on a pressure sensor attached to the patient's abdominal region with a

  3. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study.

    NARCIS (Netherlands)

    Loubele, M.; Maes, F.; Schutyser, F.A.C.; Marchal, G.; Jacobs, R.; Suetens, P.

    2006-01-01

    OBJECTIVES: The objective of this study was to quantitatively assess the quality of jawbone models generated from cone beam computed tomography (CBCT) by comparison with similar models obtained from multislice spiral computed tomography (MSCT). MATERIAL AND METHODS: Three case studies were performed

  4. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Insoo; Han, Bumsoo [EB Tech, Co., Ltd., 550 Yongsan-dong, Yuseong-gu, Daejeon 305-500 (Korea, Republic of)

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  5. A prototype fan-beam optical CT scanner for 3D dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The

  6. TU-EF-207-05: Dedicated Cone-beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S. [Univ. of Massachusetts Medical School (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  7. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  8. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Corpas, Livia, E-mail: LiviaCorpas@gmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Souza, Paulo Couto, E-mail: Paulo.CoutoSouza@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Martens, Wendy, E-mail: wendy.martens@uhasselt.b [Department of Basic Medical Sciences, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Shahbazian, Maryam, E-mail: Maryam.Shahbazian@student.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Alonso, Arie, E-mail: ariel.alonso@uhasselt.b [Department of Biostatistics and Statistical Bioinformatics, Universiteit Hasselt (Belgium)

    2010-08-15

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  9. Beam hardening and motion artifacts in cardiac CT: evaluation and iterative correction method

    Science.gov (United States)

    Shen, Zeyang; Lee, Okkyun; Taguchi, Katsuyuki

    2016-03-01

    For myocardial perfusion CT exams, beam hardening (BH) artifacts may degrade the accuracy of myocardial perfusion defect detection. Meanwhile, cardiac motion may make BH process inconsistent, which makes conventional BH correction (BHC) methods ineffective. The aims of this study were to assess the severity of BH artifacts and motion artifacts and propose a projection-based iterative BHC method which has a potential to handle the motion-induced inconsistency better than conventional methods. In this study, four sets of forward projection data were first acquired using both cylindrical phantoms and cardiac images as objects: (1) with monochromatic x-rays without motion; (2) with polychromatic x-rays without motion; (3) with monochromatic x-rays with motion; and (4) with polychromatic x-rays with motion. From each dataset, images were reconstructed using filtered back projection; for datasets 2 and 4, one of the following BHC methods was also performed: (A) no BHC; (B) BHC that concerns water only; and (C) BHC that takes both water and iodine into account, which is an iterative method we developed in this work. Biases of images were quantified by the mean absolute difference (MAD). The MAD of images with BH artifacts alone (dataset 2, without BHC) was comparable or larger than that of images with motion artifacts alone (dataset 3): In the study of cardiac image, BH artifacts account for over 80% of the total artifacts. The use of BHC was effective: with dataset 4, MAD values were 170 HU with no BHC, 54 HU with water BHC, and 42 HU with the proposed BHC. Qualitative improvements in image quality were also noticeable in reconstructed images.

  10. Library-based scatter correction for dedicated cone beam breast CT: a feasibility study

    Science.gov (United States)

    Shi, Linxi; Vedantham, Srinivasan; Karellas, Andrew; Zhu, Lei

    2016-04-01

    Purpose: Scatter errors are detrimental to cone-beam breast CT (CBBCT) accuracy and obscure the visibility of calcifications and soft-tissue lesions. In this work, we propose practical yet effective scatter correction for CBBCT using a library-based method and investigate its feasibility via small-group patient studies. Method: Based on a simplified breast model with varying breast sizes, we generate a scatter library using Monte-Carlo (MC) simulation. Breasts are approximated as semi-ellipsoids with homogeneous glandular/adipose tissue mixture. On each patient CBBCT projection dataset, an initial estimate of scatter distribution is selected from the pre-computed scatter library by measuring the corresponding breast size on raw projections and the glandular fraction on a first-pass CBBCT reconstruction. Then the selected scatter distribution is modified by estimating the spatial translation of the breast between MC simulation and the clinical scan. Scatter correction is finally performed by subtracting the estimated scatter from raw projections. Results: On two sets of clinical patient CBBCT data with different breast sizes, the proposed method effectively reduces cupping artifact and improves the image contrast by an average factor of 2, with an efficient processing time of 200ms per conebeam projection. Conclusion: Compared with existing scatter correction approaches on CBBCT, the proposed library-based method is clinically advantageous in that it requires no additional scans or hardware modifications. As the MC simulations are pre-computed, our method achieves a high computational efficiency on each patient dataset. The library-based method has shown great promise as a practical tool for effective scatter correction on clinical CBBCT.

  11. SU-E-I-11: A New Cone-Beam CT System for Bedside Head Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H; Zeng, W; Xu, P; Wang, Z; Xing, X; Sun, M [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Jiangsu (China)

    2015-06-15

    Purpose: To design and develop a new mobile cone-beam CT (CBCT) system for head imaging with good soft-tissue visibility, to be used bedside in ICU and neurosurgery department to monitor treatment and operation outcome in brain patients. Methods: The imaging chain consists of a 30cmx25cm amorphous silicon flat panel detector and a pulsed, stationary anode monoblock x-ray source of 100kVp at a maximal tube current of 10mA. The detector and source are supported on motorized mechanisms to provide detector lateral shift and source angular tilt, enabling a centered digital radiographic imaging mode and half-fan CBCT, while maximizing the use of the x-ray field and keep the source to detector distance short. A focused linear anti-scatter grid is mounted on the detector, and commercial software with scatter and other corrective algorithms is used for data processing and image reconstruction. The gantry rotates around a horizontal axis, and is able to adjust its height for different patient table positions. Cables are routed through a custom protective sleeve over a large bore with an in-plane twister band, facilitating single 360-degree rotation without a slip-ring at a speed up to 5 seconds per rotation. A UPS provides about 10 minutes of operation off the battery when unplugged. The gantry is on locked casters, whose brake is control by two push handles on both sides for easy reposition. The entire system is designed to have a light weight and a compact size for excellent maneuverability. Results: System design is complete and main imaging components are tested. Initial results will be presented and discussed later in the presentation. Conclusion: A new mobile CBCT system for head imaging is being developed. With its compact size, a large bore, and quality design, it is expected to be a useful imaging tool for bedside uses. The work is supported by a grant from Chinese Academy of Sciences.

  12. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  13. Design of 150kV bouncer modulator

    Institute of Scientific and Technical Information of China (English)

    TAO Xiao-Ping; Stefan CHOROBA

    2003-01-01

    The 150 kV bouncer modulator is designed to drive the 10 MW multi-beam klystron for the DESYTESLA Test Facility. The modulator is different from the 10 kV modulators previously built at Fermilab. First, thenew 150 kV bouncer modulator has no transformer, so the modulator circuit is simplified and the output waveform isimproved well. Second, the bouncer circuit has been changed to fit the output need, which is the most significantchallenge. This paper gives the design of the 150 kV long pulse bouncer modulator.

  14. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners

    NARCIS (Netherlands)

    Ay, Mohammad Reza; Mehranian, Abolfazi; Maleki, Asghar; Ghadiri, Hossien; Ghafarian, Pardis; Zaidi, Habib

    2013-01-01

    Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence o

  15. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Zimmermann, S. J.; Rowshanfarzad, P.; Ebert, M. A.

    2015-01-01

    ) and the radiation field centre (RFC) is calculated. A software package was developed for accurate calculation of the linac isocentre position. This requires precise determination of the position of the ball bearing and the RFC. Results: Data were acquired for 6 MV, 18 MV and flattening filter free (FFF) 6 MV FFF...... radiation isocentre prior to routine use of the cone-beam CT system. The isocentre determination method used in the XVI software is not available to users. The aim of this work is to perform an independent evaluation of the Elekta XVI 4.5 software for isocentre verification with focus on the robustness...... iView GT software. Two images were acquired at each cardinal gantry angle (-180o, -90o , 0o, 90o) at two opposing collimator angles. The images were exported to the conebeam CT software XVI 4.5 where the difference between the ball bearing position in the XYZ-room coordinates (IEC61217...

  16. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  17. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution

  18. SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Abouei, E; Ford, N [University of British Columbia, Vancouver, BC (Canada)

    2014-06-01

    Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJ to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm{sup 2}) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of

  19. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  20. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    Science.gov (United States)

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  1. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  2. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

    Energy Technology Data Exchange (ETDEWEB)

    Schernthaner, Ruediger Egbert [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States); Lin, MingDe [Philips Research North America, Ultrasound and Interventions (United States); Duran, Rafael; Chapiro, Julius; Wang, Zhijun; Geschwind, Jean-François, E-mail: jfg@jhmi.edu [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States)

    2015-08-15

    PurposeTo evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.MethodsThis retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.ResultsOf 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).ConclusionDPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE.

  3. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Momin, Mohammad A. [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: momin.orad@tmd.ac.jp; Okochi, Kiyoshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kiyoshi.orad@tmd.ac.jp; Watanabe, Hiroshi [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: hiro.orad@tmd.ac.jp; Imaizumi, Akiko [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: ima.orad@tmd.ac.jp; Omura, Ken [Oral Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: omura.osur@tmd.ac.jp; Amagasa, Teruo [Maxillofacial Surgery, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: t-amagasa.mfs@tmd.ac.jp; Okada, Norihiko [Diagnostic Oral Pathology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nokd.opth@tmd.ac.jp; Ohbayashi, Naoto [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: nao.orad@tmd.ac.jp; Kurabayashi, Tohru [Oral and Maxillofacial Radiology, Graduate School, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549 (Japan)], E-mail: kura.orad@tmd.ac.jp

    2009-10-15

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  4. Combined MV + kV inverse treatment planning for optimal kV dose incorporation in IGRT

    Science.gov (United States)

    Grelewicz, Zachary; Wiersma, Rodney D.

    2014-04-01

    Despite the existence of real-time kV intra-fractional tumor tracking strategies for many years, clinical adoption has been held back by concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work aims to solve this problem by investigating, for the first time, the use of convex optimization tools to optimally integrate this excess kV imaging dose into the MV therapeutic dose in order to make real-time kV tracking clinically feasible. Phase space files modeling both a 6 MV treatment beam and a kV on-board-imaging beam of a commercial LINAC were generated with BEAMnrc, and used to generate dose influence matrices in DOSXYZnrc for ten previously treated lung cancer patients. The dose optimization problem for IMRT, formulated as a quadratic problem, was modified to include additional constraints as required for real-time kV intra-fractional tracking. An interior point optimizer was used to solve the modified optimization problem. It was found that when using large kV imaging apertures during fluoroscopic tracking, combined MV + kV optimization lead to a 0.5%-5.17% reduction in the total number of monitor units assigned to the MV beam due to inclusion of the kV dose over the ten patients. This was accompanied by a reduction of up to 42% of the excess kV dose compared to standard MV IMRT with kV tracking. For all kV field sizes considered, combined MV + kV optimization provided prescription dose to the treatment volume coverage equal to the no-imaging case, yet superior to standard MV IMRT with non-optimized kV fluoroscopic tracking. With combined MV + kV optimization, it is possible to quantify in a patient specific way the dosimetric effect of real-time imaging on the patient. Such information is necessary when substantial kV imaging is performed.

  5. Combined Fluoroscopy- and CT-Guided Transthoracic Needle Biopsy Using a C-Arm Cone-Beam CT System: Comparison with Fluoroscopy-Guided Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Joo Yeon; Kim, Yoo Kyung; Shim, Sung Shine; Lim, Soo Mee [School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2011-02-15

    The aim of this study was to evaluate the usefulness of combined fluoroscopy- and CT-guided transthoracic needle biopsy (FC-TNB) using a cone beam CT system in comparison to fluoroscopy-guided TNB (F-TNB). We retrospectively evaluated 74 FC-TNB cases (group A) and 97 F-TNB cases (group B) to compare their respective diagnostic accuracies according to the size and depth of the lesion, as well as complications, procedure time, and radiation dose. The sensitivity for malignancy and diagnostic accuracy for small (< 30 mm in size) and deep ({>=} 50 mm in depth) lesions were higher in group A (91% and 94%, 92% and 94%) than in group B (73% and 81%, 84% and 88%), however not statistically significant (p > 0.05). Concerning lesions {>=} 30 mm in size and < 50 mm in depth, both groups displayed similar results (group A, 91% and 92%, 80% and 87%: group B, 90% and 92%, 86% and 90%). Pneumothorax occurred 26% of the time in group A and 14% for group B. The mean procedure time and patient skin dose were significantly higher in group A (13.6 {+-} 4.0 minutes, 157.1 {+-} 76.5 mGy) than in group B (9.0 {+-} 3.5 minutes, 21.9 {+-} 15.2 mGy) (p < 0.05). Combined fluoroscopy- and CT-guided TNB allows the biopsy of small (< 30 mm) and deep lesions ({>=} 50 mm) with high diagnostic accuracy and short procedure times, whereas F-TNB is still a useful method for large and superficial lesions with a low radiation dose

  6. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  7. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yimei, E-mail: yhuang2@hfhs.org; Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States)

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  8. High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Varslot, T.; Kingston, A.; Myers, G.; Sheppard, A. [Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2011-10-15

    conventional circular scan micro-CT. Conclusions: Autofocus-corrected, theoretically-exact cone-beam reconstruction is a viable option for reducing acquisition time in high-resolution micro-CT imaging. It also opens up the possibility of efficiently imaging long objects.

  9. Low-Dose and Scatter-Free Cone-Beam CT Imaging Using a Stationary Beam Blocker in a Single Scan: Phantom Studies

    Directory of Open Access Journals (Sweden)

    Xue Dong

    2013-01-01

    Full Text Available Excessive imaging dose from repeated scans and poor image quality mainly due to scatter contamination are the two bottlenecks of cone-beam CT (CBCT imaging. Compressed sensing (CS reconstruction algorithms show promises in recovering faithful signals from low-dose projection data but do not serve well the needs of accurate CBCT imaging if effective scatter correction is not in place. Scatter can be accurately measured and removed using measurement-based methods. However, these approaches are considered unpractical in the conventional FDK reconstruction, due to the inevitable primary loss for scatter measurement. We combine measurement-based scatter correction and CS-based iterative reconstruction to generate scatter-free images from low-dose projections. We distribute blocked areas on the detector where primary signals are considered redundant in a full scan. Scatter distribution is estimated by interpolating/extrapolating measured scatter samples inside blocked areas. CS-based iterative reconstruction is finally carried out on the undersampled data to obtain scatter-free and low-dose CBCT images. With only 25% of conventional full-scan dose, our method reduces the average CT number error from 250 HU to 24 HU and increases the contrast by a factor of 2.1 on Catphan 600 phantom. On an anthropomorphic head phantom, the average CT number error is reduced from 224 HU to 10 HU in the central uniform area.

  10. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  11. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  12. Assessment of protocols in cone-beam CT with symmetric and asymmetric beams usingeffective dose and air kerma-area product.

    Science.gov (United States)

    Batista, Wilson Otto; Soares, Maria Rosangela; de Oliveira, Marcus V L; Maia, Ana F; Caldas, Linda V E

    2015-06-01

    This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using thermoluminescent dosimeter (TLD) and the air kerma-area product (PKA) as the kerma index. The measurements were performed on two protocols used to obtain an image of the maxilla-mandible using the equipment GENDEX GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14cm×8.5cm-maxilla/mandible) and protocol [GX2] symmetrical beam (8.5cm×8.5cm-maxillary/mandible). LiF dosimeters inserted into a female anthropomorphic phantom were used. For both protocols, the value of PKA was evaluated using a PTW Diamentor E2 meter and the multimeter Radcal Rapidose system. The results obtained for the effective dose/PKA were separated by protocol image. [GX1]: 44.5µSv/478mGycm(2); [GX2]: 54.8µSv/507mGycm(2). Although the ratio of the diameters (14cm/8.5cm)=1.65, the ratio of effective dose values (44.5µSv/54.8µSv)=0.81, that is, the effective dose of the protocol with extended diameter is 19% smaller. The PKA values reveal very similar results between the two protocols. For the cases where the scanner uses an asymmetric beam to obtain images with large diameters that cover the entire face, there are advantages from the point of view of reducing the exposure of patients when compared to the use of symmetrical beam and/or to FOV images with a smaller diameter.

  13. MRI to CT prostate registration for improved targeting in cancer external beam radiotherapy.

    Science.gov (United States)

    Commandeur, Frederic; Simon, Antoine; Mathieu, Romain; Nassef, Mohamed; Ospina, Juan David; Rolland, Yan; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar

    2016-06-16

    External radiotherapy is a major clinical treatment for localized prostate cancer. Currently, computed tomography (CT) is used to delineate the prostate and to plan the radiotherapy treatment. However, CT images suffer from a poor soft tissue contrast and do not allow an accurate organ delineation. On the contrary, Magnetic resonance imaging (MRI) provides rich details and high soft tissue contrast, allowing tumor detection. Thus, the intra-individual propagation of MRI delineations towards the planning CT may improve tumor targeting. In this paper we introduce a new method to propagate MRI prostate delineations to the planning CT. In a first step, a random forest (RF) classification is performed to coarsely detect the prostate in the CT images, yielding a prostate probability membership for each voxel and a prostate hard segmentation. Then the registration is performed using a new similarity metric which maximizes the probability and the collinearity between the normals of the MR existing contour and the contour resulting from the CT classification. A first study on synthetic data was performed to analyze the influence of the metric parameters with different levels of noise. Then, the method was also evaluated on real MR-CT data using manual alignments and intraprostatic fiducial markers and compared to a classically used mutual information (MI) approach. The proposed metric outperformed MI by 7% in terms of Dice score coefficient (DSC), by 3.14 mm the Hausdorff Distance (HD) and 2.13 mm the markers position errors (MPE). Finally, the impact of registration uncertainties on the treatment planning was evaluated, demonstrating the potential advantage of the proposed approach in a clinical setup to define a precise target.

  14. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT

    Directory of Open Access Journals (Sweden)

    Guido eDees

    2016-01-01

    Full Text Available IntroductionThe goal of this investigation was to compare fusion of sequential cone beam CT volumes to the gold standard (fiducial registration in order to be able to analyze clinical CI migration with high accuracy in three dimensions. Materials and MethodsPaired time-lapsed cone beam CT volumes were performed on five human cadaver temporal bones and one human subject. These volumes were fused using 3D Slicer 4 and BRAINSFit software. Using a gold standard fiducial technique, the accuracy, robustness and performance time of the fusion process were assessed.Results This proposed fusion protocol achieves a sub voxel mean Euclidean distance of 0.05 millimeter in human cadaver temporal bones and 0.16 millimeter when applied to the described in vivo human synthetic data set in over 95% of all fusions. Performance times are less than two minutes.ConclusionHere a new and validated method based on existing techniques is described which could be used to accurately quantify migration of cochlear implant electrodes.

  15. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    Energy Technology Data Exchange (ETDEWEB)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.; Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Seghers, Dieter; Huber, Michael; Brehm, Marcus [Varian Medical Systems, Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Elstrøm, Ulrik V. [Department of Medical Physics, Aarhus University Hospital, Aarhus 8000 (Denmark)

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of a marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans

  16. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  17. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  18. Dose cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Maria Eugenia; Jacobs, Reinhilde [Dept. of Oral and Maxillofacial Surgery, University Hospitals, Leuven (Belgium); Norge, Jorge; Castro, Carmen [Master of Periodontology, Universidad San Martin de Porres, Lima (Peru)

    2014-06-15

    The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone.

  19. SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Zhang, J; Hu, Q; Tie, J; Wu, H [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital ' Institute, Beijing (China); Deng, J [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2014-06-01

    Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with interval of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality

  20. An autopsy case of otogenic intracranial abscess and meningitis with Bezold's abscess: evaluation of inflammatory bone destruction by postmortem cone-beam CT.

    Science.gov (United States)

    Kanawaku, Yoshimasa; Yanase, Takeshi; Hayashi, Kino; Harada, Kazuki; Kanetake, Jun; Fukunaga, Tatsushige

    2013-11-01

    The deceased was an unidentified young male found unconscious on a walkway. On autopsy, outer and inner fistulae of the left temporal bone, subcutaneous abscess in the left side of the neck and head, and an intracranial abscess were noted. A portion of the left temporal bone was removed and scanned by cone-beam computed tomography (CT) (normally used for dentistry applications) to evaluate the lesion. The cone-beam CT image revealed roughening of the bone wall and hypolucency of the mastoid air cells, consistent with an inflammatory bone lesion. According to autopsy and imaging findings, the cause of death was diagnosed as intracranial abscess with Bezold's abscess secondary to left mastoiditis as a complication of otitis media. Although determining the histopathology of bone specimens is time-consuming and costly work, we believe that use of cone-beam CT for hard tissue specimens can be useful in forensic practice.

  1. 锥形束 CT 在正畸牙颌模型分析中的应用%Application of cone beam CT in orthodontic model analysis

    Institute of Scientific and Technical Information of China (English)

    李娜; 宋锦瞞; 李丽华; 宴燕; 陈定根

    2016-01-01

    Objective:To discuss the accuracy of Cone Beam CT in the measurement of dental and jaw model.Methods:30 dental casts were fetched from orthodontic patients with malocclusion deformity in preliminary diagnosis.The plaster models were de-manded to see the teeth and their adjacent teeth clearly.Then all the models were scanned by cone beam CT to reformat the three-di-mensional images.The results of the 3D image were measured and compared with the results from the conventional Manual measure-ment.Results:There was no statistical difference between two methods(P >0.05).The CCC of CBCT measurement and manual meas-urement are in good consistency between 0.883 and 0.999.Conclusion:The 3D digital model of CBCT can be viewed to distinguish point,nest and edge ridge clearly,which can help the operator to identify reliable points.And in a certain degree,it can replace the traditional manual measurement.However,the radiation resistance of the gypsum and the thickness of plaster model may have an effect on the digital imaging.Further research is needed.%目的:探讨锥形束 CT(cone beam CT,CBCT)数字化牙颌模型测量的精确性。方法:对30例正畸初诊患者制取上下颌牙颌阴模一副灌制成阳模,制做成研究模型。对完成的石膏模型要求牙齿完整,牙列清晰,并用锥形束 CT 将所有石膏模型进行扫描,重建石膏模型三维图形,对数字化牙颌模型进行测量,将其结果与传统手工测量结果进行比较。采用配对 t 检验,计算一致性相关系数(concordance correlation coefficient,CCC)及绘制散点图来评价两种方法的一致性。结果:两种测量方法的数据无统计学意义(P >0.05),CBCT 测量和手工测量的 CCC 在0.883~0.999之间一致性均非常好。结论:CBCT 三维重建所得的数字化模型清晰,能分辨出明确的尖、窝和边缘嵴,使操作者的辨认选点可靠。在一定程度上可取代传统手工测量,但

  2. Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Kwang Nam; Goo, Jin Mo; Lee, Hyun Ju; Lee, Youkyung; Kim, Jung Im; Choi, So Young; Kim, Hyo-Cheol [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea); Park, Chang Min [Seoul National University Hospital, Department of Radiology, Seoul (Korea); Seoul National University College of Medicine, Department of Radiology, Seoul (Korea); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea)

    2010-09-15

    To describe our initial experience with percutaneous transthoracic biopsy (PCNB) of lung nodules using C-arm cone-beam CT (CBCT). Seventy-one consecutive patients with lung nodules of 30 mm or smaller underwent CBCT-guided PCNB using a coaxial cutting needle. We evaluated the procedure time, coaxial introducer dwell time, the numbers of pleural passages, coaxial introducer repositionings and CT acquisitions, as well as the technical success rate and radiation doses. Diagnostic accuracy, sensitivity, specificity and incidence of complications were also evaluated. PCNB was performed for 71 nodules: 63 solid, 6 part-solid and 2 ground-glass nodules. The procedure time, coaxial introducer dwell time, numbers of pleural passages, coaxial introducer repositionings and CT acquisitions were 17.9 {+-} 5.9 min, 8.7 {+-} 3.8 min, 1.1 {+-} 0.4, 0.2 {+-} 0.5 and 2.9 {+-} 0.7, respectively. The technical success rate was 100% and the radiation dose was 272 {+-} 116 mGy. Thirty-six nodules (50.7%) were diagnosed as malignant, 25 (35.2%) as benign and 10 (14.1%) as indeterminate. Diagnostic accuracy, sensitivity, specificity and incidence of complications were 98.4%, 97%, 100% and 38%, respectively. Complications included pneumothorax in 18 patients (25.4%), haemoptysis in 10 (14.1%) and chest pain in one (1.4%). Under CBCT guidance, PCNB of lung nodules can be performed accurately, providing both real-time fluoroscopic guidance and CT imaging capabilities. (orig.)

  3. Implant planning and placement using optical scanning and cone beam CT technology

    NARCIS (Netherlands)

    J.M. van der Zel

    2008-01-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of sur

  4. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology

    DEFF Research Database (Denmark)

    Tan, Ye; Kiekens, Kim; Welkenhuyzen, Frank;

    2014-01-01

    Industrial x-ray computed tomography (CT) systems are being increasingly used as dimensional measuring machines. However, micron level accuracy is not always achievable, as of yet. The measurement accuracy is influenced by many factors, such as the workpiece properties, x-ray voltage, filter, bea...

  5. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    Science.gov (United States)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  6. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  7. 锥形束CT在埋伏牙拔除中的临床应用%Clinical use of cone beam CT in extraction of impacted tooth

    Institute of Scientific and Technical Information of China (English)

    陈井鑫; 邓伟; 王鸿; 符良斌; 甘成文

    2012-01-01

    目的:评价锥形束CT (CBCT)在颌骨埋伏牙诊断和治疗中的临床价值.方法:对常规口腔全景片和咬合片不能清楚定位的埋伏牙20例患者进行锥形束CT扫描获得高分辨率影像,并使用专用软件“i-View”进行任意断面的观察.结果:本组共23颗埋伏牙被精确定位,并根据“i-View”软件分析最佳手术入路后均顺利拔除埋伏牙.结论:锥形束CT是检查埋伏牙准确有效的方法,在埋伏牙拔除的方案制定中有重要的指导价值.%Objective To investigate the value of diagnosisand treatment of the impacted teeth in jaw bones by Cone-beam CT. Methods Cone-beam CT was applied to localize impacted teeth in jaw bones in 20 cases that can not be localized exactly by Oral panoramic and occlusal film.And we observeany section by"i-View"software. Results Cone-beam CT was applied tolocalizeexactly in 23 cases of impacted teeth in jaw bones. The impacted teeth in jaw bones were successfully removed. Conclusion Cone-beam CT is aneffective method to check impacted teeth. Cone-beam CT has an important guiding valuein removing impacted teeth.

  8. Antiscatter grids in mobile C-arm cone-beam CT: Effect on image quality and dose

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Stayman, J.W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Siewerdsen, J.H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen, Bavaria 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States) and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2012-01-15

    Purpose: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. Methods: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp/cm, were tested in ''body'' surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. Results: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. Conclusions: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of {approx}1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high

  9. Investigation into image quality and dose for different patient geometries with multiple cone-beam CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Stephen J., E-mail: sgardne8@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Studenski, Matthew T. [Department of Radiation Oncology, University of Miami - Miller School of Medicine, Miami, Florida 33136 (United States); Giaddui, Tawfik; Galvin, James; Yu, Yan; Xiao, Ying [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Cui, Yunfeng [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: To provide quantitative and qualitative image quality metrics and imaging dose for modern Varian On-board Imager (OBI) (ver. 1.5) and Elekta X-ray Volume Imager (XVI) (ver. 4.5R) cone-beam computed tomography (CBCT) systems in a clinical adaptive radiation therapy environment by accounting for varying patient thickness. Methods: Image quality measurements were acquired with Catphan 504 phantom (nominal diameter and with additional 10 cm thickness) for OBI and XVI systems and compared to planning CT (pCT) (GE LightSpeed). Various clinical protocols were analyzed for the OBI and XVI systems and analyzed using image quality metrics, including spatial resolution, low contrast detectability, uniformity, and HU sensitivity. Imaging dose measurements were acquired in Wellhofer Scanditronix i'mRT phantom at nominal phantom diameter and with additional 4 cm phantom diameter using GafChromic XRQA2 film. Calibration curves were generated using previously published in-air Air Kerma calibration method. Results: The OBI system full trajectory scans exhibited very little dependence on phantom thickness for accurate HU calculation, while half-trajectory scans with full-fan filter exhibited dependence of HU calculation on phantom thickness. The contrast-to-noise ratio (CNR) for the OBI scans decreased with additional phantom thickness. The uniformity of Head protocol scan was most significantly affected with additional phantom thickness. The spatial resolution and CNR compared favorably with pCT, while the uniformity of the OBI system was slightly inferior to pCT. The OBI scan protocol dose levels for nominal phantom thickness at the central portion of the phantom were 2.61, 0.72, and 1.88 cGy, and for additional phantom thickness were 1.95, 0.48, and 1.52 cGy, for the Pelvis, Thorax, and Spotlight protocols, respectively. The XVI system scans exhibited dependence on phantom thickness for accurate HU calculation regardless of trajectory. The CNR for the XVI scans

  10. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    Science.gov (United States)

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-07

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  11. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  12. CBCT在口腔正畸领域的应用%The Applications of Cone Beam CT in Orthodontics

    Institute of Scientific and Technical Information of China (English)

    牛茜楠; 冯雪

    2012-01-01

    The comprehensive use of cone beam CT in orthodontics is reviewed in this article, such as mini-implant, impacted teeth, TMJ, and airway volume. At the meantime, the advantages of CBCT are discussed, compared with traditional 2-dimensional image technology.%CBCT作为一种新兴辅助诊断技术,近年来广泛应用于口腔领域,本文对CBCT在口腔正畸学领域的多方面应用进行了综合阐述,包括微种植钉、阻生牙、颞下颌关节、气道和软组织分析等,同时通过与传统影像技术的对比,进一步展示了CBCT的独特优势.

  13. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Lynggaard Riis, Hans; Moltke, Lars N; Zimmermann, S. J.

    2016-01-01

    at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were......Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning...... analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC...

  14. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  15. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  16. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system

    Energy Technology Data Exchange (ETDEWEB)

    Demehri, S. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins Outpatient Center, JHOC 5168, Musculoskeletal Radiology, Baltimore, MD (United States); Muhit, A.; Zbijewski, W.; Stayman, J.W. [Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States); Yorkston, J.; Packard, N.; Senn, R.; Yang, D.; Foos, D. [Carestream Health, Rochester, NY (United States); Thawait, G.K.; Fayad, L.M.; Chhabra, A.; Carrino, J.A. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Siewerdsen, J.H. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States)

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80kVp-108mAs for CBCT; 120kVp- 300mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated ''excellent'' or ''good'' (median scores 5 and 4) for ''bone'' and ''soft tissue'' visualization tasks. Hand CBCT images were rated ''excellent'' or ''adequate'' (median scores 5 and 3) for ''bone'' and ''soft tissue'' visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ∝ 0.26-0.92), and interobserver agreement was fair to moderate (κ ∝ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. (orig.)

  17. Radiologic study of the healing process of the extracted socket of beagle dogs using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Won; Lee, Won; Lee, Byung Do [Department of Oral and Maxillofacial Radiology, School of Dentistry, Wonkwang University, Iksan (Korea, Republic of); Kim, De Sok [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-03-15

    To longitudinally observe the healing process of extracted socket and the alterations of the residual ridge in healthy adult dogs using cone beam CT (CBCT). The mandibular premolars of two beagle dogs were removed and the extraction sites were covered with the gingival tissue. CBCTs (3D X-ray CT scanner, Alphard vega, Asahi Co.) were taken at baseline and at 1 week interval for 12 weeks. Radiographic density of extracted wounds was measured on normalized images with a custom-made image analysis program. The amount of alveolar crestal resorption after the teeth extraction was measured with a reformatted three-dimensional image using CBCT. Bony healing pattern of extracted wound of each group was also longitudinally observed and analyzed. Dimensional changes occurred during the first 6 weeks following the extraction of dogs' mandibular premolars. The reduction of the height of residual ridge was more pronounced at the buccal than at the lingual aspect of the extraction socket. Radiographic density of extracted wounds increased by week 4, but the change in density stabilized after week 6. New bone formation was observed at the floor and the peripheral side of extracted socket from week 1. The entrance of extracted socket was sealed by a hard-tissue bridge at week 5. The healing process of extracted wound involved a series of events including new bone formation and residual ridge resorption.

  18. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  19. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    NARCIS (Netherlands)

    Liang, X.; Lambrichts, I.; Sun, Y.; Denis, K.; Hassan, B.; Li, L.; Pauwels, R.; Jacobs, R.

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G,

  20. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    OpenAIRE

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).

  1. Accurate IMRT fluence verification for prostate cancer patients using 'in-vivo' measured EPID images and in-room acquired kilovoltage cone-beam CT scans

    NARCIS (Netherlands)

    A.S.A.M. Ali (Ali Sid Ahmed M.); M.L.P. Dirkx (Maarten); R.M. Cools (Ruud); B.J.M. Heijmen (Ben)

    2013-01-01

    textabstractBackground: To investigate for prostate cancer patients the comparison of 'in-vivo' measured portal dose images (PDIs) with predictions based on a kilovoltage cone-beam CT scan (CBCT), acquired during the same treatment fraction, as an alternative for pre-treatment verification. For eval

  2. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT) Part I. On subjective image quality

    NARCIS (Netherlands)

    Liang, X.; Jacobs, R.; Hassan, B.; Li, L.M.; Pauwels, R.; Corpas, L.; Souza, P.C.; Martens, W.; Alonso, A.; Lambrichts, I.

    2010-01-01

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileo

  3. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    Science.gov (United States)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  4. Computed tomography from photon statistics to modern cone-beam CT

    CERN Document Server

    Buzug, T M

    2008-01-01

    Tis book provides an overview of X-ray technology, the historic developmental milestones of modern CT systems, and gives a comprehensive insight into the main reconstruction methods used in computed tomography. Te basis of reconstr- tion is, undoubtedly, mathematics. However, the beauty of computed tomography cannot be understood without a detailed knowledge of X-ray generation, photon- matter interaction, X-ray detection, photon statistics, as well as fundamental signal processing concepts and dedicated measurement systems. Terefore, the reader will ?nd a number of references to these basic d

  5. Fast internal marker tracking algorithm for onboard MV and kV imaging systems.

    Science.gov (United States)

    Mao, W; Wiersma, R D; Xing, L

    2008-05-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of approximately 10 frames/sec for the detection of five markers in a 1024 x 768 image are accomplished using an ordinary PC workstation.

  6. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Duan, X; Guild, J [UT Southwestern Medical Center, Dallas, TX (United States); Arbique, G; Anderson, J [UT Southwestern Medical Ctr at Dallas, Dallas, TX (United States); Dhanantwari, A [Philips Healthcare, Highland Heights, OH (United States); Yagil, Y [Philips Medical Systems, Haifa (Israel)

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEE corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.

  7. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    Science.gov (United States)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  8. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.

    Science.gov (United States)

    Xu, Yuan; Bai, Ti; Yan, Hao; Ouyang, Luo; Pompos, Arnold; Wang, Jing; Zhou, Linghong; Jiang, Steve B; Jia, Xun

    2015-05-07

    Cone-beam CT (CBCT) has become the standard image guidance tool for patient setup in image-guided radiation therapy. However, due to its large illumination field, scattered photons severely degrade its image quality. While kernel-based scatter correction methods have been used routinely in the clinic, it is still desirable to develop Monte Carlo (MC) simulation-based methods due to their accuracy. However, the high computational burden of the MC method has prevented routine clinical application. This paper reports our recent development of a practical method of MC-based scatter estimation and removal for CBCT. In contrast with conventional MC approaches that estimate scatter signals using a scatter-contaminated CBCT image, our method used a planning CT image for MC simulation, which has the advantages of accurate image intensity and absence of image truncation. In our method, the planning CT was first rigidly registered with the CBCT. Scatter signals were then estimated via MC simulation. After scatter signals were removed from the raw CBCT projections, a corrected CBCT image was reconstructed. The entire workflow was implemented on a GPU platform for high computational efficiency. Strategies such as projection denoising, CT image downsampling, and interpolation along the angular direction were employed to further enhance the calculation speed. We studied the impact of key parameters in the workflow on the resulting accuracy and efficiency, based on which the optimal parameter values were determined. Our method was evaluated in numerical simulation, phantom, and real patient cases. In the simulation cases, our method reduced mean HU errors from 44 to 3 HU and from 78 to 9 HU in the full-fan and the half-fan cases, respectively. In both the phantom and the patient cases, image artifacts caused by scatter, such as ring artifacts around the bowtie area, were reduced. With all the techniques employed, we achieved computation time of less than 30 s including the

  9. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  10. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development.

    Science.gov (United States)

    Boone, J

    2016-06-01

    dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1-8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In

  11. Dose and detectability for a cone-beam C-arm CT system revisited

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Arundhuti; Yoon, Sungwon; Fahrig, Rebecca [Department of Radiology, Lucas MRS Center, Stanford University, 1201 Welch Road, Palo Alto, California 94305 (United States)

    2010-05-15

    Purpose: The authors had previously published measurements of the detectability of disk-shaped contrast objects in images obtained from a C-arm CT system. A simple approach based on Rose's criterion was used to scale the date, assuming the threshold for the smallest diameter detected should be inversely proportional to (dose){sup 1/2}. A more detailed analysis based on recent theoretical modeling of C-arm CT images is presented in this work. Methods: The signal and noise propagations in a C-arm based CT system have been formulated by other authors using cascaded systems analysis. They established a relationship between detectability and the noise equivalent quanta. Based on this model, the authors obtained a relation between x-ray dose and the diameter of the smallest disks detected. A closed form solution was established by assuming no rebinning and no resampling of data, with low additive noise and using a ramp filter. For the case when no such assumptions were made, a numerically calculated solution using previously reported imaging and reconstruction parameters was obtained. The detection probabilities for a range of dose and kVp values had been measured previously. These probabilities were normalized to a single dose of 56.6 mGy using the Rose-criteria-based relation to obtain a universal curve. Normalizations based on the new numerically calculated relationship were compared to the measured results. Results: The theoretical and numerical calculations have similar results and predict the detected diameter size to be inversely proportional to (dose){sup 1/3} and (dose){sup 1/2.8}, respectively. The normalized experimental curves and the associated universal plot using the new relation were not significantly different from those obtained using the Rose-criterion-based normalization. Conclusions: From numerical simulations, the authors found that the diameter of detected disks depends inversely on the cube root of the dose. For observer studies for disks

  12. A service for monitoring the quality of intraoperative cone beam CT images

    Directory of Open Access Journals (Sweden)

    Heckel Frank

    2016-09-01

    Full Text Available In recent years, operating rooms (ORs have transformed into integrated operating rooms, where devices are able to communicate, exchange data, or even steer and control each other. However, image data processing is commonly done by dedicated workstations for specific clinical use-cases. In this paper, we propose a concept for a dynamic service component for image data processing on the example of automatic image quality assessment (AQUA of intraoperative cone beam computed tomography (CBCT images. The service is build using the Open Surgical Communication Protocol (OSCP and the standard for Digital Imaging and Communications in Medicine (DICOM. We have validated the proposed concept in an integrated demonstrator OR.

  13. Augmented reality and cone beam CT guidance for transoral robotic surgery.

    Science.gov (United States)

    Liu, Wen P; Richmon, Jeremy D; Sorger, Jonathan M; Azizian, Mahdi; Taylor, Russell H

    2015-09-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods.

  14. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T; Cho, S [KAIST, Daejon (Korea, Republic of); Kim, I; Han, B [EB Tech Co., Ltd., Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  15. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  16. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Science.gov (United States)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  17. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    Science.gov (United States)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  18. A dedicated cone-beam CT system for musculoskeletal extremities imaging: Design, optimization, and initial performance characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Carestream Health, Rochester, New York 14615 (United States); The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2011-08-15

    Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a

  19. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    CERN Document Server

    Huang, Kuidong; Zhang, Dinghua; Zhang, Hua; Shi, Wenlong

    2015-01-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification. The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corre...

  20. Role of C-arm cone-beam CT in chemoembolization for hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cheol [Dept. of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2015-02-15

    With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future.

  1. Artefacts in Cone Beam CT Mimicking an Extrapalatal Canal of Root-Filled Maxillary Molar.

    Science.gov (United States)

    Camilo, Carla Cristina; Brito-Júnior, Manoel; Faria-E-Silva, André Luis; Quintino, Alex Carvalho; de Paula, Adrianne Freire; Cruz-Filho, Antônio Miranda; Sousa-Neto, Manoel Damião

    2013-01-01

    Despite the advantages of cone-beam computed tomography (CBCT), the images provided by this diagnostic tool can produce artifacts and compromise accurate diagnostic assessment. This paper describes an endodontic treatment of a maxillary molar where CBCT images suggested the presence of a nonexistent third root canal in the palatal root. An endodontic treatment was performed in a first maxillary molar with palatal canals, and the tooth was restored with a cast metal crown. The patient returned four years later presenting with a discomfort in chewing, which was reduced after occlusal adjustment. CBCT was prescribed to verify additional diagnostic information. Axial scans on coronal, middle, and apical palatal root sections showed images similar to a third root canal. However, sagittal scans demonstrated that these images were artifacts caused by root canal fillings. A careful interpretation of CBCT images in root-filled teeth must be done to avoid mistakes in treatment.

  2. In-treatment 4D cone-beam CT with image-based respiratory phase recognition.

    Science.gov (United States)

    Kida, Satoshi; Masutani, Yoshitaka; Yamashita, Hideomi; Imae, Toshikazu; Matsuura, Taeko; Saotome, Naoya; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2012-07-01

    The use of respiration-correlated cone-beam computed tomography (4D-CBCT) appears to be crucial for implementing precise radiation therapy of lung cancer patients. The reconstruction of 4D-CBCT images requires a respiratory phase. In this paper, we propose a novel method based on an image-based phase recognition technique using normalized cross correlation (NCC). We constructed the respiratory phase by searching for a region in an adjacent projection that achieves the maximum correlation with a region in a reference projection along the cranio-caudal direction. The data on 12 lung cancer patients acquired just prior to treatment and on 3 lung cancer patients acquired during volumetric modulated arc therapy treatment were analyzed in the search for the effective area of cone-beam projection images for performing NCC with 12 combinations of registration area and segment size. The evaluation was done by a "recognition rate" defined as the ratio of the number of peak inhales detected with our method to that detected by eye (manual tracking). The average recognition rate of peak inhale with the most efficient area in the present method was 96.4%. The present method was feasible even when the diaphragm was outside the field of view. With the most efficient area, we reconstructed in-treatment 4D-CBCT by dividing the breathing signal into four phase bins; peak exhale, peak inhale, and two intermediate phases. With in-treatment 4D-CBCT images, it was possible to identify the tumor position and the tumor size in moments of inspiration and expiration, in contrast to in-treatment CBCT reconstructed with all projections.

  3. Development and validation of a hybrid simulation technique for cone beam CT: application to an oral imaging system

    Science.gov (United States)

    Zhang, G.; Pauwels, R.; Marshall, N.; Shaheen, E.; Nuyts, J.; Jacobs, R.; Bosmans, H.

    2011-09-01

    This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images, with <5

  4. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  5. Design and characterization of a dedicated cone-beam CT scanner for detection of acute intracranial hemorrhage

    Science.gov (United States)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Prompt and reliable detection of intracranial hemorrhage (ICH) has substantial clinical impact in diagnosis and treatment of stroke and traumatic brain injury. This paper describes the design, development, and preliminary performance characterization of a dedicated cone-beam CT (CBCT) head scanner prototype for imaging of acute ICH. Methods: A task-based image quality model was used to analyze the detectability index as a function of system configuration, and hardware design was guided by the results of this model-based optimization. A robust artifact correction pipeline was developed using GPU-accelerated Monte Carlo (MC) scatter simulation, beam hardening corrections, detector veiling glare, and lag deconvolution. An iterative penalized weighted least-squares (PWLS) reconstruction framework with weights adjusted for artifact-corrected projections was developed. Various bowtie filters were investigated for potential dose and image quality benefits, with a MC-based tool providing estimates of spatial dose distribution. Results: The initial prototype will feature a source-detector distance of 1000 mm and source-axis distance of 550 mm, a 43x43 cm2 flat panel detector, and a 15° rotating anode x-ray source with 15 kW power and 0.6 focal spot size. Artifact correction reduced image nonuniformity by ~250 HU, and PWLS reconstruction with modified weights improved the contrast to noise ratio by 20%. Inclusion of a bowtie filter can potentially reduce dose by 50% and improve CNR by 25%. Conclusions: A dedicated CBCT system capable of imaging millimeter-scale acute ICH was designed. Preliminary findings support feasibility of point-of-care applications in TBI and stroke imaging, with clinical studies beginning on a prototype.

  6. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  7. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    Science.gov (United States)

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-08

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  8. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    Science.gov (United States)

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  9. Cone-beam micro-CT system based on LabVIEW software.

    Science.gov (United States)

    Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen

    2008-09-01

    Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.

  10. Direct comparison of conventional radiography and cone-beam CT in small bone and joint trauma

    Energy Technology Data Exchange (ETDEWEB)

    Smet, E. de [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Praeter, G. de [Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Verstraete, K.L.A. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Wouters, K. [Antwerp University Hospital, Department of Scientific Coordination and Biostatistics, Edegem (Belgium); Beuckeleer, Luc de [GZA Sint-Augustinus, Department of Radiology, Wilrijk (Belgium); Vanhoenacker, F.M.H.M. [Antwerp University Hospital, Department of Radiology, Edegem (Belgium); Sint-Maartenziekenhuis, Department of Radiology, Duffel (Belgium); Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2015-08-15

    To compare the diagnostic value of cone-beam computed tomography (CBCT) and conventional radiography (CR) after acute small bone or joint trauma. Between March 2013 and January 2014, 231 patients with recent small bone or joint trauma underwent CR and subsequent CBCT. CR and CBCT examinations were independently assessed by two readers, blinded to the result of the other modality. The total number of fractures as well as the number of complex fractures were compared, and inter- and intraobserver agreement for CBCT was calculated. In addition, radiation doses and evaluation times for both modalities were noted and statistically compared. Fracture detection on CBCT increased by 35 % and 37 % for reader 1 and reader 2, respectively, and identification of complex fractures increased by 236 % and 185 %. Interobserver agreement for CBCT was almost perfect, as was intraobserver agreement for reader 1. The intraobserver agreement for reader 2 was substantial. Radiation doses and evaluation time were significantly higher for CBCT. CBCT detects significantly more small bone and joint fractures, in particular complex fractures, than CR. In the majority of cases, the clinical implication of the additionally detected fractures is limited, but in some patients (e.g., fracture-dislocations), the management is significantly influenced by these findings. As the radiation dose for CBCT substantially exceeds that of CR, we suggest adhering to CR as the first-line examination after small bone and joint trauma and keeping CBCT for patients with clinical-radiographic discordance or suspected complex fractures in need of further (preoperative) assessment. (orig.)

  11. A Comparison of the Amounts of Artifacts Produced by Five Cements in Cone-Beam CT

    Directory of Open Access Journals (Sweden)

    Moshfeghi

    2016-02-01

    Full Text Available Background Bidimensional radiographic methods, including periapical, occlusal, panoramic, and cephalometric radiographs, are widely used in dentistry. However, the superimposition of adjacent structures and consequent loss of anatomic details may occur. Objectives The purpose of this study is to evaluate the artifacts produced by different cements with different densities using cone-beam computed tomography (CBCT. Materials and Methods Samples of five cements with different densities including glass ionomers (or GI, from ChemFil Rock and Fuji IX, mineral trioxide aggregates (MTA, zinc oxide eugenol (ZOE, TempBond and a control sample (polyester were scanned by CBCT device and analyzed using OnDemand 3D application software. The amount of artifacts was measured by ∆ gray scale value (∆GSV, which was achieved by subtracting the gray level of the samples from the control group. Results According to the mean GSV of the five different materials, the majority of artifacts produced were as follows: TempBond > ZOE > MTA > GI (ChemFil Dentsply > GI (GC, Fuji ΙX. Conclusions The type of materials can influence the obtained GSV. Different materials cause various amounts of artifacts due to differences in density and atomic number.

  12. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Allison; Kalathingal Sajitha; De Rossi, Scott [Dept. of Oral Health and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta (United States); Cohen, Ruben [Park Avenue Oral and Facial Surgery, New York (United States); Loony, Stephen [Dept. of Biostatistics and Epidemiology, Augusta University Medical College of Georgia, Augusta (United States)

    2016-03-15

    To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results.

  13. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients

    Directory of Open Access Journals (Sweden)

    Rege Inara Carneiro

    2012-08-01

    Full Text Available Abstract Background Although cone beam computed tomography (CBCT images of the maxillofacial region allow the inspection of the entire volume of the maxillary sinus (MS, identifying anatomic variations and abnormalities in the image volume, this is frequently neglected by oral radiologists when interpreting images of areas at a distance from the dentoalveolar region, such as the full anatomical aspect of the MS. The aim of this study was to investigate maxillary sinus abnormalities in asymptomatic patients by using CBCT. Methods 1113 CBCT were evaluated by two examiners and identification of abnormalities, the presence of periapical lesions and proximity to the lower sinus wall were recorded. Data were analyzed using descriptive statistics, chi-square tests and Kappa statistics. Results Abnormalities were diagnosed in 68.2% of cases (kappa = 0.83. There was a significant difference between genders (p Conclusions Abnormalities in maxillary sinus emphasizes how important it is for the dentomaxillofacial radiologist to undertake an interpretation of the whole volume of CBCT images.

  14. Robust scatter correction method for cone-beam CT using an interlacing-slit plate

    Science.gov (United States)

    Huang, Kui-Dong; Xu, Zhe; Zhang, Ding-Hua; Zhang, Hua; Shi, Wen-Long

    2016-06-01

    Cone-beam computed tomography (CBCT) has been widely used in medical imaging and industrial nondestructive testing, but the presence of scattered radiation will cause significant reduction of image quality. In this article, a robust scatter correction method for CBCT using an interlacing-slit plate (ISP) is carried out for convenient practice. Firstly, a Gaussian filtering method is proposed to compensate the missing data of the inner scatter image, and simultaneously avoid too-large values of calculated inner scatter and smooth the inner scatter field. Secondly, an interlacing-slit scan without detector gain correction is carried out to enhance the practicality and convenience of the scatter correction method. Finally, a denoising step for scatter-corrected projection images is added in the process flow to control the noise amplification The experimental results show that the improved method can not only make the scatter correction more robust and convenient, but also achieve a good quality of scatter-corrected slice images. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Aeronautical Science Fund of China (2014ZE53059), and Fundamental Research Funds for Central Universities of China (3102014KYJD022)

  15. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  16. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    Science.gov (United States)

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  17. Intraoperative cone-beam CT for correction of periaxial malrotation of the femoral shaft: a surface-matching approach.

    Science.gov (United States)

    Khoury, Amal; Whyne, Cari M; Daly, Michael; Moseley, Douglas; Bootsma, Greg; Skrinskas, Tomas; Siewerdsen, Jeffrey; Jaffray, David

    2007-04-01

    Limb length, alignment and rotation can be difficult to determine in femoral shaft fractures. Shaft axis rotation is particularly difficult to assess intraoperatively. Femoral malpositioning can cause deformity, pain and secondary degenerative joint damage. The aim of this study is to develop an intraoperative method based on cone-beam computed tomography (CBCT) to guide alignment of femoral shaft fractures. We hypothesize that bone surface matching can predict malrotation even with severe comminution. A cadaveric femur was imaged at 16 femoral periaxial malrotations (-51.2 degrees to 60.1 degrees). The images were processed resulting in an unwrapped bone surface plot consisting of a pattern of ridges and valleys. Fracture gaps were simulated by removing midline CT slices. The gaps were reconstituted by extrapolating the existing proximal and distal fragments to the midline of the fracture. The two bone surfaces were then shifted to align bony features. Periaxial malrotation was accurately assessed using surface matching (r2 = 0.99, slope 1.0). The largest mean error was 2.20 degrees and the average difference between repeated measurements was 0.49 degrees. CBCT can provide intraoperative high-resolution images with a large field of view. This quality of imaging enables surface matching algorithms to be utilized even with large areas of comminution.

  18. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  19. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  20. Low-dose CT of the paranasal sinuses. Minimizing X-ray exposure with spectral shaping

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Wolfgang [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany); Radiological Institute, Erlangen (Germany); May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael [Friedrich-Alexander-University Erlangen-Nuremberg, Radiological Institute, Erlangen (Germany)

    2016-11-15

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192 x 0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 x 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI{sub vol} 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. (orig.)

  1. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  2. How accurate are the fusion of cone-beam CT and 3-D stereophotographic images?

    Directory of Open Access Journals (Sweden)

    Yasas S N Jayaratne

    Full Text Available BACKGROUND: Cone-beam Computed Tomography (CBCT and stereophotography are two of the latest imaging modalities available for three-dimensional (3-D visualization of craniofacial structures. However, CBCT provides only limited information on surface texture. This can be overcome by combining the bone images derived from CBCT with 3-D photographs. The objectives of this study were 1 to evaluate the feasibility of integrating 3-D Photos and CBCT images 2 to assess degree of error that may occur during the above processes and 3 to identify facial regions that would be most appropriate for 3-D image registration. METHODOLOGY: CBCT scans and stereophotographic images from 29 patients were used for this study. Two 3-D images corresponding to the skin and bone were extracted from the CBCT data. The 3-D photo was superimposed on the CBCT skin image using relatively immobile areas of the face as a reference. 3-D colour maps were used to assess the accuracy of superimposition were distance differences between the CBCT and 3-D photo were recorded as the signed average and the Root Mean Square (RMS error. PRINCIPAL FINDINGS: The signed average and RMS of the distance differences between the registered surfaces were -0.018 (±0.129 mm and 0.739 (±0.239 mm respectively. The most errors were found in areas surrounding the lips and the eyes, while minimal errors were noted in the forehead, root of the nose and zygoma. CONCLUSIONS: CBCT and 3-D photographic data can be successfully fused with minimal errors. When compared to RMS, the signed average was found to under-represent the registration error. The virtual 3-D composite craniofacial models permit concurrent assessment of bone and soft tissues during diagnosis and treatment planning.

  3. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    Science.gov (United States)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  4. Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazunori, E-mail: kazokada@sfsu.edu [Department of Computer Science, San Francisco State University, San Francisco, California 94132 (United States); Rysavy, Steven [Biomedical and Health Informatics Program, University of Washington, Seattle, Washington 98195 (United States); Flores, Arturo [Computer Science and Engineering, University of California, San Diego, California 92093 (United States); Linguraru, Marius George [Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC 20010 and Departments of Radiology and Pediatrics, George Washington University, Washington, DC 20037 (United States)

    2015-04-15

    Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.

  5. 锥形束CT对牛牙症诊断价值的探讨%Application of cone beam CT in the diagnosis of taurodontism

    Institute of Scientific and Technical Information of China (English)

    衡士超; 程勇; 李波; 肖丽珍

    2013-01-01

    One case of laurodonlism with tooth inlernal resorplion and root fraclure was diagnosed by cone beam CT( CBCT) . The cases is reporled and the significance of CBCT in the diagnosis of laurodonlism is disscused.%用锥形束CT辅助诊断牛牙症根折伴牙内吸收1例,锥形束CT对该症的诊断和治疗方面有重要指导意义.

  6. Comparative study of two flat-panel x-ray detectors applied to small-animal imaging cone-beam micro-CT

    OpenAIRE

    2008-01-01

    Proceeding of: 2008 IEEE Nuclear Science Symposium Conference Record (NSS '08), Dresden, Germany, 19-25 Oct. 2008 This work compares two different X-ray flat-panel detectors for its use in high-speed, cone-beam CT applied to small-animal imaging. The main differences between these two devices are the scintillators and the achievable frame rate. Both devices have been tested in terms of system linearity, sensitivity, resolution, stability and noise properties, taking into account the dif...

  7. Application of cone-beam CT technology in radiation therapy%锥形束CT在放射治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    王为

    2011-01-01

    影像引导下的放射治疗是近年来出现的一种治疗恶性肿瘤的新技术,而锥形束CT既是一种全新的CT成像技术,又是影像引导下放射治疗系统的关键设备.本文介绍锥形束CT的基本原理及其在放射治疗中的应用现状和研究进展情况,并对锥形束CT图像后处理技术进行综述.%Image-guided radiation therapy has become a brand-new technology for treating cancer in recent years. Conebeam CT is not only a new kind of CT imaging technology, but also the key equipment in the image-guided radiation therapy system. This article introduced the basic principle of cone-beam CT and its application and research progress in radiation therapy, as well as the cone-beam CT image processing techniques.

  8. Development and validation of two phantoms for quality control in cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    The cone beam computed tomography (CBCT) was introduced into the market in the late 90 s and being a relatively new technology, also no well-established quality control protocols. There are currently projects to standardize the use of CBCT. The SEDENTEXCT project was created with the goal of developing guidelines for CBCT, including the development of a phantom for quality control it is proposed. This study aimed at the development and validation of the models of phantom: CQ{sub I}FBA{sub 0}1 e CQ{sub I}FBA{sub 0}2, the first filled with water and the second fully with solid structure in PMMA. Both models allow, otherwise the European phantom - SEDENTEXCT, its use in various models of CBCT, independent of the size of the field of view. The two phantoms used to evaluate seven parameters of quality control are: intensity or average value of pixels of five different plastics, signal to noise ratio, resolution, low contrast, spatial resolution, the accuracy of distances on the z axis, the geometric distortion and image uniformity. The spatial resolution is a critical parameter that differs significantly from the other types of scan, and in these two phantom can be evaluated by two different methods: MTF obtained by Fourier transformation of the function LSF (line spread function) and/or by analysis visual image to a pattern of bars up to 16 pl/cm. Validation was performed in three models CBCT: Kodak 9000, i-CAT Classical and Orthophos XG 3-dimensional. All imaging protocols were characterized dosimetric ally with solid state sensors to correlate with the perfect operation. These models were selected by different manufacturers have different characteristics as FOV, maximum voltage, slice thickness and patient positioning mode. The two of phantom models were viable and also showed compliance with the specifications and data available in the literature. We conclude the feasibility of the two phantom models, and model option will be linked to the practicality positioning

  9. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    Energy Technology Data Exchange (ETDEWEB)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); Chai, X. [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, California 94305 (United States)

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  10. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B. [Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States); Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Center for Advanced Radiotherapy Technologies and Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92037 (United States)

    2012-09-15

    Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on

  11. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study

    Science.gov (United States)

    Abuhaimed, Abdullah; Martin, Colin J.; Sankaralingam, Marimuthu; Gentle, David J.

    2015-07-01

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  12. Visualization of subtle temporal bone structures. Comparison of cone beam CT and MDCT; Darstellung subtiler Schlaefenbeinstrukturen. In-vivo-Vergleich digitale Volumentomographie vs. Multidetektor-CT

    Energy Technology Data Exchange (ETDEWEB)

    Pein, M.K.; Plontke, S.K. [Universitaetsklinikum Halle (Saale), Universitaetsklinik und Poliklinik fuer HNO-Heilkunde, Kopf- und Halschirurgie, Halle (Saale) (Germany); Brandt, S.; Koesling, S. [Universitaetsklinikum Halle (Saale), Universitaetsklinik und Poliklinik fuer Diagnostische Radiologie, Halle (Saale) (Germany)

    2014-03-15

    The purpose of this study was to compare the visualization of subtle, non-pathological temporal bone structures on cone beam computed tomography (CBCT) and multi-detector computed tomography (MDCT) in vivo. Temporal bone studies of images from 38 patients archived in the picture archiving and communication system (PACS) were analyzed (slice thickness MDCT 0.6 mm and CBCT 0.125 mm) of which 23 were imaged by MDCT and 15 by CBCT using optimized standard protocols. Inclusion criteria were normal radiological findings, absence of previous surgery and anatomical variants. Images were evaluated blind by three trained observers. Using a five-point scale the visualization of ten subtle structures of the temporal bone was analyzed. Subtle middle ear structures showed a tendency to be more easily distinguishable by CBCT with significantly better visualization of the tendon of the stapedius muscle and the crura of the stapes on CBCT (p = 0.003 and p = 0.033, respectively). In contrast, inner ear components, such as the osseus spiral lamina and the modiolus tended to be better detectable on MDCT, showing significant differences for the osseous spiral lamina (p = 0.001). The interrater reliability was 0.73 (Cohen's kappa coefficient) and intraobserver reliability was 0.89. The use of CBCT and MDCT allows equivalent and excellent imaging results if optimized protocols are chosen. With both imaging techniques subtle temporal bone structures could be visualized with a similar degree of definition. In vivo differences do not seem to be as large as suggested in several previous studies. (orig.) [German] Vergleich der Identifizierbarkeit subtiler Schlaefenbeinstrukturen in der digitalen Volumentomographie (DVT) und Multidetektor-CT (MDCT) in vivo. Analysiert wurden 38 im PACS (Picture Archiving and Communication System) duennschichtig gespeicherte Schlaefenbeinuntersuchungen (23 MDCTs, Schichtdicke 0,6 mm sowie 15 DVTs, Schichtdicke 0,125 mm). Einschlusskriterium war eine

  13. Reduction of CT beam hardening artefacts of ethylene vinyl alcohol copolymer by variation of the tantalum content: evaluation in a standardized aortic endoleak phantom

    Energy Technology Data Exchange (ETDEWEB)

    Treitl, Karla M.; Scherr, Michael; Foerth, Monika; Braun, Franziska; Maxien, Daniel; Treitl, Marcus [Hospitals of the Ludwig-Maximilians-University of Munich, Institute for Clinical Radiology, Munich (Germany)

    2014-10-16

    Our aim was to develop an aortic stent graft phantom to simulate endoleak treatment and to find a tantalum content (TC) of ethylene-vinyl-alcohol-copolymer that causes fewer computed tomography (CT) beam hardening artefacts, but still allows for fluoroscopic visualization. Ethylene-vinyl-alcohol-copolymer specimens of different TC (10-50 %, and 100 %) were injected in an aortic phantom bearing a stent graft and endoleak cavities with simulated re-perfusion. Fluoroscopic visibility of the ethylene-vinyl-alcohol-copolymer specimens was analyzed. In addition, six radiologists analyzed endoleak visibility, and artefact intensity of ethylene-vinyl-alcohol-copolymer in CT. Reduction of TC significantly decreased CT artefact intensity of ethylene-vinyl-alcohol-copolymer and increased visibility of endoleak re-perfusion (p < 0.000). It also significantly decreased fluoroscopic visibility of ethylene-vinyl-alcohol-copolymer (R = 0.883, p ≤ 0.01), and increased the active embolic volumes prior to visualization (Δ ≥ 40 μl). Ethylene-vinyl-alcohol-copolymer specimens with a TC of 45-50 % exhibited reasonable visibility, a low active embolic volume and a tolerable CT artefact intensity. The developed aortic stent graft phantom allows for a reproducible simulation of embolization of endoleaks. The data suggest a reduction of the TC of ethylene-vinyl-alcohol-copolymer to 45 -50 % of the original, to interfere less with diagnostic imaging in follow-up CT examinations, while still allowing for fluoroscopic visualization. (orig.)

  14. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    Energy Technology Data Exchange (ETDEWEB)

    Zbijewski, W., E-mail: wzbijewski@jhu.edu; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  15. Monte Carlo investigations of megavoltage cone-beam CT using thick, segmented scintillating detectors for soft tissue visualization.

    Science.gov (United States)

    Wang, Yi; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Sawant, Amit; Du, Hong

    2008-01-01

    Megavoltage cone-beam computed tomography (MV CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. This is due to the fact that the phosphor screen detector employed in conventional MV AMFPIs utilizes only approximately 2% of the incident radiation (for a 6 MV x-ray spectrum). Fortunately, thick segmented scintillating detectors can overcome this limitation, and the first prototype imager has demonstrated highly promising performance for projection imaging at low doses. It is therefore of definite interest to examine the potential performance of such thick, segmented scintillating detectors for MV CBCT. In this study, Monte Carlo simulations of radiation energy deposition were used to examine reconstructed images of cylindrical CT contrast phantoms, embedded with tissue-equivalent objects. The phantoms were scanned at 6 MV using segmented detectors having various design parameters (i.e., detector thickness as well as scintillator and septal wall materials). Due to constraints imposed by the nature of this study, the size of the phantoms was limited to approximately 6 cm. For such phantoms, the simulation results suggest that a 40 mm thick, segmented CsI detector with low density septal walls can delineate electron density differences of approximately 2.3% and 1.3% at doses of 1.54 and 3.08 cGy, respectively. In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density

  16. Cone-beam CT-guided radiotherapy in the management of lung cancer. Diagnostic and therapeutic value

    Energy Technology Data Exchange (ETDEWEB)

    Elsayad, Khaled; Kriz, Jan; Reinartz, Gabriele; Scobioala, Sergiu; Ernst, Iris; Haverkamp, Uwe; Eich, Hans Theodor [University Hospital of Muenster, Department of Radiation Oncology, Muenster (Germany)

    2016-02-15

    Recent studies have demonstrated an increase in the necessity of adaptive planning over the course of lung cancer radiation therapy (RT) treatment. In this study, we evaluated intrathoracic changes detected by cone-beam CT (CBCT) in lung cancer patients during RT. A total of 71 lung cancer patients treated with fractionated CBCT-guided RT were evaluated. Intrathoracic changes and plan adaptation priority (AP) scores were compared between small cell lung cancer (SCLC, n = 13) and non-small cell lung cancer (NSCLC, n = 58) patients. The median cumulative radiation dose administered was 54 Gy (range 30-72 Gy) and the median fraction dose was 1.8 Gy (range 1.8-3.0 Gy). All patients were subjected to a CBCT scan at least weekly (range 1-5/week). We observed intrathoracic changes in 83 % of the patients over the course of RT [58 % (41/71) regression, 17 % (12/71) progression, 20 % (14/71) atelectasis, 25 % (18/71) pleural effusion, 13 % (9/71) infiltrative changes, and 10 % (7/71) anatomical shift]. Nearly half, 45 % (32/71), of the patients had one intrathoracic soft tissue change, 22.5 % (16/71) had two, and three or more changes were observed in 15.5 % (11/71) of the patients. Plan modifications were performed in 60 % (43/71) of the patients. Visual volume reduction did correlate with the number of CBCT scans acquired (r = 0.313, p = 0.046) and with the timing of chemotherapy administration (r = 0.385, p = 0.013). Weekly CBCT monitoring provides an adaptation advantage in patients with lung cancer. In this study, the monitoring allowed for plan adaptations due to tumor volume changes and to other anatomical changes. (orig.) [German] Neuere Studien haben eine zunehmende Notwendigkeit der adaptiven Bestrahlungsplanung im Verlauf der Bestrahlungsserie bei Patienten mit Lungenkrebs nachgewiesen. In der vorliegenden Studie haben wir intrathorakale Aenderungen mittels Cone-beam-CT (CBCT) bei Lungenkrebspatienten waehrend der Radiotherapie (RT) analysiert. Analysiert wurden

  17. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    Science.gov (United States)

    Riis, Hans L.; Moltke, Lars N.; Zimmermann, Sune J.; Ebert, Martin A.; Rowshanfarzad, Pejman

    2016-06-01

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  18. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI.

    Science.gov (United States)

    Riis, Hans L; Moltke, Lars N; Zimmermann, Sune J; Ebert, Martin A; Rowshanfarzad, Pejman

    2016-06-07

    Accurate determination of the megavoltage (MV) radiation isocentre of a linear accelerator (linac) is an important task in radiotherapy. The localization of the MV radiation isocentre is crucial for correct calibration of the in-room lasers and the cone-beam CT scanner used for patient positioning prior to treatment. Linac manufacturers offer tools for MV radiation isocentre localization. As a user, there is no access to the documentation for the underlying method and calculation algorithm used in the commercial software. The idea of this work was to evaluate the accuracy of the software tool for MV radiation isocentre calculation as delivered by Elekta using independent software. The image acquisition was based on the scheme designed by the manufacturer. Eight MV images were acquired in each series of a ball-bearing (BB) phantom attached to the treatment couch. The images were recorded at cardinal angles of the gantry using the electronic portal imaging device (EPID). Eight Elekta linacs with three different types of multileaf collimators (MLCs) were included in the test. The influence of MLC orientation, x-ray energy, and phantom modifications were examined. The acquired images were analysed using the Elekta x-ray volume imaging (XVI) software and in-house developed (IHD) MATLAB code. Results from the two different software were compared. A discrepancy in the longitudinal direction of the isocentre localization was found averaging 0.23 mm up to a maximum of 0.75 mm. The MLC orientation or the phantom asymmetry in the longitudinal direction do not appear to cause the discrepancy. The main cause of the differences could not be clearly identified. However, it is our opinion that the commercial software delivered by the linac manufacturer should be improved to reach better stability and precise results in the MV radiation isocentre calculations.

  19. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    Science.gov (United States)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  20. Reproducibility of mandibular third molar assessment comparing two cone beam CT units in a matched pairs design.

    Science.gov (United States)

    Matzen, L H; Hintze, H; Spin-Neto, R; Wenzel, A

    2013-01-01

    The aim of this study was to evaluate the reproducibility of the third molar assessment, comparing five observers and two cone beam CT (CBCT) units. 28 patients, each with two impacted mandibular third molars, were included. Each patient was randomly examined with a Scanora(®) 3D (Soredex, Helsinki, Finland) CBCT unit in one mandibular third molar region and with a Cranex(®) 3D (Soredex) CBCT unit in the other region. Five observers with varying CBCT experience assessed all third molars and recorded the following variables: number and morphology of the roots, relation to the mandibular canal in two directions, shape of the canal and whether there was a direct contact between the roots of the molar and the mandibular canal. The radiographic assessments were compared pairwise among all observers for all variables. Wilcoxon's signed-rank test was used to test the differences in observer accordance percentages among the recorded variables in the images from the two units, and kappa statistics expressed interobserver reproducibility. The mean percentages for observer accordance ranged from 65.4 to 92.9 for Scanora 3D and 60.3 to 94.8 for Cranex 3D. There was no significant difference between the observer accordance in the two CBCT units (p > 0.05), except for assessing root flex in the mesiodistal direction, for which the observer accordance was higher for Scanora 3D (p third molar assessment. Observer variation existed, and experienced radiologists demonstrated the highest interobserver reproducibility for canal-related variables.

  1. Multi-resolution statistical image reconstruction for mitigation of truncation effects: application to cone-beam CT of the head

    Science.gov (United States)

    Dang, Hao; Webster Stayman, J.; Sisniega, Alejandro; Zbijewski, Wojciech; Xu, Jennifer; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassilis E.; Siewerdsen, Jeffrey H.

    2017-01-01

    A prototype cone-beam CT (CBCT) head scanner featuring model-based iterative reconstruction (MBIR) has been recently developed and demonstrated the potential for reliable detection of acute intracranial hemorrhage (ICH), which is vital to diagnosis of traumatic brain injury and hemorrhagic stroke. However, data truncation (e.g. due to the head holder) can result in artifacts that reduce image uniformity and challenge ICH detection. We propose a multi-resolution MBIR method with an extended reconstruction field of view (RFOV) to mitigate truncation effects in CBCT of the head. The image volume includes a fine voxel size in the (inner) nontruncated region and a coarse voxel size in the (outer) truncated region. This multi-resolution scheme allows extension of the RFOV to mitigate truncation effects while introducing minimal increase in computational complexity. The multi-resolution method was incorporated in a penalized weighted least-squares (PWLS) reconstruction framework previously developed for CBCT of the head. Experiments involving an anthropomorphic head phantom with truncation due to a carbon-fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, whereas extending the RFOV within the multi-resolution framework strongly reduced truncation artifacts. For the same extended RFOV, the multi-resolution approach reduced computation time compared to the single-resolution approach (viz. time reduced by 40.7%, 83.0%, and over 95% for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g. regularization strength, the ratio of the fine and coarse voxel size, and RFOV size) were investigated to guide reliable parameter selection. The findings provide a promising method for truncation artifact reduction in CBCT and may be useful for other MBIR methods and applications for which truncation is a challenge.

  2. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    Science.gov (United States)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  3. SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Guo, X [University of Texas at Dallas, Richardson, TX (United States)

    2015-06-15

    Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed.

  4. NOTE Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    Science.gov (United States)

    Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2010-11-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.

  5. Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Veres, C; Garsi, J P; Rubino, C; De Vathaire, F; Diallo, I [Inserm, CESP Centre for research in Epidemiology and Population Health, U1018, Radiation Epidemiology Team, F 94807, Villejuif (France); Pouzoulet, F; Bidault, F; Chavaudra, J; Bridier, A; Ricard, M; Ferreira, I; Lefkopoulos, D, E-mail: ibrahim.diallo@igr.f [Institut Gustave Roussy, F-94805, Villejuif (France)

    2010-11-07

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm{sup 3} at 2 years to about 16 cm{sup 3} at 20. In adults, the mean thyroid gland volume was 23.5 {+-} 9 cm{sup 3} for males and 17.5 {+-} 8 cm{sup 3} for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients. (note)

  6. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.

    Science.gov (United States)

    España, Samuel; Paganetti, Harald

    2010-12-21

    The advantages of a finite range of proton beams can only be partly exploited in radiation therapy unless the range can be predicted in patient anatomy with proton-induced PET imaging aims at ∼2 mm accuracy in range verification. The latter is done using Monte Carlo predicted PET images. Monte Carlo methods are based on CT images to describe patient anatomy. The dose calculation algorithm and the CT resolution/artifacts might affect dose calculation accuracy. Additionally, when using Monte Carlo for PET range verification, the biological decay model and the cross sections for positron emitter production affect predicted PET images. The goal of this work is to study the effect of uncertainties in the CT conversion on the proton beam range predicted by Monte Carlo dose calculations and proton-induced PET signals. Conversion schemes to assign density and elemental composition based on a CT image of the patient define a unique Hounsfield unit (HU) to tissue parameters relationship. Uncertainties are introduced because there is no unique relationship between HU and tissue parameters. In this work, different conversion schemes based on a stoichiometric calibration method as well as different numbers of tissue bins were considered in three head and neck patients. For Monte Carlo dose calculation, the results show close to zero (proton dose distributions based on Monte Carlo calculation are only slightly affected by the uncertainty on density and elemental composition introduced by unique assignment to each HU if a stoichiometric calibration is used. Calculated PET images used for range verification are more sensitive to conversion uncertainties causing an intrinsic limitation due to CT conversion alone of at least 1 mm.

  7. SU-E-J-151: Dosimetric Evaluation of DIR Mapped Contours for Image Guided Adaptive Radiotherapy with 4D Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Balik, S [Cleveland Clinic Foundation, Cleveland, OH (United States); Weiss, E; Williamson, J; Hugo, G [Virginia Commonwealth University, Richmond, VA (United States); Jan, N; Zhang, L [Virginia Commonwealth University, Richmond, Virginia (United States); Roman, N [San Antonio Precision Center Ctr, San Antonio, TX (United States); Christensen, G [University of Iowa, Iowa City, IA (United States)

    2014-06-01

    Purpose: To estimate dosimetric errors resulting from using contours deformably mapped from planning CT to 4D cone beam CT (CBCT) images for image-guided adaptive radiotherapy of locally advanced non-small cell lung cancer (NSCLC). Methods: Ten locally advanced non-small cell lung cancer (NSCLC) patients underwent one planning 4D fan-beam CT (4DFBCT) and weekly 4DCBCT scans. Multiple physicians delineated the gross tumor volume (GTV) and normal structures in planning CT images and only GTV in CBCT images. Manual contours were mapped from planning CT to CBCTs using small deformation, inverse consistent linear elastic (SICLE) algorithm for two scans in each patient. Two physicians reviewed and rated the DIR-mapped (auto) and manual GTV contours as clinically acceptable (CA), clinically acceptable after minor modification (CAMM) and unacceptable (CU). Mapped normal structures were visually inspected and corrected if necessary, and used to override tissue density for dose calculation. CTV (6mm expansion of GTV) and PTV (5mm expansion of CTV) were created. VMAT plans were generated using the DIR-mapped contours to deliver 66 Gy in 33 fractions with 95% and 100% coverage (V66) to PTV and CTV, respectively. Plan evaluation for V66 was based on manual PTV and CTV contours. Results: Mean PTV V66 was 84% (range 75% – 95%) and mean CTV V66 was 97% (range 93% – 100%) for CAMM scored plans (12 plans); and was 90% (range 80% – 95%) and 99% (range 95% – 100%) for CA scored plans (7 plans). The difference in V66 between CAMM and CA was significant for PTV (p = 0.03) and approached significance for CTV (p = 0.07). Conclusion: The quality of DIR-mapped contours directly impacted the plan quality for 4DCBCT-based adaptation. Larger safety margins may be needed when planning with auto contours for IGART with 4DCBCT images. Reseach was supported by NIH P01CA116602.

  8. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London, London (United Kingdom); Massachusetts General Hospital, Boston, MA (United States); Sharp, G; Testa, M; Lu, H-M [Massachusetts General Hospital, Boston, MA (United States); Bentefour, E [Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Royle, G [University College London, London (United Kingdom)

    2014-06-15

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences

  9. New Developments of exact Cone-beam CT Reconstruction Algorithms%锥束CT精确重建算法研究最新进展

    Institute of Scientific and Technical Information of China (English)

    陈志强; 李亮; 康克军; 张丽

    2005-01-01

    第八届三维图像重建及核医疗学国际会议于2005年7月在美国盐湖城召开.该会议是在CT、PET及SPECT图像重建领域最负盛名的会议之一.本文主要介绍在本次会议上提出的几种最新锥束CT精确重建算法,包括MD-FBP算法、R-line算法等;还讨论了这两种精确锥束重建算法的各自优点,并对CT图像重建领域下一步的研究方向做了展望.%The international meeting on fully three-dimensional image reconstruction meeting in radiology and nuclear medicine was hold in July 2005, USA. It is one of the most famous meetings in CT, PET and SPECT image reconstruction field. This paper introduces some novel developments in PET, SPECT and CT imaging upon this meeting. According to our interest, we focus on exact cone-beam CT reconstruction including Minimum data filtered-backprojection algorithm (MD-FBP), the R-line algorithm and so on. In the end, we discuss the different advantages of the above two exact algorithms and research prospects in cone-beam reconstruction.

  10. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    Science.gov (United States)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  11. Integration of FDG-PET/CT into external beam radiation therapy planning Technical aspects and recommendations on methodological approaches

    NARCIS (Netherlands)

    Thorwarth, D.; Beyer, T.; Boellaard, R.; De Ruysscher, D.; Grgic, A.; Lee, J. A.; Pietrzyk, U.; Sattler, B.; Schaefer, A.; van Elmpt, W.; Vogel, W.; Oyen, W. J. G.; Nestle, U.

    2012-01-01

    This work addresses the clinical adoption of FDG-PET/CT for image-guided radiation therapy planning (RIP). As such, important technical and methodological aspects of PET/CT-based RIP are reviewed and practical recommendations are given for routine patient management and clinical studies. First, rece

  12. Integration of FDG-PET/CT into external beam radiation therapy planning. Technical aspects and recommendations on methodological approaches.

    NARCIS (Netherlands)

    Thorwarth, D.; Beyer, T.; Boellaard, R.; Ruysscher, D. de; Grgic, A.; Lee, J.A.; Pietrzyk, U.; Sattler, B.; Schaefer, A.; Elmpt, W. van; Vogel, W.; Oyen, W.J.G.; Nestle, U.

    2012-01-01

    This work addresses the clinical adoption of FDG-PET/CT for image-guided radiation therapy planning (RTP). As such, important technical and methodological aspects of PET/CT-based RTP are reviewed and practical recommendations are given for routine patient management and clinical studies. First, rece

  13. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  14. Effect of dose reduction on image registration and image quality for cone-beam CT in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Loutfi-Krauss, B.; Koehn, J.; Bluemer, N.; Kara, E.; Scherf, C.; Roedel, C.; Ramm, U.; Licher, J. [Universitaetsklinikum Frankfurt, Klinik fuer Strahlentherapie und Onkologie, Frankfurt am Main (Germany); Freundl, K.; Koch, T. [Sozialstiftung Bamberg - MVZ am Bruderwald, Klinik und Praxis fuer Radioonkologie und Strahlentherapie, Bamberg (Germany)

    2014-09-20

    The additional radiation exposure applied to patients undergoing cone-beam computed tomography (CBCT) for image registration in radiation therapy is of great concern. Since a decrease in CBCT dose is linked to a degradation of image quality, the consequences of dose reduction on the registration process have to be investigated. This paper examines image quality and registration of low-contrast structures on an Elekta XVI for the two treatment areas prostate and chest while gradually decreasing the mAs per frame and the number of projections per CBCT to achieve dose reduction. Ideal results for image quality were obtained for 1.6 mAs/frame and 377 projections in prostate scans and 0.63 mAs/frame and 440 projections in chest images. Lower as well as higher total mAs lead to a decrease in image quality. In spite of poor image quality, registration can be successfully performed even for lowest possible settings. The results for registration allow an extensive dose reduction in both treatment areas. Very low mAs, however, do not qualify for clinical use because subjective judgment of the registration process is impossible. Compared to default presets the use of settings for acceptable image quality already permit a decrease in exposure of about 40 % (29.0 to 16.7 mGy) in prostate scans and 60 % (18.3 to 7.7 mGy) in chest scans. (orig.) [German] Die zusaetzliche Strahlenbelastung von Patienten bei der Lagerungskontrolle mit einer Kegelstrahl-Computertomographie (CBCT) in der Strahlentherapie ist nicht zu vernachlaessigen. Die Reduzierung der Dosis durch das CBCT ist mit einer Verschlechterung der Bildqualitaet verbunden. Aus diesem Grund ist die Untersuchung der Effekte einer Dosisreduktion von grosser Bedeutung. Diese Arbeit untersucht die Bildqualitaet und Bildregistrierung in Bereichen niedrigen Kontrasts mit einem Kegelstrahl CT der Firma Elekta. Betrachtet werden die Behandlungsregionen Prostata und Thorax. Die Dosisreduktion wird durch stufenweise Verringerung der

  15. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  16. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    Science.gov (United States)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C

  17. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    Energy Technology Data Exchange (ETDEWEB)

    Sisniega, A; Zbijewski, W; Stayman, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Yorkston, J [Carestream Health (United States); Aygun, N [Department of Radiology, Johns Hopkins University (United States); Koliatsos, V [Department of Neurology, Johns Hopkins University (United States); Siewerdsen, J [Department of Biomedical Engineering, Johns Hopkins University (United States); Department of Radiology, Johns Hopkins University (United States)

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain

  18. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head.

    Science.gov (United States)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Stayman, J Webster; Wang, Xiaohui; Foos, David H; Aygun, Nafi; Koliatsos, Vassillis E; Siewerdsen, Jeffrey H

    2016-08-21

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  19. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Thawait, G; Gang, G; Zbijewski, W; Riegel, T; Demehri, S; Siewerdsen, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-15

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor” and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in osteoarthritis

  20. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head

    Science.gov (United States)

    Xu, Jennifer; Sisniega, Alejandro; Zbijewski, Wojciech; Dang, Hao; Webster Stayman, J.; Wang, Xiaohui; Foos, David H.; Aygun, Nafi; Koliatsos, Vassillis E.; Siewerdsen, Jeffrey H.

    2016-08-01

    The effects of detector readout gain mode and bowtie filters on cone-beam CT (CBCT) image quality and dose were characterized for a new CBCT system developed for point-of-care imaging of the head, with potential application to diagnosis of traumatic brain injury, intracranial hemorrhage (ICH), and stroke. A detector performance model was extended to include the effects of detector readout gain on electronic digitization noise. The noise performance for high-gain (HG), low-gain (LG), and dual-gain (DG) detector readout was evaluated, and the benefit associated with HG mode in regions free from detector saturation was quantified. Such benefit could be realized (without detector saturation) either via DG mode or by incorporation of a bowtie filter. Therefore, three bowtie filters were investigated that varied in thickness and curvature. A polyenergetic gain correction method was developed to equalize the detector response between the flood-field and projection data in the presence of a bowtie. The effect of bowtie filters on dose, scatter-to-primary ratio, contrast, and noise was quantified in phantom studies, and results were compared to a high-speed Monte Carlo (MC) simulation to characterize x-ray scatter and dose distributions in the head. Imaging in DG mode improved the contrast-to-noise ratio (CNR) by ~15% compared to LG mode at a dose (D 0, measured at the center of a 16 cm CTDI phantom) of 19 mGy. MC dose calculations agreed with CTDI measurements and showed that bowtie filters reduce peripheral dose by as much as 50% at the same central dose. Bowtie filters were found to increase the CNR per unit square-root dose near the center of the image by ~5-20% depending on bowtie thickness, but reduced CNR in the periphery by ~10-40%. Images acquired at equal CTDIw with and without a bowtie demonstrated a 24% increase in CNR at the center of an anthropomorphic head phantom. Combining a thick bowtie filter with a short arc (180°  +  fan angle) scan centered

  1. A breast-specific, negligible-dose scatter correction technique for dedicated cone-beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy

    Science.gov (United States)

    Yang, Kai; Burkett, George, Jr.; Boone, John M.

    2014-11-01

    The purpose of this research was to develop a method to correct the cupping artifact caused from x-ray scattering and to achieve consistent Hounsfield Unit (HU) values of breast tissues for a dedicated breast CT (bCT) system. The use of a beam passing array (BPA) composed of parallel-holes has been previously proposed for scatter correction in various imaging applications. In this study, we first verified the efficacy and accuracy using BPA to measure the scatter signal on a cone-beam bCT system. A systematic scatter correction approach was then developed by modeling the scatter-to-primary ratio (SPR) in projection images acquired with and without BPA. To quantitatively evaluate the improved accuracy of HU values, different breast tissue-equivalent phantoms were scanned and radially averaged HU profiles through reconstructed planes were evaluated. The dependency of the correction method on object size and number of projections was studied. A simplified application of the proposed method on five clinical patient scans was performed to demonstrate efficacy. For the typical 10-18 cm breast diameters seen in the bCT application, the proposed method can effectively correct for the cupping artifact and reduce the variation of HU values of breast equivalent material from 150 to 40 HU. The measured HU values of 100% glandular tissue, 50/50 glandular/adipose tissue, and 100% adipose tissue were approximately 46, -35, and -94, respectively. It was found that only six BPA projections were necessary to accurately implement this method, and the additional dose requirement is less than 1% of the exam dose. The proposed method can effectively correct for the cupping artifact caused from x-ray scattering and retain consistent HU values of breast tissues.

  2. Clinical use of cone beam CT in impacted maxillary tooth extraction and artifistulation%锥形束CT定位埋伏牙的临床应用

    Institute of Scientific and Technical Information of China (English)

    董辉; 冯春丽; 孙蕾; 祁森荣; 夏登胜

    2011-01-01

    目的 探讨锥形束CT影像和三维重建技术在辅助埋伏牙拔除和正畸开窗牙牵引术中的作用.方法 选择53颗常规曲面断层片难以确定埋伏牙空间位置的患者进行锥形束CT扫描,其中对5例复杂埋伏牙的CT图像进行三维重建.45例埋伏牙依据CT图像选择不同手术入路行拔牙术,8例埋伏牙采用颌骨开窗牵引术.结果 螺旋CT影像对正确选择埋伏牙拔除的手术入路具有良好的指导作用;CT三维重建图像能清楚地显示埋伏牙的牙体形态、唇腭向位置以及和邻牙的关系,正确指导手术开窗牵引的入路和开窗牵引装置的固定.结论 锥形束CT和三维重建技术在显示埋伏牙的位置和牙体形态上明显优于传统的曲面断层和根尖片.%Objective To evaluate the value of cone beam CT and three-dimensional reconstruction in impacted maxillary tooth extraction and artifistulation. Methods Fifty-three patients with impacted maxillary teeth were included and examined by cone beam CT, and 3D reconstruction was conducted in five of them . Results The cone beam CT images clearly denmonstrated the location of the teeth and provided help in the impacted tooth extraction. The threedimensional reconstruction technique guided and simplified the procedure of artifistulation. Conclusion Cone beam CT has more advantages in assistance of impacted tooth extraction and artifistulation in orthodontics compared with traditional panoramic radiography.

  3. Research progress in the application of cone beam CT to periodontics%锥形束CT在牙周病学中的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵海礁; 潘亚萍

    2011-01-01

    锥形束CT(cone-beam computed tomography,CBCT)是目前较有力的牙周病辅助检查方式之一.研究发现,CBCT检查可促进牙周病的诊断、治疗及预后的评价等.近年来,CBCT在牙周病学中的重要作用备受关注本文将对CBCT的成像原理及其在牙周领域中的研究进展进行简要阐述.

  4. Image quality at low tube voltage (70 kV) and sinogram-affirmed iterative reconstruction for computed tomography in infants with congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Sakurai, Keita; Shimohira, Masashi; Shibamoto, Yuta [Nagoya City University Graduate School of Medical Sciences, Department of Radiology, Nagoya (Japan); Ohashi, Kazuya [Nagoya City University Hospital, Division of Central Radiology, Nagoya (Japan); Asano, Miki [Nagoya City University Graduate School of Medical Sciences, Department of Cardiovascular Surgery, Nagoya (Japan); Yamaguchi, Sachiko [Nagoya City University Graduate School of Medical Sciences, Department of Pediatrics and Neonatology, Nagoya (Japan)

    2015-09-15

    Lower tube voltage has advantages for CT angiography, such as improved contrast To evaluate the image quality of low-voltage (70 kV) CT for congenital heart disease and the ability of sinogram-affirmed iterative reconstruction to improve image quality. Forty-six children with congenital heart disease (median age: 109 days) were examined using dual-source CT. Scans were performed at 80 kV and 70 kV in 21 and 25 children, respectively. A nonionic iodinated contrast medium (300 mg I/ml) was used for the 80-kV protocol. The contrast medium was diluted to 75% (225 mgI/mL) with saline for the 70-kV protocol. Image noise was measured in the two protocols for each group by extracting the standard deviations of a region of interest placed on the descending aorta. We then determined whether sinogram-affirmed iterative reconstruction reduced the image noise at 70 kV. There was more noise at 70 kV than at 80 kV (29 ± 12 vs 20 ± 4.8; P < 0.01). Sinogram-affirmed iterative reconstruction with grade 4 strength settings improved the noise (20 ± 5.9; P < 0.01) for the 70-kV group. Sinogram-affirmed iterative reconstruction improved the image quality of CT in congenital heart disease. (orig.)

  5. Clinical application of cone beam CT in ambush impacted tooth diagnosis and treatment%CBCT在埋伏阻生牙诊断及治疗中的临床应用

    Institute of Scientific and Technical Information of China (English)

    孔娟; 秦晓中; 任晓旭

    2013-01-01

    Objective: To investigate the value of diagnosisand treatment of the ambush impacted teeth in jaw bones by Cone beam CT. Method; Cone beam CT was applied to localize impacted teeth in jaw bones in 28 cases that can not be localized exactly by Oral panoramic and occlusal film. Preoperative Scaned for all patients with cone beam CT to get high resolution image in preoperation?and use special software for accurate positioning. Result: Cone beam CT was applied tolocalizeexactly in 28 cases of impacted teeth in jaw bones.The impacted teeth in jaw bones were successfully removed or traction to correct position. Conclusion: Cone beam CT is an effective method to check impacted teeth.Cone-beam CT has an important guiding value in removing impacted teeth.%目的:评价锥体束CT(CBCT)在埋伏牙诊断及治疗中的临床应用价值.方法:选择常规全颌曲面断层片和X线牙片不能准确定位的埋伏阻生牙28例,术前对所有患者进行CBCT扫描获得高分辨率影像,并使用专用软件进行准确定位.结果:28颗埋伏阻生牙均被精确定位,采用最佳手术入路后,均顺利拔除或成功牵引至正确位置.结论:CBCT是判断埋伏阻生牙准确位置的有效方法,在埋伏阻生牙诊断及治疗中有重要的临床应用价值.

  6. A study of the short- to long-phantom dose ratios for CT scanning without table translation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu [Division of Diagnostic Imaging Physics, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Yang, Jie [Pinnacle Health - Fox Chase Regional Cancer Center, Harrisburg, Pennsylvania 17109 (United States)

    2014-09-15

    Purpose: For CT scanning in the stationary-table modes, AAPM Task Group 111 proposed to measure the midpoint dose on the central and peripheral axes of sufficiently long phantoms. Currently, a long cylindrical phantom is usually not available in many clinical facilities. The use of a long phantom is also challenging because of the heavy weight. In order to shed light on assessing the midpoint dose in CT scanning without table movement, the authors present a study of the short- to long-phantom dose ratios, and perform a cross-comparison of CT dose ratios on different scanner models. Methods: The authors performed Geant4-based Monte Carlo simulations with a clinical CT scanner (Somatom Definition dual source CT, Siemens Healthcare), and modeled dosimetry measurements using a 0.6 cm{sup 3} Farmer type chamber and a 10-cm long pencil ion chamber. The short (15 cm) to long (90 cm) phantom dose ratios were computed for two PMMA diameters (16 and 32 cm), two phantom axes (the center and the periphery), and a range of beam apertures (3–25 cm). The results were compared with the published data of previous studies with other multiple detector CT (MDCT) scanners and cone beam CT (CBCT) scanners. Results: The short- to long-phantom dose ratios changed with beam apertures but were insensitive to beam qualities (80–140 kV, the head and body bowtie filters) and MDCT and CBCT scanner models. Conclusions: The short- to long-phantom dose ratios enable medical physicists to make dosimetry measurements using the standard CT dosimetry phantoms and a Farmer chamber or a 10 cm long pencil chamber, and to assess the midpoint dose in long phantoms. This method provides an effective approach for the dosimetry of CBCT scanning in the stationary-table modes, and is useful for perfusion and interventional CT.

  7. Injection into a circular machine with a KV distribution

    Energy Technology Data Exchange (ETDEWEB)

    Crosbie, E.; Symon, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    1996-06-01

    In order to achieve a maximum space charge limit in the IPNS-II synchrotron it is desirable to inject a Kapchinskij-Vladimirskij (KV) distribution (1). We rederive the KV distribution, first starting from a smoothed Hamiltonian and then for the full alternating gradient case. The microcanonical distribution can be generalized slightly so as to allow one to alter the aspect ratio of the beam ellipse. The KV distribution requires that the injected particles all have the same total transverse oscillation energy, and also that they are distributed uniformly throughout the entire energy shell. This requires painting the injected beam uniformly in the three independent dimensions of the energy shell. We have devised two scenarios for doing this, one involving a suitable variation of the {ital x} and {ital y} injected amplitudes during the injection process, and the second involving introducing a small coupling between the {ital x} and {ital y} motions. We have written a program to simulate the injection process which includes the turn-to-turn forces between the (500) injected turns. If we omit the turn-to-turn forces then the resulting space charge density distributions are indeed very nearly uniform within a circular beam cross section for either KV injection scenario, but are neither uniform nor circular for other plausible scenarios. With turn-to-turn forces included, the interturn scattering can be fairly important and the resulting density distributions tend to develop lower density halos. If we add a gradient bump to simulate magnetic quadrupole errors in the lattice, then the effects of half-integral resonances can be clearly seen. When the space charge forces between turns depress the tune to a resonance, beam growth keeps the tunes constant at the edge of the stop band, unless the resonance is crossed quickly. The resultant growth of the beam can be seen in the density distribution if resonant effects are dominant, i.e., starting with tunes near the resonance.

  8. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    Science.gov (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  9. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

    Science.gov (United States)

    Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-04-01

    Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD  =  750 mm, SDD  =  1100

  10. SU-E-P-41: Imaging Coordination of Cone Beam CT, On-Board Image Conjunction with Optical Image Guidance for SBRT Treatment with Respiratory Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Campbell, J [INTEGRIS Cancer Institute of Oklahoma, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To spare normal tissue for SBRT lung/liver patients, especially for patients with significant tumor motion, image guided respiratory motion management has been widely implemented in clinical practice. The purpose of this study was to evaluate imaging coordination of cone beam CT, on-board X-ray image conjunction with optical image guidance for SBRT treatment with motion management. Methods: Currently in our clinic a Varian Novlis Tx was utilized for treating SBRT patients implementing CBCT. A BrainLAB X-ray ExacTrac imaging system in conjunction with optical guidance was primarily used for SRS patients. CBCT and X-ray imaging system were independently calibrated with 1.0 mm tolerance. For SBRT lung/liver patients, the magnitude of tumor motion was measured based-on 4DCT and the measurement was analyzed to determine if patients would be beneficial with respiratory motion management. For patients eligible for motion management, an additional CT with breath holding would be scanned and used as primary planning CT and as reference images for Cone beam CT. During the SBRT treatment, a CBCT with pause and continuing technology would be performed with patients holding breath, which may require 3–4 partially scanned CBCT to combine as a whole CBCT depending on how long patients capable of holding breath. After patients being setup by CBCT images, the ExactTrac X-ray imaging system was implemented with patients’ on-board X-ray images compared to breath holding CT-based DRR. Results: For breath holding patients SBRT treatment, after initially localizing patients with CBCT, we then position patients with ExacTrac X-ray and optical imaging system. The observed deviations of real-time optical guided position average at 3.0, 2.5 and 1.5 mm in longitudinal, vertical and lateral respectively based on 35 treatments. Conclusion: The respiratory motion management clinical practice improved our physician confidence level to give tighter tumor margin for sparing normal

  11. SU-E-J-89: Comparative Analysis of MIM and Velocity’s Image Deformation Algorithm Using Simulated KV-CBCT Images for Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Cline, K; Narayanasamy, G; Obediat, M; Stanley, D; Stathakis, S; Kirby, N [University of Texas Health Science Center at San Antonio, Cancer Therapy and Research Center, San Antonio, TX (United States); Kim, H [University of California San Francisco, San Francisco, CA (United States)

    2015-06-15

    Purpose: Deformable image registration (DIR) is used routinely in the clinic without a formalized quality assurance (QA) process. Using simulated deformations to digitally deform images in a known way and comparing to DIR algorithm predictions is a powerful technique for DIR QA. This technique must also simulate realistic image noise and artifacts, especially between modalities. This study developed an algorithm to create simulated daily kV cone-beam computed-tomography (CBCT) images from CT images for DIR QA between these modalities. Methods: A Catphan and physical head-and-neck phantom, with known deformations, were used. CT and kV-CBCT images of the Catphan were utilized to characterize the changes in Hounsfield units, noise, and image cupping that occur between these imaging modalities. The algorithm then imprinted these changes onto a CT image of the deformed head-and-neck phantom, thereby creating a simulated-CBCT image. CT and kV-CBCT images of the undeformed and deformed head-and-neck phantom were also acquired. The Velocity and MIM DIR algorithms were applied between the undeformed CT image and each of the deformed CT, CBCT, and simulated-CBCT images to obtain predicted deformations. The error between the known and predicted deformations was used as a metric to evaluate the quality of the simulated-CBCT image. Ideally, the simulated-CBCT image registration would produce the same accuracy as the deformed CBCT image registration. Results: For Velocity, the mean error was 1.4 mm for the CT-CT registration, 1.7 mm for the CT-CBCT registration, and 1.4 mm for the CT-simulated-CBCT registration. These same numbers were 1.5, 4.5, and 5.9 mm, respectively, for MIM. Conclusion: All cases produced similar accuracy for Velocity. MIM produced similar values of accuracy for CT-CT registration, but was not as accurate for CT-CBCT registrations. The MIM simulated-CBCT registration followed this same trend, but overestimated MIM DIR errors relative to the CT

  12. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  13. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    Science.gov (United States)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  14. Development of CT scanner models for patient organ dose calculations using Monte Carlo methods

    Science.gov (United States)

    Gu, Jianwei

    There is a serious and growing concern about the CT dose delivered by diagnostic CT examinations or image-guided radiation therapy imaging procedures. To better understand and to accurately quantify radiation dose due to CT imaging, Monte Carlo based CT scanner models are needed. This dissertation describes the development, validation, and application of detailed CT scanner models including a GE LightSpeed 16 MDCT scanner and two image guided radiation therapy (IGRT) cone beam CT (CBCT) scanners, kV CBCT and MV CBCT. The modeling process considered the energy spectrum, beam geometry and movement, and bowtie filter (BTF). The methodology of validating the scanner models using reported CTDI values was also developed and implemented. Finally, the organ doses to different patients undergoing CT scan were obtained by integrating the CT scanner models with anatomically-realistic patient phantoms. The tube current modulation (TCM) technique was also investigated for dose reduction. It was found that for RPI-AM, thyroid, kidneys and thymus received largest dose of 13.05, 11.41 and 11.56 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. For RPI-AF, thymus, small intestine and kidneys received largest dose of 10.28, 12.08 and 11.35 mGy/100 mAs from chest scan, abdomen-pelvis scan and CAP scan, respectively using 120 kVp protocols. The dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. For MDCT with TCM schemas, the fetal dose can be reduced with 14%-25%. To demonstrate the applicability of the method proposed in this dissertation for modeling the CT scanner, additional MDCT scanner was modeled and validated by using the measured CTDI values. These results demonstrated that the

  15. Use of C-Arm Cone Beam CT During Hepatic Radioembolization : Protocol Optimization for Extrahepatic Shunting and Parenchymal Enhancement

    NARCIS (Netherlands)

    van den Hoven, Andor F.; Prince, Jip F.; de Keizer, Bart; Vonken, Evert Jan P A; Bruijnen, Rutger C G; Verkooijen, Helena M.; Lam, Marnix G E H; van den Bosch, Maurice A A J

    2016-01-01

    Purpose: To optimize a C-arm computed tomography (CT) protocol for radioembolization (RE), specifically for extrahepatic shunting and parenchymal enhancement. Materials and Methods: A prospective development study was performed per IDEAL recommendations. A literature-based protocol was applied in pa

  16. Development of a new prior knowledge based image reconstruction algorithm for the cone-beam-CT in radiation therapy; Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus fuer die Cone-Beam-CT Bildgebung in der Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Vaegler, Sven

    2016-07-08

    The treatment of cancer in radiation therapy is achievable today by techniques that enable highly conformal dose distributions and steep dose gradients. In order to avoid mistreatment, these irradiation techniques have necessitated enhanced patient localization techniques. With an integrated x-ray tube at modern linear accelerators kV-projections can be acquired over a sufficiently large angular space and can be reconstructed to a volumetric image data set from the current situation of the patient prior to irradiation. The so-called Cone-Beam-CT (CBCT) allows a precise verification of patient positioning as well as adaptive radiotherapy. The benefits of an improved patient positioning due to a daily performed CBCT's is contrary to an increased and not negligible radiation exposure of the patient. In order to decrease the radiation exposure, substantial research effort is focused on various dose reduction strategies. Prominent strategies are the decrease of the charge per projection, the reduction of the number of projections as well as the reduction of the acquisition space. Unfortunately, these acquisition schemes lead to images with degraded quality with the widely used Feldkamp-Davis-Kress image reconstruction algorithm. More sophisticated image reconstruction techniques can deal with these dose-reduction strategies without degrading the image quality. A frequently investigated method is the image reconstruction by minimizing the total variation (TV), which is also known as Compressed Sensing (CS). A Compressed Sensing-based reconstruction framework that includes prior images into the reconstruction algorithm is the Prior-Image-Constrained- Compressed-Sensing algorithm (PICCS). The images reconstructed by PICCS outperform the reconstruction results of the conventional Feldkamp-Davis-Kress algorithm (FDK) based method if only a small number of projections are available. However, a drawback of PICCS is that major deviations between prior image data sets and

  17. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    Science.gov (United States)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  18. Comparison of internal target volumes defined on 3-dimensional, 4-dimensonal, and cone-beam CT images of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Li F

    2016-11-01

    Full Text Available Fengxiang Li,1 Jianbin Li,1 Zhifang Ma,1 Yingjie Zhang,1 Jun Xing,1 Huanpeng Qi,1 Dongping Shang21Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of ChinaPurpose: The purpose of this study was to compare the positional and volumetric differences of internal target volumes defined on three-dimensional computed tomography (3DCT, four-dimensional CT (4DCT, and cone-beam CT (CBCT images of non-small-cell lung cancer (NSCLC. Materials and methods: Thirty-one patients with NSCLC sequentially underwent 3DCT and 4DCT simulation scans of the thorax during free breathing. The first CBCT was performed and registered to the planning CT using the bony anatomy registration during radiotherapy. The gross tumor volumes were contoured on the basis of 3DCT, maximum intensity projection (MIP of 4DCT, and CBCT. CTV3D (clinical target volume, internal target volumes, ITVMIP and ITVCBCT, were defined with a 7 mm margin accounting for microscopic disease. ITV10 mm and ITV5 mm were defined on the basis of CTV3D: ITV10 mm with a 5 mm margin in left–right (LR, anterior–posterior (AP directions and 10 mm in cranial–caudal (CC direction; ITV5 mm with an isotropic internal margin (IM of 5 mm. The differences in the position, size, Dice’s similarity coefficient (DSC and inclusion relation of different volumes were evaluated.Results: The median size ratios of ITV10 mm, ITV5 mm, and ITVMIP to ITVCBCT were 2.33, 1.88, and 1.03, respectively, for tumors in the upper lobe and 2.13, 1.76, and 1.1, respectively, for tumors in the middle-lower lobe. The median DSCs of ITV10 mm, ITV5 mm, ITVMIP, and ITVCBCT were 0.6, 0.66, and 0.83 for all patients. The median percentages of ITVCBCT not included in ITV10 mm, ITV5 mm, and ITVMIP were 0.1%, 1.63%, and 15.21%, respectively, while the median percentages of ITV10 mm, ITV5 mm

  19. SU-E-T-143: Effect of X-Ray and Cone Beam CT Reconstruction Parameters On Estimation of Bone Volume of Mice Used in Aging Research

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Pang, M; Troen, B; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-01

    Purpose: To investigate the variations in bone volume calculations in mice involved in aging research when changing cone beam micro-CT x-ray and reconstruction parameters. Methods: Mouse spines were placed on an indexed turn table that rotated 0.5° per projection and imaged by a self-built micro CT machine containing a CCD-based high-resolution x-ray detector. After the full 360° rotation data set of object images was obtained, a standard filtered back-projection cone beam reconstruction was performed. Four different kVp's between 40–70 kVp in 10kVp increments were selected. For each kVp two mAs settings were used. Each acquisition was reconstructed using two voxel sizes (12 and 25μm) and two step angles, 0.5° and 1°, respectively. A LabView program was written to determine the total bone volume contained in the mouse's total spine volume (bone plus gaps) as a measure of spine health. First, the user selected the desired 512×512 reconstruction to view the whole spine volume which was then used to select a gray-level threshold that allowed for viewing of the bone structure, then another threshold to include gaps. The program returned bone volume, bone × gap volume, and their ratio, BVF. Results: The calculated bone volume fractions were compared as a function of tube potential. Cases with 25μm slice thickness showed trials with lower kVp's had greater image contrast, which resulted in higher calculated bone volume fractions. Cases with 12μm reconstructed slice thickness were significantly noisier, and showed no clear maximum BVF. Conclusion: Using the projection images and reconstructions acquired from the micro CT, it can be shown that the micro-CT x-ray and reconstruction parameters significantly affect the total bone volume calculations. When comparing mice cohorts treated with different therapies researchers need to be aware of such details and use volumes which were acquired and processed in identical conditions.

  20. Dosimetric Calibration of CT Pencil Chamber in Cobalt Beams%用60Co射线校准CT电离室的研究

    Institute of Scientific and Technical Information of China (English)

    李懿; 王军良; 王运来

    2014-01-01

    目的探讨CT电离室用60Co射线进行剂量长度乘积刻度的方法。方法 PTW TM30009 CT电离室放在T40017头部模体中心插孔中,用20 cm×20 cm 60Co射线照射60 s,用UNIDOS剂量仪测量电荷量。相同条件下TM300130.6 mL电离室测量吸收剂量。CT电离室的刻度因子用剂量长度乘积表示。同时测量CT电离室在MV级辐射场中的剂量线性和剂量响应均匀性。结果 CT电离室的剂量-长度刻度因子可以从测量数据计算得到。电离室的剂量线性和剂量响应的均匀性很好。结论用60Co射线进行吸收剂量刻度后,CT电离室可以用于MVCT设备的CT剂量指数测量。%Objective To explore the dose-length product calibration method for pencil ionization chamber in cobalt beams. Methods The PTW TM30009 ionization chamber was placed into the central hole of T40017 head phantom and irradiated 60 s in 20 cm×20 cm cobalt beam. The charge was col ected with UNIDOS electrometer. Absorbed doses were measured with TM30013 0.6 mL farmer-type chamber under the same condition. The CT chamber calibration factor was expressed in dose-length product. Dose linearity and spatial response were also investigated. Results The calibration factor in dose-length product was derived from measured data. Dose linearity and spatial response were good in cobalt beams. Conclusion It is feasible to calibrate the CT chamber in cobalt beams for patient dose evaluation in MVCT.

  1. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  2. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    Science.gov (United States)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark; Pathmanathan, Pavthrun

    2013-01-01

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities. PMID:26229610

  3. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark; Pathmanathan, Pavthrun [The Prince Charles Hospital, Rode Road, Chermside, Queensland (Australia)

    2013-06-15

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. This case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.

  4. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  5. Discussion of Cone-beam CT-guided Radiotherapy for Breast Cancer%锥形束CT引导乳腺癌放射治疗的探讨

    Institute of Scientific and Technical Information of China (English)

    叶森林; 梁廷; 荣青碧

    2010-01-01

    目的:探讨锥形束CT(Cone-Beam CT,CBCT)在乳腺癌三维适形或调强放射治疗位置精度保证中的应用.方法:采用Varian-21EX直线加速器机载影像系统(OBI),在适形或调强放射治疗前行锥形束CT扫描,系统自动重建成断层图像,获得患者三维方向的摆位数据,直接与治疗计划CT扫描图像相匹配后得出两者间的误差数据,对误差予以校正后行精确治疗.结果:经锥形束CT扫描并校正后,左右、腹背和头脚方向的位置误差值分别由(1.7±3.25)mm、(0.9±1.27)mm、(2.1±4.31)mm下降至(0.6±1.38)mm、(0.2±0.72)mm、(0.8±1.65)mm.结论:CBCT对于乳腺癌适形或调强放射治疗的精确实施具有重要作用.

  6. Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    Science.gov (United States)

    Unberath, Mathias; Choi, Jang-Hwan; Berger, Martin; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motion- related artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreover, sub-optimal marker placement may lead to decreased marker detectability and therefore unstable motion estimates. In order to reduce overall patient discomfort, we developed a new image-based 2D projection shifting method. A C-arm cone-beam CT system was used to acquire projection images of five healthy volunteers at various flexion angles. Projection matrices for the horizontal scanning trajectory were calibrated using the Siemens standard PDS-2 phantom. The initial reconstruction was forward projected using maximum-intensity projections (MIP), yielding an estimate of a static scan. This estimate was then used to obtain the 2D projection shifts via registration. For the scan with the most motion, the proposed method reproduced the marker-based results with a mean error of 2.90 mm +/- 1.43 mm (compared to a mean error of 4.10 mm +/- 3.03 mm in the uncorrected case). Bone contour surrounding modeling clay layer was improved. The proposed method is a first step towards automatic image-based, marker-free motion-compensation.

  7. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a mod

  8. Optimizing cone beam CT scatter estimation in egs_cbct for a clinical and virtual chest phantom

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Mainegra-Hing, Ernesto

    2014-01-01

    PURPOSE: Cone beam computed tomography (CBCT) image quality suffers from contamination from scattered photons in the projection images. Monte Carlo simulations are a powerful tool to investigate the properties of scattered photons.egs_cbct, a recent EGSnrc user code, provides the ability...

  9. Use of C-Arm Cone Beam CT During Hepatic Radioembolization: Protocol Optimization for Extrahepatic Shunting and Parenchymal Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Prince, Jip F.; Keizer, Bart de; Vonken, Evert-Jan P. A.; Bruijnen, Rutger C. G.; Verkooijen, Helena M.; Lam, Marnix G. E. H.; Bosch, Maurice A. A. J. van den [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    PurposeTo optimize a C-arm computed tomography (CT) protocol for radioembolization (RE), specifically for extrahepatic shunting and parenchymal enhancement.Materials and MethodsA prospective development study was performed per IDEAL recommendations. A literature-based protocol was applied in patients with unresectable and chemorefractory liver malignancies undergoing an angiography before radioembolization. Contrast and scan settings were adjusted stepwise and repeatedly reviewed in a consensus meeting. Afterwards, two independent raters analyzed all scans. A third rater evaluated the SPECT/CT scans as a reference standard for extrahepatic shunting and lack of target segment perfusion.ResultsFifty scans were obtained in 29 procedures. The first protocol, using a 6 s delay and 10 s scan, showed insufficient parenchymal enhancement. In the second protocol, the delay was determined by timing parenchymal enhancement on DSA power injection (median 8 s, range 4–10 s): enhancement improved, but breathing artifacts increased (from 0 to 27 %). Since the third protocol with a 5 s scan decremented subjective image quality, the second protocol was deemed optimal. Median CNR (range) was 1.7 (0.6–3.2), 2.2 (−1.4–4.0), and 2.1 (−0.3–3.0) for protocol 1, 2, and 3 (p = 0.80). Delineation of perfused segments was possible in 57, 73, and 44 % of scans (p = 0.13). In all C-arm CTs combined, the negative predictive value was 95 % for extrahepatic shunting and 83 % for lack of target segment perfusion.ConclusionAn optimized C-arm CT protocol was developed that can be used to detect extrahepatic shunts and non-perfusion of target segments during RE.

  10. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); O' Connell, Avice M. [Department of Radiology, University of Rochester Medical Center, Rochester, New York 14642 (United States)

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin

  11. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels

    OpenAIRE

    Jens-Peter David; Stas, Jeroen I.; Nicole Schmitt; Elke Bocksteins

    2015-01-01

    The diversity of the voltage-gated K+ (Kv) channel subfamily Kv2 is increased by interactions with auxiliary β-subunits and by assembly with members of the modulatory so-called silent Kv subfamilies (Kv5-Kv6 and Kv8-Kv9). However, it has not yet been investigated whether these two types of modulating subunits can associate within and modify a single channel complex simultaneously. Here, we demonstrate that the transmembrane β-subunit KCNE5 modifies the Kv2.1/Kv6.4 current extensively, whereas...

  12. A simple method for the quality control of the isocenter of cone beam CT for Elekta Accelerator system Synery; Un metodo sencillo para el control de calidad del isocentro del sistema Cone Beam CT para un acelerador Elekta Synery

    Energy Technology Data Exchange (ETDEWEB)

    Clemente Gutierrez, F.; Perez Vara, C.; Prieto Villacorta, M.

    2013-07-01

    Techniques of image-guided radiation therapy has been spreading over the past years. Cone-beam tomography systems constitute a particular case. As any team that employs ionizing radiation in the diagnosis or treatment of patients, such a system must be seen within a guarantee program of quality according to the recommendations and regulations. In particular, between geometric proofs referred to in such a program for these systems, must be referred to the verification of the coincidence between the isocentres of the treatment unit and the team's image. This work includes the weekly procedure followed for such verification. (Author)

  13. Using corrected Cone-Beam CT image for accelerated partial breast irradiation treatment dose verification: the preliminary experience

    OpenAIRE

    Wang, Jiazhou; Hu, Weigang; Cai, Gang; Peng, Jiayuan; Pan, Ziqiang; Guo, Xiaomao; Chen, Jiayi

    2013-01-01

    Background Accurate target localization is mandatory in the accelerated partial breast irradiation (APBI) delivery. Dosimetric verification for positional error will further guarantee the accuracy of treatment delivery. The purpose of this study is to evaluate the clinical feasibility of a cone beam computer tomographic (CBCT) image correction method in APBI. Methods A CBCT image correction method was developed. First, rigid image registration was proceeded for CTs and CBCTs; second, these im...

  14. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    Science.gov (United States)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  15. Feasibility study of cone-beam CT perfusion imaging methods%锥束CT灌注成像方法的可行性研究

    Institute of Scientific and Technical Information of China (English)

    钱鹰; 秦家强

    2015-01-01

    为研究图像引导放疗( IGRT)中锥形束CT( CBCT)在低速单周环扫条件下进行灌注成像的可行性,首先利用大白兔动态对比增强断层图像( DCE-CT),通过计算机仿真技术模拟CBCT投影数据;然后建立各体素的时间密度变化模型,利用所获投影数据集,计算出各体素的时间密度曲线( TDC);最后通过去卷积模型求解出组织灌注参数并伪彩色处理。对比仿真获得的投影数据模拟对应体素的时间密度曲线与原始DCE-CT获得的对应体素的TDC,得到的两组TDC平均相关系数达到0.87,呈现出较高的吻合度;实验所得灌注参数及灌注图显示:肿瘤区域与正常组织区域的灌注参数值之间具有统计学意义上的显著差异。实验结果获得了较为准确的组织灌注值,证明图像引导放疗中集成在直线加速器上的CBCT在低速单周环扫条件下进行灌注成像是可行的。%The feasibility of Cone Beam CT ( CBCT) perfusion imaging under the condition of low speed and single ring for Image Guided Radiation Therapy ( IGRT ) was studied. Firstly, Dynamic Contrast-Enhanced CT ( DCE-CT ) images of rabbits, by means of computer simulation technology, were used to simulate CBCT projection data; then the change of time density of each voxel was modeled to calculate Time Density Curve ( TDC) of each voxel based on the projection data; finally tissue perfusion parameters were solved by deconvolution model and processed by pseudo-color. Comparing the TDC from projection data in simulation system with the TDC at the same pixel from the original DCE-CT data, average correlation coefficient is 0. 87, indicating high similarity. The experiments of perfusion parameters and perfusion maps show that perfusion parameters have a statistically significant difference between the sense of regional tumor and normal tissue regions. The results obtained more accurate tissue perfusion value, prove CBCT integrated linac perfusion

  16. Breathing Motion Analysis Based on Cone Beam CT Images%基于Cone Beam CT图像的呼吸运动分析

    Institute of Scientific and Technical Information of China (English)

    白相志; 周付根

    2008-01-01

    呼吸运动是有一定规律性的运动,传统呼吸运动模型用公式描述,不能准确反映不同病人的特点或同一病人不同时期的特点,无法满足实时准确分析的需要.为此,我们提出了一种通过跟踪病人自由呼吸状态下所采集的Cone Beam CT图像序列中的横隔膜的运动来建立病人呼吸运动模型的方法.该方法建立的模型与传统的呼吸运动理论模型非常相似,证明了它是可行且有效的,同时该方法更能实时准确地反映病人的呼吸运动规律,具有很高的临床实用价值.

  17. Using cone-beam CT as a low-dose 3D imaging technique for the extremities: initial experience in 50 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ambrose J.; Chang, Connie Y.; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Thomas, Bijoy J. [Universal College of Medical Sciences, Department of Radiology, Bhairahawa (Nepal); MacMahon, Peter J. [Mater Misericordiae University Hospital, Department of Radiology, Dublin 7 (Ireland)

    2015-06-01

    To prospectively evaluate a dedicated extremity cone-beam CT (CBCT) scanner in cases with and without orthopedic hardware by (1) comparing its imaging duration and image quality to those of radiography and multidetector CT (MDCT) and (2) comparing its radiation dose to that of MDCT. Written informed consent was obtained for all subjects for this IRB-approved, HIPAA-compliant study. Fifty subjects with (1) fracture of small bones, (2) suspected intraarticular fracture, (3) fracture at the site of complex anatomy, or (4) a surgical site difficult to assess with radiography alone were recruited and scanned on an extremity CBCT scanner prior to FDA approval. Same-day radiographs were performed in all subjects. Some subjects also underwent MDCT within 1 month of CBCT. Imaging duration and image quality were compared between CBCT and radiographs. Imaging duration, effective radiation dose, and image quality were compared between CBCT and MDCT. Fifty-one CBCT scans were performed in 50 subjects. Average imaging duration was shorter for CBCT than radiographs (4.5 min vs. 6.6 min, P = 0.001, n = 51) and MDCT (7.6 min vs. 10.9 min, P = 0.01, n = 7). Average estimated effective radiation dose was less for CBCT than MDCT (0.04 mSv vs. 0.13 mSv, P = 0.02, n = 7). CBCT images yielded more diagnostic information than radiographs in 23/51 cases and more diagnostic information than MDCT in 1/7 cases, although radiographs were superior for detecting hardware complications. CBCT performs high-resolution imaging of the extremities using less imaging time than radiographs and MDCT and lower radiation dose than MDCT. (orig.)

  18. Dependence of Coronary 3-Dimensional Dose Maps on Coronary Topologies and Beam Set in Breast Radiation Therapy: A Study Based on CT Angiographies

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, Alexandra, E-mail: alexandra.moignier@gmail.com [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Broggio, David [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Derreumaux, Sylvie [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SER/UEM, Unité d' Expertise en radioprotection Médicale, Fontenay-aux-Roses (France); El Baf, Fida [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Mandin, Anne-Marie [Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Service de Radiothérapie Oncologique, Paris (France); Girinsky, Théodore [Institut Gustave Roussy, Service de Radiothérapie Oncologique, Villejuif (France); Paul, Jean-François [Centre Chirurgical Marie-Lannelongue, Service de Radiologie, Le Plessis-Robinson (France); and others

    2014-05-01

    Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) at 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment

  19. Effect of light source instability on uniformity of 3D reconstructions from a cone beam optical CT scanner.

    Science.gov (United States)

    Begg, J; Taylor, M L; Holloway, L; Kron, T; Franich, R D

    2014-12-01

    Temporally varying light intensity during acquisition of projection images in an optical CT scanner can potentially be misinterpreted as physical properties of the sample. This work investigated the impact of LED light source intensity instability on measured attenuation coefficients. Different scenarios were investigated by conducting one or both of the reference and data scans in a 'cold' scanner, where the light source intensity had not yet stabilised. Uniform samples were scanned to assess the impact on measured uniformity. The orange (590 nm) light source decreased in intensity by 29 % over the first 2 h, while the red (633 nm) decreased by 9 %. The rates of change of intensity at 2 h were 0.1 and 0.03 % respectively over a 5 min period-corresponding to the scan duration. The normalisation function of the reconstruction software does not fully account for the intensity differences and discrepancies remain. Attenuation coefficient inaccuracies of up to 8 % were observed for data reconstructed from projection images acquired with a cold scanner. Increased noise was observed for most cases where one or both of the scans was acquired without sufficient warm-up. The decrease in accuracy and increase in noise were most apparent for data reconstructed from reference and data scans acquired with a cold scanner on different days.

  20. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Hagiwara, Akira; Nilsen, Roy A.; Thibault, Jean-Baptiste; Drapkin, Evgeny

    2005-08-01

    The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few 'circular plus' trajectories have been proposed in the past to help the original FDK algorithm to reduce CB artefacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as head imaging, breast imaging, cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artefacts existing in the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle (namely conjugate ray inconsistency). The conjugate ray inconsistency is pixel dependent, varying dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artefacts that can be avoided if appropriate weighting strategies are exercised. Along with an experimental evaluation and verification, a three-dimensional (3D) weighted axial cone beam filtered backprojection (CB-FBP) algorithm is proposed in this paper for image reconstruction in volumetric CT under a circular source trajectory. Without extra trajectories supplemental to the circular trajectory, the proposed algorithm applies 3D weighting on projection data before 3D backprojection to reduce conjugate ray inconsistency by suppressing the contribution from one of the conjugate rays with a larger cone angle. Furthermore, the 3D weighting is dependent on the distance between the reconstruction plane and the central plane determined by the circular trajectory. The proposed 3D weighted axial CB-FBP algorithm

  1. Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images

    Energy Technology Data Exchange (ETDEWEB)

    Hudobivnik, Nace; Dedes, George; Parodi, Katia; Landry, Guillaume, E-mail: g.landry@lmu.de [Department of Medical Physics, Ludwig-Maximilians-University, Munich 85748 (Germany); Schwarz, Florian; Johnson, Thorsten; Sommer, Wieland H. [Institute for Clinical Radiology, Ludwig Maximilians University Hospital Munich, 81377 Munich (Germany); Agolli, Linda [Department of Radiation Oncology, Ludwig-Maximilians-University, Munich 81377, Germany and Radiation Oncology, Sant’ Andrea Hospital, Sapienza University, Rome 00189 (Italy); Tessonnier, Thomas [Department of Medical Physics, Ludwig-Maximilians-University, Munich 85748, Germany and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht 6229 ET, the Netherlands and Medical Physics Unit, Department of Oncology, McGill University, Montreal, Quebec H3A 0G4 (Canada); Thieke, Christian; Belka, Claus [Department of Radiation Oncology, Ludwig-Maximilians-University, Munich 81377 (Germany)

    2016-01-15

    Purpose: Dual energy CT (DECT) has recently been proposed as an improvement over single energy CT (SECT) for stopping power ratio (SPR) estimation for proton therapy treatment planning (TP), thereby potentially reducing range uncertainties. Published literature investigated phantoms. This study aims at performing proton therapy TP on SECT and DECT head images of the same patients and at evaluating whether the reported improved DECT SPR accuracy translates into clinically relevant range shifts in clinical head treatment scenarios. Methods: Two phantoms were scanned at a last generation dual source DECT scanner at 90 and 150 kVp with Sn filtration. The first phantom (Gammex phantom) was used to calibrate the scanner in terms of SPR while the second served as evaluation (CIRS phantom). DECT images of five head trauma patients were used as surrogate cancer patient images for TP of proton therapy. Pencil beam algorithm based TP was performed on SECT and DECT images and the dose distributions corresponding to the optimized proton plans were calculated using a Monte Carlo (MC) simulation platform using the same patient geometry for both plans obtained from conversion of the 150 kVp images. Range shifts between the MC dose distributions from SECT and DECT plans were assessed using 2D range maps. Results: SPR root mean square errors (RMSEs) for the inserts of the Gammex phantom were 1.9%, 1.8%, and 1.2% for SECT phantom calibration (SECT{sub phantom}), SECT stoichiometric calibration (SECT{sub stoichiometric}), and DECT calibration, respectively. For the CIRS phantom, these were 3.6%, 1.6%, and 1.0%. When investigating patient anatomy, group median range differences of up to −1.4% were observed for head cases when comparing SECT{sub stoichiometric} with DECT. For this calibration the 25th and 75th percentiles varied from −2% to 0% across the five patients. The group median was found to be limited to 0.5% when using SECT{sub phantom} and the 25th and 75th percentiles

  2. Correction of Geometric Artifacts for Fan-Beam CT%扇束CT几何伪影的校正方法

    Institute of Scientific and Technical Information of China (English)

    王亮; 张朋

    2011-01-01

    实际工业CT系统很难满足经典CT图像重建公式所要求的射线源焦点、转台中心及线阵探测器之间严格的对准关系.不满足对准关系将导致经典CT图像重建公式所重建的图像中出现几何伪影.本文引入可以描述一般情况下CT扫描几何关系的一组几何参数,给出了由金属丝的投影数据间接估计这些几何参数的方法,还给出了基于这些几何参数的图像重建公式.本文只假设转台的旋转轴垂直于由射线源焦点与线阵探测器所形成的扇束,而不要求扫描系统满足其它几何对准关系.对于扫描系统不对准的情况,先按照本文方法估计几何参数,再将其代入本文提出的图像重建公式,便可以正确重建出被测物的断层CT图像.%For a real industrial CF system, it is very difficult to meet the rigorous aligned relations among the X-ray focus, the rotation cener of turntable and the linear detector, which is required by the conventional image reconstruction formula. Misalignment will result in geometric artifacts in the image reconstructed by the conventional image reconstruction formula. In this paper, we first introduce a set of geometric parameters which fully describe general CT scanning configuration, and then propose an indinect method to estirmate the set of parameters from the projection date of a meta sikl.We also propose a generalizad filtered back-projec-tion (FBP) reconstruction formula based on such set of parameters. In this paper, we assume that the rotation axis of the CT turntable is vertical to the fan-beam forned by the X-ray focus and the linear detector array,but do not require that the CT scanning system satisfies other alignment relations. For a misaligned scanning system, we can first estimate the pararneters by our method,and then reconstruct the image conrectly using our reconstmction formula with the estimated parameters.

  3. Reproducibility of Facial Soft Tissue Thickness Measurements Using Cone-Beam CT Images According to the Measurement Methods.

    Science.gov (United States)

    Hwang, Hyeon-Shik; Choe, Seon-Yeong; Hwang, Ji-Sup; Moon, Da-Nal; Hou, Yanan; Lee, Won-Joon; Wilkinson, Caroline

    2015-07-01

    The purpose of this study was to establish the reproducibility of facial soft tissue (ST) thickness measurements by comparing three different measurement methods applied at 32 landmarks on three-dimensional cone-beam computed tomography (CBCT) images. Two observers carried out the measurements of facial ST thickness of 20 adult subjects using CBCT scan data, and inter- and intra-observer reproducibilities were evaluated. The measurement method of "perpendicular to bone" resulted in high inter- and intra-observer reproducibility at all 32 landmarks. In contrast, the "perpendicular to skin" method and "direct" method, which measures a distance between one point on bone and the other point on skin, presented low reproducibility. The results indicate that reproducibility could be increased by identifying the landmarks on hard tissue images, rather than on ST images, and the landmark description used in this study can be used in the establishment of reliable tissue depth data using CBCT images.

  4. Multiple helical scans and the reconstruction of over FOV-sized objects in cone-beam CT

    Institute of Scientific and Technical Information of China (English)

    Han Yu; Yan Bin; Li Lei; Yu Chao-Qun; Li Jian-Xin; Bao Shang-Lian

    2012-01-01

    In cone-beam computed tomography (CBCT),there are often cases where the size of the specimen is larger than the field of view (FOV) (referred to as over FOV-sized (OFS)).To acquire the complete projection data for OFS objects,some scan modes have been developed for long objects and short but over-wide objects.However,these modes still cannot meet the requirements for both longitudinally long and transversely wide objects.In this paper,we propose a multiple helical scan mode and a corresponding reconstruction algorithm for both longitudinally long and transversely wide objects.The simulation results show that our model can deal with the problem and that the results are acceptable,while the OFS object is twice as long compared with the FOV in the same latitude.

  5. Simple methods to reduce patient dose in a Varian cone beam CT system for delivery verification in pelvic radiotherapy.

    Science.gov (United States)

    Roxby, P; Kron, T; Foroudi, F; Haworth, A; Fox, C; Mullen, A; Cramb, J

    2009-10-01

    Cone-beam computed tomography (CBCT) is a three-dimensional imaging modality that has recently become available on linear accelerators for radiotherapy patient position verification. It was the aim of the present study to implement simple strategies for reduction of the dose delivered in a commercial CBCT system. The dose delivered in a CBCT procedure (Varian, half-fan acquisition, 650 projections, 125 kVp) was assessed using a cylindrical Perspex phantom (diameter, 32 cm) with a calibrated Farmer type ionisation chamber. A copper filter (thickness, 0.15 mm) was introduced increasing the half value layer of the beam from 5.5 mm Al to 8 mm Al. Image quality and noise were assessed using an image quality phantom (CatPhan) while the exposure settings per projection were varied from 25 ms/80 mA to 2 ms/2 mA per projection. Using the copper filter reduced the dose to the phantom from approximately 45 mGy to 30 mGy at standard settings (centre/periphery weighting 1/3 to 2/3). Multiple CBCT images were acquired for six patients with pelvic malignancies to compare CBCTs with and without a copper filter. Although the reconstructed image is somewhat noisier with the filter, it features similar contrast in the centre of the patient and was often preferred by the radiation oncologist because of greater image uniformity. The X-ray shutters were adjusted to the minimum size required to obtain the desired image volume for a given patient diameter. The simple methods described here reduce the effective dose to patients undergoing daily CBCT and are easy to implement, and initial evidence suggests that they do not affect the ability to identify soft tissue for the purpose of treatment verification.

  6. Effect of reference mAs in CARE kV technique on image quality and radiation dose in unenhanced chest CT%自动管电压调制技术参考毫安秒对胸部CT平扫图像质量和辐射剂量的影响

    Institute of Scientific and Technical Information of China (English)

    王晓华; 张艳; 袁慧书

    2015-01-01

    2.054、6.186和5.296,P值均>0.05).结论 与CARE Dose4D技术相比,在胸部CT平扫检查中使用合适参考毫安秒的CARE kV技术能在明显减低辐射剂量的同时获得诊断可接受的图像质量.%Objective To evaluate the effect of reference mAs on radiation dose and image quality characteristics of chest CT scanned with CARE kV technique compared with CARE Dose4D.Methods According to the date of examination,158 consecutive patients were selected in our department and randomly divided into 5 groups:CARE Dose4D group (30 cases,group 1); using CARE kV technology,reference mAs were 110 (32 cases),90 (31 cases),70 (33 cases),50 (32 cases),which were recorded asthe group from 2 to 5,respectively.Volume CT dose index (CTDIvol),dose length product (DLP) and the effective dose (ED) were analyzed.CT value and objective image noise were measured in the lungparenchyma and descending aorta.Two radiologists assessed the images for subjective noise,artefacts and diagnostic acceptability.The radiation dose,CT value and objective noise were compared with the analysis of variance,and the difference between two groups was compared with SNK test; the rank sum tests (Kruskal-Wallis) were used in subjective image quality score,and difference between two groups was compared with K-W test.Results The CTDIvol,DLP,ED values in five groups were (7.7±1.7),(7.7±2.0),(5.5±1.4),(4.2±1.5),(2.8±1.2)mGy,(290.7±67.4),(290.1±85.2),(194.2±52.1),(150.7±63.8),(96.5±38.9) mGy· cm,(4.1±0.9),(4.1±1.2),(2.7±0.7),(2.1 ± 0.9),(1.3±0.5) mSv,respectively.There were significant difference among the 5 groups(F=59.305,57.76,57.76,P<0.01).With the decrease of the reference mAs,the radiation dose decreased significantly.There were no significant difference among the 5 groups on the average CT values of lung parenchyma and descending aorta(F=0.353,0.102,P>0.05).The objective noise of 5 groups in pulmonary parenchyma and the descending aorta were (48.7 ± 9.1),(49.2 ± 10

  7. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  8. Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms

    Science.gov (United States)

    Morant, JJ; Salvadó, M; Hernández-Girón, I; Casanovas, R; Ortega, R; Calzado, A

    2013-01-01

    Objectives: The aim of this study was to calculate organ and effective doses for a range of available protocols in a particular cone beam CT (CBCT) scanner dedicated to dentistry and to derive effective dose conversion factors. Methods: Monte Carlo simulations were used to calculate organ and effective doses using the International Commission on Radiological Protection voxel adult male and female reference phantoms (AM and AF) in an i-CAT CBCT. Nine different fields of view (FOVs) were simulated considering full- and half-rotation modes, and also a high-resolution acquisition for a particular protocol. Dose–area product (DAP) was measured. Results: Dose to organs varied for the different FOVs, usually being higher in the AF phantom. For 360°, effective doses were in the range of 25–66 μSv, and 46 μSv for full head. Higher contributions to the effective dose corresponded to the remainder (31%; 27–36 range), salivary glands (23%; 20–29%), thyroid (13%; 8–17%), red bone marrow (10%; 9–11%) and oesophagus (7%; 4–10%). The high-resolution protocol doubled the standard resolution doses. DAP values were between 181 mGy cm2 and 556 mGy cm2 for 360°. For 180° protocols, dose to organs, effective dose and DAP were approximately 40% lower. A conversion factor (DAP to effective dose) of 0.130 ± 0.006 μSv mGy−1 cm−2 was derived for all the protocols, excluding full head. A wide variation in dose to eye lens and thyroid was found when shifting the FOV in the AF phantom. Conclusions: Organ and effective doses varied according to field size, acquisition angle and positioning of the beam relative to radiosensitive organs. Good positive correlation between calculated effective dose and measured DAP was found. PMID:22933532

  9. Validation of a technique for estimating organ doses for kilovoltage cone-beam CT of the prostate using the PCXMC 2.0 patient dose calculator.

    Science.gov (United States)

    Wood, T J; Moore, C S; Saunderson, J R; Beavis, A W

    2015-03-01

    The use of cone beam CT in common radiotherapy treatments is increasing with the growth of image guided radiotherapy. Whilst the benefits that this technology offers are clear, such as improved patient positioning prior to treatment, it is always important to consider the implications of such intensive imaging regimes on the patient, especially when considering the fundamental radiation protection requirements for justification and optimisation.The purpose of this study was to develop a technique that uses readily available dose calculation software (PCXMC 2.0) to estimate the organ and effective doses that result from these types of examination in prostate treatments on the Varian OBI system. It has been shown that by separating these types of examinations into 28 different projections, with a range of x-ray beam qualities, it is possible to reproduce the complex geometry that is used on these imaging systems in PCXMC i.e. asymmetric radiation field with a half bowtie filter rotating 360° around the patient.This new technique has been validated with thermo-luminescent dosimeter measurements in the Rando anthropomorphic phantom, and has been shown to give excellent agreement with this established method (R(2) = 0.995). This technique will prove to be valuable to radiotherapy departments that are looking to optimise their CBCT imaging protocols as it allows a rapid evaluation of the impact of any changes on patient dose. It also serves to further highlight the levels of dose that these types of patient are subject to when having daily CBCT scans as part of the treatment, which further reinforces the need for optimisation of both patient dose and image quality on these systems.

  10. Dual energy CT myelography after lumba osteosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Grams, A.E.; Gizewski, E.R. [Medical Univ. Innsbruck (Austria). Dept. of Neuroradiology; Sender, J.; Obert, M. [Univ. Hospital Giessen (Germany). Dept. of Neuroradiology; Mortiz, R.; Krombach, G.A. [Univ. Hospital Giessen (Germany). Dept. of Radiology; Stein, M. [Univ. Hospital Giessen (Germany). Dept. of Neurosurgery; Oertel, M. [Vogtland-Klinikum Plauen (Germany). Dept. of Neurosurgery; Schmidt, T. [Klinikum Wuppertal (Germany). Dept. of Neuroradiology

    2014-07-15

    The purpose of this study was to evaluate the benefits of CT myelography in the DE technique in patients with lumbar osteosynthesis. In 30 patients a DE-CT scan of the spine with tube voltages of 80 kV and 140 kV was performed and a virtual monochromatic series of 120 kV was generated after intrathecal contrast injection. The impact of metal artifacts on the spinal canal and the spinal foramina was evaluated. The visualization of nerve roots was compared between a VRT series of the dural sac and conventional myelography. With tube voltages of 140 kV, the artifacts were least pronounced. As no overlay disturbance was present, VRT visualization of the nerve roots was more reliable than conventional myelography. In patients after osteosynthesis, CT in the DE technique provides minimal artifact disturbance using a tube voltage of 140 kV. ''Virtual myelography'' seems to be superior to conventional myelography for the evaluation of nerve roots. This could reduce additional conventional radiography, may shorten the entire examination and radiation time and diminish unnecessary painful movements for the patient.

  11. Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy.

    Directory of Open Access Journals (Sweden)

    Macarena Cubillos Mesías

    Full Text Available To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly.Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504. For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined.The systematic (and random errors in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0, 2.6(3.9 and 2.9(3.9mm; for prostate bed, 1.7(2.0, 2.2(3.6 and 2.6(3.1mm; for cervix, 2.8(3.4, 2.3(4.6 and 3.2(3.9mm; for rectum, 1.6(3.1, 2.1(2.9 and 2.5(3.8mm; for anal, 1.7(3.7, 2.1(5.1 and 2.5(4.8mm; for head and neck, 1.9(2.3, 1.4(2.0 and 1.7(2.2mm; for brain, 1.0(1.5, 1.1(1.4 and 1.0(1.1mm; and for mediastinum, 3.3(4.6, 2.6(3.7 and 3.5(4.0mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm and the largest for mediastinum (11.5, 9.1 and 11.6mm. For pelvic treatments the means (and standard deviations were 7.3 (1.6, 8.5 (0.8 and 9.6 (0.8mm.Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies.

  12. Differential effects of Kv11.1 activators on Kv11.1a, Kv11.1b and Kv11.1a/Kv11.1b channels

    DEFF Research Database (Denmark)

    Larsen, A P; Bentzen, Bo Hjorth; Grunnet, M

    2010-01-01

    K(v)11.1 channels are involved in regulating cellular excitability in various tissues including brain, heart and smooth muscle. In these tissues, at least two isoforms, K(v)11.1a and K(v)11.1b, with different kinetics, are expressed. K(v)11.1 activators are potential therapeutic agents, but their......, but their effects have only been tested on the K(v)11.1a isoform. In this study, the effects of two different K(v)11.1 activators, NS1643 and RPR260243, were characterized on K(v)11.1a and K(v)11.1b channels....

  13. Radiation dose for investigation of the chest and abdomen. Comparison of sequential, spiral and electron beam computed tomography; Strahlenexposition bei der CT-Untersuchung des Thorax und Abdomens. Vergleich von Einzelschicht-, Spiral- und Elektronenstrahlcomputertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.R.; Schaetzl, M.; Bruening, R.; Schoepf, U.J.; Reiser, M.F. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik; Feist, H. [Muenchen Univ. (Germany). Radiologische Klinik und Poliklinik; Baeuml, A. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Inst. fuer Strahlenhygiene

    1998-09-01

    Comparison of radiation exposure applied by different types of CT scanners for the investigation of the chest and abdomen. Determination of radiation exposure applied by multi-phase spiral CT. Estimation of the dose in air in the system axis of the scanner, the CT dose index (CTDI) and the effective dose for electron beam tomography (EBT) and two conventional CT scanners (sequence, SEQ; spiral, SCT). For EBT, dose in system axis for investigation of the abdomen was above 50 mGy. Effective dose for investigation of the chest and abdomen was higher with EBT (11 and 26 mSv, respectively), than with conventional CT (SEQ, 4 and 20 mSv; SCT, 2 and 7 mSv). The effective dose for a biphasic investigation (liver 5 mSv, kidney 4 mSv) was below, for a triphasic investigation of the abdomen (6 mSv). Investigation of the abdomen with the EBT should only be performed for certain indications. With spiral CT, effective dose is much lower than with EBT. (orig.) [Deutsch] Die Strahlenexposition bei der Untersuchung von Thorax und Abdomen mit verschiedenen CT-Scannertypen sollte verglichen werden. Zusaetzlich sollte die Exposition beim Mehrphasen-Spiral-CT ermittelt werden. Die Dosis in der Systemachse, gemessen in freier Luft, (Achsendosis), der Computertomographie-Dosis-Index (CTDI) und die effektive Dosis nach ICRP 60 wurden bei einem Elektronenstrahl-CT (EBT) und zwei konventionellen CT-Scannern (sequentiell=SEQ, spiral=SCT) bestimmt. Beim EBT liegt die Achsendosis bei der Untersuchung des Abdomens ueber 50 mGy. Die effektive Dosis fuer die Untersuchung von Thorax und Abdomen war bei der EBT (11 bzw. 26 mSv) hoeher als beim konventionellen CT (SEQ 4 bzw. 20 mSv; SCT 2 bzw. 7 Sv). Die effektive Dosis einer 2-Phasen-Untersuchung (Leber 5 mSv, Niere 4 mSv) liegt unter, die einer 3-Phasen-Untersuchung (Leber 7 mSv) ueber der effektiven Dosis einer Untersuchung des gesamten Abdomens (6 mSv). Die Untersuchung des Abdomens sollte mit dem EBT nur nach strenger Indikationsstellung

  14. Prediction of rapid maxillary expansion by assessing the maturation of the midpalatal suture on cone beam CT

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    Full Text Available ABSTRACT Rapid maxillary expansion (RME primarily involves the mechanical opening of the midpalatal suture of the maxillary and palatine bones. The fusion of the midpalatal suture determines the failure of RME, a common event in late adolescents and young adults. Recently, the assessment of the maturation of midpalatal suture as viewed using cone beam computed tomography (CBCT has been introduced. Five maturational stages of the midpalatal suture have been presented: Stage A = straight high-density sutural line, with no or little interdigitation; Stage B = scalloped appearance of the high-density sutural line; Stage C = two parallel, scalloped, high-density lines that lie close to each other, separated in some areas by small low-density spaces; Stage D = fusion of the palatine bone where no evidence of a suture is present; and Stage E = complete fusion that extends also anteriorly in the maxilla. At Stage C, less skeletal response would be expected than at Stages A and B, as there are many bony bridges along the suture. For patients at Stages D and E, surgically assisted RME would be necessary, as the fusion of the midpalatal suture already has occurred either partially or totally. This diagnostic method can be used to estimate the prognosis of the RME, mainly for late adolescents and young adults for whom this procedure is unpredictable clinically.

  15. Prediction of rapid maxillary expansion by assessing the maturation of the midpalatal suture on cone beam CT

    Science.gov (United States)

    Angelieri, Fernanda; Franchi, Lorenzo; Cevidanes, Lucia H. S.; Bueno-Silva, Bruno; McNamara, James A.

    2016-01-01

    ABSTRACT Rapid maxillary expansion (RME) primarily involves the mechanical opening of the midpalatal suture of the maxillary and palatine bones. The fusion of the midpalatal suture determines the failure of RME, a common event in late adolescents and young adults. Recently, the assessment of the maturation of midpalatal suture as viewed using cone beam computed tomography (CBCT) has been introduced. Five maturational stages of the midpalatal suture have been presented: Stage A = straight high-density sutural line, with no or little interdigitation; Stage B = scalloped appearance of the high-density sutural line; Stage C = two parallel, scalloped, high-density lines that lie close to each other, separated in some areas by small low-density spaces; Stage D = fusion of the palatine bone where no evidence of a suture is present; and Stage E = complete fusion that extends also anteriorly in the maxilla. At Stage C, less skeletal response would be expected than at Stages A and B, as there are many bony bridges along the suture. For patients at Stages D and E, surgically assisted RME would be necessary, as the fusion of the midpalatal suture already has occurred either partially or totally. This diagnostic method can be used to estimate the prognosis of the RME, mainly for late adolescents and young adults for whom this procedure is unpredictable clinically. PMID:28125147

  16. Artifacts caused by insufficient contrast medium filling during C-arm cone-beam CT scans: a phantom study.

    Science.gov (United States)

    Terabe, Mitsuaki; Ichikawa, Hajime; Kato, Toyohiro; Koshida, Kichiro

    2014-01-01

    We investigated artifacts due to late-arriving contrast medium (CM) during C-arm cone-beam computed tomography. We scanned a phantom filled with water or with 100, 50, or 5% v/v concentrations of CM and then virtually produced CM-delayed projection data by partially replacing the projection images. Artifacts as a function of concentration, percentage of filling time, and size and position of the filling area were assessed. In addition, we used an automatic power injector with different injection delays to inject CM during the scans. A decrease in filling times caused by a lag in CM arrival during the scan resulted in a decrease in pixel values, distortion of the filling area, and appearance of streak artifacts. Even a delay of approximately 20% in CM arrival in the total scan time resulted in obvious distortion of the filling area. The distortion and streak artifacts tended to worsen at higher CM concentrations. Use of a minimum CM concentration based on the purpose of the examination and constant filling at the target region are effective for avoiding these artifacts.

  17. Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    CERN Document Server

    Jia, Xun; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B

    2012-01-01

    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A...

  18. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    Science.gov (United States)

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of wax bite wafer to set-up a 3D virtual augmented model of the skull with detailed dental surface.

  19. Segmentation of large periapical lesions toward dental computer-aided diagnosis in cone-beam CT scans

    Science.gov (United States)

    Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori

    2008-03-01

    This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.

  20. Comprehensive Evaluations of Cone-beam CT dose in Image-guided Radiation Therapy via GPU-based Monte Carlo simulations

    CERN Document Server

    Montanari, Davide; Silvestri, Chiara; Graves, Yan J; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B; Jia, Xun

    2013-01-01

    Cone beam CT (CBCT) has been widely used for patient setup in image guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are 1) to commission a GPU-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and 2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. 25 brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is fo...

  1. 3D cone-beam CT guidance, a novel technique in renal biopsy - results in 41 patients with suspected renal masses

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Sicco J.; Heesewijk, Johannes P.M. van; Strijen, Marco J.L. van [St Antonius Hospital, Department of Radiology, PO Box 2500, Nieuwegein (Netherlands); Melick, Harm H.E. van; Onaca, Mircea G. [St Antonius Hospital, Department of Urology, Nieuwegein (Netherlands)

    2012-11-15

    To determine whether 3D cone-beam computed tomography (CBCT) guidance allows safe and accurate biopsy of suspected small renal masses (SRM), especially in hard-to-reach anatomical locations. CBCT guidance was used to perform 41 stereotactic biopsy procedures of lesions that were inaccessible for ultrasound guidance or CT guidance. In CBCT guidance, a 3D-volume data set is acquired by rotating a C-arm flat-panel detector angiosystem around the patient. In the data set, a needle trajectory is determined and, after co-registration, a fusion image is created from fluoroscopy and a slice from the data set, enabling the needle to be positioned in real time. Of the 41 lesions, 22 were malignant, 17 were benign, and 2 were nondiagnostic. The two nondiagnostic lesions proved to be renal cell carcinoma. There was no growth during follow-up imaging of the benign lesions (mean 29 months). This resulted in a sensitivity, specificity, PPV, NPV, and accuracy of 91.7, 100, 100, 89.5, and 95.1%, respectively. Mean dose-area product value was 44.0 Gy.cm{sup 2} (range 16.5-126.5). There was one minor bleeding complication. With CBCT guidance, safe and accurate biopsy of a suspected SRM is feasible, especially in hard-to-reach locations of the kidney. (orig.)

  2. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Lambrichts, Ivo, E-mail: Ivo.Lambrichts@uhasselt.b [Department of Basic Medical Sciences, Histology and Electron Microscopy, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Sun Yi, E-mail: Sunyihello@hotmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Denis, Kathleen, E-mail: kathleen.denis@groept.b [Department of Industrial Sciences and Techology-Engineering (IWT), XIOS Hogeschool Limburg, Hasselt (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium)

    2010-08-15

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  3. Rapid needle-out patient-rollover approach after cone beam CT-guided lung biopsy: effect on pneumothorax rate in 1,191 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Im [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Chang Min; Goo, Jin Mo [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Sang Min [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To investigate the effect of rapid needle-out patient-rollover approach on the incidence of pneumothorax and drainage catheter placement due to pneumothorax in C-arm Cone-beam CT (CBCT)-guided percutaneous transthoracic needle biopsy (PTNB) of lung lesions. From May 2011 to December 2012, 1227 PTNBs were performed in 1191 patients with a 17-gauge coaxial needle. 617 biopsies were performed without (conventional-group) and 610 with rapid-rollover approach (rapid-rollover-group). Overall pneumothorax rates and incidences of pneumothorax requiring drainage catheter placement were compared between two groups. There were no significant differences in overall pneumothorax rates between conventional and rapid-rollover groups (19.8 % vs. 23.1 %, p = 0.164). However, pneumothorax rate requiring drainage catheter placement was significantly lower in rapid-rollover-group (1.6 %) than conventional-group (4.2 %) (p = 0.010). Multivariate analysis revealed male, age > 60, bulla crossed, fissure crossed, pleura to target distance > 1.3 cm, emphysema along needle tract, and pleural punctures ≥ 2 were significant risk factors of pneumothorax (p < 0.05). Regarding pneumothorax requiring drainage catheter placement, fissure crossed, bulla crossed, and emphysema along needle tract were significant risk factors (p < 0.05), whereas rapid-rollover approach was an independent protective factor (p = 0.002). The rapid needle-out patient-rollover approach significantly reduced the rate of pneumothorax requiring drainage catheter placement after CBCT-guided PTNB. (orig.)

  4. Modeling shift-variant X-ray focal spot blur for high-resolution flat-panel cone-beam CT

    CERN Document Server

    Tilley, Steven; Siewerdsen, Jeffrey H; Stayman, J Webster

    2016-01-01

    Flat-panel cone-beam CT (CBCT) has been applied clinically in a number of high-resolution applications. Increasing geometric magnification can potentially improve resolution, but also increases blur due to an extended x-ray focal-spot. We present a shift-variant focal-spot blur model and incorporate it into a model-based iterative-reconstruction algorithm. We apply this algorithm to simulation and CBCT test-bench data. In a trabecular bone simulation study, we find traditional reconstruction approaches without a blur model exhibit shift-variant resolution properties that depend greatly on the acquisition protocol (e.g. short vs. full scans) and the anode angles of the rays used to reconstruct a particular region. For physical CBCT experiments focal spot blur was characterized and a spatial resolution phantom was scanned and reconstructed. In both experiments image quality using the shift-variant model was significantly improved over approaches that modeled no blur or only a shift-invariant blur, suggesting a ...

  5. New Statistical Method to Analyze Three-Dimensional Landmark Configurations Obtained with Cone-Beam CT: Basic Features and Clinical Application for Rapid Maxillary Expansion

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Jennifer; Lagravere, Manuel O.; Major, Paul W.; Heo, Giseon [University of Alberta, Edmonton (Canada)

    2012-03-15

    To describe a statistical method of three-dimensional landmark configuration data and apply it to an orthodontic data set comparing two types of rapid maxillary expansion (RME) treatments. Landmark configurations obtained from cone beam CT scans were used to represent patients in two types (please describe what were two types) of RME groups and a control group over four time points. A method using tools from persistent homology and dimensionality reduction is presented and used to identify variability between the subjects. The analysis was in agreement with previous results using conventional methods, which found significant differences between treatment groups and the control, but no distinction between the types of treatment. Additionally, it was found that second molar eruption varied considerably between the subjects, and this has not been evaluated in previous analyses. This method of analysis allows entire configurations to be considered as a whole, and does not require specific inter-landmark distances or angles to be selected. Sources of variability present themselves, without having to be individually sought after. This method is suggested as an additional tool for the analysis of landmark configuration data.

  6. 锥束X-CT系统校准方法的实际应用分析%Analysis on Application of Calibration Method for Cone-beam X-CT

    Institute of Scientific and Technical Information of China (English)

    侯颖; 孙怡

    2011-01-01

    FDK算法是应用在锥束CT系统中最有代表性的重建算法之一,该算法是在假设CT成像系统满足理想成像关系的条件下得到的.然而实际的锥束CT成像系统很难完全满足理想成像关系的要求,系统的几何失配会极大影响重建图像的质量,因此必须在重建之前对成像系统进行校准,获得系统的几何失配参数,并在重建过程中修正几何失配参数造成的影响.本文以之前所提出的锥束CT系统校准方法为基础,分析了在实际应用这种校准方法时需要注意的关键问题,然后利用所搭建的锥束XCT系统得到实际的校准结果和重建结果.结果证明之前所提出的应用于锥束XCT系统的校准方法对于测量系统的几何失配参数是有效可行的.%The FDK algorithm is a classic cone-beam approximate reconstruction algorithm, which has been widely used in practice. Ideal imaging geometry is a basic condition in the application of the FDK algorithm.However, it is difficult to satisfy this condition in a practical cone-beam CT system. Reconstructed images will suffer from artifacts caused by the misaligned geometry of the CT system. Therefore, calibration of the CT system in advance is an important and necessary task. Misaligned parameters of the CT system will be taken into the reconstruction algorithm after calibration to improve image qualities in the case of the misaligned CT system. Key points on application of the proposed calibration method for cone-beam CT are discussed deeply in this paper. And calibration result and reconstructed results of an X-ray cone-beam CT are given which prove the validity of the proposed calibration method.

  7. Cone beam breast CT with multiplanar and three dimensional visualization in differentiating breast masses compared with mammography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binghui [Department of Radiology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Zhang, Xiaohua [Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627 (United States); Cai, Weixing [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States); Conover, David [Koning Corporation, West Henrietta, NY 14586 (United States); Ning, Ruola, E-mail: ruola_ning@urmc.rochester.edu [Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY 14642 (United States)

    2015-01-15

    Objective: This pilot study was to evaluate cone beam breast computed tomography (CBBCT) with multiplanar and three dimensional (3D) visualization in differentiating breast masses in comparison with two-view mammograms. Methods: Sixty-five consecutive female patients (67 breasts) were scanned by CBBCT after conventional two-view mammography (Hologic, Motarget, compression factor 0.8). For CBBCT imaging, three hundred (1024 × 768 × 16 b) two-dimensional (2D) projection images were acquired by rotating the x-ray tube and a flat panel detector (FPD) 360 degree around one breast. Three-dimensional CBBCT images were reconstructed from the 2D projections. Visage CS 3.0 and Amira 5.2.2 were used to visualize reconstructed CBBCT images. Results: Eighty-five breast masses in this study were evaluated and categorized under the breast imaging reporting and data system (BI-RADS) according to plain CBBCT images and two-view mammograms, respectively, prior to biopsy. BI-RADS category of each breast was compared with biopsy histopathology. The results showed that CBBCT with multiplanar and 3D visualization would be helpful to identify the margin and characteristics of breast masses. The category variance ratios for CBBCT under the BI-RADS were 23.5% for malignant tumors (MTs) and 27.3% for benign lesions in comparison with pathology, which were evidently closer to the histopathology results than those of two-view mammograms, p value <0.01. With the receiver operating characteristic (ROC) curve analysis, the area under the curve (AUC) of CBBCT was 0.911, larger than that (AUC 0.827) of two-view mammograms, p value <0.01. Conclusion: CBBCT will be a distinctive noninvasive technology in differentiating and categorizing breast masses under BI-RADS. CBBCT may be considerably more effective to identify breast masses, especially some small, uncertain or multifocal masses than conventional two-view mammography.

  8. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT

    Directory of Open Access Journals (Sweden)

    Bilge Gülsüm NUR

    2014-12-01

    Full Text Available Objective This study aimed to assess the quality of root fillings, coronal restorations, complications of all root-filled teeth and their association with apical periodontitis (AP detected by cone-beam computed tomography (CBCT images from an adult Turkish subpopulation. Material and Methods The sample for this study consisted of 242 patients (aging from 15 to 72 years with 522 endodontically treated teeth that were assessed for technical quality of the root canal filling and periapical status of the teeth. Additionally, the apical status of each root-filled tooth was assessed according to the gender, dental arch, tooth type and age classification, undetected canals, instrument fracture, root fracture, apical resorption, apical lesion, furcation lesion and type and quality of the coronal structure. Statistical analysis was performed using percentages and chi-square test. Results The success rate of the root canal treatment was of 54.4%. The success rates of adequate and inadequate root canal treatment were not significantly different (p>0.05. Apical periodontitis was found in 228 (45.6% teeth treated for root canals. Higher prevalence of AP was found in patients aging from 20 to 29 years [64 (27% teeth] and in anterior (canines and incisors teeth [97 (41% teeth]. Conclusions The technical quality of root canal filling performed by dental practitioners in a Turkish subpopulation was consistent with a high prevalence of AP. The probable reasons for this failure are multifactorial, and there may be a need for improved undergraduate education and postgraduate courses to improve the clinical skills of dental practitioners in endodontics.

  9. C-arm cone-beam CT virtual navigation-guided percutaneous mediastinal mass biopsy: Diagnostic accuracy and complications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungjin [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Aerospace Medical Group, Air Force Education and Training Command, Jinju (Korea, Republic of); Park, Chang Min; Goo, Jin Mo [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Sang Min [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2015-12-15

    To assess the usefulness of C-arm cone-beam computed tomography (CBCT) virtual navigation-guided percutaneous mediastinal mass biopsy in terms of diagnostic accuracy and complication rates. Seventy-eight CBCT virtual navigation-guided percutaneous mediastinal mass biopsies were performed in 75 patients (M:F, 38:37; mean age, 48.55 ± 18.76 years). The procedural details, diagnostic sensitivity, specificity, accuracy and complication rate were investigated. Mean lesion size was 6.80 ± 3.08 cm, skin-to-target distance was 3.67 ± 1.80 cm, core needle biopsy rate was 96.2 % (75/78), needle indwelling time was 9.29 ± 4.34 min, total procedure time was 13.26 ± 5.29 min, number of biopsy specimens obtained was 3.13 ± 1.02, number of CBCTs performed was 3.03 ± 0.68, rate of lesion border discrimination from abutting mediastinal structures on CBCT was 26.9 % (21/78), technical success rate was 100 % (78/78), estimated effective dose was 5.33 ± 4.99 mSv, and the dose area product was 12,723.68 ± 10,665.74 mGy.cm{sup 2}. Among the 78 biopsies, 69 were malignant, 7 were benign and 2 were indeterminate. Diagnostic sensitivity, specificity and accuracy for the diagnosis of malignancies were 97.1 % (67/69), 100 % (7/7) and 97.4 % (74/76), respectively, with a complication rate of 3.85 % (3/78), all of which were small pneumothoraces. CBCT virtual navigation-guided biopsy is a highly accurate and safe procedure for the evaluation of mediastinal lesions. (orig.)

  10. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers

    Science.gov (United States)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.

  11. A charge-pump 60kV modulator for the ISOLDE target extraction voltage

    CERN Document Server

    Barlow, R A; Fowler, A; Gaudillet, H; Gharsa, T; Schipper, J

    2015-01-01

    The ISOLDE facility at CERN provides radioactive ion beams to a number of experimental stations. These ions are produced by a metal target, floating at 60 kV, which is impacted by a 1.4 GeV high intensity proton beam. The ions are then accelerated by a grounded extraction electrode to 60 keV, before transport to the experimental area. During proton beam impact extremely high ionisation of the volume around the target gives rise to significant leakage current which results in loss of charge on the effective target capacitance of approximately 6 nF. If short life-time isotopes are to be studied, the 60 kV must be re-established within a maximum of 10 ms. Recharging the target capacitance to 60 kV and to the required stability of better than 10-4 precludes a direct charging system and an alternative method of re-establishing the 60 kV is used. The present system [1], in operation since 1991, employs a resonant circuit which is triggered 35 µs prior to beam impact. This circuit transfers the charge on the effec...

  12. Design and performance of a 30 KV electron gun with ten independent cathodes & a magnetic lens.

    Energy Technology Data Exchange (ETDEWEB)

    Rudys, Joseph Matthew; Reed, Kim Warren

    2006-08-01

    Measurements on a 30 kV electron gun with ten independent cathodes, operating in a 6.5 Tesla (T) magnetic field are presented. An earlier paper covered the design of this electron gun [1]. Experimental results are compared to model predictions. Beam current is compared to theoretical space charge limited flow.

  13. Cone beam CT in the diagnosis of the dental pulp teeth of vertical root fracture treatment research%锥形束CT诊断非牙髓治疗牙齿根纵折的研究

    Institute of Scientific and Technical Information of China (English)

    杨丽; 杨岳峰

    2015-01-01

    Objective To explore the diagnosis and treatment cone beam CT in the dental pulp teeth of vertical root fracture clinical diagnosis.methods From May 2013 to May 2013 our hospital clinical diagnosis data of 26 patients with dental disease were analyzed retrospectively, compared with X-ray and cone beam CT examination results.Results This group of 30 patients with tooth, through X-ray has 21 teeth diagnosed, which has four premolars, maxillary molar mesial buccal root ifve, mandibular ifrst molar 12, there are nine should be conifrmed through the cone beam CT examination.Conclusion For the pulp teeth of vertical root fracture diagnosis treatment, cone beam CT is superior to the X-ray diagnosis effect, have important clinical practical signiifcance.%目的:探讨锥形束CT在非牙髓治疗牙齿根纵折的临床诊断情况。方法对2013年5月~2014年5月我院收治的牙病患者26例的临床诊断资料进行回顾性分析,对比X线和锥形束CT检查的结果。结果本组患者30颗牙齿中,通过X线检查有21颗牙齿得到确诊,其中前磨牙有4颗,上颌磨牙近中颊根5颗,下颌第一磨牙12颗,有9颗需要通过锥形束CT进行检查确诊。结论对于非牙髓治疗牙齿根纵折的诊断,锥形束CT诊断效果要优于X线检查,具有重要的临床实践意义。

  14. Evaluation of setup accuracy for NSCLC patients; studying the impact of different types of cone-beam CT matches based on whole thorax, columna vertebralis, and GTV

    DEFF Research Database (Denmark)

    Ottosson, W.; Baker, M.; Hedman, Mattias

    2010-01-01

    degrees. The calculated margins for non-IGRT, about 10 mm, were reduced to approximately 4 mm, regardless of using IGRT setup by CBCT or 2D kV imaging on CV. However, if using WT CBCT setup, the margin in LNG direction was slightly larger, approximately 6 mm. Conclusion. IGRT for NSCLC is an essential...

  15. Independent movement of the voltage sensors in KV2.1/KV6.4 heterotetramers.

    Science.gov (United States)

    Bocksteins, Elke; Snyders, Dirk J; Holmgren, Miguel

    2017-01-31

    Heterotetramer voltage-gated K(+) (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels' stoichiometry is 3:1.

  16. Investigation of the usability of conebeam CT data sets for dose calculation

    Directory of Open Access Journals (Sweden)

    Wilbert Jürgen

    2008-12-01

    Full Text Available Abstract Background To investigate the feasibility and accuracy of dose calculation in cone beam CT (CBCT data sets. Methods Kilovoltage CBCT images were acquired with the Elekta XVI system, CT studies generated with a conventional multi-slice CT scanner (Siemens Somatom Sensation Open served as reference images. Material specific volumes of interest (VOI were defined for commercial CT Phantoms (CATPhan® and Gammex RMI® and CT values were evaluated in CT and CBCT images. For CBCT imaging, the influence of image acquisition parameters such as tube voltage, with or without filter (F1 or F0 and collimation on the CT values was investigated. CBCT images of 33 patients (pelvis n = 11, thorax n = 11, head n = 11 were compared with corresponding planning CT studies. Dose distributions for three different treatment plans were calculated in CT and CBCT images and differences were evaluated. Four different correction strategies to match CT values (HU and density (D in CBCT images were analysed: standard CT HU-D table without adjustment for CBCT; phantom based HU-D tables; patient group based HU-D tables (pelvis, thorax, head; and patient specific HU-D tables. Results CT values in the CBCT images of the CATPhan® were highly variable depending on the image acquisition parameters: a mean difference of 564 HU ± 377 HU was calculated between CT values determined from the planning CT and CBCT images. Hence, two protocols were selected for CBCT imaging in the further part of the study and HU-D tables were always specific for these protocols (pelvis and thorax with M20F1 filter, 120 kV; head S10F0 no filter, 100 kV. For dose calculation in real patient CBCT images, the largest differences between CT and CBCT were observed for the standard CT HU-D table: differences were 8.0% ± 5.7%, 10.9% ± 6.8% and 14.5% ± 10.4% respectively for pelvis, thorax and head patients using clinical treatment plans. The use of patient and group based HU-D tables resulted in

  17. 基于3D-CT、4D-CT和锥形束CT定义的非小细胞肺癌内靶区比较%Comparison of internal target volumes defined on three-dimensional CT, four-dimensional CT and cone-beam CT images of non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    李奉祥; 李建彬; 马志芳; 张英杰; 邢军; 戚焕鹏; 尚东平; 余宁莎

    2014-01-01

    Objective To compare positional and volumetric differences between internal target volumes defined on three-dimensional CT (3D-CT),four-dimensional CT (4D-CT) and cone-beam CT (CBCT) images of non-small-cell lung cancer.Methods Thirty-one patients with NSCLC sequentially underwent 3D-CT and 4D-CT simulation scans of the thorax during free breathing.A 3D conformal treatment plan was created based on 3D-CT.The CBCT images were obtained in the first fraction and registered to the planning CT using the bony anatomy registration.All target volumes were contoured with the same protocol by a radiation oncologist.GTVs were contoured based on 3D-CT,maximum intensity projection (MIP) of 4D-CT and CBCT.CTV3D,ITVMIPand ITVCBCTWere defined with a margin of 7 mm accounting for microscopic disease.ITV10mm and ITV5 mm were defined based on CTV3D.ITV10 mm with a margin of 5 mm in LR,AP directions and 10 mm in CC direction,while ITV5 mm with an isotropic internal margin (IM) of 5 mm.The differences in the position,size,Dice's similarity coefficient (DSC) and inclusion relation of different volumes were compared.Results The median size ratio of ITV10 mm,ITV5mm,ITVMIPto ITVCBCTwere 2.33,1.88,1.03 respectively for tumors in the upper lobe and 2.13,1.76,1.10 respectively for tumors in the middle-lower lobe.The median DSC of ITVMIP and ITVCBCT(0.83) was greater than that of ITV10 mm and ITVcBcT (0.6) and ITV5 mm and ITVCBCT (0.66) for all patients (Z =-4.86,-4.86,P < 0.05).The median percentages of ITVCBCT not included in ITV10 mm,ITV5 mm,ITVMIPwere 0.10%,1.63% and 15.21% respectively,while the median percentage of ITV10mm,ITV5mm,ITVMIP,not included in ITVCBCT were 57.08%,48.89% and 20.04%,respectively.The median percentage of ITVCBCT not included in ITV5 mm was 1.24% for tumors in the upper lobe and 5.8% for tumors in the middle-lower lobe.Conclusions The individual ITV based on 4D-CT can't encompass the ITV based on CBCT effectively.The use of the ITV derived from 4

  18. SU-D-BRA-07: A Phantom Study to Assess the Variability in Radiomics Features Extracted From Cone-Beam CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Fave, X; Fried, D [UT MD Anderson Cancer Center, Houston, TX (United States); UT Health Science Center Graduate School of Biomedical Sciences, Houston, TX (United States); Zhang, L; Yang, J; Balter, P; Followill, D; Gomez, D; Jones, A; Stingo, F; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Several studies have demonstrated the prognostic potential for texture features extracted from CT images of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine if these features could be extracted with high reproducibility from cone-beam CT (CBCT) images in order for features to be easily tracked throughout a patient’s treatment. Methods: Two materials in a radiomics phantom, designed to approximate NSCLC tumor texture, were used to assess the reproducibility of 26 features. This phantom was imaged on 9 CBCT scanners, including Elekta and Varian machines. Thoracic and head imaging protocols were acquired on each machine. CBCT images from 27 NSCLC patients imaged using the thoracic protocol on Varian machines were obtained for comparison. The variance for each texture measured from these patients was compared to the variance in phantom values for different manufacturer/protocol subsets. Levene’s test was used to identify features which had a significantly smaller variance in the phantom scans versus the patient data. Results: Approximately half of the features (13/26 for material1 and 15/26 for material2) had a significantly smaller variance (p<0.05) between Varian thoracic scans of the phantom compared to patient scans. Many of these same features remained significant for the head scans on Varian (12/26 and 8/26). However, when thoracic scans from Elekta and Varian were combined, only a few features were still significant (4/26 and 5/26). Three features (skewness, coarsely filtered mean and standard deviation) were significant in almost all manufacturer/protocol subsets. Conclusion: Texture features extracted from CBCT images of a radiomics phantom are reproducible and show significantly less variation than the same features measured from patient images when images from the same manufacturer or with similar parameters are used. Reproducibility between CBCT scanners may be high enough to allow the extraction of

  19. A comparison of {sup 99m}Tc-MIBI myocardial perfusion imaging and electron beam CT in detection of CAD in patients without myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z.; Li, W.; Qu, W. [Beijing Hospital, Beijing (Korea, Republic of)] [and others

    2000-07-01

    Our previous researches have demonstrated that {sup 99m}Tc-MIBI myocardial tomography (SPECT) has higher specificity in detection of coronary artery disease (CAD) than that of coronary artery calcification (CAC) assessed by cardial electron beam CT(EBCT). However, these researches involved patients with myocardial infarction, which may be in favor of obtaining high accuracy for detection of CAD by SPECT.The purpose of this study was to compare SPECT with EBCT in detection of CAD in patents without myocardial infarction history. Seventy-three patients (55 male, 18 female, 52.6 {+-} 10.6 yrs old) without myocardial infarction underwent stress-rest SPECT, cardiac EBCT and coronary angiography (CAG) within one month. CAC as CT value {>=} 130 HU within the boundary of coronary artery on EBCT, and {>=}50% coronary narrowing was considered as diagnostic standard of CAD. There were 35 patients and 38 patients with and without {>=} 50% coronary stenosis, respectively. Ninety-six percent (23/24) patients with abnormal SPECT and CAC detected by EBCT had coronary arteries with {>=} 50% stenosis, and 90.5% (19/21) patients with normal SPECT and EBCT had normal CAG or <50% coronary stenosis. The specificity of SPECT (92.1%) for detecting CAD was significantly higher than that of EBCT (55.3%), P<0.005, and the sensitivity of SPECT was comparable to that of EBCT. In detection of individual coronary artery stenosis, both sensitivity and specificity of SPECT was comparable to that of EBCT. In detection of individual coronary artery stenosis, both sensitivity and specificity of SPECT (75.0% and 93.7%) were significantly higher than those of EBCT (53.3% and 76.7%), P<0.025 and <0.005, respectively. In patients without typical angina pectoris, the sensitivity and specificity of SPECT (76.9% and 91.4%) were significantly higher than those of EBCT (23.1% and 69.0%) in detection of {>=}50% coronary stenosis, P<0.01 and <0.005, respectively. However, in patients with typical angina

  20. SU-C-BRE-05: PTV Margin Determination Based On Tumor Radiobiological Characteristics and Geometric Uncertainties Derived From Daily Cone- Beam CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, J [Inlaks and Budhrani Hospital (India)

    2014-06-15

    Purpose: To determine required PTV margins for ≤1% loss in mean population TCP using systematic (Σ) and random (σ) errors calculated from daily cone-beam CT (CBCT) images of head and neck patients. Methods: Daily CBCT images were acquired for 50 head and neck patients. The CBCT image sets acquired at each fraction were registered with planning CT to obtain positional errors for each patient for each fraction. Systematic and random errors were calculated from data collected for 50 patients as described in IPEM On Target report. CTV delineation uncertainty of 2mm is added quadratically to systematic error. Assuming a spherical target volume, the dose in each voxel of target volume is summed for each fraction in the treatment by shifting the dose grid to calculate mean population TCP inclusive of geometric uncertainties using a Monte Carlo method. These simulations were repeated for the set of Σ and σ in each axis for different PTV margins and drop in TCP for each margin are obtained. In order to study the effect of dose-response curve on PTV margins, two different σα of 0.048 Gy-1 and 0.218 Gy-1 representing steep and shallow dose-response curves are studied. Σ were 2.5, 2.5, 2.1 mm and σ were 0.3, 0.3 0.2 mm respectively in x, y and z axis respectively. Results: PTV margins based on tumor radiobiological characteristics are 4.8, 4.8 and 4 mm in x, y and z axis assuming 25 treatment fractions for σα 0.048 Gy-1 (steep) and 4.2,4.2 and 2.2 for σα of 0.218 Gy-1 (shallow). While the TCP-based margins did not differ much in x and y axis, it is considerably smaller in z axis for shallow DRC. Conclusion: TCP based margins are substantially smaller than physical dose-based margin recipes. This study also demonstrates the importance of considering tumor radiobiological characteristics while deriving margins.