WorldWideScience

Sample records for beam ct evaluation

  1. Radiographic evaluation of dentigerous cyst with cone beam CT

    International Nuclear Information System (INIS)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do

    2010-01-01

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  2. Radiographic evaluation of dentigerous cyst with cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Chan; Lee, Wan; Lee, Byung Do [School of Dentisity, Wonkwang University, Iksan (Korea, Republic of)

    2010-09-15

    The purpose of this study was to accurately analyze the radiographic characteristics of dentigerous cyst (DC) with multiplanar images of cone beam computed tomography (CBCT). Thirty eight radiographically and histopathologically proven cases of DCs were analyzed with panoramic radiograph and CBCT, retrospectively. The radiographic CT pattern, symmetry of radiolucency around the unerupted tooth crown, ratio of long length to short length, degree of cortical bone alternation, effects on adjacent tooth, and cyst size were analyzed. Relative frequencies of these radiographic features were evaluated. In order to compare the CBCT features of DC with those of odontogenic keratocyst (OKC), 9 cases of OKCs were analyzed with the same method radiographically. DCs consisted of thirty unilocular cases (79.0%), seven lobulated cases (18.4%) and one multilocular case (2.6%). Eight were asymmetric (21.0%) and thirty were symmetric (79.0%). Maxillary DC showed rounder shape than mandibular DC (L/S ratio; maxilla 1.32, mandible 1.67). Alternations of lingual cortical bone (14 cases, 48.2%) were more frequent than those of buccal side (7 cases, 24.1%). CBCT images of DC showed definite root resorption and bucco-lingual tooth displacement. These findings were hardly observed on panoramic radiographs of DCs. Comparison of CBCT features of DC with those of OKC showed several different features. CBCT images of DC showed various characteristic radiographic features. Therefore, CBCT can be helpful for the diagnosis of DC radiographically.

  3. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    Science.gov (United States)

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by

  4. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    Science.gov (United States)

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  5. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    International Nuclear Information System (INIS)

    Madhav, P; Crotty, D J; Tornai, M P; McKinley, R L

    2009-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  6. Cone beam CT evaluation of patient set-up accuracy as a QA tool

    DEFF Research Database (Denmark)

    Nielsen, Morten; Bertelsen, Anders; Westberg, Jonas

    2009-01-01

    Purpose. To quantify by means of cone beam CT the random and systematic uncertainty involved in radiotherapy, and to determine if this information can be used for e.g. technical quality assurance, evaluation of patient immobilization and determination of margins for the treatment planning. Patients...... and lateral directions). In the CC direction, the margin has to be 5 mm for the Thorax patients. The total uncertainty on the patient position grows during the treatment course, especially in the CC direction for patients receiving thoracical irradiation. This may stem from problems in the immobilization...... and methods. Eighty four cancer patients have been cone beam CT scanned at treatment sessions 1, 2, 3, 10 and 20. Translational and rotational errors are analyzed. Results and conclusions. For the first three treatment sessions the mean translational error in the AP direction is 1 mm; this indicates a small...

  7. Evaluation of a method for correction of scatter radiation in thorax cone beam CT

    International Nuclear Information System (INIS)

    Rinkel, J.; Dinten, J.M.; Esteve, F.

    2004-01-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  8. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    Science.gov (United States)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  9. Truncation artifact suppression in cone-beam radionuclide transmission CT using maximum likelihood techniques: evaluation with human subjects

    International Nuclear Information System (INIS)

    Manglos, S.H.

    1992-01-01

    Transverse image truncation can be a serious problem for human imaging using cone-beam transmission CT (CB-CT) implemented on a conventional rotating gamma camera. This paper presents a reconstruction method to reduce or eliminate the artifacts resulting from the truncation. The method uses a previously published transmission maximum likelihood EM algorithm, adapted to the cone-beam geometry. The reconstruction method is evaluated qualitatively using three human subjects of various dimensions and various degrees of truncation. (author)

  10. SU-E-T-161: Evaluation of Dose Calculation Based On Cone-Beam CT

    International Nuclear Information System (INIS)

    Abe, T; Nakazawa, T; Saitou, Y; Nakata, A; Yano, M; Tateoka, K; Fujimoto, K; Sakata, K

    2014-01-01

    Purpose: The purpose of this study is to convert pixel values in cone-beam CT (CBCT) using histograms of pixel values in the simulation CT (sim-CT) and the CBCT images and to evaluate the accuracy of dose calculation based on the CBCT. Methods: The sim-CT and CBCT images immediately before the treatment of 10 prostate cancer patients were acquired. Because of insufficient calibration of the pixel values in the CBCT, it is difficult to be directly used for dose calculation. The pixel values in the CBCT images were converted using an in-house program. A 7 fields treatment plans (original plan) created on the sim-CT images were applied to the CBCT images and the dose distributions were re-calculated with same monitor units (MUs). These prescription doses were compared with those of original plans. Results: In the results of the pixel values conversion in the CBCT images,the mean differences of pixel values for the prostate,subcutaneous adipose, muscle and right-femur were −10.78±34.60, 11.78±41.06, 29.49±36.99 and 0.14±31.15 respectively. In the results of the calculated doses, the mean differences of prescription doses for 7 fields were 4.13±0.95%, 0.34±0.86%, −0.05±0.55%, 1.35±0.98%, 1.77±0.56%, 0.89±0.69% and 1.69±0.71% respectively and as a whole, the difference of prescription dose was 1.54±0.4%. Conclusion: The dose calculation on the CBCT images achieve an accuracy of <2% by using this pixel values conversion program. This may enable implementation of efficient adaptive radiotherapy

  11. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Nazmy, Mohamed Soliman; Khafaga, Yasser; Mousa, Amr; Khalil, Ehab

    2012-01-01

    Background and purpose: To quantify the organ motion relative to bone in different breathing states in pediatric neuroblastoma using cone beam CT (CBCT) for better definition of the planning margins during abdominal IMRT. Methods and materials: Forty-two datasets of kV CBCT for 9 pediatric patients with abdominal neuroblastoma treated with IMRT were evaluated. Organs positions on planning CT scan were considered the reference position against which organs and target motions were evaluated. The position of the kidneys and the liver was assessed in all scans. The target movement was evaluated in four patients who were treated for gross residual disease. Results: The mean age of the patients was 4.1 ± 1.6 years. The range of target movement in the craniocaudal direction (CC) was 5 mm. In the CC direction, the range of movement was 10 mm for the right kidney, and 8 mm for the left kidney. Similarly, the liver upper edge range of motion was 11 mm while the lower edge range of motion was 13 mm. Conclusions: With the use of daily CBCT we may be able to reduce the PTV margin. If CBCT is not used daily, a wider margin is needed.

  12. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT

    NARCIS (Netherlands)

    Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D.

    2015-01-01

    Objectives The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the

  13. Evaluation of positioning errors of the patient using cone beam CT megavoltage

    International Nuclear Information System (INIS)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-01-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  14. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  15. Evaluation of robustness of maximum likelihood cone-beam CT reconstruction with total variation regularization

    International Nuclear Information System (INIS)

    Stsepankou, D; Arns, A; Hesser, J; Ng, S K; Zygmanski, P

    2012-01-01

    The objective of this paper is to evaluate an iterative maximum likelihood (ML) cone–beam computed tomography (CBCT) reconstruction with total variation (TV) regularization with respect to the robustness of the algorithm due to data inconsistencies. Three different and (for clinical application) typical classes of errors are considered for simulated phantom and measured projection data: quantum noise, defect detector pixels and projection matrix errors. To quantify those errors we apply error measures like mean square error, signal-to-noise ratio, contrast-to-noise ratio and streak indicator. These measures are derived from linear signal theory and generalized and applied for nonlinear signal reconstruction. For quality check, we focus on resolution and CT-number linearity based on a Catphan phantom. All comparisons are made versus the clinical standard, the filtered backprojection algorithm (FBP). In our results, we confirm and substantially extend previous results on iterative reconstruction such as massive undersampling of the number of projections. Errors of projection matrix parameters of up to 1° projection angle deviations are still in the tolerance level. Single defect pixels exhibit ring artifacts for each method. However using defect pixel compensation, allows up to 40% of defect pixels for passing the standard clinical quality check. Further, the iterative algorithm is extraordinarily robust in the low photon regime (down to 0.05 mAs) when compared to FPB, allowing for extremely low-dose image acquisitions, a substantial issue when considering daily CBCT imaging for position correction in radiotherapy. We conclude that the ML method studied herein is robust under clinical quality assurance conditions. Consequently, low-dose regime imaging, especially for daily patient localization in radiation therapy is possible without change of the current hardware of the imaging system. (paper)

  16. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  17. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

  18. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  19. SU-F-J-81: Evaluation of Automated Deformable Registration Between Planning Computed Tomography (CT) and Daily Cone Beam CT Images Over the Course of Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Matney, J; Hammers, J; Kaidar-Person, O; Wang, A; Chen, R; Das, S; Marks, L; Mavroidis, P [University North Carolina, Chapel Hill, NC (United States)

    2016-06-15

    Purpose: To compute daily dose delivered during radiotherapy, deformable registration needs to be relatively fast, automated, and accurate. The aim of this study was to evaluate the performance of commercial deformable registration software for deforming between two modalities: planning computed tomography (pCT) images acquired for treatment planning and cone beam (CB) CT images acquired prior to each fraction of prostate cancer radiotherapy. Methods: A workflow was designed using MIM Software™ that aligned and deformed pCT into daily CBCT images in two steps: (1) rigid shifts applied after daily CBCT imaging to align patient anatomy to the pCT and (2) normalized intensity-based deformable registration to account for interfractional anatomical variations. The physician-approved CTV and organ and risk (OAR) contours were deformed from the pCT to daily CBCT over the course of treatment. The same structures were delineated on each daily CBCT by a radiation oncologist. Dice similarity coefficient (DSC) mean and standard deviations were calculated to quantify the deformable registration quality for prostate, bladder, rectum and femoral heads. Results: To date, contour comparisons have been analyzed for 31 daily fractions of 2 of 10 of the cohort. Interim analysis shows that right and left femoral head contours demonstrate the highest agreement (DSC: 0.96±0.02) with physician contours. Additionally, deformed bladder (DSC: 0.81±0.09) and prostate (DSC: 0.80±0.07) have good agreement with physician-defined daily contours. Rectum contours have the highest variations (DSC: 0.66±0.10) between the deformed and physician-defined contours on daily CBCT imaging. Conclusion: For structures with relatively high contrast boundaries on CBCT, the MIM automated deformable registration provided accurate representations of the daily contours during treatment delivery. These findings will permit subsequent investigations to automate daily dose computation from CBCT. However

  20. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Science.gov (United States)

    Li, Xin; Zhang, Yuyu; Shi, Yinghua; Wu, Shuyu; Xiao, Yang; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-01-01

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N) cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e., the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB), the vertebral foramen (VF), the parotid gland (PG) and the submandibular gland (SMG). It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  1. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Deformable image registration (DIR is a critical technic in adaptive radiotherapy (ART for propagating contours between planning computerized tomography (CT images and treatment CT/cone-beam CT (CBCT images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT. Three similarity metrics, i.e., the Dice similarity coefficient (DSC, the percentage error (PE and the Hausdorff distance (HD, were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB, the vertebral foramen (VF, the parotid gland (PG and the submandibular gland (SMG. It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  2. TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z; Shi, J; Yang, Y [University of Miami School of Medicine, Miami, FL (United States)

    2016-06-15

    Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in the transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection

  3. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    International Nuclear Information System (INIS)

    Liang Xin; Jacobs, Reinhilde; Hassan, Bassam; Li Limin; Pauwels, Ruben; Corpas, Livia; Souza, Paulo Couto; Martens, Wendy; Shahbazian, Maryam; Alonso, Arie

    2010-01-01

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  4. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT)

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xin, E-mail: Xin.Liang@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); College of Stomatology, Dalian Medical University (China); Jacobs, Reinhilde, E-mail: Reinhilde.Jacobs@uz.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Hassan, Bassam, E-mail: b.hassan@acta.n [Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); Li Limin, E-mail: Limin.Li@uz.kuleuven.b [Department of Paediatric Dentistry and Special Dental Care, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Pauwels, Ruben, E-mail: Ruben.Pauwels@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Corpas, Livia, E-mail: LiviaCorpas@gmail.co [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Souza, Paulo Couto, E-mail: Paulo.CoutoSouza@med.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Martens, Wendy, E-mail: wendy.martens@uhasselt.b [Department of Basic Medical Sciences, Faculty of Medicine, University of Hasselt, Diepenbeek (Belgium); Shahbazian, Maryam, E-mail: Maryam.Shahbazian@student.kuleuven.b [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Catholic University of Leuven (Belgium); Alonso, Arie, E-mail: ariel.alonso@uhasselt.b [Department of Biostatistics and Statistical Bioinformatics, Universiteit Hasselt (Belgium)

    2010-08-15

    Aims: To compare image quality and visibility of anatomical structures in the mandible between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: One dry mandible was scanned with five CBCT scanners (Accuitomo 3D, i-CAT, NewTom 3G, Galileos, Scanora 3D) and one MSCT system (Somatom Sensation 16) using 13 different scan protocols. Visibility of 11 anatomical structures and overall image noise were compared between CBCT and MSCT. Five independent observers reviewed the CBCT and the MSCT images in the three orthographic planes (axial, sagittal and coronal) and assessed image quality on a five-point scale. Results: Significant differences were found in the visibility of the different anatomical structures and image noise level between MSCT and CBCT and among the five CBCT systems (p = 0.0001). Delicate structures such as trabecular bone and periodontal ligament were significantly less visible and more variable among the systems in comparison with other anatomical structures (p = 0.0001). Visibility of relatively large structures such as mandibular canal and mental foramen was satisfactory for all devices. The Accuitomo system was superior to MSCT and all other CBCT systems in depicting anatomical structures while MSCT was superior to all other CBCT systems in terms of reduced image noise. Conclusions: CBCT image quality is comparable or even superior to MSCT even though some variability exists among the different CBCT systems in depicting delicate structures. Considering the low radiation dose and high-resolution imaging, CBCT could be beneficial for dentomaxillofacial radiology.

  5. Evaluation of patient dose using a virtual CT scanner: Applications to 4DCT simulation and Kilovoltage cone-beam imaging

    International Nuclear Information System (INIS)

    DeMarco, J J; Agazaryan, N; McNitt-Gray, M F; Cagnon, C H; Angel, E; Zankl, M

    2008-01-01

    This work evaluates the effects of patient size on radiation dose from simulation imaging studies such as four-dimensional computed tomography (4DCT) and kilovoltage cone-beam computed tomography (kV-CBCT). 4DCT studies are scans that include temporal information, frequently incorporating highly over-sampled imaging series necessary for retrospective sorting as a function of respiratory phase. This type of imaging study can result in a significant dose increase to the patient due to the slower table speed as compared with a conventional axial or helical scan protocol. Kilovoltage cone-beam imaging is a relatively new imaging technique that requires an on-board kilovoltage x-ray tube and a flat-panel detector. Instead of porting individual reference fields, the kV tube and flat-panel detector are rotated about the patient producing a cone-beam CT data set (kV-CBCT). To perform these investigations, we used Monte Carlo simulation methods with detailed models of adult patients and virtual source models of multidetector computed tomography (MDCT) scanners. The GSF family of three-dimensional, voxelized patient models, were implemented as input files using the Monte Carlo code MCNPX. The adult patient models represent a range of patient sizes and have all radiosensitive organs previously identified and segmented. Simulated 4DCT scans of each voxelized patient model were performed using a multi-detector CT source model that includes scanner specific spectra, bow-tie filtration, and helical source path. Standard MCNPX tally functions were applied to each model to estimate absolute organ dose based upon an air-kerma normalization measurement for nominal scanner operating parameters

  6. Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon.

    Science.gov (United States)

    AlDahlawi, Ismail; Prasad, Dheerendra; Podgorsak, Matthew B

    2017-05-01

    The Gamma Knife Icon comes with an integrated cone-beam CT (CBCT) for image-guided stereotactic treatment deliveries. The CBCT can be used for defining the Leksell stereotactic space using imaging without the need for the traditional invasive frame system, and this allows also for frameless thermoplastic mask stereotactic treatments (single or fractionated) with the Gamma Knife unit. In this study, we used an in-house built marker tool to evaluate the stability of the CBCT-based stereotactic space and its agreement with the standard frame-based stereotactic space. We imaged the tool with a CT indicator box using our CT-simulator at the beginning, middle, and end of the study period (6 weeks) for determining the frame-based stereotactic space. The tool was also scanned with the Icon's CBCT on a daily basis throughout the study period, and the CBCT images were used for determining the CBCT-based stereotactic space. The coordinates of each marker were determined in each CT and CBCT scan using the Leksell GammaPlan treatment planning software. The magnitudes of vector difference between the means of each marker in frame-based and CBCT-based stereotactic space ranged from 0.21 to 0.33 mm, indicating good agreement of CBCT-based and frame-based stereotactic space definition. Scanning 4-month later showed good prolonged stability of the CBCT-based stereotactic space definition. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Automated double-cone-beam CT fusion technique. Enhanced evaluation of glue distribution in cases of spinal dural arteriovenous fistula (SDAVF) embolisation

    International Nuclear Information System (INIS)

    Farago, Giuseppe; Caldiera, V.; Antozzi, C.; Bellino, A.; Innocenti, A.; Ciceri, E.

    2017-01-01

    Spinal dural arteriovenous fistulas (SDAVFs) are acquired diseases that represent the majority of all arteriovenous spinal shunts, leading to progressive and disabling myelopathy. Treatment is focused on accurately disconnecting the fistula point. We present our experience with the double-cone-beam CT fusion technique successfully applied to evaluate treatment results in a series of SDAVFs. Between November 2011 and December 2015 we performed double-DynaCT acquisition (pre- and post-embolisation) in 12 cases of SDAVF. A successful DynaCT fusion technique was only achieved in the group of patients with pre- and post-treatment images acquired at the same time as the treatment session, under general anaesthesia (4/12). DynaCT performed on different days proved to be inadequate for the automated fusion technique because of changes in the body position (8/12). A pre-treatment flat-panel cone-beam CT with contrast, at the time of diagnostic angiography, can be very helpful to detect the correct level of the fistula and the relationship between the fistula and the surrounding structures. In case of the endovascular approach, additional post-treatment native acquisition merged with the pre-treatment acquisition (double-cone-beam CT fusion technique) permits to immediately evaluate the distribution of the glue cast and to confirm the success of the procedure. (orig.)

  8. Automated double-cone-beam CT fusion technique. Enhanced evaluation of glue distribution in cases of spinal dural arteriovenous fistula (SDAVF) embolisation

    Energy Technology Data Exchange (ETDEWEB)

    Farago, Giuseppe [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Interventional Neuroradiology, Milan (Italy); Caldiera, V. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Antozzi, C.; Bellino, A. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Neuroimmunology and Neuromuscular Diseases, Milan (Italy); Innocenti, A. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Neuro-Oncology, Milan (Italy); Ciceri, E. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Azienda Ospedaliera Universitaria Integrata Borgo Trento, Department of Neuroradiology, Verona (Italy)

    2017-05-15

    Spinal dural arteriovenous fistulas (SDAVFs) are acquired diseases that represent the majority of all arteriovenous spinal shunts, leading to progressive and disabling myelopathy. Treatment is focused on accurately disconnecting the fistula point. We present our experience with the double-cone-beam CT fusion technique successfully applied to evaluate treatment results in a series of SDAVFs. Between November 2011 and December 2015 we performed double-DynaCT acquisition (pre- and post-embolisation) in 12 cases of SDAVF. A successful DynaCT fusion technique was only achieved in the group of patients with pre- and post-treatment images acquired at the same time as the treatment session, under general anaesthesia (4/12). DynaCT performed on different days proved to be inadequate for the automated fusion technique because of changes in the body position (8/12). A pre-treatment flat-panel cone-beam CT with contrast, at the time of diagnostic angiography, can be very helpful to detect the correct level of the fistula and the relationship between the fistula and the surrounding structures. In case of the endovascular approach, additional post-treatment native acquisition merged with the pre-treatment acquisition (double-cone-beam CT fusion technique) permits to immediately evaluate the distribution of the glue cast and to confirm the success of the procedure. (orig.)

  9. Morphology of bone defects in patient with unilateral cleft lip and palate. Cone beam x-ray CT evaluation

    International Nuclear Information System (INIS)

    Kyo, Iyu; Kubota, Masato; Sato, Yuki; Nakano, Haruhisa; Maki, Koutaro

    2006-01-01

    Orthodontic treatment planning of the cleft lip and palate vary according to the morphology of the alveolar bone and palatal bone. The purpose of this study is to evaluate the three-dimensional anatomy of the alveolar and palatal bone in children with complete unilateral cleft lip and palate. Thirty-three nonsyndromic consecutive patients with complete unilateral cleft lip and palate were treated by the cleft palate team at Showa University. Each patient had lip and palate surgeries at Showa University. Cone beam CT radiographs (CB MercuRay, Hitachi) were taken prior to secondary bone grafting, and were classified according to the method of Kita et al. 1997. Cone beam CT radiographs showed multiple types of alveolar and palatal bone morphology, and focused on special types described in the method of Kita et al. It was most frequently found that bone defects in the alveolar crest showed similar patterns in both buccal and palatal aspect, and the buccal bone defect in the nasal floor was larger than the palatal bone defect in the nasal floor. In 80% of the patients, the palatal bone defect showed similar patterns in both anterior and posterior aspects, and the anterior palatal bone defect was smaller than the posterior palatal bone defect. In addition, inadequate bone bridges were frequently found at the cleft site. It is suggested that patients with unilateral cleft lip and palate have various types of alveolar and palatal bone morphology, and are required to take three-dimensional radiographic X-rays prior to any orthodontic treatment. (author)

  10. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  11. Evaluation of various approaches for assessing dose indicators and patient organ doses resulting from radiotherapy cone-beam CT

    International Nuclear Information System (INIS)

    Rampado, Osvaldo; Giglioli, Francesca Romana; Rossetti, Veronica; Ropolo, Roberto; Fiandra, Christian; Ragona, Riccardo

    2016-01-01

    Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution in an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K_a_i_r), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses

  12. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-01-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  13. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    Science.gov (United States)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  14. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  15. Investigation of practical approaches to evaluating cumulative dose for cone beam computed tomography (CBCT) from standard CT dosimetry measurements: a Monte Carlo study.

    Science.gov (United States)

    Abuhaimed, Abdullah; Martin, Colin J; Sankaralingam, Marimuthu; Gentle, David J

    2015-07-21

    A function called Gx(L) was introduced by the International Commission on Radiation Units and Measurements (ICRU) Report-87 to facilitate measurement of cumulative dose for CT scans within long phantoms as recommended by the American Association of Physicists in Medicine (AAPM) TG-111. The Gx(L) function is equal to the ratio of the cumulative dose at the middle of a CT scan to the volume weighted CTDI (CTDIvol), and was investigated for conventional multi-slice CT scanners operating with a moving table. As the stationary table mode, which is the basis for cone beam CT (CBCT) scans, differs from that used for conventional CT scans, the aim of this study was to investigate the extension of the Gx(L) function to CBCT scans. An On-Board Imager (OBI) system integrated with a TrueBeam linac was simulated with Monte Carlo EGSnrc/BEAMnrc, and the absorbed dose was calculated within PMMA, polyethylene (PE), and water head and body phantoms using EGSnrc/DOSXYZnrc, where the body PE body phantom emulated the ICRU/AAPM phantom. Beams of width 40-500 mm and beam qualities at tube potentials of 80-140 kV were studied. Application of a modified function of beam width (W) termed Gx(W), for which the cumulative dose for CBCT scans f (0) is normalized to the weighted CTDI (CTDIw) for a reference beam of width 40 mm, was investigated as a possible option. However, differences were found in Gx(W) with tube potential, especially for body phantoms, and these were considered to be due to differences in geometry between wide beams used for CBCT scans and those for conventional CT. Therefore, a modified function Gx(W)100 has been proposed, taking the form of values of f (0) at each position in a long phantom, normalized with respect to dose indices f 100(150)x measured with a 100 mm pencil ionization chamber within standard 150 mm PMMA phantoms, using the same scanning parameters, beam widths and positions within the phantom. f 100(150)x averages the dose resulting from

  16. Evaluation study of the sinus lift technique in combination with autologous bone augmentation in dogs' frontal sinus. Limited cone beam CT image and histopathological analyses

    International Nuclear Information System (INIS)

    Takahashi, Tatsuo

    2002-01-01

    The posterior area of the maxilla has often been considered inadequate for the insertion of dental implants due to insufficient height of the alveolar bone by atrophic reduction and the maxillary sinus expansion. This anatomic problem may be resolved with augmentation of the floor of the maxillary sinus. The purpose of this study is to evaluate the effectiveness of sinus lift and grafting with the iliac crest bone performed in the dog frontal sinus as a model of the human maxillary sinus. Time course evaluations of bone volume after insertion of implants were performed by the limited cone beam CT (Ortho-CT), histopathological study and NIH-image digital analysis. New bone formation was identified as early as 2 weeks after the implant insertion. The bone volume was increased continuously until 13th week. High-density bone was found in the cervix of the implant after 26 weeks. However, the bone was lost at apex area of the implant and air cavity of the frontal sinus expanded. Ortho-CT findings showed good correlation with histopathological course of the lesion and bone volume identified by the NIH image analysis. The results revealed first time whole course of the bone remodeling after implant insertion into the frontal sinus of a dog. The data also provide an appropriate timing of the implant prosthesis and promise usefulness of the Ortho-CT in planning efficient implant treatment. (author)

  17. A characteristic of angiographic cone-beam CT

    International Nuclear Information System (INIS)

    Takase, Tadashi; Take, Toshio; Nakazawa, Yasuo; Kinouchi, Katsunori

    2009-01-01

    Angiographic cone-beam CT, called DynaCT by SIEMENS, is a 3D imaging tool reconstructed from projection data by a rotational C-arm with a flat panel detector. It can visualize low-contrast objects such as soft tissue or small vessels as well as high-contrast structures such as enhanced vessels or bone. We need to understand its image characteristics and dose distribution during 200 degree rotation around a patient. In this research, we evaluated fundamental characteristics and dose effectiveness for optimized clinical images. DynaCT, including soft tissue information and isochronal voxel data along the z-axis, could provide enough CT-like image quality for interventional radiology (IVR) use. In addition, evaluation of accumulated dose distribution helped us to predict and avoid the occurrence of radiodermatitis. Thus, DynaCT is useful as a support and navigation tool for IVR. (author)

  18. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    Science.gov (United States)

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was CMOS

  19. Study on broad beam heavy ion CT

    International Nuclear Information System (INIS)

    Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki

    2003-01-01

    To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)

  20. Evaluation of the 'dose of the day' for IMRT prostate cancer patients derived from portal dose measurements and cone-beam CT

    International Nuclear Information System (INIS)

    Zijtveld, Mathilda van; Dirkx, Maarten; Breuers, Marcel; Kuipers, Ruud; Heijmen, Ben

    2010-01-01

    Purpose: High geometrical and dosimetrical accuracies are required for radiotherapy treatments where IMRT is applied in combination with narrow treatment margins in order to minimize dose delivery to normal tissues. As an overall check, we implemented a method for reconstruction of the actually delivered 3D dose distribution to the patient during a treatment fraction, i.e., the 'dose of the day'. In this article results on the clinical evaluation of this concept for a group of IMRT prostate cancer patients are presented. Materials and methods: The actual IMRT fluence maps delivered to a patient were derived from measured EPID-images acquired during treatment using a previously described iterative method. In addition, the patient geometry was obtained from in-room acquired cone-beam CT images. For dose calculation, a mapping of the Hounsfield Units from the planning CT was applied. With the fluence maps and the modified cone-beam CT the 'dose of the day' was calculated. The method was validated using phantom measurements and evaluated clinically for 10 prostate cancer patients in 4 or 5 fractions. Results: The phantom measurements showed that the delivered dose could be reconstructed within 3%/3 mm accuracy. For prostate cancer patients, the isocenter dose agreed within -0.4 ± 1.0% (1 SD) with the planned value, while for on average 98.1% of the pixels within the 50% isodose surface the actually delivered dose agreed within 3% or 3 mm with the planned dose. For most fractions, the dose coverage of the prostate volume was slightly deteriorated which was caused by small prostate rotations and small inaccuracies in fluence delivery. The dose that was delivered to the rectum remained within the constraints used during planning. However, for two patients a large degrading of the dose delivery was observed in two fractions. For one patient this was related to changes in rectum filling with respect to the planning CT and for the other to large intra-fraction motion during

  1. Evaluation of patient dose in imaging using a cone-beam CT dosimetry by X-ray films for radiotherapeutic dose

    International Nuclear Information System (INIS)

    Yoshida, Yuri; Morita, Yasuhiko; Honda, Eiichi; Tomotake, Yoritoki; Ichikawa, Tetsuo

    2008-01-01

    A limited cone-beam X-ray CT (3DX multi-image micro CT; 3DX-FPD) is widely used in dentistry because it provides a lower cost, smaller size, and higher spatial resolution than a CT for medicine. Our recent research suggested that the patient dose of 3DX-FPD was less than 7/10 of that of CT, and it was several to 10 times more than that of dental or panoramic radiography. The purpose of this study was to evaluate the spatial dose distribution from 3DX-FPD and to estimate the influence of dose by positioning of the region of interest. Dosimetry of the organs and the tissues was performed using an anthropomorphic Alderson Rando phantom and X-ray films for measurement of radiotherapeutic dose. Measurements of dose distribution were performed using a cylinder-type tank of water made of acrylic resin imitating the head and X-ray films. The results are summarized as follows: The dose was higher as the ratio of the air region included in the region of interest increased. The dose distribution was not homogeneous and the dose was highest in the skin region. The dose was higher for several seconds after the beginning of exposure. It was concluded that patient positioning, as well as exposure conditions including the size of the exposure field and tube current, could greatly influence the patient dose in 3DX-FPD. In addition, it is necessary to consider the influence of image quality for the treatment of dental implants. (author)

  2. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    Science.gov (United States)

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  3. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  4. Tracker-on-C for cone-beam CT-guided surgery: evaluation of geometric accuracy and clinical applications

    Science.gov (United States)

    Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.

    2012-02-01

    Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C

  5. SU-F-J-38: Dose Rates and Preliminary Evaluation of Contouring Similarity Metrics Using 4D Cone Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Santoso, A [Wayne State University School of Medicine, Detroit, Michigan (United States); Song, K; Qin, Y; Gardner, S; Liu, C; Cattaneo, R; Chetty, I; Movsas, B; Aljouni, M; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: 4D imaging modalities require detailed characterization for clinical optimization. The On-Board Imager mounted on the linear accelerator was used to investigate dose rates in a tissue mimicking phantom using 4D-CBCT and assess variability of contouring similarity metrics between 4D-CT and 4D-CBCT retrospective reconstructions. Methods: A 125 kVp thoracic protocol was used. A phantom placed on a motion platform simulated a patient’s breathing cycle. An ion chamber was affixed inside the phantom’s tissue mimicking cavities (i.e. bone, lung, and soft tissue). A sinusoidal motion waveform was executed with a five second period and superior-inferior motion. Dose rates were measured at six ion chamber positions. A preliminary workflow for contouring similarity between 4D-CT and 4D-CBCT was established using a single lung SBRT patient’s historical data. Average intensity projection (Ave-IP) and maximum intensity projection (MIP) reconstructions generated offline were compared between the 4D modalities. Similarity metrics included Dice similarity coefficient (DSC), Hausdorff distance, and center of mass (COM) deviation. Two isolated lesions were evaluated in the patient’s scans: one located in the right lower lobe (ITVRLL) and one located in the left lower lobe (ITVLLL). Results: Dose rates ranged from 2.30 (lung) to 5.18 (bone) E-3 cGy/mAs. For fixed acquisition parameters, cumulative dose is inversely proportional to gantry speed. For ITVRLL, DSC were 0.70 and 0.68, Hausdorff distances were 6.11 and 5.69 mm, and COM deviations were 1.24 and 4.77 mm, for Ave-IP and MIP respectively. For ITVLLL, DSC were 0.64 and 0.75, Hausdorff distances were 10.74 and 8.00 mm, and COM deviations were 7.55 and 4.3 mm, for Ave-IP and MIP respectively. Conclusion: While the dosimetric output of 4D-CBCT is low, characterization is necessary to assure clinical optimization. A basic workflow for comparison of simulation and treatment 4D image-based contours was established

  6. SU-E-T-86: Comparison of Two Commercially Available Programs for the Evaluation of Delivered Daily Dose Using Cone Beam CT (CBCT)

    International Nuclear Information System (INIS)

    Tuohy, R; Bosse, C; Mavroidis, P; Shi, Z; Crownover, R; Papanikolaou, N; Stathakis, S

    2014-01-01

    Purpose: In this study, two commercially available programs were compared for the evaluation of delivered daily dose using cone beam CT (CBCT). Methods: Thirty (n=30) patients previously treated in our clinic (10 prostate, 10 SBRT lung and 10 abdomen) were used in this study. The patients' plans were optimized and calculated using the Pinnacle treatment planning system. The daily CBCT scans were imported into Velocity and RayStation along with the corresponding planning CTs, structure sets and 3D dose distributions for each patient. The organs at risk (OAR) were contoured on each CBCT by the prescribing physician and were included in the evaluation of the daily delivered dose. Each CBCT was registered to the planning CT, once with rigid registration and then again, separately, with deformable registration. After registering each CBCT, the dose distribution from the planning CT was overlaid and the dose volume histograms (DVH) for the OAR and the planning target volumes (PTV) were calculated. Results: For prostate patients, we observed daily volume changes for the OARs. The DVH analysis for those patients showed variation in the sparing of the OARs while PTV coverage remained virtually unchanged using both Velocity and RayStation systems. Similar results were observed for abdominal patients. In contrast, for SBRT lung patients, the DVH for the OARs and target were comparable to those from the initial treatment plan. Differences in organ volume and organ doses were also observed when comparing the daily fractions using deformable and rigid registrations. Conclusion: By using daily CBCT dose reconstruction, we proved PTV coverage for prostate and abdominal targets is adequate. However, there is significant dosimetric change for the OARs. For lung SBRT patients, the delivered daily dose for both PTV and OAR is comparable to the planned dose with no significant differences

  7. CT evaluation of acetabular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, P; Girelli, G; Coran, F; Lutman, M

    1986-01-01

    The paper deals with sixteen cases of acetabular fractures studied with CT. After a short description of the normal CT findings, the different kind of fractures are reported. The usefulness of CT examination in evaluating acetabular fractures and their complications is confirmed both in conservative treatment and surgical approach.

  8. Comparison of CT numbers between cone-beam CT and multi-detector CT

    International Nuclear Information System (INIS)

    Kim, Dong Soo; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, ρ(g/cm 3 ), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were ρ=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, ρ=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, ρ=0.001 H+1.43 with R2 value of 0.980 for i-CAT and ρ=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  9. Comparison of CT numbers between cone-beam CT and multi-detector CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Soo; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-06-15

    To compare the CT numbers on 3 cone-beam CT (CBCT) images with those on multi-detector CT (MDCT) image using CT phantom and to develop linear regressive equations using CT numbers to material density for all the CT scanner each. Mini CT phantom comprised of five 1 inch thick cylindrical models with 1.125 inches diameter of materials with different densities (polyethylene, polystyrene, plastic water, nylon and acrylic) was used. It was scanned in 3 CBCTs (i-CAT, Alphard VEGA, Implagraphy SC) and 1 MDCT (Somatom Emotion). The images were saved as DICOM format and CT numbers were measured using OnDemand 3D. CT numbers obtained from CBCTs and MDCT images were compared and linear regression analysis was performed for the density, {rho}(g/cm{sup 3}), as the dependent variable in terms of the CT numbers obtained from CBCTs and MDCT images. CT numbers on i-CAT and Implagraphy CBCT images were smaller than those on Somatom Emotion MDCT image (p<0.05). Linear relationship on a range of materials used for this study were {rho}=0.001 H+1.07 with R2 value of 0.999 for Somatom Emotion, {rho}=0.002 H+1.09 with R2 value of 0.991 for Alphard VEGA, {rho}=0.001 H+1.43 with R2 value of 0.980 for i-CAT and {rho}=0.001 H+1.30 with R2 value of 0.975 for Implagraphy. CT numbers on i-CAT and Implagraphy CBCT images were not same as those on Somatom Emotion MDCT image. The linear regressive equations to determine the density from the CT numbers with very high correlation coefficient were obtained on three CBCT and MDCT scan.

  10. Evaluation of a method for correction of scatter radiation in thorax cone beam CT; Evaluation d'une methode de correction du rayonnement diffuse en tomographie du thorax avec faisceau conique

    Energy Technology Data Exchange (ETDEWEB)

    Rinkel, J.; Dinten, J.M. [CEA Grenoble (DTBS/STD), Lab. d' Electronique et de Technologie de l' Informatique, LETI, 38 (France); Esteve, F. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France)

    2004-07-01

    Purpose: Cone beam CT (CBCT) enables three-dimensional imaging with isotropic resolution. X-ray scatter estimation is a big challenge for quantitative CBCT imaging of thorax: scatter level is significantly higher on cone beam systems compared to collimated fan beam systems. The effects of this scattered radiation are cupping artefacts, streaks, and quantification inaccuracies. The beam stops conventional scatter estimation approach can be used for CBCT but leads to a significant increase in terms of dose and acquisition time. At CEA-LETI has been developed an original scatter management process without supplementary acquisition. Methods and Materials: This Analytical Plus Indexing-based method (API) of scatter correction in CBCT is based on scatter calibration through offline acquisitions with beam stops on lucite plates, combined to an analytical transformation issued from physical equations. This approach has been applied with success in bone densitometry and mammography. To evaluate this method in CBCT, acquisitions from a thorax phantom with and without beam stops have been performed. To compare different scatter correction approaches, Feldkamp algorithm has been applied on rough data corrected from scatter by API and by beam stops approaches. Results: The API method provides results in good agreement with the beam stops array approach, suppressing cupping artefact. Otherwise influence of the scatter correction method on the noise in the reconstructed images has been evaluated. Conclusion: The results indicate that the API method is effective for quantitative CBCT imaging of thorax. Compared to a beam stops array method it needs a lower x-ray dose and shortens acquisition time. (authors)

  11. WE-AB-207A-09: Optimization of the Design of a Moving Blocker for Cone-Beam CT Scatter Correction: Experimental Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Ouyang, L; Jia, X; Zhang, Y; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Yan, H [Cyber Medical Corporation, Xi’an (China)

    2016-06-15

    Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different geometry designs and moving speeds of the blocker affect its performance in image reconstruction accuracy. The goal of this work is to optimize the geometric design and moving speed of the moving blocker system through experimental evaluations. Methods: An Elekta Synergy XVI system and an anthropomorphic pelvis phantom CIRS 801-P were used for our experiment. A blocker consisting of lead strips was inserted between the x-ray source and the phantom moving back and forth along rotation axis to measure the scatter signal. Accoriding to our Monte Carlo simulation results, three blockers were used, which have the same lead strip width 3.2mm and different gap between neighboring lead strips, 3.2, 6.4 and 9.6mm. For each blocker, three moving speeds were evaluated, 10, 20 and 30 pixels per projection (on the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline based interpolation from the blocked region. CBCT image was reconstructed by a total variation (TV) based algebraic iterative reconstruction (ART) algorithm from the partially blocked projection data. Reconstruction accuracy in each condition is quantified as CT number error of region of interest (ROI) by comparing to a CBCT reconstructed image from analytically simulated unblocked and scatter free projection data. Results: Highest reconstruction accuracy is achieved when the blocker width is 3.2 mm, the gap between neighboring lead strips is 9.6 mm and the moving speed is 20 pixels per projection. RMSE of the CT number of ROIs can be reduced from 436 to 27. Conclusions: Image reconstruction accuracy is greatly affected by the geometry design of the blocker. The moving speed does not have a very strong effect on reconstruction result if it is over 20 pixels per projection.

  12. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  13. Evaluation of the patient doses form megavoltage cone-beam CT imaging in the image-guided radiation therapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Jia Mingxuan; Zou Huawei; Ji Tianlong; Zhang Xu; Han Chengbo

    2010-01-01

    Objective: To evaluate and estimate the patient doses from megavoltage cone-beam CT imaging system in the image-guided radiation therapy for nasopharyngeal carcinoma. Methods: 8 MU protocol of the MV CBCT system was selected for the head-and -neck region. The absorbed doses at the different positions in the phantom were measured using a 0.65 cm 3 ion chamber and the cylindrical acrylic phantom. The absorbed doses at the measurement positions of the phantom were calculated and the patient doses to the tumor and critical organs were derived from dose-volume histogram by the TPS mimicking the MV CBCT scanning with 8 MU protocol. Results: The error between the measured dose and the calculated dose was less than 3.5%. The average doses to the tumor target, brain stem, spinal cord and chiasm were 6.43, 6.36, 6.83 and 6.90 cGy, respectively, while those to left and right of both optic nerve and parotid were 7.70 and 7.53 cGy, 7.70 and 7.53 cGy, respectively. Conclusions: The patient doses estimated using the TPS mimicking the MV CBCT image acquiring procedure are accurate and reliable. The patient doses from the MV CBCT imaging must be considered when treatment plan of the patient is designed. (authors)

  14. SU-E-J-106: The Use of Deformable Image Registration with Cone-Beam CT for a Better Evaluation of Cumulative Dose to Organs

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, O; Gingras, L; Archambault, L [Universite Laval, Quebec, Quebec (Canada); Centre de recherche du CHU de Quebec, Quebec, Quebec (Canada); Centre de recherche sur le cancer, Quebec, Quebec (Canada)

    2015-06-15

    Purpose: The knowledge of dose accumulation in the patient tissues in radiotherapy helps in determining the treatment outcomes. This project aims at providing a workflow to map cumulative doses that takes into account interfraction organ motion without the need for manual re-contouring. Methods: Five prostate cancer patients were studied. Each patient had a planning CT (pCT) and 5 to 13 CBCT scans. On each series, a physician contoured the prostate, rectum, bladder, seminal vesicles and the intestine. First, a deformable image registration (DIR) of the pCTs onto the daily CBCTs yielded registered CTs (rCT) . This rCT combined the accurate CT numbers of the pCT with the daily anatomy of the CBCT. Second, the original plans (220 cGy per fraction for 25 fractions) were copied on the rCT for dose re-calculation. Third, the DIR software Elastix was used to find the inverse transform from the rCT to the pCT. This transformation was then applied to the rCT dose grid to map the dose voxels back to their pCT location. Finally, the sum of these deformed dose grids for each patient was applied on the pCT to calculate the actual dose delivered to organs. Results: The discrepancy between the planned D98 and D2 and these indices re-calculated on the rCT, are, on average, of −1 ± 1 cGy and 1 ± 2 cGy per fraction, respectively. For fractions with large anatomical motion, the D98 discrepancy on the re-calculated dose grid mapped onto the pCT can raise to −17 ± 4 cGy. The obtained cumulative dose distributions illustrate the same behavior. Conclusion: This approach allowed the evaluation of cumulative doses to organs with the help of uncontoured daily CBCT scans. With this workflow, the easy evaluation of doses delivered for EBRT treatments could ultimately lead to a better follow-up of prostate cancer patients.

  15. SU-E-J-106: The Use of Deformable Image Registration with Cone-Beam CT for a Better Evaluation of Cumulative Dose to Organs

    International Nuclear Information System (INIS)

    Fillion, O; Gingras, L; Archambault, L

    2015-01-01

    Purpose: The knowledge of dose accumulation in the patient tissues in radiotherapy helps in determining the treatment outcomes. This project aims at providing a workflow to map cumulative doses that takes into account interfraction organ motion without the need for manual re-contouring. Methods: Five prostate cancer patients were studied. Each patient had a planning CT (pCT) and 5 to 13 CBCT scans. On each series, a physician contoured the prostate, rectum, bladder, seminal vesicles and the intestine. First, a deformable image registration (DIR) of the pCTs onto the daily CBCTs yielded registered CTs (rCT) . This rCT combined the accurate CT numbers of the pCT with the daily anatomy of the CBCT. Second, the original plans (220 cGy per fraction for 25 fractions) were copied on the rCT for dose re-calculation. Third, the DIR software Elastix was used to find the inverse transform from the rCT to the pCT. This transformation was then applied to the rCT dose grid to map the dose voxels back to their pCT location. Finally, the sum of these deformed dose grids for each patient was applied on the pCT to calculate the actual dose delivered to organs. Results: The discrepancy between the planned D98 and D2 and these indices re-calculated on the rCT, are, on average, of −1 ± 1 cGy and 1 ± 2 cGy per fraction, respectively. For fractions with large anatomical motion, the D98 discrepancy on the re-calculated dose grid mapped onto the pCT can raise to −17 ± 4 cGy. The obtained cumulative dose distributions illustrate the same behavior. Conclusion: This approach allowed the evaluation of cumulative doses to organs with the help of uncontoured daily CBCT scans. With this workflow, the easy evaluation of doses delivered for EBRT treatments could ultimately lead to a better follow-up of prostate cancer patients

  16. Reduction of CT beam hardening artefacts of ethylene vinyl alcohol copolymer by variation of the tantalum content: evaluation in a standardized aortic endoleak phantom

    International Nuclear Information System (INIS)

    Treitl, Karla M.; Scherr, Michael; Foerth, Monika; Braun, Franziska; Maxien, Daniel; Treitl, Marcus

    2015-01-01

    Our aim was to develop an aortic stent graft phantom to simulate endoleak treatment and to find a tantalum content (TC) of ethylene-vinyl-alcohol-copolymer that causes fewer computed tomography (CT) beam hardening artefacts, but still allows for fluoroscopic visualization. Ethylene-vinyl-alcohol-copolymer specimens of different TC (10-50 %, and 100 %) were injected in an aortic phantom bearing a stent graft and endoleak cavities with simulated re-perfusion. Fluoroscopic visibility of the ethylene-vinyl-alcohol-copolymer specimens was analyzed. In addition, six radiologists analyzed endoleak visibility, and artefact intensity of ethylene-vinyl-alcohol-copolymer in CT. Reduction of TC significantly decreased CT artefact intensity of ethylene-vinyl-alcohol-copolymer and increased visibility of endoleak re-perfusion (p < 0.000). It also significantly decreased fluoroscopic visibility of ethylene-vinyl-alcohol-copolymer (R = 0.883, p ≤ 0.01), and increased the active embolic volumes prior to visualization (Δ ≥ 40 μl). Ethylene-vinyl-alcohol-copolymer specimens with a TC of 45-50 % exhibited reasonable visibility, a low active embolic volume and a tolerable CT artefact intensity. The developed aortic stent graft phantom allows for a reproducible simulation of embolization of endoleaks. The data suggest a reduction of the TC of ethylene-vinyl-alcohol-copolymer to 45 -50 % of the original, to interfere less with diagnostic imaging in follow-up CT examinations, while still allowing for fluoroscopic visualization. (orig.)

  17. Evaluation of technical quality and periapical health of root-filled teeth by using cone-beam CT

    Directory of Open Access Journals (Sweden)

    Bilge Gülsüm NUR

    2014-12-01

    Full Text Available Objective This study aimed to assess the quality of root fillings, coronal restorations, complications of all root-filled teeth and their association with apical periodontitis (AP detected by cone-beam computed tomography (CBCT images from an adult Turkish subpopulation. Material and Methods The sample for this study consisted of 242 patients (aging from 15 to 72 years with 522 endodontically treated teeth that were assessed for technical quality of the root canal filling and periapical status of the teeth. Additionally, the apical status of each root-filled tooth was assessed according to the gender, dental arch, tooth type and age classification, undetected canals, instrument fracture, root fracture, apical resorption, apical lesion, furcation lesion and type and quality of the coronal structure. Statistical analysis was performed using percentages and chi-square test. Results The success rate of the root canal treatment was of 54.4%. The success rates of adequate and inadequate root canal treatment were not significantly different (p>0.05. Apical periodontitis was found in 228 (45.6% teeth treated for root canals. Higher prevalence of AP was found in patients aging from 20 to 29 years [64 (27% teeth] and in anterior (canines and incisors teeth [97 (41% teeth]. Conclusions The technical quality of root canal filling performed by dental practitioners in a Turkish subpopulation was consistent with a high prevalence of AP. The probable reasons for this failure are multifactorial, and there may be a need for improved undergraduate education and postgraduate courses to improve the clinical skills of dental practitioners in endodontics.

  18. Fast shading correction for cone beam CT in radiation therapy via sparse sampling on planning CT.

    Science.gov (United States)

    Shi, Linxi; Tsui, Tiffany; Wei, Jikun; Zhu, Lei

    2017-05-01

    The image quality of cone beam computed tomography (CBCT) is limited by severe shading artifacts, hindering its quantitative applications in radiation therapy. In this work, we propose an image-domain shading correction method using planning CT (pCT) as prior information which is highly adaptive to clinical environment. We propose to perform shading correction via sparse sampling on pCT. The method starts with a coarse mapping between the first-pass CBCT images obtained from the Varian TrueBeam system and the pCT. The scatter correction method embedded in the Varian commercial software removes some image errors but the CBCT images still contain severe shading artifacts. The difference images between the mapped pCT and the CBCT are considered as shading errors, but only sparse shading samples are selected for correction using empirical constraints to avoid carrying over false information from pCT. A Fourier-Transform-based technique, referred to as local filtration, is proposed to efficiently process the sparse data for effective shading correction. The performance of the proposed method is evaluated on one anthropomorphic pelvis phantom and 17 patients, who were scheduled for radiation therapy. (The codes of the proposed method and sample data can be downloaded from https://sites.google.com/view/linxicbct) RESULTS: The proposed shading correction substantially improves the CBCT image quality on both the phantom and the patients to a level close to that of the pCT images. On the phantom, the spatial nonuniformity (SNU) difference between CBCT and pCT is reduced from 74 to 1 HU. The root of mean square difference of SNU between CBCT and pCT is reduced from 83 to 10 HU on the pelvis patients, and from 101 to 12 HU on the thorax patients. The robustness of the proposed shading correction is fully investigated with simulated registration errors between CBCT and pCT on the phantom and mis-registration on patients. The sparse sampling scheme of our method successfully

  19. Image quality of cone beam CT on respiratory motion

    International Nuclear Information System (INIS)

    Zhang Ke; Li Minghui; Dai Jianrong; Wang Shi

    2011-01-01

    In this study,the influence of respiratory motion on Cone Beam CT (CBCT) image quality was investigated by a motion simulating platform, an image quality phantom, and a kV X-ray CBCT. A total of 21 motion states in the superior-inferior direction and the anterior-posterior direction, separately or together, was simulated by considering different respiration amplitudes, periods and hysteresis. The influence of motion on CBCT image quality was evaluated with the quality indexes of low contrast visibility, geometric accuracy, spatial resolution and uniformity of CT values. The results showed that the quality indexes were affected by the motion more prominently in AP direction than in SI direction, and the image quality was affected by the respiration amplitude more prominently than the respiration period and the hysteresis. The CBCT image quality and its characteristics influenced by the respiration motion, and may be exploited in finding solutions. (authors)

  20. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Cervino, Laura [Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, CA 92037-0843 (United States); Yan, Hao; Jiang, Steve B; Jia, Xun [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9315 (United States); Rice, Roger [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843 (United States)

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1–3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case. (paper)

  1. CT evaluation of abdominal trauma

    International Nuclear Information System (INIS)

    Huang Ruiting

    2004-01-01

    Objective: An evaluation of CT diagnosis of abdominal trauma. Methods: CT appearance of abdominal trauma was analyzed retrospectively in 95 cases. thirty-three patients were cured by operation, and the other 59 patients received conservative treatment. Fifty-one patients out of 59 were seen healed or improved by a follow up CT scan after the conservative treatment. Results: The study included: 31 cases of splenic contusion, accompanying with hemoperitoneum in 25 cases; 3 cases of hepatic laceration; 33 cases of liver and spleen compound trauma accompanying with hemoperitoneum; 18 cases of renal contusion, with subcapsular hemorrhage in 12 cases; 4 cases of midriff colic; 3 cases of mesentery breach; 3 cases of digestive tract perforation. Conclusion: CT is sensitive and precise in evaluating abdominal trauma, providing important information for treatment. (author)

  2. TH-CD-202-02: A Preliminary Study Evaluating Beam-Hardening Artifact Reduction On CT Direct Electron-Density Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Dolly, S; Zhao, T; Anastasio, M; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Ritter, A; Colombo, V; Raupach, R; Huenemohr, N [Siemens Healthcare GmbH, Deutschland (Germany); Mistry, N [Siemens Medical Solutions USA, Malvern, PA (United States); Yu, L [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at five tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.

  3. Development of a cone-beam CT system for radiological technologist education

    International Nuclear Information System (INIS)

    Teramoto, Atsushi; Ohara, Ken; Ozaki, Kaho; Miyashita, Mariko; Ohno, Tomoyuki; Tsuzaka, Masatoshi; Fujita, Hiroshi

    2011-01-01

    For radiological technologists, it is very important to understand the principle of computed tomography (CT) and CT artifacts derived from mechanical and electrical failure. In this study, a CT system for educating radiological technologists was developed. The system consisted of a cone-beam CT scanner and educational software. The cone-beam CT scanner has a simple structure, using a micro-focus X-ray tube and an indirect-conversion flat panel detector. For the educational software, we developed various educational functions of image reconstruction and reconstruction parameters as well as CT artifacts. In the experiments, the capabilities of the system were evaluated using an acrylic phantom. We verified that the system produced the expected results. (author)

  4. Study of residual stresses in CT test specimens welded by electron beam

    Science.gov (United States)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  5. Segmentation-free empirical beam hardening correction for CT

    Energy Technology Data Exchange (ETDEWEB)

    Schüller, Sören; Sawall, Stefan [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich [Sirona Dental Systems GmbH, Fabrikstraße 31, 64625 Bensheim (Germany); Kachelrieß, Marc, E-mail: marc.kachelriess@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2015-02-15

    proposed algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. Results: All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. Conclusions: sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  6. Segmentation-free empirical beam hardening correction for CT.

    Science.gov (United States)

    Schüller, Sören; Sawall, Stefan; Stannigel, Kai; Hülsbusch, Markus; Ulrici, Johannes; Hell, Erich; Kachelrieß, Marc

    2015-02-01

    algorithm to be segmentation-free (sf). This deformation leads to a nonlinear accentuation of higher CT-values. The original volume and the gray value deformed volume are monochromatically forward projected. The two projection sets are then monomially combined and reconstructed to generate sets of basis volumes which are used for correction. This is done by maximization of the image flatness due to adding additionally a weighted sum of these basis images. sfEBHC is evaluated on polychromatic simulations, phantom measurements, and patient data. The raw data sets were acquired by a dual source spiral CT scanner, a digital volume tomograph, and a dual source micro CT. Different phantom and patient data were used to illustrate the performance and wide range of usability of sfEBHC across different scanning scenarios. The artifact correction capabilities are compared to EBHC. All investigated cases show equal or improved image quality compared to the standard EBHC approach. The artifact correction is capable of correcting beam hardening artifacts for different scan parameters and scan scenarios. sfEBHC generates beam hardening-reduced images and is furthermore capable of dealing with images which are affected by high noise and strong artifacts. The algorithm can be used to recover structures which are hardly visible inside the beam hardening-affected regions.

  7. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  8. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    Science.gov (United States)

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  9. Accuracy evaluation of a six-degree-of-freedom couch using cone beam CT and IsoCal phantom with an in-house algorithm.

    Science.gov (United States)

    Zhang, Qinghui; Driewer, Joseph; Wang, Shuo; Li, Sicong; Zhu, Xiaofeng; Zheng, Dandan; Cao, Yijian; Zhang, Jiaju; Jamshidi, Abolghassem; Cox, Brett W; Knisely, Jonathan P S; Potters, Louis; Klein, Eric E

    2017-08-01

    The accuracy of a six degree of freedom (6DoF) couch was evaluated using a novel method. Cone beam CT (CBCT) images of a 3D phantom (IsoCal) were acquired with different, known combinations of couch pitch and roll angles. Pitch and roll angles between the maximum allowable values of 357 and 3 degrees were tested in one degree increments. A total of 49 combinations were tested at 0 degrees of yaw (couch rotation angle). The 3D positions of 16 tungsten carbide ball bearings (BBs), each 4 mm in diameter and arranged in a known geometry within the IsoCal phantom, were determined in the 49 image sets with in-house software. The BB positions at different rotation angles were determined using a rotation matrix from the original BB positions at zero pitch and roll angles. A linear least squares fit method estimated the rotation angles and differences between detected and nominal rotation angles were calculated. This study was conducted for the case with and without extra weight on the couch. Couch walk shifts for the system were investigated using eight combinations of rotation, roll and pitch. A total of 49 CBCT images with voxel sizes 0.5 × 0.5 × 1.0 mm 3 were taken for the case without extra weight on the couch. The 16 BBs were determined to evaluate the isocenter translation and rotation differences between the calculated and nominal couch values. Among all 49 calculations, the maximum rotation angle differences were 0.10 degrees for pitch, 0.15 degrees for roll and 0.09 degrees for yaw. The corresponding mean and standard deviation values were 0.028 ± 0.032, -0.043 ± 0.058, and -0.009 ± 0.033 degrees. The maximum translation differences were 0.3 mm in the left-right direction, 0.5 mm in the anterior-posterior direction and 0.4 mm in the superior-inferior direction. The mean values and corresponding standard deviations were 0.07 ± 0.12, -0.05 ± 0.25, and -0.12±0.14 mm for the planes described above. With an 80 kg phantom on the couch, the

  10. Benign Prostatic Hyperplasia: Cone-Beam CT in Conjunction with DSA for Identifying Prostatic Arterial Anatomy.

    Science.gov (United States)

    Wang, Mao Qiang; Duan, Feng; Yuan, Kai; Zhang, Guo Dong; Yan, Jieyu; Wang, Yan

    2017-01-01

    Purpose To describe findings in prostatic arteries (PAs) at digital subtraction angiography (DSA) and cone-beam computed tomography (CT) that allow identification of benign prostatic hyperplasia and to determine the value added with the use of cone-beam CT. Materials and Methods This retrospective single-institution study was approved by the institutional review board, and the requirement for written informed consent was waived. From February 2009 to December 2014, a total of 148 patients (mean age ± standard deviation, 70.5 years ± 14.5) underwent DSA of the internal iliac arteries and cone-beam CT with a flat-detector angiographic system before they underwent prostate artery embolization. Both the DSA and cone-beam CT images were evaluated by two interventional radiologists to determine the number of independent PAs and their origins and anastomoses with adjacent arteries. The exact McNemar test was used to compare the detection rate of the PAs and the anastomoses with DSA and with cone-beam CT. Results The PA anatomy was evaluated successfully by means of cone-beam CT in conjunction with DSA in all patients. Of the 296 pelvic sides, 274 (92.6%) had only one PA. The most frequent PA origin was the common gluteal-pudendal trunk with the superior vesicular artery in 118 (37.1%), followed by the anterior division of the internal iliac artery in 99 (31.1%), and the internal pudendal artery in 77 (24.2%) pelvic sides. In 67 (22.6%) pelvic sides, anastomoses to adjacent arteries were documented. The numbers of PA origins and anastomoses, respectively, that could be identified were significantly higher with cone-beam CT (301 of 318 [94.7%] and 65 of 67 [97.0%]) than with DSA (237 [74.5%] and 39 [58.2%], P < .05). Cone-beam CT provided essential information that was not available with DSA in 90 of 148 (60.8%) patients. Conclusion Cone-beam CT is a useful adjunctive technique to DSA for identification of the PA anatomy and provides information to help treatment planning

  11. Dual resolution cone beam breast CT: A feasibility study

    International Nuclear Information System (INIS)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  12. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  13. Evaluation of CT in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Norio; Miura, Yukio; Ohnishi, Mitsunori; Kamikon-ya, Norihiko; Sakamoto, Yoshisato; Miura, Takashi; Sakamoto, Kiyoshi; Takayasu, Yoshio

    1985-06-01

    In order to evaluate the diagnostic ability of CT in hepatocellular carcinoma, four kinds of CT images were comparatively studied by the accuracy and ROC (receiver operating characteristic) curve analysis. As a result, it was clarified that CT images were evaluated more objectively by ROC curve analysis than by accuracy. The diagnostic ability of existence and differentiation of tumor in the liver were higher in order of plain CT, contrast enhanced CT (CECT), bolus CT and CT arteriography (CTA). Therefore, in an usual CT examination intended to make differential diagnosis in space occupying liver disease, bolus CT seems to be indispensable, and also CTA is essential where diagnosis is difficult even by bolus CT.

  14. Relationships between cone beam CT value and physical density in image guided radiation therapy

    International Nuclear Information System (INIS)

    Jiang Xiaoqin; Bai Sen; Zhong Renming; Tang Zhiquan; Jiang Qinfeng; Li Tao

    2007-01-01

    Objective: To evaluate the main factors affecting the relationship between physical density and CT value in cone-beam computed tomography(CBCT) for imaging guided radiation therapy(IGRT) by comparing the CT value in the image from cone-beam scanner and from fan-beam (FBCT) scanner of a reference phantom. Methods: A taking-park reference phantom with a set of tissue equivalent inserts was scanned at different energies different fields of view (FOV) for IGRT-CBCT and FBCT. The CT value of every insert was measured and compared. Results: The position of inserts in phantom, the size of phantom, the FOV of scanner and different energies had more effect on the relationships between physical density and the CT value from IGRT-CBCT than those from the normal FBCT. The higher the energy was, the less effect of the position of inserts in phantom, the size of phantom and the FOV of scanner on CT value, and the poorer density contrast was observed. Conclusion: At present, the CT value of IGRT-CBCT is not in the true HU value since the manufacturer has not corrected its number. Therefore, we are not able to use the CT value of CBCT for dose calculation in TPS. (authors)

  15. A comparative evaluation of Cone Beam Computed Tomography (CBCT) and Multi-Slice CT (MSCT). Part II: On 3D model accuracy

    International Nuclear Information System (INIS)

    Liang Xin; Lambrichts, Ivo; Sun Yi; Denis, Kathleen; Hassan, Bassam; Li Limin; Pauwels, Ruben; Jacobs, Reinhilde

    2010-01-01

    Aim: The study aim was to compare the geometric accuracy of three-dimensional (3D) surface model reconstructions between five Cone Beam Computed Tomography (CBCT) scanners and one Multi-Slice CT (MSCT) system. Materials and methods: A dry human mandible was scanned with five CBCT systems (NewTom 3G, Accuitomo 3D, i-CAT, Galileos, Scanora 3D) and one MSCT scanner (Somatom Sensation 16). A 3D surface bone model was created from the six systems. The reference (gold standard) 3D model was obtained with a high resolution laser surface scanner. The 3D models from the five systems were compared with the gold standard using a point-based rigid registration algorithm. Results: The mean deviation from the gold standard for MSCT was 0.137 mm and for CBCT were 0.282, 0.225, 0.165, 0.386 and 0.206 mm for the i-CAT, Accuitomo, NewTom, Scanora and Galileos, respectively. Conclusion: The results show that the accuracy of CBCT 3D surface model reconstructions is somewhat lower but acceptable comparing to MSCT from the gold standard.

  16. CT evaluation of infectious colitis

    International Nuclear Information System (INIS)

    Horiki, Noriyuki; Maruyama, Masataka; Fujita, Yoshiyuki; Suzuki, Yuko; Tanaka, Tsuyoshi; Imoto, Ichiro; Adachi, Yukihiko

    2002-01-01

    Computed tomography (CT) is useful for evaluating the diagnosis of gastrointestinal disease, such as infectious colitis, in patients with severe pain and bloody diarrhea. During the 7 years between November 1993 and October 2000, 34 patients with infectious colitis (18 male, 16 female; mean age 42±19 yrs), received emergency CT and colonoscopy because of severe abdominal pain and dysentery. The following organisms were isolated: pathogenic Escherichia coli (12), 6 of which were O157: H7 (O-157), Salmonella species (11), Campylobacter species (5), Vibrio parahaemolyticus (3), Yersinia enterocolotica (2) and Shigella species (1). Thickening of the intestinal wall greater than 10 mm was seen in the ascending colon in the 6 cases with E. coli O157, in 5/11 cases with Salmonella, 4/5 with Campylobacter and 1/6 with non-O157 pathogenic E. Coli. marked intestinal wall thickening, greater than 20 mm, was seen in the ascending colon of the 4 of the patients with an O-157 infection. In all patients with O-157 colitis, slight ascites was noted in the pelvic space. In additions, ascites was also seen in 3/13 patients with Salmonella and 1/5 patients with Campylobacter colitis. The CT findings, in the patients with infectious colitis, are non-specific but knowledge and recognition of the findings will help in patient evaluation and proper treatment. (author)

  17. CT evaluation of infectious colitis

    Energy Technology Data Exchange (ETDEWEB)

    Horiki, Noriyuki; Maruyama, Masataka; Fujita, Yoshiyuki; Suzuki, Yuko [Saint Luke' s International Hospital, Tokyo (Japan); Tanaka, Tsuyoshi; Imoto, Ichiro [National Mie Chuo Hospital, Hisai (Japan); Adachi, Yukihiko [Mie Univ., Tsu (Japan). School of Medicine

    2002-08-01

    Computed tomography (CT) is useful for evaluating the diagnosis of gastrointestinal disease, such as infectious colitis, in patients with severe pain and bloody diarrhea. During the 7 years between November 1993 and October 2000, 34 patients with infectious colitis (18 male, 16 female; mean age 42{+-}19 yrs), received emergency CT and colonoscopy because of severe abdominal pain and dysentery. The following organisms were isolated: pathogenic Escherichia coli (12), 6 of which were O157: H7 (O-157), Salmonella species (11), Campylobacter species (5), Vibrio parahaemolyticus (3), Yersinia enterocolotica (2) and Shigella species (1). Thickening of the intestinal wall greater than 10 mm was seen in the ascending colon in the 6 cases with E. coli O157, in 5/11 cases with Salmonella, 4/5 with Campylobacter and 1/6 with non-O157 pathogenic E. Coli. marked intestinal wall thickening, greater than 20 mm, was seen in the ascending colon of the 4 of the patients with an O-157 infection. In all patients with O-157 colitis, slight ascites was noted in the pelvic space. In additions, ascites was also seen in 3/13 patients with Salmonella and 1/5 patients with Campylobacter colitis. The CT findings, in the patients with infectious colitis, are non-specific but knowledge and recognition of the findings will help in patient evaluation and proper treatment. (author)

  18. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  19. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  20. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    Han, Sang Sun; Park, Chang Seo

    2013-01-01

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  1. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    International Nuclear Information System (INIS)

    Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan

    2013-01-01

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp–Davis–Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination. -- Highlights: ► BPF algorithm was applied by using dental CT for the first time. ► A method was developed for estimation of projection region before CT scanning. ► Roughly predict the total radiation dose before CT scans. ► Potential reduce imaging radiation dose, scatter, and scanning time

  2. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  3. Prototype heel effect compensation filter for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Ohno, Mari; Miyazaki, Hiroaki; Tsujita, Kazuhiko; Saito, Yasuo

    2005-01-01

    The prototype cone-beam CT (CBCT) has a larger beam width than the conventional multi-detector row CT (MDCT). This causes a non-uniform angular distribution of the x-ray beam intensity known as the heel effect. Scan conditions for CBCT tube current are adjusted on the anode side to obtain an acceptable clinical image quality. However, as the dose is greater on the cathode side than on the anode side, the signal-to-noise ratio on the cathode side is excessively high, resulting in an unnecessary dose amount. To compensate for the heel effect, we developed a heel effect compensation (HEC) filter. The HEC filter rendered the dose distribution uniform and reduced the dose by an average of 25% for free air and by 20% for CTDI phantoms compared to doses with the conventional filter. In addition, its effect in rendering the effective energy uniform resulted in an improvement in image quality. This new HEC filter may be useful in cone-beam CT studies. (note)

  4. Characterization of CT beams using Compton spectrometry; Caracterização de feixes de TC utilizando Espectrometria Compton

    Energy Technology Data Exchange (ETDEWEB)

    Terini, Ricardo A.; Nerssissian, Denise Y.; Campelo, Maria Carolina S.; Yoshimura, Elisabeth M., E-mail: rterini@if.usp.br [Universidade de São Paulo (LDRFM/USP), SP (Brazil). Lab. de Dosimetria das Radiações e Física Médica

    2017-07-01

    Obtaining the energy spectra of computed tomography (CT) X-ray beams is essential, helping to obtain parameters that characterize beam quality and equipment performance. However, CT photon fluxes are too high to have the spectra measured directly with common photon counting detectors. In this work, a Compton spectrometer was designed, with Al-Pb-Al collimators and shields, as well as a cadmium telluride (CdTe) detector to get the spectrum of CT beams, from the measurement of the spectrum of a beam scattered at 90 deg by a polymethyl-methacrylate (PMMA) rod. A MatLab® computer code was developed, using the Waller-Hartree formalism, to reconstruct the spectrum of the incident beam, from the measured scattered beam spectrum. Tests at IF-USP Laboratory of Radiation Dosimetry and Medical Physics with standard CT beams showed that the reconstructed spectrum is alike the directly measured beam. Shielding influence and scatterer thickness were investigated. The system was tested in measurements on a GE 690 CT scanner, showing practical positioning on the exam table, and alignment with CT lasers refined by scan projection radiography. Spectra obtained with the properly shielded system presented values of half-value layer (HVL) compatible with those measured in QC tests and kVp values with accuracy to evaluate the scanner voltage calibration. (author)

  5. Auto calibration of a cone-beam-CT

    International Nuclear Information System (INIS)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-01-01

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, “Geometric misalignment and calibration in cone-beam tomography,” Med. Phys. 31(12), 3242–3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, “A geometric calibration method for cone beam CT systems,” Med. Phys. 33(6), 1695–1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the

  6. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  7. Poster — Thur Eve — 06: Dose assessment of cone beam CT imaging protocols as part of SPECT/CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    Tonkopi, E; Ross, AA [Department of Diagnostic Imaging, Queen Elizabeth II Health Sciences Centre, CDHA (Canada); Department of Radiology, Dalhousie University (Canada)

    2014-08-15

    Purpose: To assess radiation dose from the cone beam CT (CBCT) component of SPECT/CT studies and to compare with other CT examinations performed in our institution. Methods: We used an anthropomorphic chest phantom and the 6 cc ion chamber to measure entrance breast dose for several CBCT and diagnostic CT acquisition protocols. The CBCT effective dose was calculated with ImPACT software; the CT effective dose was evaluated from the DLP value and conversion factor, dependent on the anatomic region. The RADAR medical procedure radiation dose calculator was used to assess the nuclear medicine component of exam dose. Results: The entrance dose to the breast measured with the anthropomorphic phantom was 0.48 mGy and 9.41 mGy for cardiac and chest CBCT scans; and 4.59 mGy for diagnostic thoracic CT. The effective doses were 0.2 mSv, 3.2 mSv and 2.8 mSv respectively. For a small patient represented by the anthropomorphic phantom, the dose from the diagnostic CT was lower than from the CBCT scan, as a result of the exposure reduction options available on modern CT scanners. The CBCT protocols used the same fixed scanning techniques. The diagnostic CT dose based on the patient data was 35% higher than the phantom dose. For most SPECT/CT studies the dose from the CBCT component was comparable with the dose from the radiopharmaceutical. Conclusions: The patient radiation dose from the cone beam CT scan can be higher than that from a diagnostic CT and should be taken into consideration in evaluating total SPECT/CT patient dose.

  8. Assessment of effective dose from cone beam CT imaging in SPECT/CT examination in comparison with other modalities

    International Nuclear Information System (INIS)

    Tonkopi, Elena; Ross, Andrew A.

    2016-01-01

    The aim of this study was to assess radiation dose from the cone beam computed tomography (CBCT) component of single photon emission tomography/computed tomography (SPECT/CT) examinations and to compare it with the radiopharmaceutical related dose as well as dose from multidetector computed tomography (MDCT). Effective dose (ED) from computed tomography (CT) was estimated using dose-length product values and anatomy-specific conversion factors. The contribution from the SPECT component was evaluated using ED per unit administered activity for the radiopharmaceuticals listed in the International Commission on Radiological Protection Publications 80 and 106. With the exception of cardiac studies (0.11 mSv), the CBCT dose (3.96-6.04 mSv) was similar to that from the radiopharmaceutical accounting for 29-56 % of the total ED from the examination. In comparison with MDCT examinations, the CBCT dose was 48 and 42 % lower for abdomen/pelvis and chest/abdomen/pelvis scans, respectively, while in the chest the CBCT scan resulted in higher dose (23 %). Radiation dose from the CT component should be taken into consideration when evaluating total SPECT/CT patient dose. (authors)

  9. 4D cone beam CT via spatiotemporal tensor framelet

    International Nuclear Information System (INIS)

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-01-01

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  10. 4D cone beam CT via spatiotemporal tensor framelet

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  11. Complicated pleural tuberculosis in children: CT evaluation

    International Nuclear Information System (INIS)

    Moon, W.K.; Kim, W.S.; Kim, I.O.; Im, J.G.; Kim, J.H.; Yeon, K.M.; Han, M.C.

    1999-01-01

    Purpose. To describe the CT features of complicated pleural tuberculosis in children and to define the use of CT in children with pleural tuberculosis. Materials and methods. The CT findings in 11 children with complicated pleural tuberculosis were retrospectively analysed. CT was performed to evaluate persistent pleural thickening (n = 6) or a mass-like lesion (n = 5) detected on plain radiographs. Chest radiographs and medical records were reviewed to determine whether additional information provided by CT had altered clinical management. Results. On CT, more than one location was involved in five patients (45 %) and in two patients (18 %) the entire pleural spaces were involved. Pleural thickening was seen in all 11 patients and enhancement after administration of contrast medium occurred in ten patients (91 %). Low-density fluid collections were seen in nine patients (82 %) and in two, CT revealed fluid collections within calcified pleural lesions. In five patients with mass-like lesions on plain radiographs, CT showed a low-density pleural mass with peripheral enhancement in four and a calcified pleural mass with fluid collection in one. CT demonstrated parenchymal abnormalities on the same side as pleural lesions in all 11 patients and hilar or mediastinal adenopathy in four. Four patients (36 %) underwent surgery because of fluid within a calcified fibrothorax (n = 3) and chest wall tuberculosis (n = 1) that were seen only on CT. Conclusions. The CT features of complicated pleural tuberculosis in children were pleural thickening, enhancement and fluid collection with associated parenchymal abnormalities and lymphadenopathy. In the evaluation of children with pleural tuberculosis, CT can be useful for demonstrating fluid within a calcified fibrothorax or chest wall involvement, which usually requires surgical intervention. (orig.)

  12. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling

    International Nuclear Information System (INIS)

    Lu Jun; Guerrero, Thomas M.; Munro, Peter; Jeung, Andrew; Chi, P.-C. M.; Balter, Peter; Zhu, X. Ronald; Mohan, Radhe; Pan Tinsu

    2007-01-01

    We have developed a new four-dimensional cone beam CT (4D-CBCT) on a Varian image-guided radiation therapy system, which has radiation therapy treatment and cone beam CT imaging capabilities. We adapted the speed of gantry rotation time of the CBCT to the average breath cycle of the patient to maintain the same level of image quality and adjusted the data sampling frequency to keep a similar level of radiation exposure to the patient. Our design utilized the real-time positioning and monitoring system to record the respiratory signal of the patient during the acquisition of the CBCT data. We used the full-fan bowtie filter during data acquisition, acquired the projection data over 200 deg of gantry rotation, and reconstructed the images with a half-scan cone beam reconstruction. The scan time for a 200-deg gantry rotation per patient ranged from 3.3 to 6.6 min for the average breath cycle of 3-6 s. The radiation dose of the 4D-CBCT was about 1-2 times the radiation dose of the 4D-CT on a multislice CT scanner. We evaluated the 4D-CBCT in scanning, data processing and image quality with phantom studies. We demonstrated the clinical applicability of the 4D-CBCT and compared the 4D-CBCT and the 4D-CT scans in four patient studies. The contrast-to-noise ratio of the 4D-CT was 2.8-3.5 times of the contrast-to-noise ratio of the 4D-CBCT in the four patient studies

  13. Malignant external otitis: CT evaluation

    International Nuclear Information System (INIS)

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-01-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory mass correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull

  14. CT evaluation of thymus in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Guk Hee [Insung Hospital, Chuncheon (Korea, Republic of); Kang, Eun Young; Lee, Nam Joon; Suh, Won Hyuck [Korea University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    The relationship between myasthenia gravis and the thymus was well establish and myasthenia gravis occurs in the presence of thymic hyperplasia or thymoma or occasionally in histologically normal thymus. Since not every patients with myasthenia gravis is a candidate for thymectomy, unless a thymoma is present, the differentiation of normal and hyperplastic thymus from thymoma becomes important. Authors reviewed retrospectively clinical records and chest CT scans of 18 patients with myasthenia gravis who underwent thymectomy during recent 5 years, to evaluate the role of CT scan. The results were as follows. 1 Of total 18 cases, 5 cases had normal thymus, 6 cases had thymic hyperplasia, 4 cases had benign thymoma and 3 cases had malignant thymoma. 2. Of 5 cases of normal thymus, no false positive cases were noted in CT scan. 3. Of 6 cases of thymic hyperplasia, CT findings were normal except 1 cases of thickened left thymic lobe. 4. Of 7 cases of thymoma, no false negative cases were noted in CT scan. 5. CT findings of benign thymoma were round or oval shaped, discrete, slightly enhancing soft tissue mass in anterior mediastinum. 6. CT findings of malignant thymoma were lobulated contoured, infiltrative, soft tissue mass lesion in anterior mediastinum with calcifications, pleural tumor implants, and SVC compression. CT yielded valuable information on differential diagnosis of thymoma, thymic hyperplasia and normal thymus. Also CT was a highly sensitive method in the detection of thymoma and determining the extent and invasiveness.

  15. CT evaluation of thymus in myasthenia gravis

    International Nuclear Information System (INIS)

    Kim, Guk Hee; Kang, Eun Young; Lee, Nam Joon; Suh, Won Hyuck

    1989-01-01

    The relationship between myasthenia gravis and the thymus was well establish and myasthenia gravis occurs in the presence of thymic hyperplasia or thymoma or occasionally in histologically normal thymus. Since not every patients with myasthenia gravis is a candidate for thymectomy, unless a thymoma is present, the differentiation of normal and hyperplastic thymus from thymoma becomes important. Authors reviewed retrospectively clinical records and chest CT scans of 18 patients with myasthenia gravis who underwent thymectomy during recent 5 years, to evaluate the role of CT scan. The results were as follows. 1 Of total 18 cases, 5 cases had normal thymus, 6 cases had thymic hyperplasia, 4 cases had benign thymoma and 3 cases had malignant thymoma. 2. Of 5 cases of normal thymus, no false positive cases were noted in CT scan. 3. Of 6 cases of thymic hyperplasia, CT findings were normal except 1 cases of thickened left thymic lobe. 4. Of 7 cases of thymoma, no false negative cases were noted in CT scan. 5. CT findings of benign thymoma were round or oval shaped, discrete, slightly enhancing soft tissue mass in anterior mediastinum. 6. CT findings of malignant thymoma were lobulated contoured, infiltrative, soft tissue mass lesion in anterior mediastinum with calcifications, pleural tumor implants, and SVC compression. CT yielded valuable information on differential diagnosis of thymoma, thymic hyperplasia and normal thymus. Also CT was a highly sensitive method in the detection of thymoma and determining the extent and invasiveness

  16. Anatomic Customization of Root-Analog Dental Implants With Cone-Beam CT and CAD/CAM Fabrication: A Cadaver-Based Pilot Evaluation.

    Science.gov (United States)

    Evans, Zachary P; Renne, Walter G; Bacro, Thierry R; Mennito, Anthony S; Ludlow, Mark E; Lecholop, Michael K

    2018-02-01

    Existing root-analog dental implant systems have no standardized protocols regarding retentive design, surface manipulation, or prosthetic attachment design relative to the site's unique anatomy. Historically, existing systems made those design choices arbitrarily. For this report, strategies were developed that deliberately reference the adjacent anatomy, implant and restorable path of draw, and bone density for implant and retentive design. For proof of concept, dentate arches from human cadavers were scanned using cone-beam computed tomography and then digitally modeled. Teeth of interest were virtually extracted and manipulated via computer-aided design to generate root-analog implants from zirconium. We created a stepwise protocol for analyzing and developing the implant sites, implant design and retention, and prosthetic emergence and connection all from the pre-op cone-beam data. Root-analog implants were placed at the time of extraction and examined radiographically and mechanically concerning ideal fit and stability. This study provides proof of concept that retentive root-analog implants can be produced from cone-beam data while improving fit, retention, safety, esthetics, and restorability when compared to the existing protocols. These advancements may provide the critical steps necessary for clinical relevance and success of immediately placed root-analog implants. Additional studies are necessary to validate the model prior to clinical trial.

  17. Advanced single-slice rebinning for tilted spiral cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Fuchs, Theo; Schaller, Stefan; Kalender, Willi A.

    2001-01-01

    Future medical CT scanners and today's micro CT scanners demand cone-beam reconstruction algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a direction that is not perpendicular to the plane of rotation. Since this is not a special application of medical CT but rather a daily routine in head exams, there is a strong need for corresponding reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and the table increment vector due to alignment problems. Especially for those micro CT scanners that have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very promising approach for medical cone-beam reconstruction due to its high image quality and its high reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate this extended ASSR approach (which we will denote as ASSR + , for convenience) in comparison to the original ASSR algorithm using simulated phantom data for reconstruction. For the case of nonparallel object motion ASSR + shows significant improvements over ASSR, however, its computational complexity is slightly increased due to the broken symmetry of the spiral trajectory

  18. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  19. Cone-beam volume CT mammographic imaging: feasibility study

    Science.gov (United States)

    Chen, Biao; Ning, Ruola

    2001-06-01

    X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.

  20. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    Science.gov (United States)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and

  1. Evaluation strategies in CT scanning

    DEFF Research Database (Denmark)

    In this talk, dimensional measurement results using different measuring strategies applied in different inspection software packages for volume and surface data analysis are presented. The influence of the strategy on the dimensional measurement is determined by calculating the measurement...... uncertainty. This investigation includes measurements of two industrial items, an aluminum pipe connector and a plastic toggle, a hearing aid component. These are measured using a commercial CT scanner. Traceability is transferred using tactile and optical coordinate measuring machines, which are used...

  2. Branchial cleft anomalies: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Eul Hye; Park, Chan Sup [College of Medicine, Inha University, Seongnam (Korea, Republic of)

    1994-04-15

    The purpose of this paper is to describe the CT findings of a variety of branchial cleft anomalies in the head and neck area. We reviewed the CT findings of 16 patients with neck lesion pathologically proved as branchial cleft anomalies. There were two first and 12 second branchial cleft cysts, one first and one second branchial cleft sinuses. Two cases of first branchial cleft cysts were manifested as thin-walled, cystic masses at auricular area. One first branchial cleft sinus was an external opening type and manifested as an ill-defined, enhancing solid lesion at posterior auricular area. All 12 cases of second branchial cleft cysts demonstrated a typical location, displacing the sternocleidomastoid muscle posteriorly, the carotid artery and internal jugular vein complex medially and the submandibular gland anteriorly. Eight cases of second branchial cleft cysts were seen as fluid-filled, round or ovoid-shaped cysts, and 3 cases of them were seen as irregular-shaped cysts. In one case, suppurative adenopathy with loss of soft tissue planes around the cyst was observed. One case of second branchial cleft sinus was manifested as a tubular-shaped, enhancing lesion at submental area and containing external opening site draining into the anterior border of the sternocleidomastoid muscle. We conclude that CT provides important diagnostic and therapeutic information in patients with a neck mass believed to be a branchial cleft anomaly, as it can differentiate various forms of the branchial anomalies by their characteristic location and shape.

  3. Branchial cleft anomalies: CT evaluation

    International Nuclear Information System (INIS)

    Seok, Eul Hye; Park, Chan Sup

    1994-01-01

    The purpose of this paper is to describe the CT findings of a variety of branchial cleft anomalies in the head and neck area. We reviewed the CT findings of 16 patients with neck lesion pathologically proved as branchial cleft anomalies. There were two first and 12 second branchial cleft cysts, one first and one second branchial cleft sinuses. Two cases of first branchial cleft cysts were manifested as thin-walled, cystic masses at auricular area. One first branchial cleft sinus was an external opening type and manifested as an ill-defined, enhancing solid lesion at posterior auricular area. All 12 cases of second branchial cleft cysts demonstrated a typical location, displacing the sternocleidomastoid muscle posteriorly, the carotid artery and internal jugular vein complex medially and the submandibular gland anteriorly. Eight cases of second branchial cleft cysts were seen as fluid-filled, round or ovoid-shaped cysts, and 3 cases of them were seen as irregular-shaped cysts. In one case, suppurative adenopathy with loss of soft tissue planes around the cyst was observed. One case of second branchial cleft sinus was manifested as a tubular-shaped, enhancing lesion at submental area and containing external opening site draining into the anterior border of the sternocleidomastoid muscle. We conclude that CT provides important diagnostic and therapeutic information in patients with a neck mass believed to be a branchial cleft anomaly, as it can differentiate various forms of the branchial anomalies by their characteristic location and shape

  4. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Rebecca K.S., E-mail: rebecca.wong@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel; Varma, Anita [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Martin, Melanie; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Panzarella, Tony [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario (Canada); Gospodarowicz, Mary [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam

  5. Electron-beam CT diagnosis of congenital cardiovascular diverticula

    International Nuclear Information System (INIS)

    Yang Youyou; Zheng Lili; Li Xiangmin; Zhou Xuhui; Peng Qian; Meng Quanfei; Dai Ruping

    2008-01-01

    Objective: To investigate the clinical application of electron-beam CT (EBCT) in the diagnosis of congenital cardiovascular diverticula. Methods: Retrospective analysis of 9 patients with congenital cardiovascular diverticula confirmed by operation and pathology was done. Of them, enhanced continuous volume scan was performed on 8 patients and enhanced single slice scan was performed on one patient with an Imatron C-150 scanner. Results: The group of 9 patients included one patient with diverticulum of the left ventricle, 3 patients with diverticulum of the atria and 5 patients with diverticulum of the aorta. EBCT scan and three dimensional reconstruction could demonstrate not only the origin, size, shape, location and adjacent structure of diverticula, but also other important complicated abnormalities such as ventriculoarterial connection disorder, cardiac septal defect, aortic coarctation and even dissection. Conclusion: EBCT is an ideal noninvasive technique in the diagnosis of congenital cardiovascular diverticula. (authors)

  6. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    International Nuclear Information System (INIS)

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  7. A preliminary study on cone beam CT image based treatment planning

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Jeevanandham, Prakash; Boopathy, Raghavendiran; Sukumar, Prabakar; Syam Kumar, S.A.; Kunjithapatham, Bhuvana; Nagarajan, Vivekanandan

    2008-01-01

    Kilovolt Cone beam computed tomography (CBCT) based on flat panel technology is primarily used for positioning verification. However it is required to evaluate the accuracy of dose calculation based on CBCT images for the purpose of re-planning in adaptive radiation therapy (ART). In this study, 3DCRT and IMRT plans were done using both the planning CT and CBCT images and the corresponding variations in dose and MUs were analyzed, hence evaluating the feasibility of using kilovolt CBCT for dose calculation and patient dose verification. (author)

  8. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  9. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  10. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and Pka

    International Nuclear Information System (INIS)

    Batista, W. O.; Linhares de O, M. V.; Soares, M. R.; Maia, A. F.; Caldas, L. V. E.

    2014-08-01

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P ka ) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P ka using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P ka these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm 2 ; protocol [GX2]: 54.8 μSv/507 mGy cm 2 . These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P ka values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  11. Assessment of protocols in cone beam CT with symmetric and asymmetric beam using effective dose and P{sub ka}

    Energy Technology Data Exchange (ETDEWEB)

    Batista, W. O.; Linhares de O, M. V. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Soares, M. R.; Maia, A. F. [Universidade Federal de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Caldas, L. V. E., E-mail: wilsonottobatista@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The cone beam CT is an emerging technology in dental radiology with significant differences the point of view of design technology between the various manufacturers on the world market. This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using TLDs and air kerma - area product (P{sub ka}) as kerma index. Measurements were performed on two protocols used to obtain the image the maxilla-mandible in equipment Gendex GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14 cm x 8.5 cm - maxilla / mandible) and protocol [GX2] symmetrical beam (8.5 cm x 8.5 cm - maxillary / mandible). Was used LiF dosimeters (TLD 100) inserted into a female anthropomorphic phantom manufactured by Radiology Support Devices. For all protocols evaluated the value of P{sub ka} using a meter Diamentor E2 and PTW system Radcal Rapidose. The results obtained for Effective Dose / P{sub ka} these measurements were separated by protocol image. Protocol [GX1]: 44.5 μSv/478 mGy cm{sup 2}; protocol [GX2]: 54.8 μSv/507 mGy cm{sup 2}. These values indicate that the relationship between the diameter of the image acquired in the protocol [GX1] and the diameter of the image in the protocol [GX2] is equal to 1.65, the Effective Dose for the first protocol has lower value at 18%. P{sub ka} values reveal very similar results between the two protocols, although, common sense leads to the interpretation that imaging protocols with field of view (Fov) of large diameters imply high values of effective dose when compared to small diameters. However, in this particular case, this is not true due to the asymmetrical beam technology. Conclude that for the cases where the scanner uses asymmetric beam to obtain images with large diameters that cover the entire face there are advantages from the point of view of reducing the exposure of patients with respect to the use of symmetrical beam and / or to Fov images with a smaller diameter. (Author)

  12. Peripheral facial nerve dysfunction: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Disbro, M.A.; Harnsberger, H.R.; Osborn, A.G.

    1985-06-01

    Peripheral facial nerve dysfunction may have a clinically apparent or occult cause. The authors reviewed the clinical and radiographic records of 36 patients with peripheral facial nerve dysfunction to obtain information on the location of the suspected lesion and the number, sequence, and type of radiographic evaluations performed. Inadequate clinical evaluations before computed tomography (CT) was done and unnecessary CT examinations were also noted. They have suggested a practical clinical and radiographic scheme to evaluate progressive peripheral facial dysfunction with no apparent cause. If this scheme is applied, unnecessary radiologic tests and delays in diagnosis and treatment may be avoided.

  13. Evaluation of setup accuracy for NSCLC patients; studying the impact of different types of cone-beam CT matches based on whole thorax, columna vertebralis, and GTV

    DEFF Research Database (Denmark)

    Ottosson, W.; Baker, M.; Hedman, Mattias

    2010-01-01

    Purpose. The aim of this study is to evaluate the patient setup accuracy by investigating the impact of different types of CBCT matches, performed with 3 (translations only) or 6 (including rotations) degrees-of-freedom (DOF). The purpose is also to calculate and compare CTV to PTV margins based...

  14. An experimental study on the influence of scatter and beam hardening in x-ray CT for dimensional metrology

    International Nuclear Information System (INIS)

    Lifton, J J; McBride, J W; Malcolm, A A

    2016-01-01

    Scattered radiation and beam hardening introduce artefacts that degrade the quality of data in x-ray computed tomography (CT). It is unclear how these artefacts influence dimensional measurements evaluated from CT data. Understanding and quantifying the influence of these artefacts on dimensional measurements is required to evaluate the uncertainty of CT-based dimensional measurements. In this work the influence of scatter and beam hardening on dimensional measurements is investigated using the beam stop array scatter correction method and spectrum pre-filtration for the measurement of an object with internal and external cylindrical dimensional features. Scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, a gradient-based surface determination method is found to be robust to the influence of artefacts and leads to more accurate dimensional measurements than those evaluated using the ISO50 method. In addition to these observations the GUM method for evaluating standard measurement uncertainties is applied and the standard measurement uncertainty due to scatter and beam hardening is estimated. (paper)

  15. SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, W; Hua, C; Farr, J; Brady, S; Merchant, T [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2016-06-15

    Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module is located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.

  16. A comparative study for spatial resolution and subjective image characteristics of a multi-slice CT and a cone-beam CT for dental use

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Honda, Eiichi; Tetsumura, Akemi; Kurabayashi, Tohru

    2011-01-01

    Purpose: Multi-slice CT (MSCT) and cone-beam CT (CBCT) are widely used in dental practice. This study compared the spatial resolution of these CT systems to elucidate which CT modalities should be selected for various clinical cases. Materials and methods: As MSCT and CBCT apparatuses, Somatom Sensation 64 and 3D Accuitomo instruments, respectively, were used. As an objective evaluation of spatial resolution of these CT systems, modulation transfer function (MTF) analysis was performed employing an over-sampling method. The results of MTF analysis were confirmed with a line-pair test using CATPHAN. As a subjective evaluation, a microstructure visualization ability study was performed using a Jcl:SD rat and a head CT phantom. Results: MTF analysis showed that for the in-plane direction, the z-axis ultrahigh resolution mode (zUHR) of the Sensation 64 and 3D Accuitomo instruments had higher spatial resolutions than the conventional mode (64x) of the Sensation 64, but for the longitudinal direction, the 3D Accuitomo had clearly higher spatial resolution than either mode of the Sensation 64. A line-pair test study and microstructure visualization ability studies confirmed the results for MTF analysis. However, images of the rat and the CT phantom revealed that the 3D Accuitomo demonstrated the failure to visualize the soft tissues along with aliasing and beam-hardening artifacts, which were not observed in the Sensation 64. Conclusions: This study successfully applied spatial resolution analysis using MSCT and CBCT systems in a comparative manner. These findings could help in deciding which CT modality should be selected for various clinical cases.

  17. Radical pancreatectomy: postoperative evaluation by CT

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.P.; Balfe, D.M.; Picus, D.; Scharp, D.W.

    1984-10-01

    Twenty-four patients who had undergone radical pancreatic resection were evaluated by CT one week to 11 years after surgery. Eighteen patients had had the Whipple procedure; six had had total pancreatectomy. The region between the aorta and superior mesenteric artery, previously occupied by the uncinate process of the pancreas, is an important area to evaluate for tumor recurrence because periampullary tumors tend to metastasize to the lymph nodes in this region. Tumor recurrence here is readily detectable by CT since radical pancreatectomy leaves this area area free of soft tissue attenuation material. CT demonstrated postoperative complications or tumor recurrence in 16 of the 24 patients and was 100% accurate in patients who had follow-up.

  18. Radical pancreatectomy: postoperative evaluation by CT

    International Nuclear Information System (INIS)

    Heiken, J.P.; Balfe, D.M.; Picus, D.; Scharp, D.W.

    1984-01-01

    Twenty-four patients who had undergone radical pancreatic resection were evaluated by CT one week to 11 years after surgery. Eighteen patients had had the Whipple procedure; six had had total pancreatectomy. The region between the aorta and superior mesenteric artery, previously occupied by the uncinate process of the pancreas, is an important area to evaluate for tumor recurrence because periampullary tumors tend to metastasize to the lymph nodes in this region. Tumor recurrence here is readily detectable by CT since radical pancreatectomy leaves this area area free of soft tissue attenuation material. CT demonstrated postoperative complications or tumor recurrence in 16 of the 24 patients and was 100% accurate in patients who had follow-up

  19. Cone-beam CT angiography of the thorax. An experimental study

    International Nuclear Information System (INIS)

    Yoshida, Katsuya; Shimada, Kazuhiro; Tadokoro, Hiroyuki

    1999-01-01

    The authors recently developed a cone-beam computed tomography (CT) scanner and this report presents their evaluation of its potential for thoracic vascular imaging. An X-ray tube and a video-fluoroscopic system were rotated around the objects and 360 projected images were collected in a 12-s scan. Each image was digitized and a 3 dimensional (D) image (256 x 256 x 256 voxel volume with a voxel dimension of 0.9 x 0.9 x 0.9 mm) was reconstructed. Two different 3D-CT angiographies were investigated in 2 pigs: right atriography and thoracic aortography. Each pig was anesthetized, mechanically ventilated and positioned within the scanner. Contrast agent was infused through the right atrium or the aortic root at a rate of 3 ml/s during the scan. The right atriography scan clearly delineated the anatomy of the pulmonary artery, heart chambers and thoracic aorta. The thoracic aortography scan also clearly delineated the aortic anatomy including the internal thoracic and intercostal arteries. In conclusion, cone-beam CT angiography is potentially useful for thoracic vascular imaging. (author)

  20. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  1. TU-H-207A-03: CT Hounsfield Unit Accuracy: Effect of Beam Hardening On Phantom and Clinical Whole-Body CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Ai, H; Wendt, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To assess the effect of beam hardening on measured CT HU values. Methods: An anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 690 PET/CT scanner (120kVp, 300mAs, 40?0.625mm collimation, pitch=0.984, FOV=500mm, matrix=512?512) with four different scan setups, each of which induces different degrees of beam hardening by introducing additional attenuation media into the field of view. Homogeneous voxels representing “soft tissue” and “bone” were segmented by HU thresholding followed by a 3D morphological erosion operation which removes the non-homogenous voxels located on the interface of thresholded tissue mask. HU values of segmented “soft tissue” and “bone” were compared.Additionally, whole-body CT data with coverage from the skull apex to the end of toes were retrospectively retrieved from seven PET/CT exams to evaluate the effect of beam hardening in vivo. Homogeneous bone voxels were segmented with the same method previously described. Total In-Slice Attenuation (TISA) for each CT slice, defined as the summation of HU values over all voxels within a CT slice, was calculated for all slices of the seven whole-body CT datasets and evaluated against the mean HU values of homogeneous bone voxels within that slice. Results: HU values measured from the phantom showed that while “soft tissue” HU values were unaffected, added attenuation within the FOV caused noticeable decreases in the measured HU values of “bone” voxels. A linear relationship was observed between bone HU and TISA for slices of the torso and legs, but not of the skull. Conclusion: Beam hardening effect is not an issue of concern for voxels with HU in the soft tissue range, but should not be neglected for bone voxels. A linear relationship exists between bone HU and the associated TISA in non-skull CT slices, which can be exploited to develop a correction strategy.

  2. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments

    International Nuclear Information System (INIS)

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T.; Xiao, Ying; Zhang, Zhen

    2015-01-01

    Background and purpose: To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Material and methods: Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. Results: A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2–3 breath holds and 1–2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60 s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. Conclusions: The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency

  3. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Endo, Masahiro; Komatsu, Shuhei; Kandatsu, Susumu; Yashiro, Tomoyasu; Baba, Masayuki

    2006-01-01

    The combination-weighted Feldkamp algorithm (CW-FDK) was developed and tested in a phantom in order to reduce cone-beam artefacts and enhance cranio-caudal reconstruction coverage in an attempt to improve image quality when utilizing cone-beam computed tomography (CBCT). Using a 256-slice cone-beam CT (256CBCT), image quality (CT-number uniformity and geometrical accuracy) was quantitatively evaluated in phantom and clinical studies, and the results were compared to those obtained with the original Feldkamp algorithm. A clinical study was done in lung cancer patients under breath holding and free breathing. Image quality for the original Feldkamp algorithm is degraded at the edge of the scan region due to the missing volume, commensurate with the cranio-caudal distance between the reconstruction and central planes. The CW-FDK extended the reconstruction coverage to equal the scan coverage and improved reconstruction accuracy, unaffected by the cranio-caudal distance. The extended reconstruction coverage with good image quality provided by the CW-FDK will be clinically investigated for improving diagnostic and radiotherapy applications. In addition, this algorithm can also be adapted for use in relatively wide cone-angle CBCT such as with a flat-panel detector CBCT

  4. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2009-01-01

    Full Text Available Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.

  5. Surgical stent for dental implant using cone beam CT images

    International Nuclear Information System (INIS)

    Choi, Hyung Soo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2010-01-01

    The purpose of this study is to develop a surgical stent for dental implant procedure that can be easily applied and affordable by using cone beam computerized tomography (CBCT). Aluminum, Teflon-PFA (perfluoroalkoxy), and acetal (polyoxymethylene plastic) were selected as materials for the surgical stent. Among these three materials, the appropriate material was chosen using the CBCT images. The surgical stent, which could be easily placed into an oral cavity, was designed with chosen material. CBCT images of the new surgical stent on mandible were obtained using Alphard-3030 dental CT system (Asahi Roentgen Co., Ltd., Kyoto, Japan). The point of insertion was prescribed on the surgical stent with the multiplanar reconstruction software of OnDemand3D (CyberMed Inc., Seoul, Korea). Guide holes were made at the point of insertion on the surgical stent using newly designed guide jig. CBCT scans was taken for the second time to verify the accuracy of the newly designed surgical stent. Teflon-PFA showed radiologically excellent image characteristics for the surgical stent. High accuracy and reproducibility of implantation were confirmed with the surgical stent. The newly designed surgical stent can lead to the accurate implantation and achieve the clinically predictable result.

  6. Predicting factors for conversion from fluoroscopy guided Percutaneous transthoracic needle biopsy to cone-beam CT guided Percutaneous transthoracic needle biopsy

    International Nuclear Information System (INIS)

    Lee, Kang Ji; Han, Young Min; Jin, Gong Yong; Song, Ji Soo

    2015-01-01

    To evaluate the predicting factors for conversion from fluoroscopy guided percutaneous transthoracic needle biopsy (PTNB) to cone-beam CT guided PTNB. From January 2011 to December 2012, we retrospectively identified 38 patients who underwent cone-beam CT guided PTNB with solid pulmonary lesions, and 76 patients who underwent fluoroscopy guided PTNB were matched to the patients who underwent cone-beam CT guided PTNB for age, sex, and lesion location. We evaluated predicting factors such as, long-axis diameter, short-axis diameter, anterior-posterior diameter, and CT attenuation value of the solid pulmonary lesion affecting conversion from fluoroscopy guided PTNB to cone-beam CT guided PTNB. Pearson χ 2 test, Fisher exact test, and independent t test were used in statistical analyses; in addition, we also used receiver operating characteristics curve to find the proper cut-off values affecting the conversion to cone-beam CT guided PTNB. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent fluoroscopy guided PTNB were 2.70 ± 1.57 cm, 3.40 ± 1.92 cm, 3.06 ± 1.81 cm, and 35.67 ± 15.70 Hounsfield unit (HU), respectively. Short-axis, long-axis, anterior-posterior diameter and CT attenuation value of the solid pulmonary lesion in patients who underwent cone-beam CT guided PTNB were 1.60 ± 1.30 cm, 2.20 ± 1.45 cm, 1.91 ± 1.99 cm, and 18.32 ± 23.11 HU, respectively. Short-axis, long-axis, anterior-posterior diameter, and CT attenuation value showed a significantly different mean value between the 2 groups (p = 0.001, p < 0.001, p = 0.003, p < 0.001, respectively). Odd ratios of CT attenuation value and short-axis diameter of the solid pulmonary lesion were 0.952 and 0.618, respectively. Proper cut-off values affecting the conversion to cone-beam CT guided PTNB were 1.65 cm (sensitivity 68.4%, specificity 71.1%) in short-axis diameter and 29.50 HU (sensitivity 65.8%, specificity 65.8%) in

  7. A new cone-beam X-ray CT system with a reduced size planar detector

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Zhang Li; Xing Yuxiang; Kang Kejun

    2006-01-01

    In a traditional cone-beam CT system, the cost of product and computation is very high. The authors propose a transversely truncated cone-beam X-ray CT system with a reduced size detector positioned off-center, in which X-ray beams only cover half of the object. The reduced detector size cuts the cost and the X-ray dose of the CT system. The existing CT reconstruction algorithms are not directly applicable in this new CT system. Hence, the authors develop a BPF-type direct backprojection algorithm. Different from the traditional rebinding methods, our algorithm directly backprojects the pretreated projection data without rebinding. This makes the algorithm compact and computationally more efficient. Finally, some numerical simulations and practical experiments are done to validate the proposed algorithm. (authors)

  8. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)

    2016-04-15

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  9. Study of effective dose of various protocols in equipment cone beam CT

    International Nuclear Information System (INIS)

    Soares, M. R.; Maia, A. F.; Batista, W. O.; Caldas, L. V. E.; Lara, P. A.

    2014-08-01

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  10. Study of effective dose of various protocols in equipment cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M. R.; Maia, A. F. [Universidade Federale de Sergipe, Departamento de Fisica, Cidade Universitaria Prof. Jose Aloisio de Campos, Marechal Rondon s/n, Jardim Rosa Elze, 49-100000 Sao Cristovao, Sergipe (Brazil); Batista, W. O. [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho, Salvador, 40301015 Bahia (Brazil); Caldas, L. V. E.; Lara, P. A., E-mail: mrs2206@gmail.com [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Currently the cone beam computed tomography is widely used in various procedures of dental radiology. Although the doses values associated with the procedures of cone beam CT are low compared to typical values associated with dental radiology procedure in multi slices CT. However can be high compared to typical values of other techniques commonly used in dental radiology. The present scenario is a very wide range of designs of equipment and, consequently, lack of uniformity in all parameters associated with x-ray generation and geometry. In this context, this study aimed to evaluate and calculate the absorbed dose in organs and tissues relevant and estimate effective dose for different protocols with different geometries of exposure in five cone beam CT equipment. For this, a female Alderson anthropomorphic phantom, manufactured by Radiology Support Devices was used. The phantom was irradiated with 26 dosimeters LiF: Mg, Ti (TLD-100), inserted in organs and tissues along the layers forming the head and neck of the phantom. The equipment used, in this present assessment, was: i-CAT Classical, Kodak 9000 3D, Gendex GXCB 500, Sirona Orthophos X G 3D and Planmeca Pro Max 3D. The effective doses were be determined by the ICRP 103 weighting factors. The values were between 7.0 and 111.5 micro Sv, confirming the broad dose range expected due to the diversity of equipment and protocols used in each equipment. The values of effective dose per Fov size were: between 7 and 51.2 micro Sv for located Fov; between 17.6 and 52.0 micro Sv for medium Fov; and between 11.5 and 43.1 micro Sv to large Fov (maxillofacial). In obtaining the effective dose the measurements highlighted a relevance contribution of dose absorbed by the remaining organs (36%), Salivary glands (30%), thyroid (12%) and bone marrow (12%). (Author)

  11. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    International Nuclear Information System (INIS)

    Petersen, Asger Greval; Eiskjaer, Soeren; Kaspersen, Jon

    2012-01-01

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI w doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI w doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  12. Diagnostic accuracy of cone-beam CT in the assessment of mandibular invasion of lower gingival carcinoma: Comparison with conventional panoramic radiography

    International Nuclear Information System (INIS)

    Momin, Mohammad A.; Okochi, Kiyoshi; Watanabe, Hiroshi; Imaizumi, Akiko; Omura, Ken; Amagasa, Teruo; Okada, Norihiko; Ohbayashi, Naoto; Kurabayashi, Tohru

    2009-01-01

    Purpose: To evaluate the diagnostic accuracy of cone-beam CT in assessing mandibular invasion by lower gingival carcinoma and compare it with that of panoramic radiography. Patients and methods: Fifty patients with squamous cell carcinoma of the lower gingiva who were examined by both panoramic radiography and cone-beam CT before surgery were included in this study. Five radiologists used a 6-point rating scale to independently evaluate cone-beam CT and panoramic images for the presence or absence of alveolar bone and mandibular canal involvement by tumor. Using the histopathogical findings as the gold standard, we calculated and compared the area under the receiver operating characteristic curve (Az value) and the sensitivity and specificity of the two imaging modalities. Results: In evaluations of both alveolar bone and mandibular canal involvement, the mean Az value for cone-beam CT (0.918 and 0.977, respectively) was significantly higher than that for panoramic radiography (0.793 and 0.872, respectively). The mean sensitivity for cone-beam CT (89% and 99%, respectively) was significantly higher than that for panoramic radiography (73% and 56%, respectively). There was no significant difference in the mean specificity. While cone-beam CT could provide high-resolution three-dimensional images, the image quality around the alveolar crest was often hampered by severe dental artifacts and image noise, resulting in difficulties in detecting subtle alveolar invasion. Conclusion: Cone-beam CT was significantly superior to panoramic radiography in evaluating mandibular invasion by lower gingival carcinoma. Its diagnostic value in detecting subtle alveolar invasion, however, may be limited by severe dental artifacts and image noise.

  13. CT angiography using electron-beam computed tomography (EBCT). A phantom study

    International Nuclear Information System (INIS)

    Uchino, Akira; Kato, Akira; Kudo, Sho

    1997-01-01

    The purpose of this study was to evaluate the accuracy of CT angiography in small vessels using electron-beam computed tomography (EBCT). Vessel phantoms with inner diameters of 8 mm, 6 mm, and 4 mm were prepared with segments of 75%, 50%, and 25% stenosis in each vessel. The vessels were filled with contrast medium (Iopamidol 300 at 1/24 dilution, approximately 380 HU). The EBCT apparatus used was an Imatron C-150. The step volume scan mode was used with slice thicknesses of 1.5 mm and 3.0 mm, scan time of 0.3 sec, and 210 mm field of view. Images with a slice thickness of 1.5 mm were definitely better than those with a slice thickness of 3.0 mm. The quality of maximum intensity projection (MIP) images was quite similar to that of three-dimensional (3D) images. Using the 8 mm vessel phantom, all stenotic segments were accurately visualized on CT angiography. The 50% stenotic segments were accurately estimated in all vessels. However, the 75% stenotic segments were slightly overestimated in smaller vessels, and the 25% stenotic segments were slightly underestimated in smaller vessels. We consider CT angiography using EBCT to be a useful, less invasive diagnostic modality for stenoocclusive lesions. (author)

  14. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K [Department of Radiation Oncology, NYU Langone Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  15. SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation

    International Nuclear Information System (INIS)

    Wang, H; Barbee, D; Wang, W; Pennell, R; Hu, K; Osterman, K

    2016-01-01

    Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CT for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.

  16. Using condition and usefulness of dental cone-beam CT in endodontic treatment

    International Nuclear Information System (INIS)

    Kimura, Yuichi; Araki, Kazuyuki; Yamada, Yoshishige; Tagaya, Atsuko; Seki, Kenji; Okano, Tomohiro; Endo, Atsushi

    2009-01-01

    This study evaluated the condition and usefulness of the dental cone-beam CT (3DX) in clinical endodontic treatments. Images from 55 examinations of 49 patients obtained using 3DX during an 11-month period were evaluated retrospectively to identify the usefulness of this modality compared with periapical or panoramic radiographs. The main indication for using of 3DX was diagnosis of root fracture in 65% of the examinations, second was the presence and expansion of periapical lesion in 22%, and third was to detect the canal system or root abnormality in 13%. The 3DX visualizes bony anatomical structures precisely and detects the presence and expansion of periapical lesions and the canal system of each root of mulirooted teeth that cannot easily be observed by intraoral radiography or panoramic radiography. The results of this study suggest that 3DX is a useful and reliable tool for endodontic treatments. (author)

  17. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  18. Evaluation of registration methods on thoracic CT

    DEFF Research Database (Denmark)

    Murphy, K.; van Ginneken, B.; Reinhardt, J.

    2011-01-01

    method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing......EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra-patient thoracic CT image pairs. Evaluation of non-rigid registration techniques is a non trivial task....... This article details the organisation of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed....

  19. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    Contrast enhancement on cardiac CT provides valuable information about myocardial perfusion and methods have been proposed to assess perfusion with static and dynamic acquisitions. There is a lack of knowledge and consensus on the appropriate approach to ensure 1) sufficient diagnostic accuracy for clinical decisions and 2) low radiation doses for patient safety. This work developed a thorough dynamic CT simulation and several accepted blood flow estimation techniques to evaluate the performance of perfusion assessment across a range of acquisition and estimation scenarios. Cardiac CT acquisitions were simulated for a range of flow states (Flow = 0.5, 1, 2, 3 ml/g/min, cardiac output = 3,5,8 L/min). CT acquisitions were simulated with a validated CT simulator incorporating polyenergetic data acquisition and realistic x-ray flux levels for dynamic acquisitions with a range of scenarios including 1, 2, 3 sec sampling for 30 sec with 25, 70, 140 mAs. Images were generated using conventional image reconstruction with additional image-based beam hardening correction to account for iodine content. Time attenuation curves were extracted for multiple regions around the myocardium and used to estimate flow. In total, 2,700 independent realizations of dynamic sequences were generated and multiple MBF estimation methods were applied to each of these. Evaluation of quantitative kinetic modeling yielded blood flow estimates with an root mean square error (RMSE) of ~0.6 ml/g/min averaged across multiple scenarios. Semi-quantitative modeling and qualitative static imaging resulted in significantly more error (RMSE = ~1.2 and ~1.2 ml/min/g respectively). For quantitative methods, dose reduction through reduced temporal sampling or reduced tube current had comparable impact on the MBF estimate fidelity. On average, half dose acquisitions increased the RMSE of estimates by only 18% suggesting that substantial dose reductions can be employed in the context of quantitative myocardial

  20. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  1. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    International Nuclear Information System (INIS)

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-01-01

    Purpose: To develop a cone-beam computed tomography (CT)–enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry (≤2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT–enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT–enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% ± 11% and 97% ± 4%, respectively. The oncologist’s decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT–generated treatment plan delivering at least 90% of the prescribed dose to 100% ± 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT–generated treatment plan delivered at least 90% and at least 95% of dose to 98% ± 2% and 97% ± 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 ± 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT–enabled process. Conclusions: The cone-beam CT

  2. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J.

    2012-01-01

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  3. Single-slice rebinning method for helical cone-beam CT

    International Nuclear Information System (INIS)

    Noo, F.; Defrise, M.; Clackdoyle, R.

    1999-01-01

    In this paper, we present reconstruction results from helical cone-beam CT data, obtained using a simple and fast algorithm, which we call the CB-SSRB algorithm. This algorithm combines the single-slice rebinning method of PET imaging with the weighting schemes of spiral CT algorithms. The reconstruction is approximate but can be performed using 2D multislice fan-beam filtered backprojection. The quality of the results is surprisingly good, and far exceeds what one might expect, even when the pitch of the helix is large. In particular, with this algorithm comparable quality is obtained using helical cone-beam data with a normalized pitch of 10 to that obtained using standard spiral CT reconstruction with a normalized pitch of 2. (author)

  4. Investigation of bulk electron densities for dose calculations on cone-beam CT images

    International Nuclear Information System (INIS)

    Lambert, J.; Parker, J.; Gupta, S.; Hatton, J.; Tang, C.; Capp, A.; Denham, J.W.; Wright, P.

    2010-01-01

    Full text: If cone-beam CT images are to be used for dose calculations, then the images must be able to provide accurate electron density information. Twelve patients underwent twice weekly cone-beam CT scans in addition to the planning CT scan. A standardised 5-field treatment plan was applied to 169 of the CBCT images. Doses were calculated using the original electron density values in the CBCT and with bulk electron densities applied. Bone was assigned a density of 288 HU, and all other tissue was assigned to be water equivalent (0 HU). The doses were compared to the dose calculated on the original planning CT image. Using the original HU values in the cone-beam images, the average dose del i vered by the plans from all 12 patients was I. I % lower than the intended 200 cOy delivered on the original CT plans (standard devia tion 0.7%, maximum difference -2.93%). When bulk electron densities were applied to the cone-beam images, the average dose was 0.3% lower than the original CT plans (standard deviation 0.8%, maximum difference -2.22%). Compared to using the original HU values, applying bulk electron densities to the CBCT images improved the dose calculations by almost I %. Some variation due to natural changes in anatomy should be expected. The application of bulk elec tron densities to cone beam CT images has the potential to improve the accuracy of dose calculations due to inaccurate H U values. Acknowledgements This work was partially funded by Cancer Council NSW Grant Number RG 07-06.

  5. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  6. Partial volume and aliasing artefacts in helical cone-beam CT

    International Nuclear Information System (INIS)

    Zou Yu; Sidky, Emil Y; Pan, Xiaochuan

    2004-01-01

    A generalization of the quasi-exact algorithms of Kudo et al (2000 IEEE Trans. Med. Imaging 19 902-21) is developed that allows for data acquisition in a 'practical' frame for clinical diagnostic helical, cone-beam computed tomography (CT). The algorithm is investigated using data that model nonlinear partial volume averaging. This investigation leads to an understanding of aliasing artefacts in helical, cone-beam CT image reconstruction. An ad hoc scheme is proposed to mitigate artefacts due to the nonlinear partial volume and aliasing artefacts

  7. Minimizing image noise in on-board CT reconstruction using both kilovoltage and megavoltage beam projections

    International Nuclear Information System (INIS)

    Zhang Junan; Yin Fangfang

    2007-01-01

    We studied a recently proposed aggregated CT reconstruction technique which combines the complementary advantages of kilovoltage (kV) and megavoltage (MV) x-ray imaging. Various phantoms were imaged to study the effects of beam orientations and geometry of the imaging object on image quality of reconstructed CT. It was shown that the quality of aggregated CT was correlated with both kV and MV beam orientations and the degree of this correlation depended upon the geometry of the imaging object. The results indicated that the optimal orientations were those when kV beams pass through the thinner portion and MV beams pass through the thicker portion of the imaging object. A special preprocessing procedure was also developed to perform contrast conversions between kV and MV information prior to image reconstruction. The performance of two reconstruction methods, one filtered backprojection method and one iterative method, were compared. The effects of projection number, beam truncation, and contrast conversion on the CT image quality were investigated

  8. Bowtie filter and water calibration in the improvement of cone beam CT image quality

    International Nuclear Information System (INIS)

    Li Minghui; Dai Jianrong; Zhang Ke

    2010-01-01

    Objective: To evaluate the improvement of cone beam CT (CBCT) image quality by using bewtie filter (F 1 ) and water calibration. Methods: First the multi-level gain calibration of the detector panel with the method of Cal 2 calibration was performed, and the CT images of CATPHAN503 with F 0 and bowtie filter were collected, respectively. Then the detector panel using water calibration kit was calibrated, and images were acquired again. Finally, the change of image quality after using F 1 and (or) water calibration method was observed. The observed indexes included low contrast visibility, spatial uniformity, ring artifact, spatial resolution and geometric accuracy. Results: Comparing with the traditional combination of F 0 filter and Cal 2 calibration, the combination of bowtie filter F 1 and water calibration improves low contrast visibility by 13.71%, and spatial uniformity by 54. 42%. Water calibration removes ring artifacts effectively. However, none of them improves spatial resolution and geometric accuracy. Conclusions: The combination of F 1 and water calibration improves CBCT image quality effectively. This improvement is aid to the registration of CBCT images and localization images. (authors)

  9. Exact cone beam CT with a spiral scan

    International Nuclear Information System (INIS)

    Tam, K.C.; Samarasekera, S.; Sauer, F.

    1998-01-01

    A method is developed which makes it possible to scan and reconstruct an object with cone beam x-rays in a spiral scan path with area detectors much shorter than the length of the object. The method is mathematically exact. If only a region of interest of the object is to be imaged, a top circle scan at the top level of the region of interest and a bottom circle scan at the bottom level of the region of interest are added. The height of the detector is required to cover only the distance between adjacent turns in the spiral projected at the detector. To reconstruct the object, the Radon transform for each plane intersecting the object is computed from the totality of the cone beam data. This is achieved by suitably combining the cone beam data taken at different source positions on the scan path; the angular range of the cone beam data required at each source position can be determined easily with a mask which is the spiral scan path projected on the detector from the current source position. The spiral scan algorithm has been successfully validated with simulated cone beam data. (author)

  10. CT in the evaluation of pelvic trauma

    International Nuclear Information System (INIS)

    Federle, M.P.

    1986-01-01

    Pelvic fractures from motor vehicle accidents are a cause of substantial morbidity and permanent disability, and are the third leading cause of death following blunt trauma. Associated extremity fractures are common, and injury to abdominal and pelvic viscera may occur. Difficulty in establishing the source of hemorrhage may be encountered, especially since pelvic fractures with extraperitoneal bleeding may result in intraperitoneal bleeding through torn fascial planes. The difficulty in properly diagnosing and managing complex fractures of the pelvis and acetabulum is well documented. Prognosis is influenced by the type and extent of pelvic fracture and associated soft tissue injuries. Computed tomography (CT) has proved to be a valuable tool in evaluation of these complex and life-threatening injuries

  11. Low-dose megavoltage cone-beam CT for radiation therapy

    International Nuclear Information System (INIS)

    Pouliot, Jean; Bani-Hashemi, Ali; Chen, Josephine; Svatos, Michelle; Ghelmansarai, Farhad; Mitschke, Matthias; Aubin, Michele; Xia Ping; Morin, Olivier; Bucci, Kara; Roach, Mack; Hernandez, Paco; Zheng Zirao; Hristov, Dimitre; Verhey, Lynn

    2005-01-01

    Purpose: The objective of this work was to demonstrate the feasibility of acquiring low-exposure megavoltage cone-beam CT (MV CBCT) three-dimensional (3D) image data of sufficient quality to register the CBCT images to kilovoltage planning CT images for patient alignment and dose verification purposes. Methods and materials: A standard clinical 6-MV Primus linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) flat-panel electronic portal-imaging device (EPID) were employed. The dose-pulse rate of a 6-MV Primus accelerator beam was windowed to expose an a-Si flat panel by using only 0.02 to 0.08 monitor units (MUs) per image. A triggered image-acquisition mode was designed to produce a high signal-to-noise ratio without pulsing artifacts. Several data sets were acquired for an anthropomorphic head phantom and frozen sheep and pig cadaver heads, as well as for a head-and-neck cancer patient on intensity-modulated radiotherapy (IMRT). For each CBCT image, a set of 90 to 180 projection images incremented by 1 deg to 2 deg was acquired. The two-dimensional (2D) projection images were then synthesized into a 3D image by use of cone-beam CT reconstruction. The resulting MV CBCT image set was used to visualize the 3D bony anatomy and some soft-tissue details. The 3D image registration with the kV planning CT was performed either automatically by application of a maximization of mutual information (MMI) algorithm or manually by aligning multiple 2D slices. Results: Low-noise 3D MV CBCT images without pulsing artifacts were acquired with a total delivered dose that ranged from 5 to 15 cGy. Acquisition times, including image readout, were on the order of 90 seconds for 180 projection images taken through a continuous gantry rotation of 180 deg . The processing time of the data required an additional 90 seconds for the reconstruction of a 256 3 cube with 1.0-mm voxel size. Implanted gold markers (1 mm x 3 mm) were easily visible for all exposure

  12. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    Energy Technology Data Exchange (ETDEWEB)

    Du, Louise Y [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Umoh, Joseph [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Nikolov, Hristo N [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Pollmann, Steven I [Imaging Research Laboratories, Robarts Research Institute, London, ON (Canada); Lee, Ting-Yim [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada); Holdsworth, David W [Department of Medical Biophysics, University of Western Ontario, London, ON (Canada)

    2007-12-07

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 {mu}m, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm{sup -1} and noise of {+-}35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy.

  13. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems

    International Nuclear Information System (INIS)

    Du, Louise Y; Umoh, Joseph; Nikolov, Hristo N; Pollmann, Steven I; Lee, Ting-Yim; Holdsworth, David W

    2007-01-01

    Small-animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. As a result, micro-computed tomography (micro-CT) systems are becoming more common in research laboratories, due to their ability to achieve spatial resolution as high as 10 μm, giving highly detailed anatomical information. Most recently, a volumetric cone-beam micro-CT system using a flat-panel detector (eXplore Ultra, GE Healthcare, London, ON) has been developed that combines the high resolution of micro-CT and the fast scanning speed of clinical CT, so that dynamic perfusion imaging can be performed in mice and rats, providing functional physiological information in addition to anatomical information. This and other commercially available micro-CT systems all promise to deliver precise and accurate high-resolution measurements in small animals. However, no comprehensive quality assurance phantom has been developed to evaluate the performance of these micro-CT systems on a routine basis. We have designed and fabricated a single comprehensive device for the purpose of performance evaluation of micro-CT systems. This quality assurance phantom was applied to assess multiple image-quality parameters of a current flat-panel cone-beam micro-CT system accurately and quantitatively, in terms of spatial resolution, geometric accuracy, CT number accuracy, linearity, noise and image uniformity. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.5 mm -1 and noise of ±35 HU, using an acquisition interval of 8 s at an entrance dose of 6.4 cGy

  14. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    International Nuclear Information System (INIS)

    Wang Zhiheng; Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-01-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors

  15. Feasibility of contrast-enhanced cone-beam CT for target localization and treatment monitoring

    International Nuclear Information System (INIS)

    Rodal, Jan; Sovik, Aste; Skogmo, Hege Kippenes; Knudtsen, Ingerid Skjei; Malinen, Eirik

    2010-01-01

    A dog with a spontaneous maxillary tumour was given 40 Gy of fractionated radiotherapy. At five out of 10 fractions cone-beam CT (CBCT) imaging before and after administration of an iodinated contrast agent were performed. Contrast enhancement maps were overlaid on the pre-contrast CBCT images. The tumour was clearly visualized in the images thus produced.

  16. Cone-beam CT in paediatric dentistry. DIMITRA project position statement

    International Nuclear Information System (INIS)

    Oenning, Anne Caroline; Jacobs, Reinhilde; Pauwels, Ruben; Stratis, Andreas; Hedesiu, Mihaela; Salmon, Benjamin

    2018-01-01

    DIMITRA (dentomaxillofacial paediatric imaging: an investigation towards low-dose radiation induced risks) is a European multicenter and multidisciplinary project focused on optimizing cone-beam CT exposures for children and adolescents. With increasing use of cone-beam CT for dentomaxillofacial diagnostics, concern arises regarding radiation risks associated with this imaging modality, especially for children. Research evidence concerning cone-beam CT indications in children remains limited, while reports mention inconsistent recommendations for dose reduction. Furthermore, there is no paper using the combined and integrated information on the required indication-oriented image quality and the related patient dose levels. In this paper, therefore, the authors initiate an integrated approach based on current evidence regarding image quality and dose, together with the expertise of DIMITRA's members searching for a state of the art. The aim of this DIMITRA position statement is to provide indication-oriented and patient-specific recommendations regarding the main cone-beam CT applications in the pediatric field. The authors will review this position statement document when results regarding multidisciplinary approaches evolve, in a period of 5 years or earlier. (orig.)

  17. CT SCAN EVALUATION OF PULMONARY NODULE

    Directory of Open Access Journals (Sweden)

    A. Ravi Kumar

    2016-06-01

    Full Text Available BACKGROUND Lung carcinomas are quite commonly diagnosed. Thanks to the ever increasing smokers’ population. Majority of the city dwellers are at a higher risk of having this disease when compared to the village counterparts. The stigma through which the person and the family have to undergo before confirming the diagnosis is enormous. So the radiographic methods of diagnosing the malignancies have to improve. Before confirming the diagnosis, the radiologists, the treating physicians should be somewhat confident about the diagnosis so as to prepare the patients and their relatives for the most probable diagnosis before the confirmatory report. The confirmatory procedures include the PET scan and the Histopathology. Both are time consuming procedures and in an economy like ours, finding a PET scanning centre is rather difficult. So the most probable diagnosis has to be thought of using minimal resource. This study puts in a sincere effort to understand and evaluate the pulmonary nodule when identified by a CT scan. This paper is intended to help the practicing radiologists and also make life easy for a practicing physician to identify correctly the lesions and also help the patients to prevent further progression of the disease. METHODS The study was a cross-sectional study. The sample size of the study consisted of thirty patients. CT scan was done in thirty patients who were identified to have lung nodules either by other mode of radiological studies or first time identified in a CT scan itself. The study was conducted in Fathima Institute of Medical Sciences, Kadapa. The study was conducted from 2014 to 2015. RESULT Non-solid nodules were more in number when compared to the solid nodules. All the non-solid nodules were confirmed to be adenomas. Eighty percent of the nodules which were more than 8 mm in size were confirmed to be malignant. One hundred percent of the spiculated border on CT was confirmed to be malignant. In the present study

  18. Performance evaluation of the General Electric eXplore CT 120 micro-CT using the vmCT phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, M.A., E-mail: M.Bahri@ulg.ac.be [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Warnock, G.; Plenevaux, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Choquet, P.; Constantinesco, A. [Biophysique et Medecine Nucleaire, Hopitaux universitaires de Strasbourg, Strasbourg (France); Salmon, E.; Luxen, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); Seret, A. [ULg-Liege University, Cyclotron Research Centre, Liege, Bat. 30, Allee du 6 aout, 8 (Belgium); ULg-Liege University, Experimental Medical Imaging, Liege (Belgium)

    2011-08-21

    The eXplore CT 120 is the latest generation micro-CT from General Electric. It is equipped with a high-power tube and a flat-panel detector. It allows high resolution and high contrast fast CT scanning of small animals. The aim of this study was to compare the performance of the eXplore CT 120 with that of the eXplore Ultra, its predecessor for which the methodology using the vmCT phantom has already been described . The phantom was imaged using typical a rat (fast scan or F) or mouse (in vivo bone scan or H) scanning protocols. With the slanted edge method, a 10% modulation transfer function (MTF) was observed at 4.4 (F) and 3.9-4.4 (H) mm{sup -1} corresponding to 114 {mu}m resolution. A fairly larger MTF was obtained by the coil method with the MTF for the thinnest coil (3.3 mm{sup -1}) equal to 0.32 (F) and 0.34 (H). The geometric accuracy was better than 0.3%. There was a highly linear (R{sup 2}>0.999) relationship between measured and expected CT numbers for both the CT number accuracy and linearity sections of the phantom. A cupping effect was clearly seen on the uniform slices and the uniformity-to-noise ratio ranged from 0.52 (F) to 0.89 (H). The air CT number depended on the amount of polycarbonate surrounding the area where it was measured; a difference as high as approximately 200 HU was observed. This hindered the calibration of this scanner in HU. This is likely due to the absence of corrections for beam hardening and scatter in the reconstruction software. However in view of the high linearity of the system, the implementation of these corrections would allow a good quality calibration of the scanner in HU. In conclusion, the eXplore CT 120 achieved a better spatial resolution than the eXplore Ultra (based on previously reported specifications) and future software developments will include beam hardening and scatter corrections that will make the new generation CT scanner even more promising.

  19. CT evaluation of chronic thromboembolic pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, M.J. [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Es, H.W. van, E-mail: h.es@antoniusziekenhuis.nl [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Koobs, L. [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands); Morshuis, W.J. [Department of Cardio-Thoracic Surgery, St Antonius Hospital, Nieuwegein (Netherlands); Snijder, R.J. [Department of Pulmonary Disease, St Antonius Hospital, Nieuwegein (Netherlands); Heesewijk, J.P.M. van [Department of Radiology, St Antonius Hospital, Nieuwegein (Netherlands)

    2012-03-15

    The educational objectives of this article are to provide an overview of the computed tomography (CT) findings in chronic thromboembolic pulmonary hypertension. This article reviews the key imaging findings at CT in patients with chronic thromboembolic pulmonary hypertension. After reading this article, the reader should have an improved awareness of the condition, its imaging features, and the CT imaging features associated with surgically accessible disease.

  20. CT evaluation of chronic thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Willemink, M.J.; Es, H.W. van; Koobs, L.; Morshuis, W.J.; Snijder, R.J.; Heesewijk, J.P.M. van

    2012-01-01

    The educational objectives of this article are to provide an overview of the computed tomography (CT) findings in chronic thromboembolic pulmonary hypertension. This article reviews the key imaging findings at CT in patients with chronic thromboembolic pulmonary hypertension. After reading this article, the reader should have an improved awareness of the condition, its imaging features, and the CT imaging features associated with surgically accessible disease.

  1. Dosimetric evaluation of cone beam computed tomography scanning protocols

    International Nuclear Information System (INIS)

    Soares, Maria Rosangela

    2015-01-01

    It was evaluated the cone beam computed tomography, CBCT scanning protocols, that was introduced in dental radiology at the end of the 1990's, and quickly became a fundamental examination for various procedures. Its main characteristic, the difference of medical CT is the beam shape. This study aimed to calculate the absorbed dose in eight tissues / organs of the head and neck, and to estimate the effective dose in 13 protocols and two techniques (stitched FOV e single FOV) of 5 equipment of different manufacturers of cone beam CT. For that purpose, a female anthropomorphic phantom was used, representing a default woman, in which were inserted thermoluminescent dosimeters at several points, representing organs / tissues with weighting values presented in the standard ICRP 103. The results were evaluated by comparing the dose according to the purpose of the tomographic image. Among the results, there is a difference up to 325% in the effective dose in relation to protocols with the same image goal. In relation to the image acquisition technique, the stitched FOV technique resulted in an effective dose of 5.3 times greater than the single FOV technique for protocols with the same image goal. In the individual contribution, the salivary glands are responsible for 31% of the effective dose in CT exams. The remaining tissues have also a significant contribution, 36%. The results drew attention to the need of estimating the effective dose in different equipment and protocols of the market, besides the knowledge of the radiation parameters and equipment manufacturing engineering to obtain the image. (author)

  2. Metal artefact reduction for a dental cone beam CT image using image segmentation and backprojection filters

    International Nuclear Information System (INIS)

    Mohammadi, Mahdi; Khotanlou, Hassan; Mohammadi, Mohammad

    2011-01-01

    Full text: Due to low dose delivery and fast scanning, the dental Cone Beam CT (CBCT) is the latest technology being implanted for a range of dental imaging. The presence of metallic objects including amalgam or gold fillings in the mouth produces an intuitive image for human jaws. The feasibility of a fast and accurate approach for metal artefact reduction for dental CBCT is investigated. The current study investigates the metal artefact reduction using image segmentation and modification of several sinigrams. In order to reduce metal effects such as beam hardening, streak artefact and intense noises, the application of several algorithms is evaluated. The proposed method includes three stages: preprocessing, reconstruction and post-processing. In the pre-processing stage, in order to reduce the noise level, several phase and frequency filters were applied. At the second stage, based on the specific sinogram achieved for each segment, spline interpolation and weighting backprojection filters were applied to reconstruct the original image. A three-dimensional filter was then applied on reconstructed images, to improve the image quality. Results showed that compared to other available filters, standard frequency filters have a significant influence in the preprocessing stage (ΔHU = 48 ± 6). In addition, with the streak artefact, the probability of beam hardening artefact increases. t e post-processing stage, the application of three-dimensional filters improves the quality of reconstructed images (See Fig. I). Conclusion The proposed method reduces metal artefacts especially where there are more than one metal implanted in the region of interest.

  3. Cone beam CT in orthodontics: the current picture.

    Science.gov (United States)

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored. Copyright © 2013. Published by Elsevier Masson SAS.

  4. Motion tolerant iterative reconstruction algorithm for cone-beam helical CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hisashi; Goto, Taiga; Hirokawa, Koichi; Miyazaki, Osamu [Hitachi Medical Corporation, Chiba-ken (Japan). CT System Div.

    2011-07-01

    We have developed a new advanced iterative reconstruction algorithm for cone-beam helical CT. The features of this algorithm are: (a) it uses separable paraboloidal surrogate (SPS) technique as a foundation for reconstruction to reduce noise and cone-beam artifact, (b) it uses a view weight in the back-projection process to reduce motion artifact. To confirm the improvement of our proposed algorithm over other existing algorithm, such as Feldkamp-Davis-Kress (FDK) or SPS algorithm, we compared the motion artifact reduction, image noise reduction (standard deviation of CT number), and cone-beam artifact reduction on simulated and clinical data set. Our results demonstrate that the proposed algorithm dramatically reduces motion artifacts compared with the SPS algorithm, and decreases image noise compared with the FDK algorithm. In addition, the proposed algorithm potentially improves time resolution of iterative reconstruction. (orig.)

  5. High-fidelity artifact correction for cone-beam CT imaging of the brain

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  6. WE-EF-207-06: Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio

    International Nuclear Information System (INIS)

    Shi, L; Vedantham, S; Karellas, A

    2015-01-01

    Purpose: To determine the spatial distribution of x-ray scatter and scatter-to-primary ratio (SPR) in projections during cone-beam breast CT (CBBCT) with laterally-shifted detector that results in coronal (fan-angle) truncation. Methods: We hypothesized that CBBCT with coronal truncation would lower SPR due to reduction in irradiated breast volume, and that the location of maximum x-ray scatter fluence (scatter-peak) in the detector plane can be determined from the ratio of irradiated-to-total breast volume, breast dimensions and system geometry. Monte Carlo simulations (GEANT4) reflecting a prototype CBBCT system were used to record the position-dependent primary and scatter x-ray photon fluence incident on the detector without coronal truncation (full fan-angle, 2f=24-degrees) and with coronal truncation (fan-angle, f+ f=12+2.7-degrees). Semi-ellipsoidal breasts (10/14/18-cm diameter, chest-wall to nipple length: 0.75xdiameter, 2%/14%/100% fibroglandular content) aligned with the axis-of-rotation (AOR) were modeled. Mono-energy photons were simulated and weighted for 2 spectra (49kVp, 1.4-mm Al HVL; 60kVp, 3.76-mm Al HVL). In addition to SPR, the scatter maps were analyzed to identify the location of the scatter-peak. Results: For CBBCT without fan-angle truncation, the scatter-peaks were aligned with the projection of the AOR onto the detector for all breasts. With truncated fan-beam, the scatter-peaks were laterally-shifted from the projection of the AOR along the fan-angle direction by 14/38/70-pixels for 10/14/18-cm diameter breasts. The corresponding theoretical shifts were 14.8/39.7/68-pixels (p=0.47, 2-tailed paired-ratio t-test). Along the cone-angle, the shift in scatter-peaks between truncated and full-fan angle CBBCT were 2/2/4 -pixels for 10/14/18-cm diameter breasts. CBBCT with fan-angle truncation reduced SPR by 14/22/28% for 10/14/18-cm diameter breasts. 60kVp reduced SPR by 21–25% compared to 49kVp. Peak SPR for CBBCT with fan-angle truncation

  7. Prostate image-guided radiotherapy by megavolt cone-beam CT

    International Nuclear Information System (INIS)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro

    2011-01-01

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  8. Prostate image-guided radiotherapy by megavolt cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Zucca, Sergio; Carau, Barbara; Solla, Ignazio; Garibaldi, Elisabetta; Farace, Paolo; Lay, Giancarlo; Meleddu, Gianfranco; Gabriele, Pietro [Regional Oncological Hospital, Cagliari (Italy). Dept. of Radiooncology

    2011-08-15

    To test megavolt cone-beam CT (MV-CBCT) in order to evaluate setup errors in prostate radiotherapy. The setup of 9 patients was verified weekly by electronic portal imaging (EPI) and MV-CBCT, both performed in the same treatment session. EPI were compared with digitally reconstructed radiographies (DRRs). MV-CBCTs were matched to simulation CTs by manual registration based on bone markers (BMR), by manual registration based on soft tissues (STR) - rectum, bladder, and seminal vesicles - and by automatic registration (AR) performed by a mutual information algorithm. Shifts were evaluated along the three main axes: anteroposterior (AP), craniocaudal (CC), and laterolateral (LL). Finally, in 4 additional patients showing intraprostatic calcifications, the calcification mismatch error was used to evaluate the three MV-CBCT matching methods. A total of 50 pairs of orthogonal EPIs and 50 MV-CBCTs were analyzed. Assuming an overall tolerance of 2 mm, no significant differences were observed comparing EPI vs BMR in any axis. A significant difference (p < 0.001) was observed along the AP axis comparing EPI vs AR and EPI vs STR. On the calcification data set (22 measures), the calcification mismatch along the AP direction was significantly lower (p < 0.05) after STR than after BMR or AR. Bone markers were not an effective surrogate of the target position and significant differences were observed comparing EPI or BMR vs STR, supporting the assessment of soft tissue position by MVCBs to verify and correct patient setup in prostate radiotherapy. (orig.)

  9. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    Science.gov (United States)

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based

  10. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  11. FDG-PET/CT in the evaluation of anal carcinoma

    International Nuclear Information System (INIS)

    Cotter, Shane E.; Grigsby, Perry W.; Siegel, Barry A.

    2006-01-01

    Purpose: Surgical staging and treatment of anal carcinoma has been replaced by noninvasive staging studies and combined modality therapy. In this study, we compare computed tomography (CT) and physical examination to [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) in the staging of carcinoma of the anal canal, with special emphasis on determination of spread to inguinal lymph nodes. Methods and Materials: Between July 2003 and July 2005, 41 consecutive patients with biopsy-proved anal carcinoma underwent a complete staging evaluation including physical examination, CT, and 2-FDG-PET/CT. Patients ranged in age from 30 to 89 years. Nine men were HIV-positive. Treatment was with standard Nigro regimen. Results: [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography (FDG-PET/CT) detected 91% of nonexcised primary tumors, whereas CT visualized 59%. FDG-PET/CT detected abnormal uptake in pelvic nodes of 5 patients with normal pelvic CT scans. FDG-PET/CT detected abnormal nodes in 20% of groins that were normal by CT, and in 23% without abnormality on physical examination. Furthermore, 17% of groins negative by both CT and physical examination showed abnormal uptake on FDG-PET/CT. HIV-positive patients had an increased frequency of PET-positive lymph nodes. Conclusion: [ 18 F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography detects the primary tumor more often than CT. FDG-PET/CT detects substantially more abnormal inguinal lymph nodes than are identified by standard clinical staging with CT and physical examination

  12. A new strategy for online adaptive prostate radiotherapy based on cone-beam CT

    International Nuclear Information System (INIS)

    Boggula, Ramesh; Lorenz, Friedlieb; Lohr, Frank; Wolff, Dirk; Boda-Heggemann, Judit; Hesser, Juergen; Wenz, Frederik; Wertz, Hansjoerg

    2009-01-01

    Interfractional organ motion and patient positioning errors during prostate radiotherapy can have deleterious clinical consequences. It has become clinical practice to re-position the patient with image-guided translational position correction before each treatment to compensate for those errors. However, tilt errors can only be corrected with table corrections in six degrees of freedom or ''full'' adaptive treatment planning strategies. Organ shape deformations can only be corrected by ''full'' plan adaptation. This study evaluates the potential of instant treatment plan adaptation (fast isodose line adaptation with real-time dose manipulating tools) based on cone-beam CT (CBCT) to further improve treatment quality. Using in-house software, CBCTs were modified to approximate a correct density calibration. To evaluate the dosimetric accuracy, dose distributions based on CBCTs were compared with dose distributions calculated on conventional planning CTs (PCT) for four datasets (one inhomogeneous phantom, three patient datasets). To determine the potential dosimetric benefit of a ''full'' plan adaptation over translational position correction, dose distributions were re-optimized using graphical ''online'' dose modification tools for three additional patients' CT-datasets with a substantially distended rectum while the original plans have been created with an empty rectum (single treatment fraction estimates). Absolute dose deviations of up to 51% in comparison to the PCT were observed when uncorrected CBCTs were used for replanning. After density calibration of the CBCTs, 97% of the dose deviations were ≤3% (gamma index: 3%/3 mm). Translational position correction restored the PTV dose (D 95 ) to 73% of the corresponding dose of the reference plan. After plan adaptation, larger improvements of dose restoration to 95% were observed. Additionally, the rectal dose (D 30 ) was further decreased by 42 percentage points (mean of three patient datasets). An accurate dose

  13. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Science.gov (United States)

    Cazzato, Roberto Luigi; Battistuzzi, Jean-Benoit; Catena, Vittorio; Grasso, Rosario Francesco; Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier; Palussiere, Jean

    2015-10-01

    To compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours. Patients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported. Forty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = -9.45, t = -3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %). CBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  14. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  15. Implementation of single-breath-hold cone beam CT guided hypofraction radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Zhong, Renming; Lu, You; Wang, Jin; Zhou, Lin; Xu, Feng; Liu, Li; Zhou, Jidan; Jiang, Xiaoqin; Chen, Nianyong; Bai, Sen

    2014-01-01

    To analyze the feasibility of active breath control (ABC), the lung tumor reproducibility and the rationale for single-breath-hold cone beam CT (CBCT)-guided hypofraction radiotherapy. Single-breath-hold CBCT images were acquired using ABC in a cohort of 83 lung cancer patients (95 tumors) treated with hypofraction radiotherapy. For all alignments between the reference CT and CBCT images (including the pre-correction, post-correction and post-treatment CBCT images), the tumor reproducibility was evaluated via online manual alignment of the tumors, and the vertebral bone uncertainties were evaluated via offline manual alignment of the vertebral bones. The difference between the tumor reproducibility and the vertebral bone uncertainty represents the change in the tumor position relative to the vertebral bone. The relative tumor positions along the coronal, sagittal and transverse axes were measured based on the reference CT image. The correlations between the vertebral bone uncertainty, the relative tumor position, the total treatment time and the tumor reproducibility were evaluated using the Pearson correlations. Pre-correction, the systematic/random errors of tumor reproducibility were 4.5/2.6 (medial-lateral, ML), 5.1/4.8 (cranial-caudal, CC) and 4.0/3.6 mm (anterior-posterior, AP). These errors were significantly decreased to within 3 mm, both post-correction and post-treatment. The corresponding PTV margins were 4.7 (ML), 7.4 (CC) and 5.4 (AP) mm. The changes in the tumor position relative to the vertebral bone displayed systematic/random errors of 2.2/2.0 (ML), 4.1/4.4 (CC) and 3.1/3.3 (AP) mm. The uncertainty of the vertebral bone significantly correlated to the reproducibility of the tumor position (P < 0.05), except in the CC direction post-treatment. However, no significant correlation was detected between the relative tumor position, the total treatment time and the tumor reproducibility (P > 0.05). Using ABC for single-breath-hold CBCT guidance is an

  16. Dose calculation based on Cone Beam CT images

    DEFF Research Database (Denmark)

    Slot Thing, Rune

    in the pursuit of personalised adaptive radiotherapy. The main limiting factor in the extended use of CBCT imaging for personalised radiotherapy is the relatively poor CBCT image quality. The limited image quality of CBCT images is mainly caused by contamination from scattered radiation. There are, however......, several other factors contributing to the image quality degradation, and while one should, theoretically, be able to obtain CT-like image quality from CBCT scans, clinical image quality is often very far from this ideal realisation. The present thesis describes the investigation of potential image quality...... simulations to be performed prior to CBCT acquisition, and through optimisations of the simulation efficiency, simulations were performed in a time frame which allows a full clinical implementation of the method. In addition to the scatter estimation model, corrections for additional artefacts arising from...

  17. CT evaluation of severe renal inflammatory disease in children

    International Nuclear Information System (INIS)

    Montgomery, P.; Kuhn, J.P.; Afshani, E.

    1987-01-01

    We have performed CT scans on 15 children and 2 young adults with severe renal inflammatory disease. Most children with urinary tract infections do not require such evaluation. We have, however, found CT helpful in defining the nature of renal abnormality and in defining the extent of disease in selected patients who either presented as diagnostic dilemmas or who did not respond initially to proper medical treatment. We therefore use CT scanning as our initial examination in such problem patients. (orig.)

  18. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  19. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  20. Electron beam CT diagnosis of congenital unilateral absence of pulmonary artery

    International Nuclear Information System (INIS)

    Zhou Yuan; Dai Ruping; Cao Cheng; Zhang Gejun; Jing Baolian

    2003-01-01

    Objective: To evaluate the clinical value of electron beam CT (EBCT) in diagnosing congenital unilateral absence of pulmonary artery (UAPA). Methods: Patients with clinically suspected pulmonary artery disease or primary pulmonary hypertension underwent EBCT scanning. EBCT confirmed the diagnosis of UAPA in 11 patients, who were also evaluated with echocardiography and chest roentgenography. Cardioangiography and nuclear ventilation-perfusion scan were performed in some patients for a comparative study. Results: 4 female adults had UAPA with out associated congenital anomaly. 3 male children with coexisting complex congenital abnormality had unilateral absence of the left pulmonary artery and 4 patients coexisted other simple cardiovascular anomaly. EBCT scanning simultaneously displayed topographic pattern of both unilateral absence of pulmonary artery and coexisting congenital cardiovascular anomaly, as well as lung diseases. Conclusion: UAPA diagnosed in childhood usually has unilateral absence of the left pulmonary artery and associated congenital cardiovascular anomaly, while UAPA diagnosed in adult usually has UAPA on the right side without associated congenital anomaly. EBCT is one of the optimal imaging techniques in diagnosing UAPA and it greatly increases the diagnostic efficacy than echocardiography dose. Both EBCT and cardioangiography have their own advantages, however, EBCT, as a noninvasive method, should be complementary and not exclusive

  1. Dynamic bowtie filter for cone-beam/multi-slice CT.

    Directory of Open Access Journals (Sweden)

    Fenglin Liu

    Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  2. Diagnostic accuracy of the detection of bone change using panoramic TMJ projection. Comparative study with limited cone-beam CT

    International Nuclear Information System (INIS)

    Araki, Kazuyuki; Okano, Tomohiro; Kataoka, Ryuta; Honda, Kazuya; Endo, Atsushi; Kaneko, Norikazu; Funahashi, Itsuo

    2008-01-01

    Panoramic temporoman joint (TMJ) projection is one of the alternative methods of conventional radiography, such as transcranial projection, for diagnosing temporomandibular joint disorder. There have been a few reports describing the diagnostic ability of this method. We evaluated the diagnostic accuracy of detecting bone change with panoramic TMJ projection. Fifty TMJs in 25 patients were examined. All TMJs were examined by panoramic TMJ projection (Hyper XF) and limited cone-beam CT (3D Accuitomo FPD; 3DX). Two observers evaluated the presence of bone change in the TMJ region using panoramic TMJ projection. One other observer evaluated the limited cone-beam CT for the presence and the pattern of bone changes in the TMJ region as the gold standard. Panoramic TMJ findings were evaluated with regard to sensitivity, specificity, and accuracy. Sensitivity, specificity and accuracy of the panoramic TMJ projection were 0.86, 0.76, and 0.82, respectively. These results and those of previous reports on other radiographic methods for TMJ suggest that panoramic TMJ projection is a useful method of screening for bone change due to TMJ disorder. (author)

  3. Physical performance and image optimization of megavoltage cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Olivier; Aubry, Jean-Francois; Aubin, Michele; Chen, Josephine; Descovich, Martina; Hashemi, Ali-Bani; Pouliot, Jean [Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 (United States); Siemens Oncology Care Systems, Concord, California 94520 (United States); Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143 and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94158 (United States)

    2009-04-15

    Megavoltage cone-beam CT (MVCBCT) is the most recent addition to the in-room CT systems developed for image-guided radiation therapy. The first generation MVCBCT system consists of a 6 MV treatment x-ray beam produced by a conventional linear accelerator equipped with a flat panel amorphous silicon detector. The objective of this study was to evaluate the physical performance of MVCBCT in order to optimize the system acquisition and reconstruction parameters for image quality. MVCBCT acquisitions were performed with the clinical system but images were reconstructed and analyzed with a separate research workstation. The geometrical stability and the positioning accuracy of the system were evaluated by comparing geometrical calibrations routinely performed over a period of 12 months. The beam output and detector intensity stability during MVCBCT acquisition were also evaluated by analyzing in-air acquisitions acquired at different exposure levels. Several system parameters were varied to quantify their impact on image quality including the exposure (2.7, 4.5, 9.0, 18.0, and 54.0 MU), the craniocaudal imaging length (2, 5, 15, and 27.4 cm), the voxel size (0.5, 1, and 2 mm), the slice thickness (1, 3, and 5 mm), and the phantom size. For the reconstruction algorithm, the study investigated the effect of binning, averaging and diffusion filtering of raw projections as well as three different projection filters. A head-sized water cylinder was used to measure and improve the uniformity of MVCBCT images. Inserts of different electron densities were placed in a water cylinder to measure the contrast-to-noise ratio (CNR). The spatial resolution was obtained by measuring the point-spread function of the system using an iterative edge blurring technique. Our results showed that the geometric stability and accuracy of MVCBCT were better than 1 mm over a period of 12 months. Beam intensity variations per projection of up to 35.4% were observed for a 2.7 MU MVCBCT acquisition

  4. Spiral CT for evaluation of chest trauma

    International Nuclear Information System (INIS)

    Roehnert, W.; Weise, R.

    1997-01-01

    After implementation of spiral CT in our department, we carried out an analysis for determining anew the value of CT as a modality of chest trauma diagnosis in the emergency department. The retrospective study covers a period of 10 months and all emergency patients with chest trauma exmined by spiral CT. The major lesions of varying seriousness covered by this study are: pneumothorax, hematothorax, pulmonary contusion or laceration, mediastinal hematoma, rupture of a vessel, injury of the heart and pericardium. The various fractures are not included in this study. In many cases, spiral CT within relatively short time yields significant diagnostic findings, frequently saving additional angiography. A rigid diagnostic procedure cannot be formulated. Plain-film chest radiography still remains a diagnostic modality of high value. (Orig.) [de

  5. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Zimmermann, S. J.; Rowshanfarzad, P.; Ebert, M. A.

    2015-01-01

    ) and the radiation field centre (RFC) is calculated. A software package was developed for accurate calculation of the linac isocentre position. This requires precise determination of the position of the ball bearing and the RFC. Results: Data were acquired for 6 MV, 18 MV and flattening filter free (FFF) 6 MV FFF...... radiation isocentre prior to routine use of the cone-beam CT system. The isocentre determination method used in the XVI software is not available to users. The aim of this work is to perform an independent evaluation of the Elekta XVI 4.5 software for isocentre verification with focus on the robustness...... iView GT software. Two images were acquired at each cardinal gantry angle (-180o, -90o , 0o, 90o) at two opposing collimator angles. The images were exported to the conebeam CT software XVI 4.5 where the difference between the ball bearing position in the XYZ-room coordinates (IEC61217...

  6. Cone-beam volume CT breast imaging: Feasibility study

    International Nuclear Information System (INIS)

    Chen Biao; Ning Ruola

    2002-01-01

    X-ray projection mammography, using a film/screen combination, or digital techniques, has proven to be the most effective imaging modality currently available for early detection of breast cancer. However, the inherent superimposition of structures makes a small carcinoma (a few millimeters in size) difficult to detect when it is occult or in dense breasts, leading to a high false-positive biopsy rate. Cone-beam x-ray-projection-based volume imaging using flat panel detectors (FPDs) may allow obtaining three-dimensional breast images, resulting in more accurate diagnosis of structures and patterns of lesions while eliminating the hard compression of breasts. This article presents a novel cone-beam volume computed tomographic breast imaging (CBVCTBI) technique based on the above techniques. Through a variety of computer simulations, the key issues of the system and imaging techniques were addressed, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissue and lesions, x-ray setting techniques, the absorbed dose estimation, and the quantitative effect of x-ray scattering on image quality. The preliminary simulation results support the proposed CVBCTBI modality for breast imaging in respect to its feasibility and practicability. The absorbed dose level is comparable to that of current mammography and will not be a prominent problem for this imaging technique. Compared to conventional mammography, the proposed imaging technique with isotropic spatial resolution will potentially provide significantly better low-contrast detectability of breast tumors and more accurate location of breast lesions

  7. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding

    Science.gov (United States)

    Yadav, Poonam; Kozak, Kevin; Tolakanahalli, Ranjini; Ramasubramanian, V.; Paliwal, Bhudatt R.; Welsh, James S.; Rong, Yi

    2012-01-01

    This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each “planning scan” to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields. PMID:21925866

  8. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding

    International Nuclear Information System (INIS)

    Yadav, Poonam; Kozak, Kevin; Tolakanahalli, Ranjini; Ramasubramanian, V.; Paliwal, Bhudatt R.; Welsh, James S.; Rong, Yi

    2012-01-01

    This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each “planning scan” to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.

  9. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    Science.gov (United States)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 pvalues on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  10. Adaptive planning using megavoltage fan-beam CT for radiation therapy with testicular shielding

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Tolakanahalli, Ranjini [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Ramasubramanian, V. [School of Advance Sciences, Vellore Institue of Technology University, Vellore, Tamil Nadu (India); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States); Welsh, James S. [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, Madison, WI (United States); Rong, Yi, E-mail: rong@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, Madison, WI (United States); University of Wisconsin, Riverview Cancer Centre, Wisconsin Rapids, WI (United States)

    2012-07-01

    This study highlights the use of adaptive planning to accommodate testicular shielding in helical tomotherapy for malignancies of the proximal thigh. Two cases of young men with large soft tissue sarcomas of the proximal thigh are presented. After multidisciplinary evaluation, preoperative radiation therapy was recommended. Both patients were referred for sperm banking and lead shields were used to minimize testicular dose during radiation therapy. To minimize imaging artifacts, kilovoltage CT (kVCT) treatment planning was conducted without shielding. Generous hypothetical contours were generated on each 'planning scan' to estimate the location of the lead shield and generate a directionally blocked helical tomotherapy plan. To ensure the accuracy of each plan, megavoltage fan-beam CT (MVCT) scans were obtained at the first treatment and adaptive planning was performed to account for lead shield placement. Two important regions of interest in these cases were femurs and femoral heads. During adaptive planning for the first patient, it was observed that the virtual lead shield contour on kVCT planning images was significantly larger than the actual lead shield used for treatment. However, for the second patient, it was noted that the size of the virtual lead shield contoured on the kVCT image was significantly smaller than the actual shield size. Thus, new adaptive plans based on MVCT images were generated and used for treatment. The planning target volume was underdosed up to 2% and had higher maximum doses without adaptive planning. In conclusion, the treatment of the upper thigh, particularly in young men, presents several clinical challenges, including preservation of gonadal function. In such circumstances, adaptive planning using MVCT can ensure accurate dose delivery even in the presence of high-density testicular shields.

  11. Regularization design for high-quality cone-beam CT of intracranial hemorrhage using statistical reconstruction

    Science.gov (United States)

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-03-01

    Intracranial hemorrhage (ICH) is associated with pathologies such as hemorrhagic stroke and traumatic brain injury. Multi-detector CT is the current front-line imaging modality for detecting ICH (fresh blood contrast 40-80 HU, down to 1 mm). Flat-panel detector (FPD) cone-beam CT (CBCT) offers a potential alternative with a smaller scanner footprint, greater portability, and lower cost potentially well suited to deployment at the point of care outside standard diagnostic radiology and emergency room settings. Previous studies have suggested reliable detection of ICH down to 3 mm in CBCT using high-fidelity artifact correction and penalized weighted least-squared (PWLS) image reconstruction with a post-artifact-correction noise model. However, ICH reconstructed by traditional image regularization exhibits nonuniform spatial resolution and noise due to interaction between the statistical weights and regularization, which potentially degrades the detectability of ICH. In this work, we propose three regularization methods designed to overcome these challenges. The first two compute spatially varying certainty for uniform spatial resolution and noise, respectively. The third computes spatially varying regularization strength to achieve uniform "detectability," combining both spatial resolution and noise in a manner analogous to a delta-function detection task. Experiments were conducted on a CBCT test-bench, and image quality was evaluated for simulated ICH in different regions of an anthropomorphic head. The first two methods improved the uniformity in spatial resolution and noise compared to traditional regularization. The third exhibited the highest uniformity in detectability among all methods and best overall image quality. The proposed regularization provides a valuable means to achieve uniform image quality in CBCT of ICH and is being incorporated in a CBCT prototype for ICH imaging.

  12. Cine CT in the evaluation of coronary bypass graft patency

    International Nuclear Information System (INIS)

    Stanford, W.; Rooholamini, M.; Rumberger, J.; Marcus, M.; Hiratzka, L.

    1986-01-01

    Cine CT produces axial images over an 8-cm section of the aorta in 50 msec. This characteristic makes the technique useful for evaluating coronary bypass graft (CBG) patency. With the use of 40 ml of 67% iothalamate sodium injected via an antecubital vein, 28 patients with 68 CBGs underwent cine CT. Ten patients with 21 CBGs also underwent cardiac catheterization. In the latter group the overall accuracy of cine CT compared to cardiac catheterization was 95.2% (20/21). The sensitivity was 94.1% (16/17), and the specificity was 100% (4/4). This figure compares favorably with the 92% sensitivity achieved with conventional CT

  13. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  14. Evaluation of CT findings for diagnosis of pleural effusions

    International Nuclear Information System (INIS)

    Arenas-Jimenez, J.; Alonso-Charterina, S.; Fernandez-Latorre, F.; Gil-Sanchez, S.; Sanchez-Paya, J.; Lloret-Llorens, M.

    2000-01-01

    Computed tomography studies are usually used to assess patients with pleural effusions, and radiologists should be aware of the significance of different CT findings for the diagnosis of the effusion. The purpose of this study was to evaluate CT findings for etiological diagnosis of pleural effusions. Contrast-enhanced CT of the chest of 211 patients with pleural effusion of definite diagnosis were evaluated. The CT images were evaluated for the presence and extent of pleural effusion, thickening or nodules, extrapleural fat and other changes in the mediastinum or lung. The CT scans were read by two independent observers and correlation between them was evaluated. Comparison of CT findings between benign and malignant effusions, between exudates and transudates, and between empyemas and the other parapneumonic effusions were carried out. Kappa values for most CT findings were >0.85. Loculation, pleural thickening, pleural nodules, and extrapleural fat of increased density were only present in exudative effusions. Multiple pleural nodules and nodular pleural thickening were the only pleural findings limited to malignant pleural effusions. The signs were also more frequently seen in empyemas than in other parapneumonic effusions. Computed tomography findings can help to distinguish between transudates and exudates. Although there is some overlap between benign and malignant pleural effusions, pleural nodules and nodular pleural thickening were present almost exclusively in the latter. Although differences between CT findings of empyemas and the other parapneumonic effusions exist, there is no finding which can definitely differentiate between them. (orig.)

  15. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    International Nuclear Information System (INIS)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T; Sheng, K; Xie, Y

    2016-01-01

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  16. SU-D-206-03: Segmentation Assisted Fast Iterative Reconstruction Method for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Mao, T; Gong, S; Wang, J; Niu, T [Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Sheng, K [Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA (United States); Xie, Y [Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong (China)

    2016-06-15

    Purpose: Total Variation (TV) based iterative reconstruction (IR) methods enable accurate CT image reconstruction from low-dose measurements with sparse projection acquisition, due to the sparsifiable feature of most CT images using gradient operator. However, conventional solutions require large amount of iterations to generate a decent reconstructed image. One major reason is that the expected piecewise constant property is not taken into consideration at the optimization starting point. In this work, we propose an iterative reconstruction method for cone-beam CT (CBCT) using image segmentation to guide the optimization path more efficiently on the regularization term at the beginning of the optimization trajectory. Methods: Our method applies general knowledge that one tissue component in the CT image contains relatively uniform distribution of CT number. This general knowledge is incorporated into the proposed reconstruction using image segmentation technique to generate the piecewise constant template on the first-pass low-quality CT image reconstructed using analytical algorithm. The template image is applied as an initial value into the optimization process. Results: The proposed method is evaluated on the Shepp-Logan phantom of low and high noise levels, and a head patient. The number of iterations is reduced by overall 40%. Moreover, our proposed method tends to generate a smoother reconstructed image with the same TV value. Conclusion: We propose a computationally efficient iterative reconstruction method for CBCT imaging. Our method achieves a better optimization trajectory and a faster convergence behavior. It does not rely on prior information and can be readily incorporated into existing iterative reconstruction framework. Our method is thus practical and attractive as a general solution to CBCT iterative reconstruction. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R

  17. Technical evaluation of DIC helical CT and 3D image for laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Shibuya, Kouki; Uchimura, Fumiaki; Haga, Tomo

    1995-01-01

    Recently Laparoscopic Cholecystectomy (L.C.) was widely accepted for its low invasive procedure. Before L.C., it is important to understand anatomical recognization of biliary tree. We examined DIC Helical CT before L.C., and reconstructed 3D Cholangiographic image. We evaluated physical potentiality of Helical CT using Section Sensitivity Profiles (SSP) with 5, 10 mm slice thickness on 360deg linear interpolation. And we analyzed most useful 3D image for biliary tree. Results showed the SSP depended on slice thickness (X-ray beam width) and table movement at same reconstruction spacing. The peak of SSP depended on slice thickness (X-ray beam width) and reconstruction spacing at same table movement. Clinically, it was necessary under 5 mm/rotation table movement and 5 mm thickness for acquiring volume image data. 3D Cholangiographic image reconstructed with 1 mm spacing image was useful in evaluation of relationship of anatomical biliary tree. (author)

  18. TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications

    International Nuclear Information System (INIS)

    2015-01-01

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  19. TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both the likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions

  20. SU-F-J-211: Scatter Correction for Clinical Cone-Beam CT System Using An Optimized Stationary Beam Blocker with a Single Scan

    Energy Technology Data Exchange (ETDEWEB)

    Liang, X; Zhang, Z; Xie, Y [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, GuangDong (China); Gong, S; Niu, T [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang (China); Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Zhou, Q [Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang (China)

    2016-06-15

    Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads to the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided radiation

  1. SU-F-J-211: Scatter Correction for Clinical Cone-Beam CT System Using An Optimized Stationary Beam Blocker with a Single Scan

    International Nuclear Information System (INIS)

    Liang, X; Zhang, Z; Xie, Y; Gong, S; Niu, T; Zhou, Q

    2016-01-01

    Purpose: X-ray scatter photons result in significant image quality degradation of cone-beam CT (CBCT). Measurement based algorithms using beam blocker directly acquire the scatter samples and achieve significant improvement on the quality of CBCT image. Within existing algorithms, single-scan and stationary beam blocker proposed previously is promising due to its simplicity and practicability. Although demonstrated effectively on tabletop system, the blocker fails to estimate the scatter distribution on clinical CBCT system mainly due to the gantry wobble. In addition, the uniform distributed blocker strips in our previous design results in primary data loss in the CBCT system and leads to the image artifacts due to data insufficiency. Methods: We investigate the motion behavior of the beam blocker in each projection and design an optimized non-uniform blocker strip distribution which accounts for the data insufficiency issue. An accurate scatter estimation is then achieved from the wobble modeling. Blocker wobble curve is estimated using threshold-based segmentation algorithms in each projection. In the blocker design optimization, the quality of final image is quantified using the number of the primary data loss voxels and the mesh adaptive direct search algorithm is applied to minimize the objective function. Scatter-corrected CT images are obtained using the optimized blocker. Results: The proposed method is evaluated using Catphan@504 phantom and a head patient. On the Catphan©504, our approach reduces the average CT number error from 115 Hounsfield unit (HU) to 11 HU in the selected regions of interest, and improves the image contrast by a factor of 1.45 in the high-contrast regions. On the head patient, the CT number error is reduced from 97 HU to 6 HU in the soft tissue region and image spatial non-uniformity is decreased from 27% to 5% after correction. Conclusion: The proposed optimized blocker design is practical and attractive for CBCT guided radiation

  2. Cone-beam CT in diagnosis of scaphoid fractures

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, Rolf; Lapidus, Gunilla; Baecklund, Jenny [Capio St Goeran' s Hospital, Department of Radiology, Stockholm (Sweden); Skorpil, Mikael [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm (Sweden)

    2016-02-15

    This prospective study investigated the sensitivity of cone beam computed tomography (CBCT), a low dose technique recently made available for extremity examinations, in detecting scaphoid fractures. Magnetic resonance imaging (MRI) was used as gold standard for scaphoid fractures. A total of 95 patients with a clinically suspected scaphoid fracture were examined with radiography and CBCT in the acute setting. A negative CBCT exam was followed by an MRI within 2 weeks. When a scaphoid fracture was detected on MRI a new CBCT was performed. Radiography depicted seven scaphoid fractures, all of which were also seen with CBCT. CBCT detected another four scaphoid fractures. With MRI another five scaphoid fractures were identified that were not seen with radiography or with CBCT. These were also not visible on the reexamination CBCT. Sensitivity for radiography was 44, 95 % confidence interval 21-69 %, and for CBCT 69 %, 95 % confidence interval 41-88 % (p = 0.12). Several non-scaphoid fractures in the carpal region were identified, radiography and CBCT depicted 7 and 34, respectively (p < 0.0001). CBCT is a superior alternative to radiography, entailing more accurate diagnoses of carpal region fractures, and thereby requiring fewer follow-up MRI examinations. However, CBCT cannot be used to exclude scaphoid fractures, since MRI identified additional occult scaphoid fractures. (orig.)

  3. Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT

    International Nuclear Information System (INIS)

    Na, Jun Young; Kim, Jung Mi; Kim, Dae Sup; Kang, Tae Young; Baek, Geum Mun; Kwon, Gyeong Tae

    2012-01-01

    Image Guided Radiation Therapy (IGRT) has been carried out using On-Board Imager system (OBI) in Asan Medical Center. For this reason, This study was to analyze and evaluate the impact on Cone-Beam CT according to variation of material and respiration. This study was to acquire and analyze Cone-Beam CT three times for two material: Cylider acryl (lung equvalent material, diameter 3 cm), Fiducial Marker (using clinic) under Motion Phantom able to adjust respiration pattern randomly was varying period, amplitude and baseline vis-a-vis reference respiration pattern. First, According to a kind of material, when being showed 100% in the acryl and 120% in the Fiducial Marker under the condition of same movement of the motion phantom. Second, According to the respiratory alteration, when being showed 1.13 in the baseline shift 1.8 mm and 1.27 in the baseline shift 3.3 mm for acryl. when being showed 1.01 in 1 sec of period and 1.045 in 2.5 sec of period for acryl. When being showed 0.86 in 0.7 times the standard of amplitude and 1.43 in 1.7 times the standard of amplitude for acryl. when being showed 1.18 in the baseline shift 1.8 mm and 1.34 in the baseline shift 3.3 mm for Fiducial Marker. when being showed 1.0 in 1 sec of period and 1.0 in 2.5 sec of period for Fiducial Marker. When being showed 0.99 in 0.7 times the standard of amplitude and 1.66 in 1.7 times the standard of amplitude for Fiducial Marker. The effect of image size of CBCT was 20% in the case of Fiducial marker. The impact of changes in breathing pattern was minimum 13% - maximum 43% for Arcyl, min. 18% - max. 66% for Fiducial marker. This difference makes serious uncertainty. So, Must be stabilized breathing of patient before acquiring CBCT. also must be monitored breathing of patient in the middle of acquire. If you observe considerable change of breathing when acquiring CBCT. After Image Guided, must be need to check treatment site using fluoroscopy. If a change is too big, re-acquiring CBCT.

  4. Iterative image-domain ring artifact removal in cone-beam CT

    Science.gov (United States)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  5. Evaluation of web-based instruction for anatomical interpretation in maxillofacial cone beam computed tomography

    NARCIS (Netherlands)

    Al-Rawi, W.T.; Jacobs, R.; Hassan, B.A.; Sanderink, G.; Scarfe, W.C.

    2007-01-01

    Objectives: To evaluate the effectiveness of a web-based instruction in the interpretation of anatomy in images acquired with maxillofacial cone beam CT (CBCT). Methods: An interactive web-based education course for the interpretation of craniofacial CBCT images was recently developed at our

  6. In vivo verification of proton beam path by using post-treatment PET/CT imaging.

    Science.gov (United States)

    Hsi, Wen C; Indelicato, Daniel J; Vargas, Carlos; Duvvuri, Srividya; Li, Zuofeng; Palta, Jatinder

    2009-09-01

    The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the posttreatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. The less than 2 degrees of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D(AP)) and superior-inferior (D(SI)) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D(AP) or D(SI)), 13 studies, referred as motion-after-Tx cases

  7. In vivo verification of proton beam path by using post-treatment PET/CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hsi, Wen C.; Indelicato, Daniel J.; Vargas, Carlos; Duvvuri, Srividya; Li Zuofeng; Palta, Jatinder [Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Boca Radiation Oncology Associates, Boca Raton, Florida 33431 (United States); Proton Therapy Institute, University of Florida, Jacksonville, Florida 32206 (United States); Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2009-09-15

    Purpose: The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. Methods: A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the post-treatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. Results: The less than 2 deg. of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D{sub AP}) and superior-inferior (D{sub SI}) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D{sub AP} or D{sub SI}), 13

  8. Self-calibration of a cone-beam micro-CT system

    International Nuclear Information System (INIS)

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-01

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CBμCT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CBμCT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 μm in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  9. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    Science.gov (United States)

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  10. Multimodal registration of three-dimensional maxillodental cone beam CT and photogrammetry data over time.

    Science.gov (United States)

    Bolandzadeh, N; Bischof, W; Flores-Mir, C; Boulanger, P

    2013-01-01

    In recent years, one of the foci of orthodontics has been on systems for the evaluation of treatment results and the tracking of tissue variations over time. This can be accomplished through analysing three-dimensional orthodontic images obtained before and after the treatments. Since complementary information is achieved by integrating multiple imaging modalities, cone beam CT (CBCT) and stereophotogrammetry technologies are used in this study to develop a method for tracking bone, teeth and facial soft-tissue variations over time. We propose a two-phase procedure of multimodal (Phase 1) and multitemporal (Phase 2) registration which aligns images taken from the same patient by different imaging modalities and at different times. Extrinsic (for Phase 1) and intrinsic (for Phase 2) landmark-based registration methods are employed as an initiation for a robust iterative closest points algorithm. Since the mandible moves independently of the upper skull, the registration procedure is applied separately on the mandible and the upper skull. The results show that the signed error distributions of both mandible and skull registrations follow a mixture of two Gaussian distributions, corresponding to alignment errors (due to our method) and temporal change over time. We suggest that the large values among the total registration errors correspond to the temporal change resulting from (1) the effect of treatment (i.e. the orthodontic changes of teeth positions); (2) the biological changes such as teeth growth over time, especially for teenagers; and (3) the segmentation procedure and CBCT precision change over time.

  11. Electron-beam CT coronary angiography in the patients with high heart rate arrhythmia or pacemaker

    International Nuclear Information System (INIS)

    Dong Zhi; Zhu Jiemin; Liu Zhe; Liu Junbo; Li Youjie; Qi Ji

    2006-01-01

    Objective: To report the clinical applicability of coronary angiography for patients with high heart rate, arrhythmia or cardiac pacing using the new-generation of electron-beam CT (e-Speed). Methods: EBCT (GE e-Speed) coronary angiography was performed in 36 eases (male 27, female 9, mean age 58), including the heart rate more than 90 bpm in 20 patients, frequent ectopic beats in 11 cases, implantation of cardiac pacemaker in 4 patients and the unacceptable MSCT image quality due to variability of interscan heart rate (from 82 bpm to 104 bpm) in 1 case. After volume data set was acquired using spiral mode with prospective ECG-gating, the reconstructions of MIP, CPR, VR and Cine were performed. The VR quality was evaluated using a five-point scale. Results: The quality of coronary imaging in all of 36 cases were acceptable. The total visualization rate of coronary artery branches was 80.0%. Left main, left anterior artery and right coronary artery were visualized in all patients and in 94.3% of all cases circumflex artery were visible. Conclusion: EBCT (e-Speed) is applicable in noninvasive coronary angiography for patients with high heart rate, arrhythmia or implanted cardiac pacemaker', and this examination can obtain satisfied diagnosis. (authors)

  12. Virtual colonoscopy with electron beam CT: correlation with barium enema, colonoscopy and pathology

    International Nuclear Information System (INIS)

    Hong, Hye Suk; Kim, Min Jung; Chung, Jae Joon; Kim, Myeong Jin; Lee, Jong Tae; Yoo, Hyung Sik

    1998-01-01

    To perform virtual colonoscopy using electron beam tomography(EBT) in patients in whom a colonic mass was present, and to compare the results with those obtained using barium enema, colonoscopy and gross pathologic specimens. Materials and Methods : Ten patients in whom colonic masses were diagnosed by either barium enema or colonoscopy were involved in this study. There were nine cases of adenocarcinoma and one of tubulovillous adenoma. Using EBT preoperative abdominopelvic CT scans were performed. Axial scans were then three-dimensionally reconstructed to produce virtual colonoscopic images and were compared with barium enema, colonoscopy and gross pathologic specimens. Virtual colonoscopic images of the masses were classified as either 1)polyploid, 2)sessile,3)fungating, or 4)annular constrictive. We also determined whether ulcers were present within the lesions and whether there was obstruction. Results : After virtual colonoscopy, two lesions were classified as polyploid, one as sessile, five as fungating and two as annular constrictive. Virtual colonoscopic images showed good correlation with the findings of barium enema, colonoscopy and gross pathologic specimens. Three of six ulcerative lesions were observed on colonoscopy; in seven adenocarcinomas with partial or total luminal obstruction, virtual colonoscopy visualized the colon beyond the obstructed sites. In one case, barium contrast failed to pass through the obstructed portion and in six cases, the colonoscope similarly failed. Conclusion : Virtual colonoscopies correlated well with barium enema, colonoscopy and gross pathologic specimens. They provide three dimensional images of colonic masses and are helpful for the evaluation of obstructive lesions

  13. Assessment of coronary artery stent patency by electron-beam CT

    International Nuclear Information System (INIS)

    Knollmann, Friedrich D.; Felix, Roland; Moeller, Joerg; Gebert, Axel; Bethge, Christian

    2004-01-01

    Following coronary angioplasty and stent implantation, restenosis remains common and its outcome difficult to predict. We set out to determine the diagnostic accuracy of electron-beam computed tomography (EBCT) for the non-invasive detection of stent obstruction. In a prospective, blinded investigation, we included 152 coronary artery segments in 117 patients treated with a stent implant. All segments were evaluated by a dynamic EBCT study that depicted contrast bolus passage distal to the stent and a CT angiographic study of the entire coronary arteries. It was found that delayed contrast enhancement in the distal segment correlated with angiographic stent obstruction (Spearman's rank correlation, P=0.008), while all other indicators of stent occlusion did not correlate with angiographic diagnosis. However, direct comparison of patients with obstruction of less vs. more than 75% of luminal diameter did not yield any statistically significant differences of distal enhancement delay, and for the detection of >90% occlusion, the sensitivity was 72% at a specificity of 60%. Although delayed contrast enhancement distal to the stent upon EBCT did correlate with angiographical obstruction, the correlation did not suffice to appear clinically satisfactory. (orig.)

  14. Assessment of coronary artery stent patency by electron-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Knollmann, Friedrich D.; Felix, Roland [Department of Radiology, Charite, Campus Virchow-Klinikum, Humboldt-University, Augustenburger Platz 1, 13353, Berlin (Germany); Moeller, Joerg; Gebert, Axel; Bethge, Christian [Department of Cardiology, Juedisches Krankenhaus, Berlin (Germany)

    2004-08-01

    Following coronary angioplasty and stent implantation, restenosis remains common and its outcome difficult to predict. We set out to determine the diagnostic accuracy of electron-beam computed tomography (EBCT) for the non-invasive detection of stent obstruction. In a prospective, blinded investigation, we included 152 coronary artery segments in 117 patients treated with a stent implant. All segments were evaluated by a dynamic EBCT study that depicted contrast bolus passage distal to the stent and a CT angiographic study of the entire coronary arteries. It was found that delayed contrast enhancement in the distal segment correlated with angiographic stent obstruction (Spearman's rank correlation, P=0.008), while all other indicators of stent occlusion did not correlate with angiographic diagnosis. However, direct comparison of patients with obstruction of less vs. more than 75% of luminal diameter did not yield any statistically significant differences of distal enhancement delay, and for the detection of >90% occlusion, the sensitivity was 72% at a specificity of 60%. Although delayed contrast enhancement distal to the stent upon EBCT did correlate with angiographical obstruction, the correlation did not suffice to appear clinically satisfactory. (orig.)

  15. Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of cupping artifacts and conversion of CT numbers to electron density

    International Nuclear Information System (INIS)

    Petit, Steven F.; Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Lambin, Philippe; Dekker, Andre L. A. J.

    2008-01-01

    Megavoltage cone-beam CT (MV CBCT) is used for three-dimensional imaging of the patient anatomy on the treatment table prior to or just after radiotherapy treatment. To use MV CBCT images for radiotherapy dose calculation purposes, reliable electron density (ED) distributions are needed. Patient scatter, beam hardening and softening effects result in cupping artifacts in MV CBCT images and distort the CT number to ED conversion. A method based on transmission images is presented to correct for these effects without using prior knowledge of the object's geometry. The scatter distribution originating from the patient is calculated with pencil beam scatter kernels that are fitted based on transmission measurements. The radiological thickness is extracted from the scatter subtracted transmission images and is then converted to the primary transmission used in the cone-beam reconstruction. These corrections are performed in an iterative manner, without using prior knowledge regarding the geometry and composition of the object. The method was tested using various homogeneous and inhomogeneous phantoms with varying shapes and compositions, including a phantom with different electron density inserts, phantoms with large density variations, and an anthropomorphic head phantom. For all phantoms, the cupping artifact was substantially removed from the images and a linear relation between the CT number and electron density was found. After correction the deviations in reconstructed ED from the true values were reduced from up to 0.30 ED units to 0.03 for the majority of the phantoms; the residual difference is equal to the amount of noise in the images. The ED distributions were evaluated in terms of absolute dose calculation accuracy for homogeneous cylinders of different size; errors decreased from 7% to below 1% in the center of the objects for the uncorrected and corrected images, respectively, and maximum differences were reduced from 17% to 2%, respectively. The

  16. Actively triggered 4d cone-beam CT acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Martin F.; Wisotzky, Eric [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Oelfke, Uwe; Nill, Simeon [Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT (United Kingdom)

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  17. Actively triggered 4d cone-beam CT acquisition.

    Science.gov (United States)

    Fast, Martin F; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-01

    4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this "after-the-fact" binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor. The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective "Faraday" shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories. With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145 projections were acquired per respiratory

  18. Actively triggered 4d cone-beam CT acquisition

    International Nuclear Information System (INIS)

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-01-01

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  19. The completeness condition and source orbits for exact image reconstruction in 3D cone-beam CT

    International Nuclear Information System (INIS)

    Mao Xiping; Kang Kejun

    1997-01-01

    The completeness condition for exact image reconstruction in 3D cone-beam CT are carefully analyzed in theory, and discussions about some source orbits which fulfill the completeness condition are followed

  20. Evaluation of diseases of the aorta with ultrafast CT

    International Nuclear Information System (INIS)

    Eldredge, W.J.; Flicker, S.; Altin, R.S.; Naidech, H.J.

    1987-01-01

    Ultrafast CT offers several advantages over standard CT for imaging of various congenital and acquired diseases of the aorta. Scan acquisition rates of 50 msec permit evaluation of the entire aorta following a single peripheral intravenous injection of iodinated contrast medium. Pathologic aortic flow patterns may also be defined using an ECG triggered ''flow'' mode, adding another dimension to CT evaluation of the aorta. The papers shows examples of a variety of aortic diseases, including coarctation, Marfan syndrome, atherosclerotic aneurysm, dissection, and postoperative abnormalities. The advantages of the modality are stressed

  1. CT evaluation of a mycotic aneurysma

    Energy Technology Data Exchange (ETDEWEB)

    Loehr, E; Serdarevic, M; Beck, A; Wendt, F C

    1986-03-01

    Examination and localisation of mycotic aneurysm of the femoral artery in the course of typhoid fever. The diagnosis was exclusively carried out by CT and not by angiography to lower the risk of examination because the patient was suffering from chronic lymphatic leukaemia.

  2. CT evaluation of a mycotic aneurysma

    International Nuclear Information System (INIS)

    Loehr, E.; Serdarevic, M.; Beck, A.; Wendt, F.C.

    1986-01-01

    Examination and localisation of mycotic aneurysm of the femoral artery in the course of typhoid fever. The diagnosis was exclusively carried out by CT and not by angiography to lower the risk of examination because the patient was suffering from chronic lymphatic leukaemia. (orig.) [de

  3. CT in the evaluation of severe liver trauma

    International Nuclear Information System (INIS)

    Machado, Marcel Autran C.; Souza Rocha, Manoel de; Machado, Manoel C.C.; Macedo Neto, Augusto Cesar de; Maciel, Rosangela Pereira; Simonetti, Celso.

    1995-01-01

    Abdominal CT is a common examination in the evaluation of patients with blunt abdominal trauma and clinical suspicion for solid organ injury when reasons for immediate laparotomy are not present. A case of major blunt hepatic injury in a 22-year-old patient is reported. The authors present a brief review of the literature and discussion about the role of CT scan in the evaluation of hepatic trauma, surgical planning and postoperative follow-up. (author). 15 refs., 3 figs., 1 tab

  4. Evaluation of CT in the investigation of patellofemoral malalignment

    International Nuclear Information System (INIS)

    Zhang Quan; Huang Huangyuan; Xia Jun; Chen Wenjun

    1999-01-01

    Objective: To evaluate CT in investigating patellofemoral malalignment. Methods: CT was used to evaluate 32 patients (50 knees) with persistent patellofemoral pain and 15 asymptomatic volunteers (20 knees). Multiple mid-patellar images were obtained at 30 degree flexion. Results: Compared to controls, the patients had marked malalignment including three distinct patterns. 11 knees had lateral patellae based on high congruence angles (CA). 8 knees had tilted patellae with lower lateral patellofemoral angles (LPFA). 10 knees had both high CA and lower LPFA indicating both lateral and tilted patella. Conclusions: CT may be the optimal imaging method of evaluating the patellofemoral joint. An awareness of different patterns of malalignment is a significant advantage of CT when planning selective surgical realignment for these patients

  5. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2012-06-15

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 {mu}Sv), followed by AZ3000CT (332.4 {mu}Sv), Somatom Emotion 6 (199.38 {mu}Sv), and 3D eXaM (111.6 {mu}Sv); it was the lowest for Implagraphy (83.09 {mu}Sv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  6. Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

    International Nuclear Information System (INIS)

    Jeong, Dae Kyo; Lee, Sang Chul; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Choi, Soon Chul

    2012-01-01

    The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. The effective dose was the highest for Somatom Sensation 10 (425.84 μSv), followed by AZ3000CT (332.4 μSv), Somatom Emotion 6 (199.38 μSv), and 3D eXaM (111.6 μSv); it was the lowest for Implagraphy (83.09 μSv). The CBCT showed significant variation in dose level with different device. The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

  7. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  8. Library based x-ray scatter correction for dedicated cone beam breast CT

    International Nuclear Information System (INIS)

    Shi, Linxi; Zhu, Lei; Vedantham, Srinivasan; Karellas, Andrew

    2016-01-01

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the GEANT4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal

  9. Library based x-ray scatter correction for dedicated cone beam breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linxi; Zhu, Lei, E-mail: leizhu@gatech.edu [Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Vedantham, Srinivasan; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2016-08-15

    Purpose: The image quality of dedicated cone beam breast CT (CBBCT) is limited by substantial scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose a library-based software approach to suppress scatter on CBBCT images with high efficiency, accuracy, and reliability. Methods: The authors precompute a scatter library on simplified breast models with different sizes using the GEANT4-based Monte Carlo (MC) toolkit. The breast is approximated as a semiellipsoid with homogeneous glandular/adipose tissue mixture. For scatter correction on real clinical data, the authors estimate the breast size from a first-pass breast CT reconstruction and then select the corresponding scatter distribution from the library. The selected scatter distribution from simplified breast models is spatially translated to match the projection data from the clinical scan and is subtracted from the measured projection for effective scatter correction. The method performance was evaluated using 15 sets of patient data, with a wide range of breast sizes representing about 95% of general population. Spatial nonuniformity (SNU) and contrast to signal deviation ratio (CDR) were used as metrics for evaluation. Results: Since the time-consuming MC simulation for library generation is precomputed, the authors’ method efficiently corrects for scatter with minimal processing time. Furthermore, the authors find that a scatter library on a simple breast model with only one input parameter, i.e., the breast diameter, sufficiently guarantees improvements in SNU and CDR. For the 15 clinical datasets, the authors’ method reduces the average SNU from 7.14% to 2.47% in coronal views and from 10.14% to 3.02% in sagittal views. On average, the CDR is improved by a factor of 1.49 in coronal views and 2.12 in sagittal

  10. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  11. Dosimetric variation due to CT inter-slice spacing in four-dimensional carbon beam lung therapy

    International Nuclear Information System (INIS)

    Kumagai, Motoki; Mori, Shinichiro; Kandatsu, Susumu; Baba, Masayuki; Sharp, Gregory C; Asakura, Hiroshi; Endo, Masahiro

    2009-01-01

    When CT data with thick slice thickness are used in treatment planning, geometrical uncertainty may induce dosimetric errors. We evaluated carbon ion dose variations due to different CT slice thicknesses using a four-dimensional (4D) carbon ion beam dose calculation, and compared results between ungated and gated respiratory strategies. Seven lung patients were scanned in 4D mode with a 0.5 mm slice thickness using a 256-multi-slice CT scanner. CT images were averaged with various numbers of images to simulate reconstructed images with various slice thicknesses (0.5-5.0 mm). Two scenarios were studied (respiratory-ungated and -gated strategies). Range compensators were designed for each of the CT volumes with coarse inter-slice spacing to cover the internal target volume (ITV), as defined from 4DCT. Carbon ion dose distribution was computed for each resulting ITV on the 0.5 mm slice 4DCT data. The accumulated dose distribution was then calculated using deformable registration for 4D dose assessment. The magnitude of over- and under-dosage was found to be larger with the use of range compensators designed with a coarser inter-slice spacing than those obtained with a 0.5 mm slice thickness. Although no under-dosage was observed within the clinical target volume (CTV) region, D95 remained at over 97% of the prescribed dose for the ungated strategy and 95% for the gated strategy for all slice thicknesses. An inter-slice spacing of less than 3 mm may be able to minimize dose variation between the ungated and gated strategies. Although volumes with increased inter-slice spacing may reduce geometrical accuracy at a certain respiratory phase, this does not significantly affect delivery of the accumulated dose to the target during the treatment course.

  12. Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance

    Science.gov (United States)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario

    2018-01-01

    Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.

  13. CT evaluation of primary epiphyseal bone abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Azouz, E.M. (Dept. of Radiology, McGill Univ., Montreal Children' s Hospital, PQ (Canada)); Greenspan, A. (Dept. of Radiology, California Univ., Davis School of Medicine, Sacramento, CA (United States)); Marton, D. (Dept. of Radiology, Montreal Univ., Hopital Ste Justine, PQ (Canada))

    1993-01-01

    We reviewed the clinical, radiographic, and computed tomographic (CT) findings in eight children with a histologically proven diagnosis of epiphyseal or apophyseal osteomyelitis. In all cases the femur was involved: in five the osteomyelitis was localized in the femoral condyle, in two it was in the greater trochanter, and in one it was in the femoral head epiphysis. In four of the six cases of epiphyseal involvement there was associated joint effusion or septic arthritis. CT examination may demonstrate a serpentine tract, a sequestrum, cortical destruction or adjacent soft tissue swelling and can differentiate osteomyelitis from other epiphyseal lucent lesions, particularly chondroblastoma and osteoid osteoma. Early diagnosis helps avoid delays in initiating antibiotic or surgical treatment caused by the unusual (epiphyseal or apophyseal) location of the bone abscess. (orig./GD)

  14. CT EVALUATION OF AZYGOESOPHAGEAL RECESS IN ADULTS

    Directory of Open Access Journals (Sweden)

    Kulamani Sahoo

    2015-02-01

    Full Text Available Azygoesophageal recess (AER is right posterior mediastinal recess . Knowledge of normal radiologic appearance and manifestations of disease in AER can facilitate the detection and diagnosis of many intrathoracic diseases ranging from infective processes to tumors involving mediastinum, lung/pleura, lymphatic system, upper gastrointestinal system (esophagus & stomach & cardio - vascular system. Aim of this study was to investigate various intrathoracic pathologies, altering the configuration of AER on CT in adults & to find out any significance with various disease processes. This study was carried out in CT center, Department of Radiodiagnosis, Krishna Institute of medical sciences, Karad from October 2012 - September 2014. CT thorax of 156 patients was studied for configuration of AER irrespective of pathology. In this study , configuration of AER was altered in descending order with pathologies belonging to following systems: Respiratory system (Lung parenchyma pathologies causing volume loss of right lower lobe particularly Koch’s , UIP , Malignancy , Pleural pathologies (Secondary more common than Primary >Lymphatic system(secondary subcarinal lymph node more common than Primary Lymphoma >Cardio - vascular system(Cardiomegaly particularly Left atrial enlargement >Gastrointestinal system ( hiatus herni a & esophageal Cancer > Mediastinum ( Koch’s of dorsal spine with paraspinal abscess.

  15. Combined Fluoroscopy- and CT-Guided Transthoracic Needle Biopsy Using a C-Arm Cone-Beam CT System: Comparison with Fluoroscopy-Guided Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Joo Yeon; Kim, Yoo Kyung; Shim, Sung Shine; Lim, Soo Mee [School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2011-02-15

    The aim of this study was to evaluate the usefulness of combined fluoroscopy- and CT-guided transthoracic needle biopsy (FC-TNB) using a cone beam CT system in comparison to fluoroscopy-guided TNB (F-TNB). We retrospectively evaluated 74 FC-TNB cases (group A) and 97 F-TNB cases (group B) to compare their respective diagnostic accuracies according to the size and depth of the lesion, as well as complications, procedure time, and radiation dose. The sensitivity for malignancy and diagnostic accuracy for small (< 30 mm in size) and deep ({>=} 50 mm in depth) lesions were higher in group A (91% and 94%, 92% and 94%) than in group B (73% and 81%, 84% and 88%), however not statistically significant (p > 0.05). Concerning lesions {>=} 30 mm in size and < 50 mm in depth, both groups displayed similar results (group A, 91% and 92%, 80% and 87%: group B, 90% and 92%, 86% and 90%). Pneumothorax occurred 26% of the time in group A and 14% for group B. The mean procedure time and patient skin dose were significantly higher in group A (13.6 {+-} 4.0 minutes, 157.1 {+-} 76.5 mGy) than in group B (9.0 {+-} 3.5 minutes, 21.9 {+-} 15.2 mGy) (p < 0.05). Combined fluoroscopy- and CT-guided TNB allows the biopsy of small (< 30 mm) and deep lesions ({>=} 50 mm) with high diagnostic accuracy and short procedure times, whereas F-TNB is still a useful method for large and superficial lesions with a low radiation dose

  16. Electron-beam CT diagnosis of the viscero-atrial heterotaxy syndrome

    International Nuclear Information System (INIS)

    Yang Youyou; Dai Ruping; Jing Baolian; He Sha; Bai Hua; Li Xiangmin; Zhou Xuhui; Peng Qian; Meng Quanfei

    2002-01-01

    Objective: To assess the usefulness of electron-beam CT (EBCT) in diagnosis of the viscero-atrial heterotaxy syndrome. Methods: Ten patients with the viscero-atrial heterotaxy syndrome were evaluated. The patients ranged in age from 7 months to 17 years (averaged 9.5 years). Five of the patients underwent EBCT contrast single slice mode while another 5 patients did continuous volume scan obtained from the superior aperture of thorax to the middle part of abdomen. All the patients had both angiocardiogram and echocardiogram, and 6 patients had operative outcomes. Results; (1) Eight patients with right atrial isomerism, bilaterally morphologic right atrial appendages, right lobe dominant symmetric liver, bilaterally epi-arterial bronchi, trilobed lungs, and total anomalous pulmonary venous connectional were clearly detected. Endocardial cushions defect, pulmonary stenosis, right-sided aortic arch and descending aorta were documented in 7 patients. Double outlet of right ventricle was imaged in 6 patients and hiatal hernia in 2 patients. Neither a spleen nor splenulus were found. (2) Two patients with left atrial isomerism, bilaterally morphologic left atrial appendages, left lobe dominant symmetric liver, bilaterally hyparterial bronchi, bilobed lungs, double outlet of right ventricle, pulmonary stenosis, interruption of inferior vena cave, right-sided aortic arch, and descending aorta were documented. Endocardial cushions defect was detected in 1 patient. Multiple spleens were demonstrated in the right upper abdomen in the 2 patients. (3) The number of abnormal observations detected by EBCT was 116, while that done by angiocardiogram and echocardiogram were 65 and 43 respectively. Conclusion: EBCT is a useful tool in the evaluation of patients with the syndrome of viscero-atrial heterotaxia

  17. CT and MR imaging in the evaluation of leptomeningeal metastases

    International Nuclear Information System (INIS)

    Xiao Jiahe; Wang Dayou; Deng Kaihong

    1999-01-01

    Objective: To study the manifestations of leptomeningeal metastases on CT and MR imaging, and evaluate the diagnostic significance of both modalities for this disease. Methods: Clinical and neuroradiological data of 21 cases with leptomeningeal metastases were retrospectively reviewed. In this series, 16 patients were studied by CT and 7 patients by MRI, 2 patients by both CT and MRI. Results: Abnormal enhancement of pia and subarachnoid space, appearing as diffuse pattern in 10 cases, nodular pattern in 8 cases and mixed pattern with diffuse plus nodules in 3 cases, were visualized by CE-CT and Gd-MRI. Diffuse enhancement followed the convolutions of gyri and surface of brainstem, and extended into cerebral cisterns and sulci. the foci appeared as enhanced nodules 0.2-3.0 cm in diameter and 1 or more in number. Nodules with infiltration of cerebral parenchymal were found in 4 patients. In 86% of all cases, diffuse or nodular foci occurred in basilar systems and adjacent cerebellar and cerebral sulci. There were 4 cases associated with ependymal nodular enhancement and 10 cases with widened irregular tentorial enhancement. Intracerebral metastases in 9 cases and hydrocephalus in 13 cases were found in this series. Conclusions: CE-CT and Gd-MRI are had significant clinical diagnostic value for leptomeningeal metastases, Gd-MRI is superior to CE-CT. Because of the limitation in the evaluation of leptomeningeal invasion by neoplasms on CT and MRI, definitive diagnosis of leptomeningeal metastases depends on combination of clinical and imaging data

  18. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.

  19. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    International Nuclear Information System (INIS)

    Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; Herk, Marcel van

    2005-01-01

    Purpose: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the performance of the algorithm to localize the prostate on cone-beam CT (CBCT) scans acquired on the treatment machine was evaluated. Methods and Materials: Five to 17 CBCT scans of 32 prostate cancer patients (332 scans in total) were used. For 18 patients (190 CBCT scans), the CBCT scans were acquired with a collimated field of view (FOV) (craniocaudal). This procedure improved the image quality considerably. The prostate (i.e., prostate plus seminal vesicles) in each CBCT scan was registered to the prostate in the planning CT scan by automatic 3D gray-value registration (normal GR) starting from a registration on the bony anatomy. When these failed, registrations were repeated with a fixed rotation point locked at the prostate apex (fixed apex GR). Registrations were visually assessed in 3D by one observer with the help of an expansion (by 3.6 mm) of the delineated prostate contours of the planning CT scan. The percentage of successfully registered cases was determined from the combined normal and fixed apex GR assessment results. The error in gray-value registration for both registration methods was determined from the position of one clearly defined calcification in the prostate gland (9 patients, 71 successful registrations). Results: The percentage of successfully registered CBCT scans that were acquired with a collimated FOV was about 10% higher than for CBCT scans that were acquired with an uncollimated FOV. For CBCT scans that were acquired with a collimated FOV, the percentage of successfully registered cases improved from 65%, when only normal GR was applied, to 83% when the results of normal and fixed apex GR were combined. Gray-value registration mainly failed (or

  20. Quality evaluation of radiotherapy treatment planning using 3-dimensional CT images

    International Nuclear Information System (INIS)

    Araki, Yutaka; Isobe, Yoshihide; Ozaki, Shin; Hosoki, Takuya; Mori, Shigeru; Ikeda, Hiroshi.

    1984-01-01

    Recently superimposition of dose distribution onto CT images has become available with the use of planning computers. However, the distribution is mostly along the plane of central axis of the beam, and evaluation of the quality of planning has not yet been established. In this paper, a method to evaluate the quality is demonstrated, using the extended definitions of ICRU 29 concept in to 3-dimensions. Therapeutic efficiency (Target Volume dose/Treatment Volume dose) is the main key to evaluate it. Concept and procedures are described in detail with two case examples. (author)

  1. Dose evaluation of narrow-beam

    International Nuclear Information System (INIS)

    Goto, Shinichi

    1999-01-01

    Reliability of the dose from the narrow photon beam becomes more important since the single high-dose rate radiosurgery becoming popular. The dose evaluation for the optimal dose is difficult due to absence of lateral electronic equilibrium. Data necessary for treatment regimen are TMR (tissue maximum ratio), OCR (off center ratio) and S c,p (total scatter factor). The narrow-beam was 10 MV X-ray from Varian Clinac 2100C equipped with cylindrical Fischer collimator CBI system. Detection was performed by Kodak XV-2 film, a PTW natural diamond detector M60003, Scanditronics silicon detector EDD-5 or Fujitec micro-chamber FDC-9.4C. Phantoms were the water equivalent one (PTW, RW3), water one (PTW, MP3 system) and Wellhofer WP600 system. Factors above were actually measured to reveal that in the dose evaluation of narrow photon beam, TMR should be measured by micro-chamber, OCR, by film, and S c,p , by the two. The use of diamond detector was recommended for more precise measurement and evaluation of the dose. The importance of water phantom in the radiosurgery system was also shown. (K.H.)

  2. A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.

    Science.gov (United States)

    Hua, Chiaho; Yao, Weiguang; Kidani, Takao; Tomida, Kazuo; Ozawa, Saori; Nishimura, Takenori; Fujisawa, Tatsuya; Shinagawa, Ryousuke; Merchant, Thomas E

    2017-11-01

    A ceiling-mounted robotic C-arm cone beam CT (CBCT) system was developed for use with a 190° proton gantry system and a 6-degree-of-freedom robotic patient positioner. We report on the mechanical design, system accuracy, image quality, image guidance accuracy, imaging dose, workflow, safety and collision-avoidance. The robotic CBCT system couples a rotating C-ring to the C-arm concentrically with a kV X-ray tube and a flat-panel imager mounted to the C-ring. CBCT images are acquired with flex correction and maximally 360° rotation for a 53 cm field of view. The system was designed for clinical use with three imaging locations. Anthropomorphic phantoms were imaged to evaluate the image guidance accuracy. The position accuracy and repeatability of the robotic C-arm was high (robotic CBCT system provides high-accuracy volumetric image guidance for proton therapy. Advances in knowledge: Ceiling-mounted robotic CBCT provides a viable option than CT on-rails for partial gantry and fixed-beam proton systems with the added advantage of acquiring images at the treatment isocentre.

  3. Experimental bacterial meningitis in rabbit; evaluation with CT and MRI

    International Nuclear Information System (INIS)

    Seo, Jeong Jin; Kang, Heoung Keun; Chu, Sung Nam; Kim, Yun Hyeon; Jeong, Yong Yeon; Chung, Hyon De

    1996-01-01

    The purpose of this study was to evaluate the usefulness of computed tomography(CT) and magnetic resonance imaging(MRI) in experimental bacterial meningitis. CT and MR images of experimental bacterial meningitis were obtained after inoculation of 1ml suspension of 10-6/ml Staphylococcus aureus directly into the supratentorial arachnoid space of 18 New Zealand white rabbits. Each animal was studied with both pre-enhanced and post-enhanced CT and MRI at 12, 24, 48 hours and 1 week. Cerebrospinal fluid of all of 18 rabbits were sampled and cultured for bacterial growth. All of 18 rabbits had the clinical symptoms such as neck stiffness and anorexia within 24 hours after the inoculation. Cerebrospinal fluid cultures were positive for Staphylococcus aureus growth. Gd-enhanced MRI exhibited diffuse enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement ratio(CER) at supratentorial meninges increased to 1.93 at 12 hours and 2.99 at 24 hours from 1.06 at 0 hour. Histologic evaluation demonstrated inflammatory cell infiltration into the meninges. MRI also identified the complications of meningitis such as ependymitis and hydrocephalus more effectively than CT. These results indicated that Fd-enhanced MRI detectred earlier the abnormal findingfs of bacterial meningitis and evaluated more effectively the complications of meningitis compared with CT. MRI was more useful than CT in evaluation of the bacterial meningitis

  4. Multidetector CT portal venography in evaluation of portosystemic collateral vessels

    International Nuclear Information System (INIS)

    Agarwal, A.; Jain, M.

    2008-01-01

    This essay shows the usefulness of multidetector CT angiography for evaluation of the splenoportal venous system, which is essential in the management of patients with portal hypertension and its complications, such as portal vein thrombosis. By providing scanning with reconstruction of thin axial source images and reformatting into thicker multiplanar reformats, multidetector CT can help to determine the extent and location of portosystemic collateral vessels in patients with portal hypertension and is probably the optimal imaging technique in this setting.

  5. Experimental bacterial meningitis in rabbit; evaluation with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Kang, Heoung Keun; Chu, Sung Nam; Kim, Yun Hyeon; Jeong, Yong Yeon; Chung, Hyon De [Chonnam Univ. Medical School, Kwangju (Korea, Republic of)

    1996-01-01

    The purpose of this study was to evaluate the usefulness of computed tomography(CT) and magnetic resonance imaging(MRI) in experimental bacterial meningitis. CT and MR images of experimental bacterial meningitis were obtained after inoculation of 1ml suspension of 10-6/ml Staphylococcus aureus directly into the supratentorial arachnoid space of 18 New Zealand white rabbits. Each animal was studied with both pre-enhanced and post-enhanced CT and MRI at 12, 24, 48 hours and 1 week. Cerebrospinal fluid of all of 18 rabbits were sampled and cultured for bacterial growth. All of 18 rabbits had the clinical symptoms such as neck stiffness and anorexia within 24 hours after the inoculation. Cerebrospinal fluid cultures were positive for Staphylococcus aureus growth. Gd-enhanced MRI exhibited diffuse enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement ratio(CER) at supratentorial meninges increased to 1.93 at 12 hours and 2.99 at 24 hours from 1.06 at 0 hour. Histologic evaluation demonstrated inflammatory cell infiltration into the meninges. MRI also identified the complications of meningitis such as ependymitis and hydrocephalus more effectively than CT. These results indicated that Fd-enhanced MRI detectred earlier the abnormal findingfs of bacterial meningitis and evaluated more effectively the complications of meningitis compared with CT. MRI was more useful than CT in evaluation of the bacterial meningitis.

  6. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  7. Performance evaluation of X-ray CT using visible scintillation light

    International Nuclear Information System (INIS)

    Kodama, Kiyoyuki; Hamada, Minoru; Suzuki, Tamotsu; Hashimoto, Masatoshi; Hanada, Takashi; Ide, Tatsuya; Maruyama, Koichi

    2004-01-01

    We proposed a new method of performance evaluation for X-ray CT using visible scintillation light and examined its usefulness in this study. When we scanned a plastic scintillator disk in a gantry opening of the X-ray CT, we could observe visible scintillation light. The rotation of the light-emitting area of the disk corresponded to that of the X-ray tube. We were able to record the scintillation light by digital video camera. By analyzing the area of visible scintillation light, the rotation speed of the X-ray tube, angular spread of the X-ray beam, uniformity of the incident X-rays, and change in X-ray energy were measured. No other method is available to obtain the above parameters of X-ray CT during a single CT scan. In the measurements of the uniformity of incident X-rays and change of X-ray energy, our method showed good accuracy in detecting the attenuation caused by the couch between the X-ray tube and the plastic scintillator disc. The proposed method is inexpensive and easy-to-use. We conclude that the method is a useful tool for performance evaluation as well as a maintenance tool for X-ray CT. (author)

  8. Effects of data sampling rate on image quality in fan-beam-CT system

    International Nuclear Information System (INIS)

    Iwata, Akira; Yamagishi, Nobutoshi; Suzumura, Nobuo; Horiba, Isao.

    1984-01-01

    Investigation was made into the relationship between spatial resolution or artifacts and data sampling rate in order to pursue the causes of the degradation of CT image quality by computer simulation. First the generation of projection data and reconstruction calculating process are described, and then the results are shown about the relation between angular sampling interval and spatical resolution or artifacts, and about the relation between projection data sampling interval and spatial resolution or artifacts. It was clarified that the formulation of the relationship between spatial resolution and data sampling rate performed so far for parallel X-ray beam was able to be applied to fan beam. As a conclusion, when other reconstruction parameters are the same in fan beam CT systems, spatial resolution can be determined by projection data sampling rate rather than angular sampling rate. The mechanism of artifact generation due to the insufficient number of angular samples was made clear. It was also made clear that there was a definite relationship among measuring region, angular sampling rate and projection data sampling rate, and the amount of artifacts depending upon projection data sampling rate was proportional to the amount of spatial frequency components (Aliasing components) of a test object above the Nyquist frequency of projection data. (Wakatsuki, Y.)

  9. Automatic calibration method of voxel size for cone-beam 3D-CT scanning system

    International Nuclear Information System (INIS)

    Yang Min; Wang Xiaolong; Wei Dongbo; Liu Yipeng; Meng Fanyong; Li Xingdong; Liu Wenli

    2014-01-01

    For a cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary stage along X-ray direction. In order to realize the automatic calibration of the voxel size, a new and easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least-square fitting. Through these interpolation values, a linear equation is obtained that reflects the relationship between the voxel size and the rotary stage translation distance from its nominal zero position. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system. When the rotary stage is moving along X-ray direction, the accurate value of the voxel size is dynamically exported. The experimental results prove that this method meets the requirements of the actual CT scanning system, and has virtues of easy implementation and high accuracy. (authors)

  10. Evaluation of anemia on unenhanced CT of the thorax

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Zhang Xuelin; Zhong Qun; Zhang Fan; Zhang Wensheng

    2006-01-01

    Objective: To explore the correlation between CT density of blood in Cardiac Chambers and hemoglobin concentration in blood, and to evaluate the veracity of diagnosis of aneamia on unenhanced computed tomography of the thorax. Methods: Thorax (heart) helical CT was performed in 92 patients. In each case, the CT values of the blood pool in left ventricle and ventricular septum were tested, and the ratio of blood pool/ventricular septum were calculated. The hemoglobin concentration in blood was tested. The correlation among these indexes were analysed. Results: In these factors, CT density of blood was strongly and positively correlated with hemoglobin concentration in blood (r=0.571, P=0.000), and the CT density ratio was also strongly and positively correlated with hemoglobin concentration in blood (r=0.650, P=0.000). It dramatically implies that the patient may be suffering from aneamia when the ratio is Ness than 90% (male) or 87% (female). Conclusion: Blood pool/ventricular septum CT density ratio may be as a reliable indicator for judging and grading aneamia with CT. (authors)

  11. Vocal cord paralysis due to extralaryngeal causes : evaluation with CT

    International Nuclear Information System (INIS)

    Lee, Jong Hwa; Mo, Jong Hyun; Moon, Sung Hee; Na, Dong Gyu; Byun, Hong Sik; Cho, Jae Min; Han, Boo Kyung; Son, Young Ik; Baek, Chung Whan

    1999-01-01

    To evaluate the use of CT in patients with vocal cord paralysis due to extralaryngeal causes, and to use CT for the assessment of extralaryngeal diseases causing vocal cord paralysis. We prospectively studied the results of CT in 41 patients with vocal cord paralysis in whom laryngoscopy revealed no laryngeal cause and physical examination demonstrated no definite extralaryngeal cause. The extralaryngeal cause of vocal cord palsy was determined after comprehensive clinical diagnosis. Enhanced CT scans were acquired from the skull base and continued to the level of the aorticopulmonary window. We used CT to assess the detection rate for extralaryngeal causes and to extimate the extent of extralaryngeal disease and the distribution of lesions. CT revealed that in 20 of 41 patients(49%) the extralarygeal causes of vocal paralysis were as follows : thyroid cancer(n=10), nodal disease(n=6), esophageal cancer(n=2), neurogenic tumor(n=1), aortic aneurysm(n=1). Lesions were located on the left side in 13 patients(65%), and in the tracheoesophageal groove in 15(75%). In patients with vocal cord paralysis in whom no definite lesion is seen on physical examination , CT could be a useful primary imaging method for the assessment of extralaryngeal causes

  12. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  13. A limited cone-beam CT for dental, head and neck regions

    International Nuclear Information System (INIS)

    Kirimura, Susumu

    2004-01-01

    Recently, limited cone-beam CTs for dental or head-and-neck regions, which utilize two-dimensional X-ray detectors, have been gaining popularity. With one single rotation, they provide high-resolution volumetric data of a small region, which is suitable for specialized medical applications in the dental and otorhinolaryngology fields. It is particularly useful in visualizing small structures such as temporal, maxilla or mandibula bones. Since the imaging area is limited to a small but sufficient region, it can reduce unnecessary X-ray exposure to the patient. As the entire system is designed to be space-efficient compared to existing CT systems in the field, it is possible fit the unit into a small clinic. This type of device can be a far more practical and useful tool than an existing CT for special applications requiring detailed imaging of the fine bone structures of teeth, the middle ear, etc. (author)

  14. Multiphasic helical CT of hepatocellular carcinoma. Evaluation after chemo embolization

    International Nuclear Information System (INIS)

    Catalano, O.; Esposito, M.; Sandomenico, F.; Siani, A.; Nunziata, A.

    2000-01-01

    The main purpose of this work is to report the personal experience with addition of contrast-enhanced multiphase helical CT to unenhanced CT (Lipiodol CT) in the evaluation of patients with hepatocellular carcinoma treated with chemoembolization and to analyze the present role of oily agent CT. It has been retrospectively reviewed the examinations of 42 consecutive patients submitted to globla chemoembolization over a 2-year period. CT was performed 18-30 days after the treatment. The Lipiodol CT study was carried out with volume acquisitions. It has been considered as nodules all well-defined areas with dense oily agent uptake; uptake itself was classified as: 0=absent, I=lower tha 10% of the tumor volume; II=lower than 50%, III=50%, IV=homogeneous. Contrast-enhanced helical CT was performed with the 2-phase technique in 28 patients and with the 3-phase technique in 14; it has been considered as nodules all well-defined and relatively homogeneous areas with hyperattenuation in the arterial phase and hypo-isoattenuation in the portal and/or delayed phase, or with hypo-isoattenuation in the arterial phase and in the portal and/or delayed phase. Lipiodol CT permitted to recognize 65 nodules (1-5/patient, mean 1.5), namely 15 grade I, 21 grade II, 20 grade III and 9 grade IV. Multiphase CT identified 6 additional nodules in 5 patients, 5 hypervascular and 1 hypovascular, and better assessed the correct morphology and volume of grade I nodules. Only 4 of 6 nodules missed on Lipiodol CT showed oily agent uptake after a new chemoembolization session. Moreover after retreatment, carried out in 6 of 9 patients with grade I uptake (11 nodules in all), it has been found persistence of the grade I pattern in 5 nodules, grade II in 5, and grade III in 1. Lipiodol CT may miss liver nodules and underestimate the volume of nodules with poor uptake. Though Lipiodol CT should still be considered slightly more sensitive than multiphase CT, in the general opinion this technique has

  15. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  16. Automatic intrinsic cardiac and respiratory gating from cone-beam CT scans of the thorax region

    Science.gov (United States)

    Hahn, Andreas; Sauppe, Sebastian; Lell, Michael; Kachelrieß, Marc

    2016-03-01

    We present a new algorithm that allows for raw data-based automated cardiac and respiratory intrinsic gating in cone-beam CT scans. It can be summarized in three steps: First, a median filter is applied to an initially reconstructed volume. The forward projection of this volume contains less motion information and is subtracted from the original projections. This results in new raw data that contain only moving and not static anatomy like bones, that would otherwise impede the cardiac or respiratory signal acquisition. All further steps are applied to these modified raw data. Second, the raw data are cropped to a region of interest (ROI). The ROI in the raw data is determined by the forward projection of a binary volume of interest (VOI) that includes the diaphragm for respiratory gating and most of the edge of the heart for cardiac gating. Third, the mean gray value in this ROI is calculated for every projection and the respiratory/cardiac signal is acquired using a bandpass filter. Steps two and three are carried out simultaneously for 64 or 1440 overlapping VOI inside the body for the respiratory or cardiac signal respectively. The signals acquired from each ROI are compared and the most consistent one is chosen as the desired cardiac or respiratory motion signal. Consistency is assessed by the standard deviation of the time between two maxima. The robustness and efficiency of the method is evaluated using simulated and measured patient data by computing the standard deviation of the mean signal difference between the ground truth and the intrinsic signal.

  17. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    Science.gov (United States)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  18. Estimation of effective dose from limited cone beam X-ray CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazuo; Arai, Yoshinori; Hashimoto, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry; Nishizawa, Kanae

    2000-12-01

    The limited cone beam X-ray CT (Ortho-CT) was developed on the basis of multi-functional panoramic apparatus, SCANORA (Soredex Co. Helsinki Finland). The imaging intensifier (I.I.) was built in this apparatus as a X-ray detection device instead of X-ray film. The signal provided from I.I. was converted from analog into digital by an analog-digital converter and image reconstitution was done as a three-directional image of the dimensions 3.8 cm of width, 3.0 cm height and 3.8 cm depth with the personal computer. The 3DX Multi image micro CT'' (3DX) was developed along similar lines by MORITA Co., Ltd. (Kyoto, JAPAN). In this study, the stochastic effect on organ and tissue caused by examinations using Ortho-CT and 3DX was measured. The effective dose was estimated according to the recommendation of ICRP60 and was compared with those of panoramic radiography and computed tomography. The irradiation conditions were as follows: 85 kV, 10 mA with the filtration of 3 mmAl and added 1 mmCu for Ortho-CT, and 80 kV, 2 mA and the filtration of 3.1 mmAL for 3DX. The measurement of organ and tissue dose was performed using an anthropomorphic Rando woman phantom (Alderson Research Laboratories Co., Stanfora, CN), as well as by using two different type of thermoluminescent dosimeter (TLD); Panasonic UD-170A (BeO) and UD-110S (CaSO{sub 4}: Tm). The UD-170A was for dose measurement of the inner useful X-ray beams, while the UD-110S was for outer beams. The measured organ and tissue were those recommended with ICRP60 (gonad, breast, bone marrow, lung, thyroid gland, esophagus, stomach, colon, liver, bladder, skin, brain, thymus, adrenal, kidney, spleen, pancrease, upper large intestine, uterus, eyes and major salivary gland). The imaging by Orhto-CT was made in the left maxillary 1st molar, left mandibular 1st molar and temporomandibular joint. 3DX measurement was made in the maxillary incisor region and middle ear regions other than the regions mentioned above. The skin

  19. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    Directory of Open Access Journals (Sweden)

    Ming Yan

    2006-01-01

    Full Text Available FDK algorithm is a well-known 3D (three-dimensional approximate algorithm for CT (computed tomography image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  20. The CT evaluation of cephalic and cervical adenoid cystic carcinoma

    International Nuclear Information System (INIS)

    Gu Yajia; Wang Jiuhua; Wang HOngshi; Chen Tongzhen

    2000-01-01

    Objective: To evaluate the CT manifestations of cephalic and cervical adenoid cystic carcinoma (ACC). Methods: Thirty-three cases of ACC were analyzed retrospectively. Of all cases, 22 cases underwent operation and 11 cases received radiotherapy. The manifestations of CT were evaluated and compared with the clinical and pathologic results. Results: Tumors originated from parotid gland (5 cases), floor of mouth (5 cases), nasal cavity and nasopharynx (5 cases), tongue (4 cases), palate (3 cases), tracheas (3 cases), submandibular gland (2 cases), tonsilla (2 cases), maxillary sinus (2 cases), and cheek (2 cases), respectively. The CT manifestations included: (1)ethmoid density in 21 cases, partial ethmoid density in 5 cases. (2)the morphology of ACC was irregular and the growth of the tumor was amorphous in 17 cases, and the margin of the tumor was vague in 20 cases. (3)ACC often grew along the nerve with infiltration, which caused destruction of the skull base in 5 cases and atrophy of mastication muscles and/or buccinator in 3 cases. Conclusion: (1)The characteristics of cephalic and cervical adenoid cystic carcinoma on CT scans were ethmoid density, infiltrated growth, growing along the nerve with infiltration, and submucous growth. Among them, the most important manifestation, which could lead to the histologic diagnosis on CT, was ethmoid density. (2)The range of ACC was usually underestimated on CT. (3)The manifestation of tumor growth along the nerve could be apparently displayed on MRI

  1. CT diagnosis in the evaluation of vertebral trauma

    International Nuclear Information System (INIS)

    Emori, Takumi; Kadoya, Satoru; Nakamura, Tsutomu; Ito, Shotaro; Kwak, Ryungchan

    1984-01-01

    The diagnostic capability of the CT scan of the vertebral trauma and a comparison with the results of a routine roentgenogram and tomogram were studied in 11 patients. In total, there were 15 fractured vertebrae: 3 in the upper cervical, 3 in the lower cervical, and 9 in the thoracic and thoraco-lumbar vertebrae. In the detailed evaluation of the vertebral fractures, CT provided more information than plain films in all 15 fractured vertebrae, with a better visualization of the spinal bony details, particularly at the upper cervical, thoracic, and thoraco-lumbar levels, where the interpretation of the spinal abnormalities is usually difficult because of adjacent structures such as the skull and thorax. Only CT was able to demonstrate impingements on the vertebral canal by bony fragments. Post-traumatic syringomyelia was incidentally demonstrated in one patient on a plain CT. In 6 patients, conventional tomography was done, but no additional information with regard to spinal instability and spinal-cord compression was obtained. The usage of sagittal tomography was also limited, because it required a change in the patient's position, which might worsen the neurological deficits. On the other hand, a plain roentgenogram and conventional tomography were superior in the evaluation of spinal malalignment and fractures running horizontally. In summary, both plain roentgenograms and CT images provided detailed information about vertebral injury, whereas conventional tomography is judged to be inferior and not always necessary. Based on these results, our new diagnostic and therapeutic approaches using CT for the vertebral injuries were presented. (author)

  2. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  3. The importance of cone beam CT in the radiological detection of osteomalacia.

    Science.gov (United States)

    Cakur, B; Sümbüllü, M A; Dagistan, S; Durna, D

    2012-01-01

    Although osteomalacia is one of the most common osteometabolic diseases among the elderly, there is no case in the literature that presents the effects of osteomalacia in detail using cone beam CT (CBCT). While thin and porous bones are the most common radiographic sign of the disease, the radiological hallmarks are pseudofractures (Looser's zone). We coincidentally detected osteomalacia in a 23-year-old female and we showed the pseudofracture on CBCT images. In the present case, we aim to present the images of osteomalacia that were detected by CBCT in detail. CBCT has an important value in screening for osteomalacia.

  4. Cirrhosis: CT and MR imaging evaluation

    International Nuclear Information System (INIS)

    Brancatelli, Giuseppe; Federle, Michael P.; Ambrosini, Roberta; Lagalla, Roberto; Carriero, Alessandro; Midiri, Massimo; Vilgrain, Valerie

    2007-01-01

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein

  5. Cirrhosis: CT and MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brancatelli, Giuseppe [Sezione di Radiologia, Ospedale Specializzato in Gastroenterologia, ' Saverio de Bellis' -IRCCS, 70013 Castellana Grotte (Bari) (Italy) and Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy) and Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States)]. E-mail: gbranca@yahoo.com; Federle, Michael P. [Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15213 Pittsburgh, PA (United States); Ambrosini, Roberta [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Lagalla, Roberto [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Carriero, Alessandro [Department of Diagnostic and Interventional Radiology, ' Maggiore della Carita' University Hospital, ' A.Avogadro' Eastern Piemonte University, Corso Mazzini 18, Novara (Italy); Midiri, Massimo [Sezione di Scienze Radiologiche, Dipartimento di Biotecnologie Mediche e Medicina Legale, Universita di Palermo, Via del Vespro 127, 90127 Palermo (Italy); Vilgrain, Valerie [Service de Radiologie, Hopital Beaujon, 100 Boulevard du General Leclerc, 92118 Clichy (France)

    2007-01-15

    In this article, we present the CT and MR imaging characteristics of the cirrhotic liver. We describe the altered liver morphology in different forms of viral, alcoholic and autoimmune end-stage liver disease. We present the spectrum of imaging findings in portal hypertension, such as splenomegaly, ascites and varices. We describe the patchy and lacelike patterns of fibrosis, along with the focal confluent form. The process of hepatocarcinogenesis is detailed, from regenerative to dysplastic nodules to overt hepatocellular carcinoma. Different types of non-neoplastic focal liver lesions occurring in the cirrhotic liver are discussed, including arterially enhancing nodules, hemangiomas and peribiliary cysts. We show different conditions causing liver morphology changes that can mimic cirrhosis, such as congenital hepatic fibrosis, 'pseudo-cirrhosis' due to breast metastases treated with chemotherapy, Budd-Chiari syndrome, sarcoidosis and cavernous transformation of the portal vein.

  6. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-03-01

    Full Text Available Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT. We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1 FDK reconstruction using raw projection data; 2 Rigid Registration of planning CT to the FDK results; 3 MC scatter calculation at sparse view angles using the planning CT; 4 Interpolation of the calculated scatter signals to other angles; 5 Removal of scatter from the raw projections; 6 FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this

  7. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    Science.gov (United States)

    Knopf, A.; Parodi, K.; Paganetti, H.; Cascio, E.; Bonab, A.; Bortfeld, T.

    2008-08-01

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6° to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET

  8. Quantitative assessment of the physical potential of proton beam range verification with PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Knopf, A; Paganetti, H; Cascio, E; Bortfeld, T [Department of Radiation Oncology, MGH and Harvard Medical School, Boston, MA 02114 (United States); Parodi, K [Heidelberg Ion Therapy Center, Heidelberg (Germany); Bonab, A [Department of Radiology, MGH and Harvard Medical School, Boston, MA 02114 (United States)

    2008-08-07

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6{sup 0} to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the

  9. Quantitative assessment of the physical potential of proton beam range verification with PET/CT.

    Science.gov (United States)

    Knopf, A; Parodi, K; Paganetti, H; Cascio, E; Bonab, A; Bortfeld, T

    2008-08-07

    A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6 degrees to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the

  10. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: reliability of mucosa-supported stereolithographic guides.

    Science.gov (United States)

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Pişkin, Bülent; Özdemir, Tayfun

    2013-12-01

    Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (p < .05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80 mm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87 mm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (p = .169 and p = .551, p = .113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.

  11. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    International Nuclear Information System (INIS)

    Mishra, K; Godley, A

    2014-01-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc

  12. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, K [Cleveland State University, Cleveland, OH (United States); Godley, A [Cleveland Clinic, Cleveland, OH (United States)

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  13. Evaluation of left ventricular function by cardiac CT

    International Nuclear Information System (INIS)

    Naito, Hiroaki; Kozuka, Takahiro

    1982-01-01

    Left ventricular function was evaluated by CT, which was compared with the data of left ventriculography for various cardiac diseases. The end diastolic volume of the left ventricle can be readily computed from CT, with a satisfactory correlation with that of left ventriculography (r = 0.95). The left ventricular ejection fraction, calculated from the areal ratio of the left ventricular lumen in end-diastolic imaging to that in end-sytolic imaging, also roughly reflects left ventricular contractile function, but shows correlation with left ventriculography by only r = 0.79. Although the cardiac output is not sensitive for functional evaluation, it can be directly calculated by means of dynamic scanning and shows a satisfactory correlation with the ear piece pigment dilution (r = 0.85). Evaluation of left ventricular function by CT shows a high precision in comparison with left ventriculography, but still lacks temporal resolving power. (Chiba, N.)

  14. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT)

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, Seppo K. [Helsinki University Central Hospital, Department of Radiology, HUS Helsinki Medical Imaging Center, Helsinki (Finland); Helsinki University Hospital, Toeoeloe Trauma Center, Department of Radiology, HUS Helsinki Medical Imaging Center, Helsinki (Finland); Haapamaeki, Ville V.; Kortesniemi, Mika [Helsinki University Central Hospital, Department of Radiology, HUS Helsinki Medical Imaging Center, Helsinki (Finland); Salo, Jari [Helsinki University Central Hospital, Department of Orthopedic and Trauma Surgery, Helsinki (Finland); Kuopio University Hospital, UEF, Department of Orthopedics, Traumatology and Hand Surgery, Kuopio (Finland); Lindfors, Nina C. [Helsinki University Central Hospital, Department of Orthopedic and Hand Surgery, Helsinki (Finland); Seppaelae, Lauri [Planmed Oy, Helsinki (Finland); Mattila, Kimmo T. [Turku University Central Hospital, Department of Diagnostic Radiology, Turku (Finland)

    2013-05-15

    To evaluate the feasibility and intra- and interobserver agreement of CBCT arthrography of wrist ligaments, triangular fibrocartilaginous complex (TFCC), and to assess the sensitivity (SE), specificity (SP), accuracy (ACC), and positive and negative predictive value (PPV, NPV) of CBCT arthrography in the diagnosis of scapholunate (SLL) and lunotriquetral (LTL) ligament tears, TFCC, and cartilage abnormalities of the scaphoid and lunate with their corresponding radial surfaces (scaphoid and lunate fossa) using a novel, mobile, dedicated extremity CBCT scanner. Fifty-two consecutively enrolled subjects (26 M, 26 F, mean age 38 years, range 18-66 years) with suspected wrist ligament tears underwent CBCT-arthrography before normally scheduled MR arthrography.An extremity CBCT was used for imaging with isotropic voxel size of 0.4 x 0.4 x 0.4 mm{sup 3}. Subsequent routine 1.5 T MRI was performed using a dedicated wrist coil.Two observers reviewed the anonymized CBCT images twice for contrast enhancement (CE) and technical details (TD), for tears of the SLL, LTL, and TFCC. Also, cartilage abnormalities of the scaphoid and lunate with their corresponding radial surfaces (scaphoid and lunate fossa) were evaluated. Inter- and intraobserver agreement was determined using weighted kappa statistics. Since no surgery was performed, MRI served as a reference standard, and SE and SP, ACC, PPV, and NPV were calculated. Intra- and interobserver kappa values for both readers (reader 1/reader 2; first reading/second reading) with 95 % confidence limits were: CE 0.54 (0.08-1.00)/ 0.75 (0.46-1.00); 0.73 (0.29-1.00)/ 0.45 (0.07-0.83), TD 0.53 (0.30-0.88)/ 0.86 (0.60-1.00); 0.56 (0.22-0.91)/ 0.67 (0.37-0.98), SLL 0.59 (0.25-0.93)/ 0.66 (0.42-0.91); 0.31 (0.06-0.56)/ 0.49 (0.26-0.73), LTL 0.83 (0.66-1.00)/ 0.68 (0.46-0.91); 0.90 (0.79-1.00)/ 0.48 (0.22-0.74); TFCC (0.72-1.00)/ (0.79-1.00); 0.65 (0.43-0.87)/ 0.59 (0.35-0.83), radius (scaphoid fossa) 0.45 (0.12-0.77)/ 0.64 (0.31-0.96); 0

  15. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma?

    Science.gov (United States)

    Mulé, Sébastien; Pigneur, Frédéric; Quelever, Ronan; Tenenhaus, Arthur; Baranes, Laurence; Richard, Philippe; Tacher, Vania; Herin, Edouard; Pasquier, Hugo; Ronot, Maxime; Rahmouni, Alain; Vilgrain, Valérie; Luciani, Alain

    2018-05-01

    To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) statistic (F)=28.52, padvanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.

  16. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development

    International Nuclear Information System (INIS)

    Boone, J.

    2016-01-01

    investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography

  17. WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Boone, J. [UC Davis Medical Center (United States)

    2016-06-15

    investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography

  18. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number.

    Science.gov (United States)

    Lu, Bo; Lu, Haibin; Palta, Jatinder

    2010-05-12

    The objective of this study was to evaluate the effect of kilovoltage cone-beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection-number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone-beam three-dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection-number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rota-tions. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3 masculine rotation. However, when the projection number was lower than one-fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection-number reduction strategy under conscientious care, imaging-guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease-based, dose-reduction method.

  19. Reconstruction-of-difference (RoD) imaging for cone-beam CT neuro-angiography

    Science.gov (United States)

    Wu, P.; Stayman, J. W.; Mow, M.; Zbijewski, W.; Sisniega, A.; Aygun, N.; Stevens, R.; Foos, D.; Wang, X.; Siewerdsen, J. H.

    2018-06-01

    Timely evaluation of neurovasculature via CT angiography (CTA) is critical to the detection of pathology such as ischemic stroke. Cone-beam CTA (CBCT-A) systems provide potential advantages in the timely use at the point-of-care, although challenges of a relatively slow gantry rotation speed introduce tradeoffs among image quality, data consistency and data sparsity. This work describes and evaluates a new reconstruction-of-difference (RoD) approach that is robust to such challenges. A fast digital simulation framework was developed to test the performance of the RoD over standard reference reconstruction methods such as filtered back-projection (FBP) and penalized likelihood (PL) over a broad range of imaging conditions, grouped into three scenarios to test the trade-off between data consistency, data sparsity and peak contrast. Two experiments were also conducted using a CBCT prototype and an anthropomorphic neurovascular phantom to test the simulation findings in real data. Performance was evaluated primarily in terms of normalized root mean square error (NRMSE) in comparison to truth, with reconstruction parameters chosen to optimize performance in each case to ensure fair comparison. The RoD approach reduced NRMSE in reconstructed images by up to 50%–53% compared to FBP and up to 29%–31% compared to PL for each scenario. Scan protocols well suited to the RoD approach were identified that balance tradeoffs among data consistency, sparsity and peak contrast—for example, a CBCT-A scan with 128 projections acquired in 8.5 s over a 180°  +  fan angle half-scan for a time attenuation curve with ~8.5 s time-to-peak and 600 HU peak contrast. With imaging conditions such as the simulation scenarios of fixed data sparsity (i.e. varying levels of data consistency and peak contrast), the experiments confirmed the reduction of NRMSE by 34% and 17% compared to FBP and PL, respectively. The RoD approach demonstrated superior performance in 3D angiography

  20. Beam-hardening correction in CT based on basis image and TV model

    International Nuclear Information System (INIS)

    Li Qingliang; Yan Bin; Li Lei; Sun Hongsheng; Zhang Feng

    2012-01-01

    In X-ray computed tomography, the beam hardening leads to artifacts and reduces the image quality. It analyzes how beam hardening influences on original projection. According, it puts forward a kind of new beam-hardening correction method based on the basis images and TV model. Firstly, according to physical characteristics of the beam hardening an preliminary correction model with adjustable parameters is set up. Secondly, using different parameters, original projections are operated by the correction model. Thirdly, the projections are reconstructed to obtain a series of basis images. Finally, the linear combination of basis images is the final reconstruction image. Here, with total variation for the final reconstruction image as the cost function, the linear combination coefficients for the basis images are determined according to iterative method. To verify the effectiveness of the proposed method, the experiments are carried out on real phantom and industrial part. The results show that the algorithm significantly inhibits cup and strip artifacts in CT image. (authors)

  1. Evaluation of Deep Vein Thrombosis with Multidetector Row CT after Orthopedic Arthroplasty: a Prospective Study for Comparison with Doppler Sonography

    International Nuclear Information System (INIS)

    Byun, Sung Su; Kim, Youn Jeong; Chun, Yong Sun; Kim, Won Hong; Kim, Jeong Ho; Park, Chul Hi

    2008-01-01

    This prospective study evaluated the ability of indirect 16-row multidetector CT venography, in comparison with Doppler sonography, to detect deep vein thrombosis after total hip or knee replacement. Sixty-two patients had undergone orthopedic replacement surgery on a total of 30 hip joints and 54 knee joints. The CT venography (scan delay time: 180 seconds; slice thickness/increment: 2/1.5 mm) and Doppler sonography were performed 8 to 40 days after surgery. We measured the z-axis length of the beam hardening artifact that degraded the image quality so that the presence of deep vein thrombosis couldn't be evaluated on the axial CT images. The incidence and location of deep vein thrombosis was analyzed. The diagnostic performance of the CT venograms was evaluated and compared with that of Doppler sonography as a standard of reference. The z-axis length (mean±standard deviation) of the beam hardening artifact was 4.5±0.8 cm in the arthroplastic knees and 3.9±2.9 cm in the arthroplastic hips. Deep vein thrombosis (DVT) was found in the popliteal or calf veins on Doppler sonography in 30 (48%) of the 62 patients. The CT venography has a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 90%, 97%, 96%, 91% and 94%, respectively. The ability of CT venography to detect DVT was comparable to that of Doppler sonography despite of beam hardening artifact. Therefore, CT venography is feasible to use as an alternative modality for evaluating postarthroplasty patients

  2. Evaluation of Deep Vein Thrombosis with Multidetector Row CT after Orthopedic Arthroplasty: a Prospective Study for Comparison with Doppler Sonography

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Sung Su; Kim, Youn Jeong; Chun, Yong Sun; Kim, Won Hong [Inha University, College of Medicine, Incheon (Korea, Republic of); Kim, Jeong Ho; Park, Chul Hi [Gachon University, Gil Medical Center, Incheon (Korea, Republic of)

    2008-02-15

    This prospective study evaluated the ability of indirect 16-row multidetector CT venography, in comparison with Doppler sonography, to detect deep vein thrombosis after total hip or knee replacement. Sixty-two patients had undergone orthopedic replacement surgery on a total of 30 hip joints and 54 knee joints. The CT venography (scan delay time: 180 seconds; slice thickness/increment: 2/1.5 mm) and Doppler sonography were performed 8 to 40 days after surgery. We measured the z-axis length of the beam hardening artifact that degraded the image quality so that the presence of deep vein thrombosis couldn't be evaluated on the axial CT images. The incidence and location of deep vein thrombosis was analyzed. The diagnostic performance of the CT venograms was evaluated and compared with that of Doppler sonography as a standard of reference. The z-axis length (mean{+-}standard deviation) of the beam hardening artifact was 4.5{+-}0.8 cm in the arthroplastic knees and 3.9{+-}2.9 cm in the arthroplastic hips. Deep vein thrombosis (DVT) was found in the popliteal or calf veins on Doppler sonography in 30 (48%) of the 62 patients. The CT venography has a sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 90%, 97%, 96%, 91% and 94%, respectively. The ability of CT venography to detect DVT was comparable to that of Doppler sonography despite of beam hardening artifact. Therefore, CT venography is feasible to use as an alternative modality for evaluating postarthroplasty patients.

  3. Preoperative CT evaluation on nasal cavity for transsphenoidal approach

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Yamaura, Akira; Hoshi, Seiichiro; Sunada, Souichi; Sunami, Kenro

    1997-01-01

    Preoperative bone CT scans sliced parallel to the surgical plane were evaluated in 32 cases of transsphenoidal surgery. This method predicted patients with narrow nasal cavity, and helped to determine the rhinological maneuvers for providing a wider operative field. In addition, it helps to plan the need and extent of sella floor removal in re-operated cases. There was relatively little difference in the width and length of the nasal cavity between acromegalic and non-acromegalic patients. Hence, bone CT scans are useful in the preoperative evaluation of patients undergoing transsphenoidal surgery. (author)

  4. Spatial resolution measurements by Radia diagnostic software with SEDENTEXCT image quality phantom in cone beam CT for dental use.

    Science.gov (United States)

    Watanabe, Hiroshi; Nomura, Yoshikazu; Kuribayashi, Ami; Kurabayashi, Tohru

    2018-02-01

    We aimed to employ the Radia diagnostic software with the safety and efficacy of a new emerging dental X-ray modality (SEDENTEXCT) image quality (IQ) phantom in CT, and to evaluate its validity. The SEDENTEXCT IQ phantom and Radia diagnostic software were employed. The phantom was scanned using one medical full-body CT and two dentomaxillofacial cone beam CTs. The obtained images were imported to the Radia software, and the spatial resolution outputs were evaluated. The oversampling method was employed using our original wire phantom as a reference. The resultant modulation transfer function (MTF) curves were compared. The null hypothesis was that MTF curves generated using both methods would be in agreement. One-way analysis of variance tests were applied to the f50 and f10 values from the MTF curves. The f10 values were subjectively confirmed by observing the line pair modules. The Radia software reported the MTF curves on the xy-plane of the CT scans, but could not return f50 and f10 values on the z-axis. The null hypothesis concerning the reported MTF curves on the xy-plane was rejected. There were significant differences between the results of the Radia software and our reference method, except for f10 values in CS9300. These findings were consistent with our line pair observations. We evaluated the validity of the Radia software with the SEDENTEXCT IQ phantom. The data provided were semi-automatic, albeit with problems and statistically different from our reference. We hope the manufacturer will overcome these limitations.

  5. CT evaluation of preoperative cochlear implantation cochlear implantation

    International Nuclear Information System (INIS)

    Tan Xiuzhong; Zhong Lansheng; Lan Bowen; Huang Yaosheng; Du Baowen; Zhu Jian

    2004-01-01

    Objective: To evaluate CT scan as a preoperative evaluation for cochlear implantation candidates. Methods: Axial high-resolution temporal bone CT and three-dimensional reconstruction of inner ear were performed in 93 patients with sensorineural hearing loss. results: Among 81 patients with congenital sensorineural deafness, Mondini malformation was seen in 7 case (13 ears); large vestibular aqueduct syndrome (LVAS) was revealed in 5 cases (8 ears); and inner ear ossification was found in 1 case (2 ears). In 1 case (2 ears) of inner ear fibrosis, reduced cochlear signal was noted on MRI but no unremarkable findings was shown on CT scan, however, in the operation, the device could not inserted into the basal circle of the cochlea, due to fibrous obliteration. In 12 patients with post-speech deafness, chronic suppurative tympanitis was seen in 2 cases (4 ears), and inner ear ossification was revealed in 1 case (2 ears). Conclusion: CT plays an indispensable role in the pre-operative evaluation of cochlear implantation. T 2 -weighted FSE-MRI of the inner ear is a useful complementary to CT scan. (authors)

  6. X-ray CT evaluation of pulmonary involvements of sarcoidosis

    International Nuclear Information System (INIS)

    Nishimura, Koichi; Izumi, Takateru; Kitaichi, Masanori

    1987-01-01

    We evaluated high resolution CT in 60 patients with histologically diagnosed pulmonary sarcoidosis and, also, studied the relationship between CT and findings in open lung biopsy specimens in 2 cases. The CT findings were as follows: (1) thickening of bronchial wall shadows (27 out of 60 cases, 45.0 %), (2) irregular enlargement of pulmonary vascular shadows (39 cases, 65.0 %), (3) small or large nodular shadows (24 cases, 40.0 %), (4) local volume loss (14 cases, 23.3 %), (5) slightly increased density of localized lung field areas (24 cases, 40.0 %), (6) pleural or subpleural involvement (27 cases, 45.0 %), (7) lymph node enlargement (59 cases, 98.3 %). X-ray CT in 7 patients revealed no evidence of lung field involvement in patients with histologicall confirmed epithelioid cell granuloma in transbronchial lung biopsy specimens. Lesions located within vessels or in the vascular wall, perivascular sheath or alveoli surrounding blood vessels might cause pulmonary vascular shadows to appear swollen on CT. In a comparative study, we found irregular dilatation of pulmonary vascular shadows corresponding to granulomas in the connective tissue sheath of blood vessels. Also, thickening of bronchial wall shadows corresponded to granulomas in and around the bronchial wall. From the point of histopathological view epithelioid cell granulomas in the bronchovascular sheath were most marked in sarcoidosis, and they apperaed on CT as an irregular enlargement of pulmonary vascular shadows and thickening of the bronchial wall. On the other hand, we reported that collapse of alveoli and fibrosis surrounding blood vessels could cause irregular enlargement of pulmonary vascular shadows on CT in idiopathic pulmonary fibrosis (IPF). Such shadows were seen on CT in both sarcoidosis and IPF but the mechanism of their appearance differed. (J.P.N.)

  7. Daily fraction dose recalculation based on rigid registration using Cone Beam CT

    Directory of Open Access Journals (Sweden)

    Courtney Bosse

    2014-03-01

    Full Text Available Purpose: To calculate the daily fraction dose for CBCT recalculations based on rigid registration and compare it to the planned CT doses.Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. Pinnacle was used to re-contour the regions of interest (ROI for the specific CBCT by copying the contours from the original CT plan, planned by the prescribing physician, onto each daily CBCT and then manually reshaping contours to match the ROIs. A new plan is then created with the re-contoured CBCT as primary image in order to calculate the daily dose delivered to each ROI. The DVH values are then exported into Excel and overlaid onto the original CT DVH to produce a graph.Results: For the SBRT lung patients, we found that there were small daily volume changes in the lungs, trachea and esophagus. For almost all regions of interest we found that the dose received each day was less than the predicted dose of the planned CT while the PTV dose was relatively the same each day. The results for the prostate patients were similar, showing slight differences in the DVH values for different days in the rectum and bladder but similar PTV.Conclusion: By comparing daily fraction dose between the re-contoured CBCT images and the original planned CT show that PTV coverage for both prostate and SBRT, it has been shown that for PTV coverage, a planned CT is adequate. However, there are differences between the dose for the organs surrounding the PTV. The dose difference is less than the planned in most instances.-----------------------Cite this article as: Bosse C, Tuohy R, Mavroidis P, Shi Z, Crownover R, Gutierrez A, Papanikolaou N, Stathakis S. Daily fraction dose recalculation based on rigid registration using Cone Beam CT. Int J Cancer Ther Oncol 2014; 2(2:020217. DOI: 10.14319/ijcto.0202.17

  8. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Science.gov (United States)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally <1 mm and the rotational setup errors from 5° to <1°. Compared with the PICCS algorithm alone, the integration of rigid

  9. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    Science.gov (United States)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  10. Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification

    Science.gov (United States)

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-03-01

    In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental cone-beam CT images for the purpose of automatic filing of dental charts. In our method, individual tooth in CT images are detected and classified into seven tooth types using deep convolutional neural network. We employed the fully convolutional network using AlexNet architecture for detecting each tooth and applied our previous method using regular AlexNet for classifying the detected teeth into 7 tooth types. From 52 CT volumes obtained by two imaging systems, five images each were randomly selected as test data, and the remaining 42 cases were used as training data. The result showed the tooth detection accuracy of 77.4% with the average false detection of 5.8 per image. The result indicates the potential utility of the proposed method for automatic recording of dental information.

  11. Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method

    International Nuclear Information System (INIS)

    Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin

    2015-01-01

    Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility. (paper)

  12. CT evaluation of cystic brain disease

    International Nuclear Information System (INIS)

    Kim, Joon Woo; Lee, Jin Woo; Joo, Yang Goo; Kim, Hong; Zeon, Seok Kil; Suh, Soo Jhi

    1987-01-01

    We retrospectively analysed CT findings of 47 cystic brain lesions of 44 patients, in which operation, biopsy or follow-up study was needed for their final diagnosis. The results were as follows: 1. The etiologic diseases of cystic brain lesions were 15 cases of brain abscess, 9 cases of astrocytoma, 5 cases of glioblastoma multiforme, 3 cases of meningioma, 5 cases of craniopharyngioma, 1 case of hemangioblastoma, 2 cases of dermoid cyst and 4 cases of metastasis. 2. We analyses the cystic lesions in view of their number, location, shape, perifocal edema, mass effect, wall and its thickness, evenness and characteristics of their inner and outer surfaces, mural nodule, calcification and contrast enhancement. a. 13.3% of brain abscess and 75% of metastases were multiple in number, but the remainder showed single lesion. b. The shape of cystic lesions were round or ovoid in 68%, lobulated in 8.5% and irregular in 23.5%, and no demonstrable difference of shape were noticed in different disease. c. In brain abscess, the wall of cystic lesions tend to be thin, even and smooth in inner surface, but the outer surfaces were equally smooth or irregular. d. Mural nodules were found in nearly half of the cases of astrocytoma, glioblastoma multiforme, metastasis and hemangioblastoma, but the brain abscess and dermoid cyst contained no mural nodule. e. Meningiomas were found to be attached to dura mater and showed thickening of the inner table of adjacent skull or of the falx. f. The presence of preceding infectious disease may be helpful in the diagnosis of brain abscess, but in 20% there were no demonstrable preceding infection. g. Lung cancer was confirmed as primary site in two of the cystic metastatic disease, but other 2 cases showed no demonstrable primary malignancy

  13. CT evaluation of cystic brain disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Woo; Lee, Jin Woo; Joo, Yang Goo; Kim, Hong; Zeon, Seok Kil; Suh, Soo Jhi [Keimyung University, School of Medicine, Daegu (Korea, Republic of)

    1987-10-15

    We retrospectively analysed CT findings of 47 cystic brain lesions of 44 patients, in which operation, biopsy or follow-up study was needed for their final diagnosis. The results were as follows: 1. The etiologic diseases of cystic brain lesions were 15 cases of brain abscess, 9 cases of astrocytoma, 5 cases of glioblastoma multiforme, 3 cases of meningioma, 5 cases of craniopharyngioma, 1 case of hemangioblastoma, 2 cases of dermoid cyst and 4 cases of metastasis. 2. We analyses the cystic lesions in view of their number, location, shape, perifocal edema, mass effect, wall and its thickness, evenness and characteristics of their inner and outer surfaces, mural nodule, calcification and contrast enhancement. a. 13.3% of brain abscess and 75% of metastases were multiple in number, but the remainder showed single lesion. b. The shape of cystic lesions were round or ovoid in 68%, lobulated in 8.5% and irregular in 23.5%, and no demonstrable difference of shape were noticed in different disease. c. In brain abscess, the wall of cystic lesions tend to be thin, even and smooth in inner surface, but the outer surfaces were equally smooth or irregular. d. Mural nodules were found in nearly half of the cases of astrocytoma, glioblastoma multiforme, metastasis and hemangioblastoma, but the brain abscess and dermoid cyst contained no mural nodule. e. Meningiomas were found to be attached to dura mater and showed thickening of the inner table of adjacent skull or of the falx. f. The presence of preceding infectious disease may be helpful in the diagnosis of brain abscess, but in 20% there were no demonstrable preceding infection. g. Lung cancer was confirmed as primary site in two of the cystic metastatic disease, but other 2 cases showed no demonstrable primary malignancy.

  14. Should image rotation be addressed during routine cone-beam CT quality assurance?

    International Nuclear Information System (INIS)

    Ayan, Ahmet S; Lin Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C; Anderson, Nathan; Ad, Voichita Bar; Both, Stefan; Lu, Hsiao-Ming

    2013-01-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose–volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery. (paper)

  15. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-05-01

    Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction

  16. Should image rotation be addressed during routine cone-beam CT quality assurance?

    Science.gov (United States)

    Ayan, Ahmet S.; Lin, Haibo; Yeager, Caitlyn; Deville, Curtiland; McDonough, James; Zhu, Timothy C.; Anderson, Nathan; Bar Ad, Voichita; Lu, Hsiao-Ming; Both, Stefan

    2013-02-01

    The purpose of this study is to investigate whether quality assurance (QA) for cone-beam computed tomography (CBCT) image rotation is necessary in order to ensure the accuracy of CBCT based image-guided radiation therapy (IGRT) and adaptive radiotherapy (ART). Misregistration of angular coordinates during CBCT acquisition may lead to a rotated reconstructed image. If target localization is performed based on this image, an under- or over-dosage of the target volume (TV) and organs at risk (OARs) may occur. Therefore, patient CT image sets were rotated by 1° up to 3° and the treatment plans were recalculated to quantify changes in dose-volume histograms. A computer code in C++ was written to model the TV displacement and overlap area of an ellipse shape at the target and dose prescription levels corresponding to the image rotation. We investigated clinical scenarios in IGRT and ART in order to study the implications of image rotation on dose distributions for: (1) lateral TV and isocenter (SBRT), (2) central TV and isocenter (IMRT), (3) lateral TV and isocenter (IMRT). Mathematical analysis showed the dose coverage of TV depends on its shape, size, location, and orientation relative to the isocenter. Evaluation of three first scenario for θ = 1° showed variations in TV D95 in the context of IGRT and ART when compared to the original plan were within 2.7 ± 2.6% and 7.7 ± 6.9% respectively while variations in the second and third scenarios were less significant (<0.5%) for the angular range evaluated. However a larger degree of variation was found in terms of minimum and maximum doses for target and OARs. The rotation of CBCT image data sets may have significant dosimetric consequences in IGRT and ART. The TV's location relative to isocenter and shape determine the extent of alterations in dose indicators. Our findings suggest that a CBCT QA criterion of 1° would be a reasonable action level to ensure accurate dose delivery.

  17. (18) F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients

    DEFF Research Database (Denmark)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per

    2018-01-01

    BACKGROUND: (18) F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. AIM: To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part...... planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET......% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. CONCLUSION: Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change...

  18. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...... of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT....

  19. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Sicco J., E-mail: sjbraak@gmail.com [St. Antonius Hospital, Department of Radiology (Netherlands); Herder, Gerarda J. M., E-mail: j.herder@antoniusziekenhuis.nl [St. Antonius Hospital, Department of Pulmonology (Netherlands); Heesewijk, Johannes P. M. van, E-mail: j.heesewijk@antoniusziekenhuis.nl; Strijen, Marco J. L. van, E-mail: m.van.strijen@antoniusziekenhuis.nl [St. Antonius Hospital, Department of Radiology (Netherlands)

    2012-12-15

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24-85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registered fluoroscopy time, room time, interventional time, dose-area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0-93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1-7). Mean fluoroscopy time was 161 (range 104-551) s, room time was 34 (range 15-79) min, mean DAP value was 25.9 (range 3.9-80.5) Gy{center_dot}cm{sup -2}, and interventional time was 18 (range 5-65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86-96), 100% (95% CI 82-100), 100% (95% CI 96-100), 66.7% (95% CI 55-83), and 91.7% (95% CI 86-96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.

  20. Pulmonary Masses: Initial Results of Cone-beam CT Guidance with Needle Planning Software for Percutaneous Lung Biopsy

    International Nuclear Information System (INIS)

    Braak, Sicco J.; Herder, Gerarda J. M.; Heesewijk, Johannes P. M. van; Strijen, Marco J. L. van

    2012-01-01

    Purpose: To evaluate the outcome of percutaneous lung biopsy (PLB) findings using cone-beam computed tomographic (CT) guidance (CBCT guidance) and compared to conventional biopsy guidance techniques. Methods: CBCT guidance is a stereotactic technique for needle interventions, combining 3D soft-tissue cone-beam CT, needle planning software, and real-time fluoroscopy. Between March 2007 and August 2010, we performed 84 Tru-Cut PLBs, where bronchoscopy did not provide histopathologic diagnosis. Mean patient age was 64.6 (range 24–85) years; 57 patients were men, and 25 were women. Records were prospectively collected for calculating sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. We also registered fluoroscopy time, room time, interventional time, dose–area product (DAP), and complications. Procedures were divided into subgroups (e.g., location, size, operator). Results: Mean lesion diameter was 32.5 (range 3.0–93.0) mm, and the mean number of samples per biopsy procedure was 3.2 (range 1–7). Mean fluoroscopy time was 161 (range 104–551) s, room time was 34 (range 15–79) min, mean DAP value was 25.9 (range 3.9–80.5) Gy·cm −2 , and interventional time was 18 (range 5–65) min. Of 84 lesions, 70 were malignant (83.3%) and 14 were benign (16.7%). Seven (8.3%) of the biopsy samples were nondiagnostic. All nondiagnostic biopsied lesions proved to be malignant during surgical resection. The outcome for sensitivity, specificity, positive predictive value, negative predictive value, and accuracy was 90% (95% confidence interval [CI] 86–96), 100% (95% CI 82–100), 100% (95% CI 96–100), 66.7% (95% CI 55–83), and 91.7% (95% CI 86–96), respectively. Sixteen patients (19%) had minor and 2 (2.4%) had major complications. Conclusion: CBCT guidance is an effective method for PLB, with results comparable to CT/CT fluoroscopy guidance.

  1. Multidetector CT evaluation of potential right lobe living donors for ...

    African Journals Online (AJOL)

    Mohamed Saied Abdelgawad

    Multidetector CT evaluation of potential right lobe living donors for liver transplantation. Mohamed Saied Abdelgawad *, Osama L. El-Abd. National Liver Institute, El-Menoufiya University, Shebein El-Koom, Alexandria, Egypt. Received 4 June 2011; accepted 18 June 2011. KEYWORDS. Liver transplantation;. Multidetector ...

  2. Classification of teeth in cone-beam CT using deep convolutional neural network.

    Science.gov (United States)

    Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi

    2017-01-01

    Dental records play an important role in forensic identification. To this end, postmortem dental findings and teeth conditions are recorded in a dental chart and compared with those of antemortem records. However, most dentists are inexperienced at recording the dental chart for corpses, and it is a physically and mentally laborious task, especially in large scale disasters. Our goal is to automate the dental filing process by using dental x-ray images. In this study, we investigated the application of a deep convolutional neural network (DCNN) for classifying tooth types on dental cone-beam computed tomography (CT) images. Regions of interest (ROIs) including single teeth were extracted from CT slices. Fifty two CT volumes were randomly divided into 42 training and 10 test cases, and the ROIs obtained from the training cases were used for training the DCNN. For examining the sampling effect, random sampling was performed 3 times, and training and testing were repeated. We used the AlexNet network architecture provided in the Caffe framework, which consists of 5 convolution layers, 3 pooling layers, and 2 full connection layers. For reducing the overtraining effect, we augmented the data by image rotation and intensity transformation. The test ROIs were classified into 7 tooth types by the trained network. The average classification accuracy using the augmented training data by image rotation and intensity transformation was 88.8%. Compared with the result without data augmentation, data augmentation resulted in an approximately 5% improvement in classification accuracy. This indicates that the further improvement can be expected by expanding the CT dataset. Unlike the conventional methods, the proposed method is advantageous in obtaining high classification accuracy without the need for precise tooth segmentation. The proposed tooth classification method can be useful in automatic filing of dental charts for forensic identification. Copyright © 2016 Elsevier Ltd

  3. ROLE OF MULTIDETECTOR CT IN EVALUATION OF NECK LESIONS

    Directory of Open Access Journals (Sweden)

    Reena Mathur

    2016-06-01

    Full Text Available AIMS AND OBJECTIVES To find out the role of multidetector computed tomography in the evaluation of neck lesions with respect to evaluation of the size, location and extent of tumour. Extension of tumour infiltrating into surrounding vascular and visceral structures. To correlate the findings of MD-CT with final diagnosis by biopsy. MATERIAL AND METHODS Data for the study was collected from patients with suspected neck lesions attending Department of Radio-diagnosis, J.L.N. Medical College and Associated Group of Hospitals, Ajmer, Rajasthan. A prospective study was conducted over a period (From 1st March 2014 to 31 Aug. 2015 on patients with clinically suspected neck lesions or patients who were diagnosed to have neck lesion on ultrasound and were referred to CT for further characterisation. The patients presented with symptoms of palpable neck mass and neck pain. Patients were evaluated using multidetector CT. A provisional diagnosis was made after CT scan and these findings were correlated with histopathology/surgical findings as applicable. RESULT In the present study, 97 out of 100 cases were correctly characterised by computed tomography giving an accuracy of 97%. One case of buccal carcinoma was wrongly diagnosed as benign lesion and another case of malignant lymph node was inaccurately diagnosed as benign lymph node, also another case of benign lymph node was inaccurately diagnosed as malignant lymph node. CONCLUSION Multidetector Computed Tomography of the neck has improved the localisation and characterisation of neck lesions. Accurate delineation of disease by CT scan provides a reliable preoperative diagnosis, plan for radiotherapy ports and posttreatment followup. However, histopathology still remains the gold standard as CT is not 100% accurate.

  4. PET-CT in the evaluation of metastatic breast cancer

    International Nuclear Information System (INIS)

    Sullivan, A.M.; Fulham, M.J.

    2005-01-01

    A 44-year-old woman underwent two PET-CT scans for the evaluation of metastatic breast cancer. A radical left mastectomy with axillary dissection (1 of 43 nodes positive) followed by chemotherapy, was performed in 1998. She represented in October 2003 with a left supraclavicular fossa mass. This was confirmed to be recurrent breast cancer on FNAB. She was considered for a radical neck dissection and the surgeon requested a PET scan. Other imaging at this time included a normal bone scan and CT brain. CT neck/chest/abdomen/pelvis showed soft tissue thickening in the left lower neck. The PET-CT scan showed multiple glucose avid lesions in the sternum, mediastinum and neck lymph nodes as well as a small lesion in the proximal left femur consistent with extensive metastatic disease. Surgery was cancelled and Femara chemotherapy commenced. Femara was stopped in March 2004 and the patient began alternative therapies. In October 2004 she presented to her surgeon with new back and chest pain. CT of the neck/chest/abdomen/pelvis showed a soft tissue mass in the upper sternum and a lymph node at the base of the neck highly suspicious for metastatic disease. There were also 2 suspicious lung nodules and a lesion in the proximal left femur reported as an osteoid osteoma. Wholebody PET-CT scans were performed on a Siemens LSO Biograph, 60mins after the injection of 350Mbq of Fl 8-Fag, with arms at the patient's side and head in the field-of-view. On both occasions the patient had to pay for the scan. On the 2004 PET-CT scan, the CT brain revealed multiple hyperdense lesions consistent with hemorrhagic metastases. In addition, there were innumerable glucose avid foci involving viscera, nodes and skeleton consistent with disseminated disease. Our case illustrates: (i) the value of PET in the management of metastatic breast cancer; (ii) the improved accuracy of PET-CT in delineating sites of disease; (iii) the issues of head movement in PET-CT and. (iv) the problem with lack of

  5. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: Evaluation of the impact on daily dose coverage

    International Nuclear Information System (INIS)

    Wang Lu; Hayes, Shelly; Paskalev, Kamen; Jin Lihui; Buyyounouski, Mark K.; Ma, Charlie C.-M.; Feigenberg, Steve

    2009-01-01

    Purpose: To investigate the dosimetric impact of using 4D CT and multiphase (helical) CT images for treatment planning target definition and the daily target coverage in hypofractionated stereotactic body radiotherapy (SBRT) of lung cancer. Materials and methods: For 10 consecutive patients treated with SBRT, a set of 4D CT images and three sets of multiphase helical CT scans, taken during free-breathing, end-inspiration and end-expiration breath-hold, were obtained. Three separate planning target volumes (PTVs) were created from these image sets. A PTV 4D was created from the maximum intensity projection (MIP) reconstructed 4D images by adding a 3 mm margin to the internal target volume (ITV). A PTV 3CT was created by generating ITV from gross target volumes (GTVs) contoured from the three multiphase images. Finally, a third conventional PTV (denoted PTV conv ) was created by adding 5 mm in the axial direction and 10 mm in the longitudinal direction to the GTV (in this work, GTV = CTV = clinical target volume) generated from free-breathing helical CT scans. Treatment planning was performed based on PTV 4D (denoted as Plan-1), and the plan was adopted for PTV 3CT and PTV conv to form Plan-2 and Plan-3, respectively, by superimposing 'Plan-1' onto the helical free-breathing CT data set using modified beam apertures that conformed to either PTV 3CT or PTV conv . We first studied the impact of PTV design on treatment planning by evaluating the dosimetry of the three PTVs under the three plans, respectively. Then we examined the effect of the PTV designs on the daily target coverage by utilizing pre-treatment localization CT (CT-on-rails) images for daily GTV contouring and dose recalculation. The changes in the dose parameters of D 95 and D 99 (the dose received by 95% and 99% of the target volume, respectively), and the V p (the volume receiving the prescription dose) of the daily GTVs were compared under the three plans before and after setup error correction

  6. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    Science.gov (United States)

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  7. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible

  8. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    International Nuclear Information System (INIS)

    Ouadah, S; Stayman, J W; Gang, G J; Siewerdsen, J H; Ehtiati, T

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  9. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

    International Nuclear Information System (INIS)

    Schernthaner, Ruediger Egbert; Lin, MingDe; Duran, Rafael; Chapiro, Julius; Wang, Zhijun; Geschwind, Jean-François

    2015-01-01

    PurposeTo evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.MethodsThis retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.ResultsOf 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).ConclusionDPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE

  10. Delayed-Phase Cone-Beam CT Improves Detectability of Intrahepatic Cholangiocarcinoma During Conventional Transarterial Chemoembolization

    Energy Technology Data Exchange (ETDEWEB)

    Schernthaner, Ruediger Egbert [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States); Lin, MingDe [Philips Research North America, Ultrasound and Interventions (United States); Duran, Rafael; Chapiro, Julius; Wang, Zhijun; Geschwind, Jean-François, E-mail: jfg@jhmi.edu [The Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Division of Vascular and Interventional Radiology (United States)

    2015-08-15

    PurposeTo evaluate the detectability of intrahepatic cholangiocarcinoma (ICC) on dual-phase cone-beam CT (DPCBCT) during conventional transarterial chemoembolization (cTACE) compared to that of digital subtraction angiography (DSA) with respect to pre-procedure contrast-enhanced magnetic resonance imaging (CE-MRI) of the liver.MethodsThis retrospective study included 17 consecutive patients (10 male, mean age 64) with ICC who underwent pre-procedure CE-MRI of the liver, and DSA and DPCBCT (early-arterial phase (EAP) and delayed-arterial phase (DAP)) just before cTACE. The visibility of each ICC lesion was graded by two radiologists on a three-rank scale (complete, partial, and none) on DPCBCT and DSA images, and then compared to pre-procedure CE-MRI.ResultsOf 61 ICC lesions, only 45.9 % were depicted by DSA, whereas EAP- and DAP-CBCT yielded a significantly higher detectability rate of 73.8 % and 93.4 %, respectively (p < 0.01). Out of the 33 lesions missed on DSA, 18 (54.5 %) and 30 (90.9 %) were revealed on EAP- and DAP-CBCT images, respectively. DSA depicted only one lesion that was missed by DPCBCT due to streak artifacts caused by a prosthetic mitral valve. DAP-CBCT identified significantly more lesions than EAP-CBCT (p < 0.01). Conversely, EAP-CBCT did not detect lesions missed by DAP-CBCT. For complete lesion visibility, DAP-CBCT yielded significantly higher detectability (78.7 %) compared to EAP (31.1 %) and DSA (21.3 %) (p < 0.01).ConclusionDPCBCT, and especially the DAP-CBCT, significantly improved the detectability of ICC lesions during cTACE compared to DSA. We recommend the routine use of DAP-CBCT in patients with ICC for per-procedure detectability and treatment planning in the setting of TACE.

  11. Comparative diagnostic yield of cone beam CT reconstruction using various software programs on the detection of vertical root fractures.

    Science.gov (United States)

    Melo, S L S; Haiter-Neto, F; Correa, L R; Scarfe, W C; Farman, A G

    2013-01-01

    To evaluate the effect on diagnostic yield in the detection of experimentally induced vertical root fractures on cone beam CT images using four dental software program. 190 single-rooted extracted human teeth were divided into three groups according to the pulp canal status: unrestored (UR), filled with gutta-percha (GP) and restored with a metallic custom post (Post). One-half of the sample of each group was artificially fractured and the segments repositioned. All teeth were scanned on a cone beam CT device at 0.2 mm nominal voxel resolution (i-CAT Platinum; Imaging Sciences International, Hatfield, PA). The data were exported as digital imaging and communications in medicine files and imported into Dolphin Imaging & Management Solutions, v. 11.5 (Patterson Dental Supply Inc., St Paul, MN), InVivoDental, v. 5.0 (Anatomage Inc., San Jose, CA) and Kodak Dental Imaging Software 3D module, v. 2.1.11 (Carestream Health Inc., Rochester, NY) software. Cross-sectional images in the acquisition (using Xoran CAT™, v. 3.0.34 software; Xoran Technologies, Ann Arbor, MI) and additional software were presented to three calibrated oral radiologists who rated the presence or absence of root fracture on a five-point scale. Receiver operating characteristic analysis was performed, and treatment comparisons compared by analysis of variance and pairwise comparisons were performed using Tukey's test at an a priori value of α < 0.05%. All dental software performed equally at detecting fractures. Fractures were significantly more difficult to detect when posts were present. The diagnosis of root fracture is software-independent. The presence of an intracanal metallic post significantly decreases the detection of artificially created root fractures.

  12. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Boda-Heggemann, Judit; Hesser, Juergen; Lohr, Frank; Wenz, Frederik; Rossi, Michael; Gros, Uwe; Knox, Chris; Brown, Kevin; Walter, Cornelia

    2010-01-01

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to ≤15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90 0 kV- and 90 0 MV-CBCT (180 0 kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180 0 kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm -1 (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of ∼33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  13. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B.

    2006-01-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling

  14. An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms

    International Nuclear Information System (INIS)

    Panetta, D; Belcari, N; Guerra, A Del; Moehrs, S

    2008-01-01

    In this paper we present a new method for the determination of geometrical misalignments in cone-beam CT scanners, from the analysis of the projection data of a generic object. No a priori knowledge of the object shape and positioning is required. We show that a cost function, which depends on the misalignment parameters, can be defined using the projection data and that such a cost function has a local minimum in correspondence to the actual parameters of the system. Hence, the calibration of the scanner can be carried out by minimizing the cost function using standard optimization techniques. The method is developed for a particular class of 3D object functions, for which the redundancy of the fan beam sinogram in the transaxial midplane can be extended to cone-beam projection data, even at wide cone angles. The method has an approximated validity for objects which do not belong to that class; in that case, a suitable subset of the projection data can be selected in order to compute the cost function. We show by numerical simulations that our method is capable to determine with high accuracy the most critical misalignment parameters of the scanner, i.e., the transversal shift and the skew of the detector. Additionally, the detector slant can be determined. Other parameters such as the detector tilt, the longitudinal shift and the error in the source-detector distance cannot be determined with our method, as the proposed cost function has a very weak dependence on them. However, due to the negligible influence of these latter parameters in the reconstructed image quality, they can be kept fixed at estimated values in both calibration and reconstruction processes without compromising the final result. A trade-off between computational cost and calibration accuracy must be considered when choosing the data subset used for the computation of the cost function. Results on real data of a mouse femur as obtained with a small animal micro-CT are shown as well, proving

  15. SU-E-J-35: Clinical Performance Evaluation of a Phase II Proton CT Scanner

    International Nuclear Information System (INIS)

    Mandapaka, A; Ghebremedhin, A; Farley, D; Giacometti, V; Vence, N; Bashkirov, V; Patyal, B; Schulte, R; Plautz, T; Zatserklyaniy, A; Johnson, R; Sadrozinski, H

    2014-01-01

    Purpose: To develop the methodology to evaluate the clinical performance of a Phase II Proton CT scanner Methods: Range errors on the order of 3%-5% constitute a major uncertainty in current charged particle treatment planning based on Hounsfield Unit (HU)-relative stopping power (RSP) calibration curves. Within our proton CT collaboration, we previously developed and built a Phase I proton CT scanner that provided a sensitive area of 9 cm (axial) × 18 cm (in-plane). This scanner served to get initial experience with this new treatment planning tool and to incorporate lessons learned into the next generation design. A Phase II scanner was recently completed and is now undergoing initial performance testing. It will increase the proton acquisition rate and provide a larger detection area of 9 cm x 36 cm. We are now designing a comprehensive evaluation program to test the image quality, imaging dose, and range uncertainty associated with this scanner. The testing will be performed along the lines of AAPM TG 66. Results: In our discussion of the evaluation protocol we identified the following priorities. The image quality of proton CT images, in particular spatial resolution and low-density contrast discrimination, will be evaluated with the Catphan600 phantom. Initial testing showed that the Catphan uniformity phantom did not provide sufficient uniformity; it was thus replaced by a cylindrical water phantom. The imaging dose will be tested with a Catphan dose module, and compared to a typical cone beam CT dose for comparable image quality. Lastly, we developed a dedicated dosimetry range phantom based on the CIRS pediatric head phantom HN715. Conclusion: A formal evaluation of proton CT as a new tool for proton treatment planning is an important task. The availability of the new Phase II proton CT scanner will allow us to perform this task. This research is supported by the National Institute of Biomedical Imaging and Bioengineering of the NIH under award number R01

  16. Chronic ankle instability: evaluation with stress radiography, CT and CT arthrography

    International Nuclear Information System (INIS)

    Faure, Ch.; Deplus, F.; Bochu, M.; Besse, J.L.; Moyen, B.

    1997-01-01

    We retrospectively evaluated the anterior talo-fibular ligament and the tarsal sinus of 17 patients who had complained of chronic ankle external instability. This study based on both surgery and CT-arthrography findings shows the pathologic or normal aspects of the talo-fibular anterior ligament (normal, lax, fibrosis residue, ruptured). It confirms the good anatomic analysis of the tarsal sinus, i particular the anterior talo-calcaneal interosseous ligament and the search for fibrosis. We underline that capsular distension due to subtalar laxity is not detected with medical imaging. Compared with surgery (all patients), CT arthrography demonstrated the different aspects of the anterior talo fibular ligament injuries (normal, lax, discontinuous). (authors)

  17. Implementation techniques and acceleration of DBPF reconstruction algorithm based on GPGPU for helical cone beam CT

    International Nuclear Information System (INIS)

    Shen Le; Xing Yuxiang

    2010-01-01

    The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)

  18. [Comparison of root resorption between self-ligating and conventional brackets using cone-beam CT].

    Science.gov (United States)

    Liu, Yun; Guo, Hong-ming

    2016-04-01

    To analyze the differences of root resorption between passive self-ligating and conventional brackets, and to determine the relationship between passive self-ligating brackets and root resorption. Fifty patients were randomly divided into 2 groups using passive self-ligating brackets or conventional straight wire brackets (0.022 system), respectively. Cone-beam CT was taken before and after treatment. The amount of external apical root resorption of maxillary incisors was measured on CBCT images. Student's t test was performed to analyze the differences of root apical resorption between the 2 groups with SPSS17.0 software package. No significant difference(P> 0.05) in root resorption of maxillary incisors was found between passive self-ligating brackets and conventional brackets. Passive self-ligating brackets and conventional brackets can cause root resorption, but the difference was not significant. Passive self-ligating brackets do not induce more root resorption.

  19. Evaluation of diffuse thyroid diseases and thyroid nodules by CT

    International Nuclear Information System (INIS)

    Okamoto, Kyoko; Imanishi, Yoshimasa; Nakaji, Shunsuke; Shinagawa, Toshihito

    2007-01-01

    Imanishi et al. have previously reported that the changes in CT values reveal not only the change in iodine concentration in thyroid follicles, but also represent secondary changes in follicular content and follicular cells and/or interstitial structures. Thus, we performed thyroid CT without contrast material in 138 controls, 417 cases with diffuse thyroid diseases, and 279 cases with thyroid nodules, and evaluated the CT images based on the relation between the change in CT values and pathological changes. In 89% of the controls and 43% of patients with diffuse thyroid diseases, the thyroid CT revealed diffuse high density. In contrast, the 94% of thyroids that demonstrated diffuse low density were from patients with diffuse thyroid diseases. Eighty-four percent of malignant nodules and 64% of benign nodules had inhomogeneous densities, and only 26% of benign thyroid nodules had homogeneous density. However, 71% of nodules that showed high and low densities with regular and clear borders, and 82% of nodules that showed papillary proliferation in a cyst pattern were benign. Although only 58% of nodules with calcification were malignant, 66% of nodules with calcification in the central portion, and 86% of nodules with calcification of a disseminated and convergent pattern in distribution were malignant. Sixty-two percent of thyroids that surrounded nodules had chronic thyroiditis, hypoplasia and/or adenomatous goiter. Thus, unclear borders between a nodule and the surrounding thyroid tissue did not increase the possibility of malignancy. However, the unclear and/or lobulated border between a nodule and extra thyroid tissue increased the possibility of malignancy. We concluded that thyroid CT without contrast material is useful for the diagnosis of thyroid diseases. (author)

  20. Reconstruction of a cone-beam CT image via forward iterative projection matching

    International Nuclear Information System (INIS)

    Brock, R. Scott; Docef, Alen; Murphy, Martin J.

    2010-01-01

    Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining

  1. MicroCT Bone Densitometry: Context Sensitivity, Beam Hardening Correction and the Effect of Surrounding Media

    Directory of Open Access Journals (Sweden)

    Philip L. Salmon

    2014-12-01

    Full Text Available The context-sensitivity of microCT bone densitometry due to beam hardening artefacts was assessed. Bones and teeth are scanned with varying thickness of surrounding media (water, alcohol, biological tissue and it is important to understand how this affects reconstructed attenuation (“density” of the mineralized tissue. Aluminium tubes and rods with thickness 0.127mm–5mm were scanned both in air or surrounded by up to 2cm of water. Scans were performed with different energy filters and degrees of software beam hardening correction (BHC. Also tested were the effects of signal-to-noise ratio, magnification and truncation. The thickness of an aluminium tube significantly affected its mean reconstructed attenuation. This effect of thickness could be reduced substantially by BHC for scans in air, but not for scans in water. Varying thickness of surrounding water also changed the mean attenuation of an aluminium tube. This artefact could be almost eliminated by an optimal BHC value. The “cupping” artefact of heterogeneous attenuation (elevated at outer surfaces could be corrected if aluminium was scanned in air, but in water BHC was much less effective. Scan truncation, changes to magnification and signal-to-noise ratio also caused artificial changes to measured attenuation. Measurement of bone mineral density by microCT is highly context sensitive. A surrounding layer of liquid or biological tissue reduces the ability of software BHC to remove bone density artefacts. Sample thickness, truncation, magnification and signal to noise ratio also affect reconstructed attenuation. Thus it is important for densitometry that sample and calibration phantom dimensions and mounting materials are standardised.

  2. Fast 4D cone-beam CT from 60 s acquisitions

    Directory of Open Access Journals (Sweden)

    David C. Hansen

    2018-01-01

    Full Text Available Background & purpose: Four dimensional Cone beam CT (CBCT has many potential benefits for radiotherapy but suffers from poor image quality, long acquisition times, and/or long reconstruction times. In this work we present a fast iterative reconstruction algorithm for 4D reconstruction of fast acquisition cone beam CT, as well as a new method for temporal regularization and compare to state of the art methods for 4D CBCT. Materials & methods: Regularization parameters for the iterative algorithms were found automatically via computer optimization on 60 s acquisitions using the XCAT phantom. Nineteen lung cancer patients were scanned with 60 s arcs using the onboard image on a Varian trilogy linear accelerator. Images were reconstructed using an accelerated ordered subset algorithm. A frequency based temporal regularization algorithm was developed and compared to the McKinnon-Bates algorithm, 4D total variation and prior images compressed sensing (PICCS. Results: All reconstructions were completed in 60 s or less. The proposed method provided a structural similarity of 0.915, compared with 0.786 for the classic McKinnon-bates method. For the patient study, it provided fewer image artefacts than PICCS, and better spatial resolution than 4D TV. Conclusion: Four dimensional iterative CBCT reconstruction was done in less than 60 s, demonstrating the clinical feasibility. The frequency based method outperformed 4D total variation and PICCS on the simulated data, and for patients allowed for tumor location based on 60 s acquisitions, even for slowly breathing patients. It should thus be suitable for routine clinical use.

  3. Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Hazarika, Rubin; Silveira, Matheus A.; Jordan, Kevin J.

    2018-03-01

    Optical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5–10×  difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images. Thus, all dosimetric information in a typical experiment is measured within the lower 10%–20% of the camera sensor’s range, and re-use of gels is often not possible due to a lack of transmission. To counteract this, in this note we describe a simple method to create source compensators by printing on transparent films. This technique, which is easily implemented and inexpensive, is an optical analogue to the bowtie filter in x-ray CT. We present transmission images and solution phantom reconstructions to demonstrate that (1) placing compensators beyond the focal zone of the imaging lens prevents high spatial frequency features of the printed films from generating reconstruction artifacts, and (2) object-specific compensation considerably reduces the range of intensities measured in projection images. This will improve the measurable dose range in optical CT dosimetry, and will enable imaging of larger gel volumes (∼15 cm diameter). Additionally, it should enable re-use of dosimeters by printing a new compensator for a second experiment.

  4. Comparison of the 68Ga-DOTATATA PET/CT, FDG PET/CT, and MIBG SPECT/CT in the Evaluation of Suspected Primary Pheochromocytomas and Paragangliomas.

    Science.gov (United States)

    Jing, Hongli; Li, Fang; Wang, Ling; Wang, Zhenghua; Li, Wei; Huo, Li; Zhang, Jingjing

    2017-07-01

    Anatomical imaging modalities including CT and MRI are the mainstay of evaluation of primary pheochromocytoma or paraganglioma. However, nuclear medicine imaging is frequently necessary to determine the nature of the lesions. The purpose of this investigation is to assess which commonly used nuclear medicine modality might have a better diagnostic value in this clinical setting. Eight patients who had been suspected of having either primary pheochromocytoma or primary paraganglioma and 1 patient with known pheochromocytoma were included in the analysis. Among the 8 patients without known diagnosis, 7 had been suggested by anatomical imaging modalities, whereas one of them presented with initial negative anatomical imaging interpretation. All of 9 patients underwent Ga-DOTATATA PET/CT, FDG PET/CT, and MIBG SPECT/CT for further evaluation. The imaging findings were compared with postsurgical pathology and follow-up. Both Ga-DOTATATA PET/CT and MIBG SPECT/CT accurately identified 9 primary tumors, whereas FDG PET/CT showed increased activity in 8 of 9 primary tumors. Both Ga-DOTATATA and FDG PET/CT are able to detect associated extra-adrenal lesions not shown on MIBG study in patients with multiple endocrine neoplasia syndrome. Ga-DOTATATA PET/CT could be the nuclear medicine imaging choice to evaluate suspected primary pheochromocytoma or paraganglioma, especially in the situation of multiple endocrine neoplasia syndrome.

  5. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  6. Quantitative analysis of CT brain images: a statistical model incorporating partial volume and beam hardening effects

    International Nuclear Information System (INIS)

    McLoughlin, R.F.; Ryan, M.V.; Heuston, P.M.; McCoy, C.T.; Masterson, J.B.

    1992-01-01

    The purpose of this study was to construct and evaluate a statistical model for the quantitative analysis of computed tomographic brain images. Data were derived from standard sections in 34 normal studies. A model representing the intercranial pure tissue and partial volume areas, with allowance for beam hardening, was developed. The average percentage error in estimation of areas, derived from phantom tests using the model, was 28.47%. We conclude that our model is not sufficiently accurate to be of clinical use, even though allowance was made for partial volume and beam hardening effects. (author)

  7. Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: a patient-level data cost-effectiveness analysis.

    Science.gov (United States)

    Dea, Nicolas; Fisher, Charles G; Batke, Juliet; Strelzow, Jason; Mendelsohn, Daniel; Paquette, Scott J; Kwon, Brian K; Boyd, Michael D; Dvorak, Marcel F S; Street, John T

    2016-01-01

    Pedicle screws are routinely used in contemporary spinal surgery. Screw misplacement may be asymptomatic but is also correlated with potential adverse events. Computer-assisted surgery (CAS) has been associated with improved screw placement accuracy rates. However, this technology has substantial acquisition and maintenance costs. Despite its increasing usage, no rigorous full economic evaluation comparing this technology to current standard of care has been reported. Medical costs are exploding in an unsustainable way. Health economic theory requires that medical equipment costs be compared with expected benefits. To answer this question for computer-assisted spinal surgery, we present an economic evaluation looking specifically at symptomatic misplaced screws leading to reoperation secondary to neurologic deficits or biomechanical concerns. The study design was an observational case-control study from prospectively collected data of consecutive patients treated with the aid of CAS (treatment group) compared with a matched historical cohort of patients treated with conventional fluoroscopy (control group). The patient sample consisted of consecutive patients treated surgically at a quaternary academic center. The primary effectiveness measure studied was the number of reoperations for misplaced screws within 1 year of the index surgery. Secondary outcome measures included were total adverse event rate and postoperative computed tomography usage for pedicle screw examination. A patient-level data cost-effectiveness analysis from the hospital perspective was conducted to determine the value of a navigation system coupled with intraoperative 3-D imaging (O-arm Imaging and the StealthStation S7 Navigation Systems, Medtronic, Louisville, CO, USA) in adult spinal surgery. The capital costs for both alternatives were reported as equivalent annual costs based on the annuitization of capital expenditures method using a 3% discount rate and a 7-year amortization period

  8. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Panetta, Daniele [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Belcari, Nicola [Department of Physics “E. Fermi”, University of Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Tripodi, Maria [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Burchielli, Silvia [Fondazione CNR/Toscana “G. Monasterio” – FTGM, v. G. Moruzzi 1, I-56124 Pisa (Italy); Salvadori, Piero A. [CNR Institute of Clinical Physiology (IFC-CNR), v. G. Moruzzi 1, I-56124 Pisa (Italy); Del Guerra, Alberto [Department of Physics “E. Fermi”, University of Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI{sub 100} has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R{sup 2}>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  9. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    Science.gov (United States)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI100 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  10. Performance evaluation of the CT component of the IRIS PET/CT preclinical tomograph

    International Nuclear Information System (INIS)

    Panetta, Daniele; Belcari, Nicola; Tripodi, Maria; Burchielli, Silvia; Salvadori, Piero A.; Del Guerra, Alberto

    2016-01-01

    In this paper, we evaluate the physical performance of the CT component of the IRIS scanner, a novel combined PET/CT scanner for preclinical imaging. The performance assessment is based on phantom measurement for the determination of image quality parameters (spatial resolution, linearity, geometric accuracy, contrast to noise ratio) and reproducibility in dynamic (4D) imaging. The CTDI_1_0_0 has been measured free in air with a pencil ionization chamber, and the animal dose was calculated using Monte Carlo derived conversion factors taken from the literature. The spatial resolution at the highest quality protocol was 6.9 lp/mm at 10% of the MTF, using the smallest reconstruction voxel size of 58.8 μm. The accuracy of the reconstruction voxel size was within 0.1%. The linearity of the CT numbers as a function of the concentration of iodine was very good, with R"2>0.996 for all the tube voltages. The animal dose depended strongly on the scanning protocol, ranging from 158 mGy for the highest quality protocol (2 min, 80 kV) to about 12 mGy for the fastest protocol (7.3 s, 80 kV). In 4D dynamic modality, the maximum scanning rate reached was 3.1 frames per minute, using a short-scan protocol with 7.3 s of scan time per frame at the isotropic voxel size of 235 μm. The reproducibility of the system was high throughout the 10 frames acquired in dynamic modality, with a standard deviation of the CT values of all frames <8 HU and an average spatial reproducibility within 30% of the voxel size across all the field of view. Example images obtained during animal experiments are also shown.

  11. A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window

    International Nuclear Information System (INIS)

    Yu Hengyong; Ye Yangbo; Zhao Shiying; Wang Ge

    2005-01-01

    For applications in bolus-chasing computed tomography (CT) angiography and electron-beam micro-CT, the backprojection-filtration (BPF) formula developed by Zou and Pan was recently generalized by Ye et al to reconstruct images from cone-beam data collected along a rather flexible scanning locus, including a nonstandard spiral. A major implication of the generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and Defrise disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data differentiation, weighted backprojection and inverse Hilbert filtration. Our simulated results demonstrate the feasibility and merits of the proposed algorithm

  12. Perpheral bronchopleural fistula: CT evaluation in 22 patients

    International Nuclear Information System (INIS)

    Lee, Ye Ri; Kim, Min Young; Choi, Seong Hee; Kim, Eung Jo; Lee, Jin Joo; Kim, Oak

    1999-01-01

    To determine the usefulness of CT for the evaluation of peripheral bronchopleural fistulas. CT scans of 22 patients with persistent air leak, as seen on serial chest PA, and a clinical history, were retrospectively evaluated. We determined the visibility of direct communication between the lung and pleural space, and the frequency and location of this, and if direct communications were not visualized the probable cause. A bronchopleural fistula(n=13) or its probable cause(n=6) was visualized in 19 patients(86%). Direct communications between the lung and pleural space were seen in 13 patients(59%) ; there were six cases of tuberculous empyema, three of tuberculosis, two of necrotizing empyema, one of trauma, and one of postobstructive pneumonitis. In six patients, bronchiectatic change in peripheral lung adjacent to the pleural cavity was noted, and although this was seen as a probable cause of bronchopleural fistula, direct communication was invisible. Bronchopleural fistula or its probable cause was multiple in 18 of 19 patients, involving the upper and lower lobe in eight, the upper in nine, and the lower in two. CT is useful for evaluating the presence of bronchopleural fistula, and its frequency and location, and in patients in whom the fistula is not directly visualized, the cause of this

  13. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    International Nuclear Information System (INIS)

    Wang, Jing; Gu, Xuejun

    2013-01-01

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstruction to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion

  14. CT findings of pancreatic carcinoma. Evaluation with the combined method of early enhancement CT and high dose enhancement CT

    International Nuclear Information System (INIS)

    Itoh, Shigeki; Endo, Tokiko; Isomura, Takayuki; Ishigaki, Takeo; Ikeda, Mitsuru; Senda, Kouhei.

    1995-01-01

    Computed tomographic (CT) findings of pancreatic ductal adenocarcinoma were studied with the combined method of early enhancement CT and high dose enhancement CT in 72 carcinomas. Common Findings were change in pancreatic contour, abnormal attenuation in a tumor and dilatation of the main pancreatic duct. The incidence of abnormal attenuation and dilatation of the main pancreatic duct and bile duct was constant regardless of tumor size. The finding of hypoattenuation at early enhancement CT was most useful for demonstrating a carcinoma. However, this finding was negative in ten cases, five of which showed inhomogenous hyperattenuation at high dose enhancement CT. The detection of change in pancreatic contour and dilatation of the main pancreatic duct was most frequent at high dose enhancement CT. The finding of change in pancreatic contour and/or abnormal attenuation in a tumor could be detected in 47 cases at plain CT, 66 at early enhancement CT and 65 at high dose enhancement CT. Since the four cases in which neither finding was detected by any CT method showed dilatated main pancreatic duct, there was no case without abnormal CT findings. This combined CT method will be a reliable diagnostic technique in the imaging of pancreatic carcinoma. (author)

  15. Study of different registration methods for on-line kilovoltage cone-beam CT guided lung cancer radiation

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Wu Zhengqin; Fan Min; Yang Huanjun; Xu Zhiyong; Jiang Guoliang

    2009-01-01

    Objective: To select the optimal registration method for on-line kilovoltage cone-beam CT (KVCBCT) guided lung cancer radiation and evaluate the reproducibility of the selected method. Methods: Sixteen patients with non-small cell lung cancer were enrolled into this study. A total of 96 pretreatment KVCBCT images from the 16 patients were available for the analysis. Image registration methods were bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration. All registrations were accomplished by one physician. Another physician blindly evaluated the results of each registration, then selected the optimal registration method and evaluated its reproducibility. Results: The average score of the bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration methods was 2.4, 2.7, 3.0 and 3.7, respectively. The score of the four different groups had statistics significant difference (F=42.20, P<0.001). Using the semi-automatic registration method, the probability of the difference between two registration results more than 3 mm in the left-right, superior-inferior, and anterior-posterior directions was 0, 3% and 6% by the same physician, 0, 14% and 0 by different physicians, and 8%, 14% and 8% by physician and radiation therapist. Conclusions: Semi-automatic registration method, possessing the highest score and accepted reproducibility, is appropriate for KVCBCT guided lung cancer radiation. (authors)

  16. The diagnostic utility of ultrasonography, CT and PET/CT for the preoperative evaluation of cervical lymph node metastasis inpapillary thyroid cancer patients

    International Nuclear Information System (INIS)

    Kim Young Sang; Lee, Tae Hyun; Park, Dong Hee

    2016-01-01

    To compare the diagnostic utility of ultrasonography (US), CT and positron emission tomography/CT (PET/CT) in the preoperative evaluation of cervical lymph node metastasis in patients with papillary thyroid carcinoma. The study population consisted of 300 patients with pathologically diagnosed papillary thyroid carcinoma after thyroidectomy and neck dissection. Preoperative US, CT, and PET/CT findings were compared with pathologic outcomes after thyroidectomy and neck dissection. Sensitivity in detecting central lymph node metastasis (US 29.9%, CT 27.9%, PET/CT 18.8%) was lower than that for lateral lymph node metastasis (US 56.3%, CT 66.2%, PET/CT 43.7%). Specificity in detecting central lymph node metastasis (US 80.6%, CT 77.7%, PET/CT 83.0%) was lower than that for lateral lymph node metastasis (US 96.8%, CT 80.6%, PET/CT 95.2%). The combination of US and CT had higher specificity (77.3%) and higher sensitivity (33.1%) than US alone. PET/CT has no significant additional benefit over the combination of US and CT. In preoperative evaluations of neck lymph node metastasis, US and CT and PET/CT are more useful in lateral lymph node areas than in central lymph node areas. The combination of US and CT has higher sensitivity than US alone

  17. The diagnostic utility of ultrasonography, CT and PET/CT for the preoperative evaluation of cervical lymph node metastasis inpapillary thyroid cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim Young Sang; Lee, Tae Hyun; Park, Dong Hee [Dept. of Radiology, Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    2016-08-15

    To compare the diagnostic utility of ultrasonography (US), CT and positron emission tomography/CT (PET/CT) in the preoperative evaluation of cervical lymph node metastasis in patients with papillary thyroid carcinoma. The study population consisted of 300 patients with pathologically diagnosed papillary thyroid carcinoma after thyroidectomy and neck dissection. Preoperative US, CT, and PET/CT findings were compared with pathologic outcomes after thyroidectomy and neck dissection. Sensitivity in detecting central lymph node metastasis (US 29.9%, CT 27.9%, PET/CT 18.8%) was lower than that for lateral lymph node metastasis (US 56.3%, CT 66.2%, PET/CT 43.7%). Specificity in detecting central lymph node metastasis (US 80.6%, CT 77.7%, PET/CT 83.0%) was lower than that for lateral lymph node metastasis (US 96.8%, CT 80.6%, PET/CT 95.2%). The combination of US and CT had higher specificity (77.3%) and higher sensitivity (33.1%) than US alone. PET/CT has no significant additional benefit over the combination of US and CT. In preoperative evaluations of neck lymph node metastasis, US and CT and PET/CT are more useful in lateral lymph node areas than in central lymph node areas. The combination of US and CT has higher sensitivity than US alone.

  18. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients

    International Nuclear Information System (INIS)

    Letourneau, Daniel; Martinez, Alvaro A.; Lockman, David; Yan Di; Vargas, Carlos; Ivaldi, Giovanni; Wong, John

    2005-01-01

    Purpose: Kilovoltage cone-beam CT (CBCT) implemented on board a medical accelerator is available for image-guidance applications in our clinic. The objective of this work was to assess the magnitude and stability of the residual setup error associated with CBCT online-guided prostate cancer patient setup. Residual error pertains to the uncertainty in image registration, the limited mechanical accuracy, and the intrafraction motion during imaging and treatment. Methods and Materials: The residual error for CBCT online-guided correction was first determined in a phantom study. After online correction, the phantom residual error was determined by comparing megavoltage portal images acquired every 90 deg. to the corresponding digitally reconstructed radiographs. In the clinical study, 8 prostate cancer patients were implanted with three radiopaque markers made of high-winding coils. After positioning the patient using the skin marks, a CBCT scan was acquired and the setup error determined by fusing the coils on the CBCT and planning CT scans. The patient setup was then corrected by moving the couch accordingly. A second CBCT scan was acquired immediately after the correction to evaluate the residual target setup error. Intrafraction motion was evaluated by tracking the coils and the bony landmarks on kilovoltage radiographs acquired every 30 s between the two CBCT scans. Corrections based on soft-tissue registration were evaluated offline by aligning the prostate contours defined on both planning CT and CBCT images. Results: For ideal rigid phantoms, CBCT image-guided treatment can usually achieve setup accuracy of 1 mm or better. For the patients, after CBCT correction, the target setup error was reduced in almost all cases and was generally within ±1.5 mm. The image guidance process took 23-35 min, dictated by the computer speed and network configuration. The contribution of the intrafraction motion to the residual setup error was small, with a standard deviation of

  19. The role of pneumothorax CT for the evaluation of aortic invasion by lung cancer

    International Nuclear Information System (INIS)

    Yokoi, Kohei; Mori, Kiyoshi; Miyazawa, Naoto; Magota, Seizo; Honda, Kazuyoshi; Sasagawa, Michizo

    1987-01-01

    To improve the accuracy of T3 diagnosis in lung cancer, Pneumothorax CT was carried out in four patients having diagnosis of plain CT and enhanced CT. Both plain and enhanced CT demonstrated obliteration of low density zone between tumor and the aorta in all cases. In three of four cases, Pneumothorax CT, however, demonstrated free air space where tumor was evaluated to be invaded. Remaining one presented the loss of such free air space even by Pneumothorax CT and was made the diagnosis of aortic invasion, which was confirmed by surgicopathological finding. Pneumothorax CT is useful for the diagnosis of ruling out tumor invasion to the aorta. (author)

  20. CT and MRI evaluation of orbital tumors: our experience

    International Nuclear Information System (INIS)

    Cabrini, Marcelo; Docampo, Jorge; Martinez, Manuel; Bruno, Claudio; Morales, Carlos

    2007-01-01

    Purpose: To show our experience in the evaluation of orbital masses on computed tomography (CT) and magnetic resonance imaging (MRI). To describe their most important findings and epidemiological features found on literature review, related to their differential diagnosis. Materials and methods: During a 48-months period of time, 26 patients (13 male, 13 female; age range, 3 to 75 years) with orbital tumors were evaluated. Seventeen patients underwent MR scans, 8 underwent CT scans, and one underwent both imaging methods. It was employed 0,5 and 1 Tesla MR scanners, and axial-helical CT scanners. Results: Benign lesions were found on 7 patients (cavernous hemangioma [n=2], meningioma [n=1], epidermoid cyst [n=1], dermoid cyst [n=1], lipoma [n=1], orbital vein deformity [n=1]). It was found lesions with undetermined behavior (optical nerve glioma [n=2]), and malignant ones were found on 17 patients (metastatic lesions [n=5], non- Hodgkin's lymphoma [n=3], hemangiopericytoma [n=2], retinoblastoma [n=2], rhabdomyosarcoma [n=2], melanoma [n=1], and lacrimal adenocarcinoma [n=1]). Conclusion: In our experience, 65.4% was malignant tumors (orbital metastasis was the most common; 19.2%). More than one-quarter was benign tumor, where cavernous hemangioma was the most frequent. (author) [es

  1. RADIOLOGICAL EVALUATION OF OBSTRUCTIVE JAUNDICE BY ULTRASOUND AND CT

    Directory of Open Access Journals (Sweden)

    Padmalatha

    2015-10-01

    Full Text Available INTRODUCTION: The goals of any radiologic procedure in obstructive Jaundice are to confirm the presence of bile duct obstruction, its location, its extent & the probable cause. It should also attempt to obtain a map of the biliary tree that will help the surgeon to det ermine the best approach to each individual case. OBJECTIVES: 1. To evaluate the role of Ultrasound and CT in patients presenting with clinical features of obstructive jaundice. 2. To evaluate the causes of obstructive jaundice by Ultrasound and CT. PATIENTS AND METHODS: The study was carried with 45 patients from January 2006 to September 2007 who were attending the surgical and Gastroenterology Departments, Govt. General Hospital, Kurnool, which is an attached hospital to Kurnool Medical College, Kurnool. O BSERVATIONS AND RESULTS: In our study, there is female predominance with male: female ratio 1: 1.6.Majority of patients are in age group of 41 - 50 years. Jaundice was the commonest presentation in all patients followed by pruritis in 72% and pain abdomen in 67% of patients. Ultrasound identified the benign cause of biliary obstruction in 79.1% cases and the malignant cause in 61.9% cases. CT identified the benign cause of biliary obstruction in 91.6% of patients and the malignant cause in 80.9% cases.

  2. Laser CT evaluation on normoxic PAGAT gel dosimeter

    International Nuclear Information System (INIS)

    Kumar, D S; Samuel, E J J; Watanabe, Y

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to describe the initial evaluation of a newly fabricated laser CT scanner for 3D gel dosimetry which works using the first generation principle. A normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When a laser passes through the gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor. The scanner motion is controlled by a computer program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software.

  3. Optical CT evaluation on normoxic polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E. James Jebaseelan

    2013-01-01

    Optical computed tomography has been shown to be a potentially useful imaging tool for the radiation therapy physicists. In radiation therapy, researchers have used optical CT for the readout of 3D dosimeters. The purpose of this paper is to explicate the initial evaluation of a newly fabricated laser CT scanner for '3D gel dosimetry' which works in the first generation principle. The normoxic PAGAT (Polyacrylamide Gelatin and Tetrakis) gel is used as a dosimeter for this analysis. When laser passes through this gel phantom, absorption and scattering of photon take place. The optical attenuation coefficient of the laser can be obtained by measuring its intensity after passing through the gel by a sensor.The scanner motion is controlled by the program written in Microsoft Visual C++. Reconstruction and data analysis on the irradiated gel phantom is performed by suitable algorithm using Matlab software. (author)

  4. A new method for x-ray scatter correction: first assessment on a cone-beam CT experimental setup

    International Nuclear Information System (INIS)

    Rinkel, J; Gerfault, L; Esteve, F; Dinten, J-M

    2007-01-01

    Cone-beam computed tomography (CBCT) enables three-dimensional imaging with isotropic resolution and a shorter acquisition time compared to a helical CT scanner. Because a larger object volume is exposed for each projection, scatter levels are much higher than in collimated fan-beam systems, resulting in cupping artifacts, streaks and quantification inaccuracies. In this paper, a general method to correct for scatter in CBCT, without supplementary on-line acquisition, is presented. This method is based on scatter calibration through off-line acquisition combined with on-line analytical transformation based on physical equations, to adapt calibration to the object observed. The method was tested on a PMMA phantom and on an anthropomorphic thorax phantom. The results were validated by comparison to simulation for the PMMA phantom and by comparison to scans obtained on a commercial multi-slice CT scanner for the thorax phantom. Finally, the improvements achieved with the new method were compared to those obtained using a standard beam-stop method. The new method provided results that closely agreed with the simulation and with the conventional CT scanner, eliminating cupping artifacts and significantly improving quantification. Compared to the beam-stop method, lower x-ray doses and shorter acquisition times were needed, both divided by a factor of 9 for the same scatter estimation accuracy

  5. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  6. Volume-of-change cone-beam CT for image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Junghoon; Stayman, J Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A Jay; Siewerdsen, Jeffrey H; Prince, Jerry L

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D–2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. (paper)

  7. On-line cone beam CT image guidance for vocal cord tumor targeting

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  8. Cervical vertebral column morphology in patients with obstructive sleep apnoea assessed using lateral cephalograms and cone beam CT. A comparative study

    DEFF Research Database (Denmark)

    Sonnesen, L; Jensen, K E; Petersson, A R

    2013-01-01

    beam CT (CBCT) in adult patients with OSA and to compare 2D lateral cephalograms with three-dimensional (3D) CBCT images. METHODS: For all 57 OSA patients, the cervical vertebral column morphology was evaluated on lateral cephalograms and CBCT images and compared according to fusion anomalies...... and posterior arch deficiency. RESULTS: The CBCT assessment showed that 21.1% had fusion anomalies of the cervical column, i.e. fusion between two cervical vertebrae (10.5%), block fusions (8.8%) or occipitalization (1.8%). Posterior arch deficiency occurred in 14% as partial cleft of C1 and in 3...

  9. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion.

    Science.gov (United States)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Herfarth, Klaus; Debus, Jürgen; Parodi, Katia

    2016-02-01

    Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.

  10. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    International Nuclear Information System (INIS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Herfarth, Klaus; Debus, Jürgen; Richter, Daniel; Parodi, Katia

    2016-01-01

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolved (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the

  11. A dual centre study of setup accuracy for thoracic patients based on Cone-Beam CT data

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Hansen, Vibeke N; Westberg, Jonas

    2011-01-01

    BACKGROUND AND PURPOSE: To compare setup uncertainties at two different institutions by using identical imaging and analysis techniques for thoracic patients with different fixation equipments. METHODS AND MATERIALS: Patient registration results from Cone-Beam CT (CBCT) scans of 174 patients were...... increase of the systematic setup uncertainties in between imaging fractions. A margin reduction of ⩾0.2cm can be achieved for patients with peak-to-peak respiration amplitudes of ⩾1.2cm when changing from 4D-CT to Active Breathing Coordinator™ (ABC). CONCLUSIONS: The setup uncertainties at the two...

  12. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  13. Positioning errors assessed with kV cone-beam CT for image-guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Li Jiongyan; Guo Xiaomao; Yao Weiqiang; Wang Yanyang; Ma Jinli; Chen Jiayi; Zhang Zhen; Feng Yan

    2010-01-01

    Objective: To assess set-up errors measured with kilovoltage cone-beam CT (KV-CBCT), and the impact of online corrections on margins required to account for set-up variability during IMRT for patients with prostate cancer. Methods: Seven patients with prostate cancer undergoing IMRT were enrolled onto the study. The KV-CBCT scans were acquired at least twice weekly. After initial set-up using the skin marks, a CBCT scan was acquired and registered with the planning CT to determine the setup errors using an auto grey-scale registration software. Corrections would be made by moving the table if the setup errors were considered clinically significant (i. e. , > 2 mm). A second CBCT scan was acquired immediately after the corrections to evaluate the residual error. PTV margins were derived to account for the measured set-up errors and residual errors determined for this group of patients. Results: 197 KV-CBCT images in total were acquired. The random and systematic positioning errors and calculated PTV margins without correction in mm were : a) Lateral 3.1, 2.1, 9.3; b) Longitudinal 1.5, 1.8, 5.1;c) Vertical 4.2, 3.7, 13.0. The random and systematic positioning errors and calculated PTV margin with correction in mm were : a) Lateral 1.1, 0.9, 3.4; b) Longitudinal 0.7, 1.1, 2.5; c) Vertical 1.1, 1.3, 3.7. Conclusions: With the guidance of online KV-CBCT, set-up errors could be reduced significantly for patients with prostate cancer receiving IMRT. The margin required after online CBCT correction for the patients enrolled in the study would be appoximatively 3-4 mm. (authors)

  14. System matrix computation vs storage on GPU: A comparative study in cone beam CT.

    Science.gov (United States)

    Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2018-02-01

    Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative

  15. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    International Nuclear Information System (INIS)

    Lin, T; Ma, C

    2014-01-01

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized daily with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV

  16. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    International Nuclear Information System (INIS)

    Abe, T.; Izumiyama, H.; Fujisawa, I.

    2002-01-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders

  17. Evaluation of pituitary adenomas by multidirectional multislice dynamic CT

    Energy Technology Data Exchange (ETDEWEB)

    Abe, T.; Izumiyama, H. [Showa Univ. School of Medicine, Tokyo (Japan). Dept. of Neurosurgery; Fujisawa, I. [Kishiwada City Hospital, Kishiwada (Japan). Dept. of Radiology

    2002-11-01

    Purpose: Multidetector-row CT is a new technology with a short scanning time. Multislice dynamic CT (MSDCT) in various directions can be obtained using the multidetector-row CT with multiplanar reformatting (MPR) technique. Material and Methods: We evaluated the initial results of sagittal and coronal MSDCT images reconstructed by MPR (MSDCT-MPR) in 3 pituitary adenoma patients with a pacemaker. Results: In a patient with microadenoma, the maximum contrast between the normal anterior pituitary gland and the adenoma occurred approximately 50 s after the start of the contrast medium injection. A microadenoma was depicted as a less enhanced area relative to normal pituitary tissue. The macroadenomas were depicted as a less enhanced mass with cavernous sinus invasion in 1 patient and as a non-uniformly enhanced mass in another patient. Bone destruction and incomplete opening of the sellar floor during previous surgery were clearly detected in 2 patients with macroadenomas. These pituitary adenomas were removed via the transnasal route based on information from the MSDCT-MPR images only. The findings were verified surgically. Conclusion: The MSDCT-MPR provided the information needed for surgery with good image quality in the 3 patients with pacemakers. MSDCT-MPR appears to be a useful technique for patients with a pituitary adenoma in whom MR imaging is not available. This is the first report, to our knowledge, of the MSDCT-MPR technique being used to demonstrate pituitary disorders.

  18. The NOVA project: maximizing beam time efficiency through synergistic analyses of SRμCT data

    Science.gov (United States)

    Schmelzle, Sebastian; Heethoff, Michael; Heuveline, Vincent; Lösel, Philipp; Becker, Jürgen; Beckmann, Felix; Schluenzen, Frank; Hammel, Jörg U.; Kopmann, Andreas; Mexner, Wolfgang; Vogelgesang, Matthias; Jerome, Nicholas Tan; Betz, Oliver; Beutel, Rolf; Wipfler, Benjamin; Blanke, Alexander; Harzsch, Steffen; Hörnig, Marie; Baumbach, Tilo; van de Kamp, Thomas

    2017-09-01

    Beamtime and resulting SRμCT data are a valuable resource for researchers of a broad scientific community in life sciences. Most research groups, however, are only interested in a specific organ and use only a fraction of their data. The rest of the data usually remains untapped. By using a new collaborative approach, the NOVA project (Network for Online Visualization and synergistic Analysis of tomographic data) aims to demonstrate, that more efficient use of the valuable beam time is possible by coordinated research on different organ systems. The biological partners in the project cover different scientific aspects and thus serve as model community for the collaborative approach. As proof of principle, different aspects of insect head morphology will be investigated (e.g., biomechanics of the mouthparts, and neurobiology with the topology of sensory areas). This effort is accomplished by development of advanced analysis tools for the ever-increasing quantity of tomographic datasets. In the preceding project ASTOR, we already successfully demonstrated considerable progress in semi-automatic segmentation and classification of internal structures. Further improvement of these methods is essential for an efficient use of beam time and will be refined in the current NOVAproject. Significant enhancements are also planned at PETRA III beamline p05 to provide all possible contrast modalities in x-ray imaging optimized to biological samples, on the reconstruction algorithms, and the tools for subsequent analyses and management of the data. All improvements made on key technologies within this project will in the long-term be equally beneficial for all users of tomography instrumentations.

  19. SU-F-J-42: Comparison of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Cranial Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Lu, B; Yu, Y; Dicker, A; Liu, H [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac x-ray imaging systems for cranial radiotherapy. Method: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (Version 2.5), which is integrated with a BrainLab ExacTrac imaging system (Version 6.1.1). The phantom study was based on a Rando head phantom, which was designed to evaluate isocenter-location dependence of the image registrations. Ten isocenters were selected at various locations in the phantom, which represented clinical treatment sites. CBCT and ExacTrac x-ray images were taken when the phantom was located at each isocenter. The patient study included thirteen patients. CBCT and ExacTrac x-ray images were taken at each patient’s treatment position. Six-dimensional image registrations were performed on CBCT and ExacTrac, and residual errors calculated from CBCT and ExacTrac were compared. Results: In the phantom study, the average residual-error differences between CBCT and ExacTrac image registrations were: 0.16±0.10 mm, 0.35±0.20 mm, and 0.21±0.15 mm, in the vertical, longitudinal, and lateral directions, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.36±0.11 degree, 0.14±0.10 degree, and 0.12±0.10 degree, respectively. In the patient study, the average residual-error differences in the vertical, longitudinal, and lateral directions were: 0.13±0.13 mm, 0.37±0.21 mm, 0.22±0.17 mm, respectively. The average residual-error differences in the rotation, roll, and pitch were: 0.30±0.10 degree, 0.18±0.11 degree, and 0.22±0.13 degree, respectively. Larger residual-error differences (up to 0.79 mm) were observed in the longitudinal direction in the phantom and patient studies where isocenters were located in or close to frontal lobes, i.e., located superficially. Conclusion: Overall, the average residual-error differences were within 0.4 mm in the translational

  20. Retrospective evaluation of acute appendicitis incorrectly diagnosed on CT

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kim, Hyun Cheol

    2006-01-01

    The purpose of our study was to retrospectively evaluate the CT images of patients suffering with surgically proven appendicitis to determine the causes of missed diagnoses. We reviewed the pathology reports of the patients with surgically proven appendicitis from two hospitals during a 3-year period. Thirty-seven such cases with a misdiagnosis were identified and they served as our misdiagnosed group (17 females and 20 males, mean age: 58 years, age range 15-68 years). These were cases that were misdiagnosed on preoperative abdominal CT. All 57 patients in the control group (30 females and 27 males, mean age: 44 years, age range: 21-78 years) had undergone laparotomy for acute appendicitis and they had been correctly diagnosed preoperatively on CT. Two abdominal radiologists evaluated the following items from all 94 CT examinations: 1) an abnormal appendix, 2) periappendiceal fat inflammation, 3) pericecal extraluminal fluid, 4) pericecal extraluminal air, 5) appendicolith, 6) cecal wall thickening, 7) small bowel dilatation, and 8) the pericecal fat content. Statistical analysis was performed using a Chi-squared test and Fisher's exact test. Any abnormal appendix was not visualized, even retrospectively, in 27 (73%) of the 37 patients from the misdiagnosed group, whereas it was not visualized in 13 (23%) of the 57 patients in the control group (ρ = 0.001). Of the patients who had been misdiagnosed, inflammation of the pericecal fat was observed in 21 patients (57%) as compared to 50 (88%) patients in the control group (ρ =0.001). Pericecal fluid and air were noted in 15 (41%) and 9 (24%) patients, respectively, in the misdiagnosed group and in 19 (33%) and 14 (25%) patients, respectively, in the control group, (ρ = 0.477 and ρ =0.901, respectively). Appendicolith was found in 3 (8%) misdiagnosed subjects and in 10 (18%) of the controls (ρ = 0.001). Focal cecal wall thickening was noted in 14 (38%) misdiagnosed patients and in 28 (49%) control patients (

  1. Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.

    Science.gov (United States)

    Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice

    2017-06-01

    The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.

  2. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    International Nuclear Information System (INIS)

    Gonzalez, Albin; Kinney, Vicki; Crooks, Cheryl; Bauer, Lisa

    2008-01-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as ''Image Guided Radiation Therapy'' or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  3. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    International Nuclear Information System (INIS)

    Benson, T M; Gregor, J

    2006-01-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method

  4. Clinical implementation of intraoperative cone-beam CT in head and neck surgery

    Science.gov (United States)

    Daly, M. J.; Chan, H.; Nithiananthan, S.; Qiu, J.; Barker, E.; Bachar, G.; Dixon, B. J.; Irish, J. C.; Siewerdsen, J. H.

    2011-03-01

    A prototype mobile C-arm for cone-beam CT (CBCT) has been translated to a prospective clinical trial in head and neck surgery. The flat-panel CBCT C-arm was developed in collaboration with Siemens Healthcare, and demonstrates both sub-mm spatial resolution and soft-tissue visibility at low radiation dose (e.g., software based on the open-source Image-Guided Surgery Toolkit (IGSTK). The CBCT C-arm has been successfully deployed in 15 head and neck cases and streamlined into the surgical environment using human factors engineering methods and expert feedback from surgeons, nurses, and anesthetists. Intraoperative imaging is implemented in a manner that maintains operating field sterility, reduces image artifacts (e.g., carbon fiber OR table) and minimizes radiation exposure. Image reviews conducted with surgical staff indicate bony detail and soft-tissue visualization sufficient for intraoperative guidance, with additional artifact management (e.g., metal, scatter) promising further improvements. Clinical trial deployment suggests a role for intraoperative CBCT in guiding complex head and neck surgical tasks, including planning mandible and maxilla resection margins, guiding subcranial and endonasal approaches to skull base tumours, and verifying maxillofacial reconstruction alignment. Ongoing translational research into complimentary image-guidance subsystems include novel methods for real-time tool tracking, fusion of endoscopic video and CBCT, and deformable registration of preoperative volumes and planning contours with intraoperative CBCT.

  5. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics.

    Science.gov (United States)

    Mota de Almeida, F J; Knutsson, K; Flygare, L

    2014-01-01

    The aim was to assess to what extent cone beam CT (CBCT) used in accordance with current European Commission guidelines in a normal clinical setting has an impact on therapeutic decisions in a population referred for endodontic problems. The study includes data of consecutively examined patients collected from October 2011 to December 2012. From 2 different endodontic specialist clinics, 57 patients were referred for a CBCT examination using criteria in accordance with current European guidelines. The CBCT examinations were performed using similar equipment and standardized among clinics. After a thorough clinical examination, but before CBCT, the examiner made a preliminary therapy plan which was recorded. After the CBCT examination, the same examiner made a new therapy plan. Therapy plans both before and after the CBCT examination were plotted for 53 patients and 81 teeth. As four patients had incomplete protocols, they were not included in the final analysis. 4% of the patients referred to endodontic clinics during the study period were examined with CBCT. The most frequent reason for referral to CBCT examination was to differentiate pathology from normal anatomy, this was the case in 24 patients (45% of the cases). The primary outcome was therapy plan changes that could be attributed to CBCT examination. There were changes in 28 patients (53%). CBCT has a significant impact on therapeutic decision efficacy in endodontics when used in concordance with the current European Commission guidelines.

  6. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T E; Amer, A M; Moore, C J

    2008-01-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient

  7. Breast density quantification with cone-beam CT: a post-mortem study

    International Nuclear Information System (INIS)

    Johnson, Travis; Ding, Huanjun; Le, Huy Q; Ducote, Justin L; Molloi, Sabee

    2013-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The per cent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson's r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. (paper)

  8. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.

    Science.gov (United States)

    Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-03-21

    To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.

  9. 3D tumor measurement in cone-beam CT breast imaging

    Science.gov (United States)

    Chen, Zikuan; Ning, Ruola

    2004-05-01

    Cone-beam CT breast imaging provides a digital volume representation of a breast. With a digital breast volume, the immediate task is to extract the breast tissue information, especially for suspicious tumors, preferably in an automatic manner or with minimal user interaction. This paper reports a program for three-dimensional breast tissue analysis. It consists of volumetric segmentation (by globally thresholding), subsegmentation (connection-based separation), and volumetric component measurement (volume, surface, shape, and other geometrical specifications). A combination scheme of multi-thresholding and binary volume morphology is proposed to fast determine the surface gradients, which may be interpreted as the surface evolution (outward growth or inward shrinkage) for a tumor volume. This scheme is also used to optimize the volumetric segmentation. With a binary volume, we decompose the foreground into components according to spatial connectedness. Since this decomposition procedure is performed after volumetric segmentation, it is called subsegmentation. The subsegmentation brings the convenience for component visualization and measurement, in the whole support space, without interference from others. Upon the tumor component identification, we measure the following specifications: volume, surface area, roundness, elongation, aspect, star-shapedness, and location (centroid). A 3D morphological operation is used to extract the cluster shell and, by delineating the corresponding volume from the grayscale volume, to measure the shell stiffness. This 3D tissue measurement is demonstrated with a tumor-borne breast specimen (a surgical part).

  10. A motion-compensated cone-beam CT using electrical impedance tomography imaging

    International Nuclear Information System (INIS)

    Pengpan, T; Smith, N D; Qiu, W; Yao, A; Mitchell, C N; Soleimani, M

    2011-01-01

    Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT

  11. A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment

    International Nuclear Information System (INIS)

    Fu Weihua; Yang Yong; Yue, Ning J; Heron, Dwight E; Huq, M Saiful

    2009-01-01

    The purpose of this work is to develop an online plan modification technique to compensate for the interfractional anatomic changes for prostate cancer intensity-modulated radiation therapy (IMRT) treatment based on daily cone beam CT (CBCT) images. In this proposed technique, pre-treatment CBCT images are acquired after the patient is set up on the treatment couch using an in-room laser with the guidance of the setup skin marks. Instead of moving the couch to rigidly align the target or re-planning using the CBCT images, we modify the original IMRT plan to account for the interfractional target motion and deformation based on the daily CBCT image feedback. The multileaf collimator (MLC) leaf positions for each subfield are automatically adjusted in the proposed algorithm based on the position and shape changes of target projection in the beam's eye view (BEV). Three typical prostate cases were adopted to evaluate the proposed technique, and the results were compared with those obtained with bony-structure-based rigid translation correction, prostate-based correction and CBCT-based re-planning strategies. The study revealed that the proposed modification technique is superior to the bony-structure-based and prostate-based correction techniques, especially when interfractional target deformation exists. Its dosimetric performance is closer to that of the re-planned strategy, but with much higher efficiency, indicating that the introduced online CBCT-guided plan modification technique may be an efficient and practical method to compensate for the interfractional target position and shape changes for prostate IMRT.

  12. Investigation of cone-beam CT image quality trade-off for image-guided radiation therapy

    Science.gov (United States)

    Bian, Junguo; Sharp, Gregory C.; Park, Yang-Kyun; Ouyang, Jinsong; Bortfeld, Thomas; El Fakhri, Georges

    2016-05-01

    It is well-known that projections acquired over an angular range slightly over 180° (so-called short scan) are sufficient for fan-beam reconstruction. However, due to practical imaging conditions (projection data and reconstruction image discretization, physical factors, and data noise), the short-scan reconstructions may have different appearances and properties from the full-scan (scans over 360°) reconstructions. Nevertheless, short-scan configurations have been used in applications such as cone-beam CT (CBCT) for head-neck-cancer image-guided radiation therapy (IGRT) that only requires a small field of view due to the potential reduced imaging time and dose. In this work, we studied the image quality trade-off for full, short, and full/short scan configurations with both conventional filtered-backprojection (FBP) reconstruction and iterative reconstruction algorithms based on total-variation (TV) minimization for head-neck-cancer IGRT. Anthropomorphic and Catphan phantoms were scanned at different exposure levels with a clinical scanner used in IGRT. Both visualization- and numerical-metric-based evaluation studies were performed. The results indicate that the optimal exposure level and number of views are in the middle range for both FBP and TV-based iterative algorithms and the optimization is object-dependent and task-dependent. The optimal view numbers decrease with the total exposure levels for both FBP and TV-based algorithms. The results also indicate there are slight differences between FBP and TV-based iterative algorithms for the image quality trade-off: FBP seems to be more in favor of larger number of views while the TV-based algorithm is more robust to different data conditions (number of views and exposure levels) than the FBP algorithm. The studies can provide a general guideline for image-quality optimization for CBCT used in IGRT and other applications.

  13. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    International Nuclear Information System (INIS)

    Chung, Hyekyun; Poulsen, Per Rugaard; Keall, Paul J.; Cho, Seungryong; Cho, Byungchul

    2016-01-01

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  14. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyekyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea and Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Poulsen, Per Rugaard [Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Cho, Seungryong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Cho, Byungchul, E-mail: cho.byungchul@gmail.com, E-mail: bcho@amc.seoul.kr [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-08-15

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  15. Weight bearing cone beam CT scan versus gravity stress radiography for analysis of supination external rotation injuries of the ankle.

    Science.gov (United States)

    Marzo, John M; Kluczynski, Melissa A; Clyde, Corey; Anders, Mark J; Mutty, Christopher E; Ritter, Christopher A

    2017-12-01

    For AO 44-B2 ankle fractures of uncertain stability, the current diagnostic standard is to obtain a gravity stress radiograph, but some have advocated for the use of weight-bearing radiographs. The primary aim was to compare measures of medial clear space (MCS) on weight-bearing cone beam computed tomography (CBCT) scans versus gravity stress radiographs for determining the state of stability of ankle fractures classified as AO SER 44-B2 or Weber B. The secondary aim was to evaluate the details offered by CBCT scans with respect to other findings that may be relevant to patient care. Nine patients were enrolled in this cross-sectional study between April 2016 and February 2017 if they had an AO SER 44-B2 fracture of uncertain stability, had a gravity stress radiograph, and were able to undergo CT scan within seven days. The width of the MCS was measured at the level of the talar dome on all radiographs and at the mid coronal slice on CT. Wilcoxon signed-ranks tests were used to compare MCS between initial radiographs, gravity stress radiographs and weight-bearing CBCT scans. MCS on weight-bearing CBCT scan (1.41±0.41 mm) was significantly less than standard radiographs (3.28±1.63 mm, P=0.004) and gravity stress radiographs (5.82±1.93 mm, P=0.02). There was no statistically significant difference in MCS measured on standard radiographs versus gravity stress radiographs (P=0.11). Detailed review of the multiplanar CT images revealed less than perfect anatomical reduction of the fractures, with residual fibular shortening, posterior displacement, and fracture fragments in the incisura as typical findings. Similar to weight-bearing radiographs, weight-bearing CBCT scan can predict stability of AO 44-B2 ankle fractures by showing restoration of the MCS, and might be used to indicate patients for non-operative treatment. None of the fractures imaged in this study were perfectly reduced however, and further clinical research is necessary to determine if any of the

  16. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Yee, Don; Parliament, Matthew; Rathee, Satyapal; Ghosh, Sunita; Ko, Lawrence; Murray, Brad

    2010-01-01

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm). The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (± standard deviation [SD]) outside the planning CT counterpart was 29.24 cm 3 (SD, 29.71 cm 3 ). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm 3 (SD, 21.64 cm 3 ). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm 3 (SD, 36.51 cm 3 ). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm 3 (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm 3 (SD, 3.97 cm 3 ). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.

  17. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  18. Image guided radiotherapy with the Cone Beam CT kV (ElektaTM): Experience of the Leon Berard Centre

    International Nuclear Information System (INIS)

    Pommier, P.; Gassa, F.; Lafay, F.; Claude, L.

    2009-01-01

    Image guide radiotherapy with the Cone Beam CT kV (C.B.C.T.-kV) developed by Elekta has been implemented at the centre Leon Berard in November 2006. The treatment procedure is presented and detailed for prostate cancer I.G.R.T. and non small cell lung cancer (N.S.C.L.C.) stereotactic radiotherapy (S.R.T.). C.B.C.T.-kV is routinely used for S.R.T., selected paediatric cancers, all prostate carcinomas, primitive brain tumours and head and neck cancers that do not require nodes irradiation. Thirty-five to 40 patients are treated within a daily 11-hours period. The general procedure for 3-dimensional images acquisition and their analysis is described. The C.B.C.T.-kV permitted to identify about 10% of prostate cancer patients for whom a positioning with bone-based 2-dimensional images only would have led to an unacceptable dose distribution for at least one session. S.R.T. is now used routinely for inoperable N.S.C.L.C.. The easiness of implementing C.B.C.T.-kV imaging and its expected medical benefit should lead to a rapid diffusion of this technology that is also submitted to prospective and multi centric medico-economical evaluations. (authors)

  19. Parallel statistical image reconstruction for cone-beam x-ray CT on a shared memory computation platform

    International Nuclear Information System (INIS)

    Kole, J S; Beekman, F J

    2005-01-01

    Statistical reconstruction methods offer possibilities of improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications. To reduce reconstruction times we have parallelized a statistical reconstruction algorithm for cone-beam x-ray CT, the ordered subset convex algorithm (OSC), and evaluated it on a shared memory computer. Two different parallelization strategies were developed: one that employs parallelism by computing the work for all projections within a subset in parallel, and one that divides the total volume into parts and processes the work for each sub-volume in parallel. Both methods are used to reconstruct a three-dimensional mathematical phantom on two different grid densities. The reconstructed images are binary identical to the result of the serial (non-parallelized) algorithm. The speed-up factor equals approximately 30 when using 32 to 40 processors, and scales almost linearly with the number of cpus for both methods. The huge reduction in computation time allows us to apply statistical reconstruction to clinically relevant studies for the first time

  20. Characteristic findings on panoramic radiography and cone-beam CT to predict paresthesia after extraction of impacted third molar.

    Science.gov (United States)

    Harada, Nana; Beloor Vasudeva, Subash; Matsuda, Yukiko; Seki, Kenji; Kapila, Rishabh; Ishikawa, Noboru; Okano, Tomohiro; Sano, Tsukasa

    2015-01-01

    The purpose of this study was to compare findings on the relationship between impacted molar roots and the mandibular canal in panoramic and three-dimensional cone-beam CT (CBCT) images to identify those that indicated risk of postoperative paresthesia. The relationship between impacted molars and the mandibular canal was first classified using panoramic images. Only patients in whom the molar roots were either in contact with or superimposed on the canal were evaluated using CBCT. Of 466 patients examined using both panoramic and CBCT images, 280 underwent surgical extraction of an impacted molar, and 15 of these (5%) reported postoperative paresthesia. The spatial relationship between the impacted third molar root and the mandibular canal was determined by examining para-sagittal sections (lingual, buccal, inter-radicular, inferior, and combinations) obtained from the canal to the molar root and establishing the proximity of the canal to the molar root (in contact with or without loss of the cortical border and separate). The results revealed that darkening of the roots with interruption of the mandibular canal on panoramic radiographs and the inter-radicular position of the canal in CBCT images were characteristic findings indicative of risk of postoperative paresthesia. These results suggest that careful surgical intervention is required in patients with the above characteristics.

  1. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    International Nuclear Information System (INIS)

    Shigeta, Y.; Shintaku, W.H.; Clark, G.T.; Enciso, R.; Ogawa, T.

    2007-01-01

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  2. Upper airway alterations/abnormalities in a case series of obstructive sleep apnea patients identified with cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, Y; Shintaku, W H; Clark, G T [Orofacial Pain/Oral Medicine Center, Div. of Diagnostic Sciences, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Enciso, R [Div. of Craniofacial Sciences and Therapeutics, School of Dentistry, Univ. of Southern California, Los Angeles, CA (United States); Ogawa, T [Dept. of Fixed Prosthodontic Dentistry, Tsurumi Univ., School of Dental Medicine, Tsurumi (Japan)

    2007-06-15

    There are many factors that influence the configuration of the upper airway and may contribute to the development of obstructive sleep apnea (OSA). This paper presents a series of 12 consecutive OSA cases where various upper airway alteration/abnormalities were identified using 3D anatomic reconstructions generated from cone-beam CT (CBCT) images. Some cases exhibited more than one type of abnormality and below we describe each of the six types identified with CBCT in this case series. (orig.)

  3. Borrmann type IV adenocarcinoma versus gastric lymphoma : spiral CT evaluation

    International Nuclear Information System (INIS)

    Seo, Bo Kyoung; Kim, Yun Hwan; Shin, Kue Hee; Hong, Suk Joo; Kim, Hong Weon; Park, Cheol Min; Chung, Kyoo Byung; Cho, Hyun Deuk

    1999-01-01

    To distinguish the spiral CT findings of Borrmann type IV adenocarcinoma from those of gastric lymphoma with diffuse gastric wall thickening. We retrospectively reviewed the spiral CT scans of 30 patients with Borrmann type IV adenocarcinoma and nine with gastric lymphoma with diffuse gastric wall thickening. In all patients the respective condition was pathologically confirmed by gastrectomy. CT scanning was performed after peroral administration of 500-700ml of water. A total of 120-140 ml bolus of nonionic contrast material was administered intravenously at a flow rate of 3 ml/sec and two-phase images were obtained at 35-45 sec(early phase) and 180 sec(delayed phase) after the start of bolus injection. Spiral CT was performed with 10mm collimation, 10mm/sec table feed and 10mm reconstruction. We evaluated the degree and homogeneity of enhancement of thickened entire gastric wall, and the enhancement pattern of gastric inner layer, as seen on early-phase CT scans. On early and delayed views, the thickness of gastric wall and the presence of perigastric fat infiltration were determined. The enhancement patterns of gastric inner layer were classified as either continuous or discontinuous thick enhancement, thin enhancement, or nonenhancement. The thickness of gastric wall was 1.2-3.5cm(mean 2.2cm) in cases of adenocarcinoma and 1.2-7.6cm(mean 4cm) in lymphoma. Perigastric fat infiltration was seen in 24 patients with adenocarcinoma(80%) and four with lymphoma(44%). In those with adenocarcinoma, the degree of enhancement of entire gastric wall was hyperdense in fifteen patients(50%) and isointense in eleven (37%). Seven patients with lymphoma(78%)showed hypodensity. In those with adenocarcinoma, continuous thick enhancement of gastric inner layer was seen in 18 patients(60%) and discontinuous thick enhancement in nine(30%). In lymphoma cases, no thick enhancement was observed. Thin enhancement of gastric inner layer was demonstrated in three patients with

  4. Evaluation of abdominal CT in the initial treatment of abdominal trauma

    International Nuclear Information System (INIS)

    Watanabe, Shinsuke; Ishii, Takashi; Kuwata, Katsuya; Yoneyama, Chihiro; Kitamura, Kazuya; Sasaki, Yoshifumi; Kamachi, Masahiro; Nishiguchi, Hiroyasu.

    1986-01-01

    During the last four years 102 patients with abdominal trauma were examined by CT for preoperative evaluation in our hospital. In 35 patients (34 %), the CT scans revealed no abnormal findings. They were all managed conservatively except for one case of perforated small bowel. In 67 patients (66 %) CT revealed evidences of substantial abdominal or retroperitoneal trauma. In 30 of them CT findings were confirmed by surgery. Hepatic injury is usually easily recognized by CT. CT is also useful for the detection of renal or splenic injuries. The majority of those parenchymatous organ injuries were successfully managed with conservative therapy, despite apparent traumatic lesions revealed by CT. Repeat CT scans is proved to be very useful to follow the changes of these traumatic lesions. In conclusion, application of abdominal CT is extremely useful for the initial decision making in treatment of patients with abdominal trauma and for the follow-up observation of injured lesions. (author)

  5. An Efficient Estimation Method for Reducing the Axial Intensity Drop in Circular Cone-Beam CT

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2008-01-01

    Full Text Available Reconstruction algorithms for circular cone-beam (CB scans have been extensively studied in the literature. Since insufficient data are measured, an exact reconstruction is impossible for such a geometry. If the reconstruction algorithm assumes zeros for the missing data, such as the standard FDK algorithm, a major type of resulting CB artifacts is the intensity drop along the axial direction. Many algorithms have been proposed to improve image quality when faced with this problem of data missing; however, development of an effective and computationally efficient algorithm remains a major challenge. In this work, we propose a novel method for estimating the unmeasured data and reducing the intensity drop artifacts. Each CB projection is analyzed in the Radon space via Grangeat's first derivative. Assuming the CB projection is taken from a parallel beam geometry, we extract those data that reside in the unmeasured region of the Radon space. These data are then used as in a parallel beam geometry to calculate a correction term, which is added together with Hu’s correction term to the FDK result to form a final reconstruction. More approximations are then made on the calculation of the additional term, and the final formula is implemented very efficiently. The algorithm performance is evaluated using computer simulations on analytical phantoms. The reconstruction comparison with results using other existing algorithms shows that the proposed algorithm achieves a superior performance on the reduction of axial intensity drop artifacts with a high computation efficiency.

  6. Hemoretroperitoneum associated with liver bare area injuries: CT evaluation

    International Nuclear Information System (INIS)

    Miele, V.; Adami, L.; Andreoli, C.; De Cicco, M.L.; David, V.

    2002-01-01

    In hepatic injury restricted to the postero-superior region of segment VII (bare area), hemoperitoneum may be absent and this condition may be associated with hemoretroperitoneum. The aim of this paper is to present the association between bare area injuries and hemoretroperitoneum evaluated by CT. The CT examinations of 32 patients with blunt liver trauma were reviewed and the number and location of lesions were evaluated. Right lobe involvement was identified, focusing on the bare area lesions. The presence of hemoperitoneum and hemoretroperitoneum were determined. In the 32 patients 44 parenchymal lesions were detected. Segment VII was involved in 16 cases: 5 patients presented an intraparenchymal lesion, 11 patients a lesion emerging to the liver surface. In 8 cases the lesion was localized in the bare area. In the 16 patients presenting a segment-VII lesion, hemoperitoneum was detected in 3 cases, hemoretroperitoneum in 4 cases, and both conditions in 4 cases. A traumatic hepatic lesion may be associated with hemoretroperitoneum rather than hemoperitoneum. This justifies the absence of clinical signals of peritoneal irritation; the negativity of both US scan and peritoneal lavage may cause an inappropriate therapeutic management. Computed tomography yields both the detection of the parenchymal damage and the correct localization of the intraperitoneal and retroperitoneal hemorrhage. (orig.)

  7. Hemoretroperitoneum associated with liver bare area injuries: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Miele, V.; Adami, L. [Department of Radiology, Camillo Hospital, Rome (Italy); Andreoli, C.; De Cicco, M.L.; David, V. [I Chair of Radiology, University ' ' La Sapienza' ' , Rome (Italy)

    2002-04-01

    In hepatic injury restricted to the postero-superior region of segment VII (bare area), hemoperitoneum may be absent and this condition may be associated with hemoretroperitoneum. The aim of this paper is to present the association between bare area injuries and hemoretroperitoneum evaluated by CT. The CT examinations of 32 patients with blunt liver trauma were reviewed and the number and location of lesions were evaluated. Right lobe involvement was identified, focusing on the bare area lesions. The presence of hemoperitoneum and hemoretroperitoneum were determined. In the 32 patients 44 parenchymal lesions were detected. Segment VII was involved in 16 cases: 5 patients presented an intraparenchymal lesion, 11 patients a lesion emerging to the liver surface. In 8 cases the lesion was localized in the bare area. In the 16 patients presenting a segment-VII lesion, hemoperitoneum was detected in 3 cases, hemoretroperitoneum in 4 cases, and both conditions in 4 cases. A traumatic hepatic lesion may be associated with hemoretroperitoneum rather than hemoperitoneum. This justifies the absence of clinical signals of peritoneal irritation; the negativity of both US scan and peritoneal lavage may cause an inappropriate therapeutic management. Computed tomography yields both the detection of the parenchymal damage and the correct localization of the intraperitoneal and retroperitoneal hemorrhage. (orig.)

  8. A Clinical Evaluation Of Cone Beam Computed Tomography

    Science.gov (United States)

    2016-06-01

    A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis... COMPUTED TOMOGRAPHY " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. ~mes Behm Endodontic...printed without the expressed written permission of the author. IV ABSTRACT A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY BRYAN JAMES

  9. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    International Nuclear Information System (INIS)

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J; Kadir, T

    2014-01-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  10. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  11. Initial evaluation of commercial optical CT-based 3D gel dosimeter

    International Nuclear Information System (INIS)

    Islam, K.T.S.; Dempsey, James F.; Ranade, Manisha K.; Maryanski, Marek J.; Low, Daniel A.

    2003-01-01

    We evaluated the OCTOPUS-ONE trade mark sign research laser CT scanner developed and manufactured by MGS Research, Inc. (Madison, CT). The scanner is designed for imaging 3D optical density distributions in BANG registered gels. The scanner operates in a translate-rotate configuration with a single scanning laser beam. The rotating cylindrical gel phantom is immersed in a refractive index matching solution and positioned at the center of a square tank made of plastic and glass. A stationary polarized He-Ne laser beam (633 nm) is reflected from a mirror moving parallel to the tank wall and scans the gel. Another mirror moves synchronously along the opposite side of the tank and collects the transmitted light and sends it to a single stationary silicon photodetector. A filtered backprojection algorithm is used to reconstruct projection data in a plane. The laser-mirrors-detector assembly is mounted on a horizontal platform that moves vertically for slice selection. We have tested the mechanical and optical setup, projection centering on the axis of rotation, linearity, and spatial resolution. We found the optical detector to respond linearly to transmitted light from control samples. The spatial resolution of the scanner was determined by employing a split field resolution technique. We obtained the horizontal and vertical full widths at half maxima of the laser beam intensity profiles as 0.6 and 0.8 mm, respectively. Dose calibration tests of the gel were performed using a nine-field (2x2 cm 2 each) dose pattern irradiated at different dose levels. Finally, we compared gel-derived 2D planar dose distribution against radiochromic film measured dose distribution for both the nine-field and a uniform 5x5 cm 2 field of 6 MV x rays. Very similar dose distributions were observed in gel and radiochromic film except in regions of steep dose gradient and highest dose. A dose normalization of 15.6% was required between the two dosimeters due to differences in overall

  12. Congenital cystic masses of the face and neck: CT evaluation

    International Nuclear Information System (INIS)

    Chung, Hae Gyeong; Kim, Hyung Jin; Kim, Jae Hyoung; Hwang, Eui Gee; Jeon, Sea Young; Kim, Sun Young; Chung, Sung Hoon

    1991-01-01

    Recognition of the congenital cystic masses of the face and neck is important because they are usually benign, and can be completely cured by surgical excision. We retrospective analyzed CT scan of 18 surgically proven congenital cystic masses of the face and neck. The cases included 5 thyroglossal duct cysts, 4 cystic hygromas, 5 dermoid cysts, 1 branchial cleft cyst, and 3 fissural cysts of the face. Of five cases of thyroglossal duct cysts, CT showed either a well-marginated, rim enhancing unilocular cystic mass (n=3), or a diffuse but heterogeneous highly enhancing soft tissue mass (n=2). The latter two cases were confirmed later as infected thyroglossal duct cysts. Four cases of cystic hygromas were seen as either an irregularly-marginated (n=3) or a well-marginated (n=1) rim enhancing multiseptated cystic mass with a fluid-fluid level. Five cases of dermoid cysts appeared as well-marginated rim enhancing unilocular ovoid masses. The content of each mass was predominantly fluid in four cases, of which additional solid components were found in two, and interspersed fat globules in one. One case was composed of a homogeneous fatty density. One case of branchial cleft cyst was in the anterior triangle near the left mandibular angle, and appeared as a well-marginated enhancing cystic mass with a thick rim. In this case displacement of the adjacent structures was noted also. All three cases of fissural cysts of the face were seen as a well-marginated, rim enhancing cystic mass, causing a smooth pressure erosion of the adjacent bones. We conclude that CT is useful for the evaluation of the congenital cystic masses of the face and neck, because it can differentiate various forms of the congenital lesions and is able to clearly reveal the relation of the mass to the adjacent structures

  13. Congenital cystic masses of the face and neck: CT evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hae Gyeong; Kim, Hyung Jin; Kim, Jae Hyoung; Hwang, Eui Gee; Jeon, Sea Young; Kim, Sun Young; Chung, Sung Hoon [Gyeongsang National University, Jinju (Korea, Republic of)

    1991-09-15

    Recognition of the congenital cystic masses of the face and neck is important because they are usually benign, and can be completely cured by surgical excision. We retrospective analyzed CT scan of 18 surgically proven congenital cystic masses of the face and neck. The cases included 5 thyroglossal duct cysts, 4 cystic hygromas, 5 dermoid cysts, 1 branchial cleft cyst, and 3 fissural cysts of the face. Of five cases of thyroglossal duct cysts, CT showed either a well-marginated, rim enhancing unilocular cystic mass (n=3), or a diffuse but heterogeneous highly enhancing soft tissue mass (n=2). The latter two cases were confirmed later as infected thyroglossal duct cysts. Four cases of cystic hygromas were seen as either an irregularly-marginated (n=3) or a well-marginated (n=1) rim enhancing multiseptated cystic mass with a fluid-fluid level. Five cases of dermoid cysts appeared as well-marginated rim enhancing unilocular ovoid masses. The content of each mass was predominantly fluid in four cases, of which additional solid components were found in two, and interspersed fat globules in one. One case was composed of a homogeneous fatty density. One case of branchial cleft cyst was in the anterior triangle near the left mandibular angle, and appeared as a well-marginated enhancing cystic mass with a thick rim. In this case displacement of the adjacent structures was noted also. All three cases of fissural cysts of the face were seen as a well-marginated, rim enhancing cystic mass, causing a smooth pressure erosion of the adjacent bones. We conclude that CT is useful for the evaluation of the congenital cystic masses of the face and neck, because it can differentiate various forms of the congenital lesions and is able to clearly reveal the relation of the mass to the adjacent structures.

  14. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods

    Science.gov (United States)

    Marchant, T. E.; Joshi, K. D.; Moore, C. J.

    2018-03-01

    Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).

  15. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones.

    Science.gov (United States)

    Ho, Jung-Ting; Wu, Jay; Huang, Heng-Li; Chen, Michael Y c; Fuh, Lih-Jyh; Hsu, Jui-Ting

    2013-11-09

    This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. The cellular synthetic bones in 4 density groups (Groups 1-4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice.

  16. Comparative analysis of multi-slice spiral CT and positron emission tomography-CT in evaluation of axillary lymph nodes in breast cancer patients

    International Nuclear Information System (INIS)

    Sun Xianchang; Zhang Ruyi; Liu Qingwei; Zhao Suhong; Zu Degui; Li Xin

    2008-01-01

    Objective: To evaluate and compare spiral CT and positron emission tomography-CT (PET-CT) in characterization of of axillary lymph nodes in breast cancer patients. Methods: Forty patients with pathologically proven breast cancer underwent contrast-enhanced spiral CT of the breast and axilla, 13 of them also underwent PET-CT examination. One hundred and fifty-eight axillary lymph nodes were found in the 40 patients through contrast enhanced spiral CT, while 57 lymph nodes were found in the 13 patients through PET-CT. Three radiologists rated the lymph nodes found in CT images on a five-point scale. If the score was equal to or greater than 3, it was defined as positive (metastatic), otherwise negative. Visual observation and semiquantitative analysis were used to classify lymph nodes in PET-CT images. The results of spiral CT observation and PET-CT observation of lymph nodes were compared with pathological results. The relative value of CT and PET-CT was analyzed. Exact probability statistics were employed. Results: One hundred and fifty eight lymph nodes of 40 patients were detected by spiral CT, 91 of them were diagnosed as positive and 67 as negative Among the lymph nodes found in spiral CT, 99 were positive and 59 were negative pathologicall. A total of 57 lymph nodes were found by PET-CT. Thirty-nine of them were defined as positive and 18 as negative. Among the lymph nodes found in PET-CT, 39 were positive and 18 were negative pathologically. The sensitivity, specificity, accuracy, positive and negative predictive values in CT prediction in axillary lymph nodes metastases were 88.89%, 94.91%, 91.14%, 96.70%, and 83.58%, respectively. The sensitivity, specificity, accuracy, positive and negative predictive values in PET-CT prediction in axillary lymph nodes metastases were 97.44%, 94.44%, 96.49%, 97.44%, and 94.44%, respectively. PET-CT had no significant difference with spiral CT in sensitivity, accuracy, positive and negative predictive values for detection

  17. Normal mediastinal and hilar lymph nodes evaluated by 5 mm slice bolus injection CT scan

    International Nuclear Information System (INIS)

    Yamamoto, Takako; Tsukada, Hiroshi; Koizumi, Naoya; Akita, Shinichi; Oda, Junichi; Sakai, Kunio

    1995-01-01

    We evaluated the number and size of normal mediastinal and hilar lymph nodes by 5 mm slice bolus injection CT (12 patients), compared with 10 mm slice CT (12 patients). More lymph nodes were clearly demonstrated by 5 mm slice CT than by 10 mm slice CT. Especially left-sided tracheobronchial (no.4), subaortic (no.5), subcarinal (no.7) and hilar lymph nodes were clearly visible. We concluded 5 mm slice bolus injection CT was useful to evaluate mediastinal and hilar lymph nodes. (author)

  18. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    Science.gov (United States)

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. What is the complementary role of ultrasound evaluation in the diagnosis of acute appendicitis after CT?

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyung Mi [Department of Radiology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Lee, Kwanseop [Department of Radiology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)], E-mail: kwanseop@hallym.or.kr; Kim, Min-Jeong; Yoon, Hoi Soo; Jeon, Eui Yong; Koh, Sung Hye [Department of Radiology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Min, Kwangseon [Department of Pathology, Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of); Choi, Dongil [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (Korea, Republic of)

    2010-04-15

    The objective of our study was to estimate the complementary role of ultrasound evaluation in the diagnosis of acute appendicitis after abdominoplevic CT. A total of 104 patients initially underwent abdominopelvic CT before appendix US due to acute abdominal pain. All CT examinations were evaluated retrospectively for the presence of acute appendicitis. The findings of appendix on CT were classified into five categories (definite appendicitis, probably appendicitis, equivocal CT findings for diagnosis of appendicitis, probably not appendicitis, and normal looking appendix). Appendix US images and their radiologic reports were also evaluated retrospectively. Then, CT and US findings were correlated with clinical or pathologic diagnosis. Three all patients with definite appendicitis initially on CT again showed US findings of appendicitis. In the 32 patients of probably appendicitis on CT, US showed normal looking appendix in seven patients (21.8%, 7 of 32) who improved with medical treatment and discharged. In the 16 patients of equivocal CT findings for diagnosis of appendicitis, US showed appendicitis in seven patients (43.8%, 7 of 16) and normal looking appendix in nine patients. In the 12 patients of probably not appendicitis on CT, US showed acute appendicitis in two patients (16.7%, 2 of 12). In the 41 patients of normal looking appendix on CT, US showed acute appendicitis in five patients (12.2%, 5 of 41). US reevaluation enables us to avoid misdiagnosis of appendicitis on CT and improve diagnostic accuracy of acute appendicitis.

  20. TU-EF-207-05: Dedicated Cone-beam Breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, S. [Univ. of Massachusetts Medical School (United States)

    2015-06-15

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation.

  1. TU-EF-207-05: Dedicated Cone-beam Breast CT

    International Nuclear Information System (INIS)

    Vedantham, S.

    2015-01-01

    mode due to lower photon fluence per projection. This may require fast-frame acquisition and symmetric or asymmetric pixel binning in some systems. Recent studies investigated the performance of increased conversion layer thickness for contrast-enhanced imaging of the breast in dual-energy acquisition mode. In other direct conversion detectors operating in the avalanche mode, sensitivities close to the single photon response are also explored for mammography and breast tomosynthesis. The potential advantages and challenges of this approach are described. Dedicated breast CT brings x-ray imaging of the breast to true tomographic 3D imaging. It can eliminate the tissue superposition problem and does not require physical compression of the breast. Using cone beam geometry and a flat-panel detector, several hundred projections are acquired and reconstructed to near isotropic voxels. Multiplanar reconstruction facilitates viewing the breast volume in any desired orientation. Ongoing clinical studies, the current state-of-the art, and research to advance the technology are described. Learning Objectives: To understand the ongoing developments in x-ray imaging of the breast To understand the approaches and applications of spectral mammography To understand the potential advantages of distributed x-ray source arrays for digital breast tomosynthesis To understand the ongoing developments in detector technology for digital mammography and breast tomosynthesis To understand the current state-of-the-art for dedicated cone-beam breast CT and research to advance the technology. Research collaboration with Koning Corporation

  2. Correction of patient motion in cone-beam CT using 3D-2D registration

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.

  3. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  4. Cone beam CT dose reduction in prostate radiotherapy using Likert scale methods.

    Science.gov (United States)

    Langmack, Keith A; Newton, Louise A; Jordan, Suzanne; Smith, Ruth

    2016-01-01

    To use a Likert scale method to optimize image quality (IQ) for cone beam CT (CBCT) soft-tissue matching for image-guided radiotherapy of the prostate. 23 males with local/locally advanced prostate cancer had the CBCT IQ assessed using a 4-point Likert scale (4 = excellent, no artefacts; 3 = good, few artefacts; 2 = poor, just able to match; 1 = unsatisfactory, not able to match) at three levels of exposure. The lateral separations of the subjects were also measured. The Friedman test and Wilcoxon signed-rank tests were used to determine if the IQ was associated with the exposure level. We used the point-biserial correlation and a χ(2) test to investigate the relationship between the separation and IQ. The Friedman test showed that the IQ was related to exposure (p = 2 × 10(-7)) and the Wilcoxon signed-rank test demonstrated that the IQ decreased as exposure decreased (all p-values <0.005). We did not find a correlation between the IQ and the separation (correlation coefficient 0.045), but for separations <35 cm, it was possible to use the lowest exposure parameters studied. We can reduce exposure factors to 80% of those supplied with the system without hindering the matching process for all patients. For patients with lateral separations <35 cm, the exposure factors can be reduced further to 64% of the original values. Likert scales are a useful tool for measuring IQ in the optimization of CBCT IQ for soft-tissue matching in radiotherapy image guidance applications.

  5. SU-E-QI-08: Fourier Properties of Cone Beam CT Projection

    International Nuclear Information System (INIS)

    Bai, T; Yan, H; Jia, X; Jiang, Steve B.; Mou, X

    2014-01-01

    Purpose: To explore the Fourier properties of cone beam CT (CBCT) projections and apply the property to directly estimate noise level of CBCT projections without any prior information. Methods: By utilizing the property of Bessel function, we derivate the Fourier properties of the CBCT projections for an arbitrary point object. It is found that there exists a double-wedge shaped region in the Fourier space where the intensity is approximately zero. We further derivate the Fourier properties of independent noise added to CBCT projections. The expectation of the square of the module in any point of the Fourier space is constant and the value approximately equals to noise energy. We further validate the theory in numerical simulations for both a delta function object and a NCAT phantom with different levels of noise added. Results: Our simulation confirmed the existence of the double-wedge shaped region in Fourier domain for the x-ray projection image. The boundary locations of this region agree well with theoretical predictions. In the experiments of estimating noise level, the mean relative error between the theory estimation and the ground truth values is 2.697%. Conclusion: A novel theory on the Fourier properties of CBCT projections has been discovered. Accurate noise level estimation can be achieved by applying this theory directly to the measured CBCT projections. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011) and China Scholarship Council

  6. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Niu, Yantao; Xian, Junfang [Capital Medical University, Department of Radiology, Beijing Tongren Hospital, Beijing (China)

    2016-01-15

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm{sup 2}), less so in PT patients (7.97 ± 5.17 mm{sup 2}). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  7. Intracranial aneurysms: evaluation in 200 patients with spiral CT angiography

    International Nuclear Information System (INIS)

    Young, N.; Kingston, R.J.; Markson, G.; Dorsch, N.W.C.; McMahon, J.

    2001-01-01

    The goal of this study was to assess the usefulness of spiral CT angiography (CTA) with three- dimensional reconstructions in defining intracranial aneurysms, particularly around the Circle of Willis. Two hundred consecutive patients with angiographic and/or surgical correlation were studied between 1993 and 1998, with CTA performed on a GE HiSpeed unit and Windows workstation. The following clinical situations were evaluated: conventional CT suspicion of an aneurysm; follow-up of treated aneurysm remnants or of untreated aneurysms; subarachnoid haemorrhage (SAH) and negative angiography; family or past aneurysm history; and for improved definition of aneurysm anatomy. Spiral CTA detected 140 of 144 aneurysms, and an overall sensitivity of 97%, including 30 of 32 aneurysms 3 mm or less in size. In 38 patients with SAH and negative angiography, CTA found six of the seven aneurysms finally diagnosed. There was no significant artefact in 17 of 23 patients (74%) with clips. The specificity of CTA was 86% with 8 false-positive cases. Spiral CTA is very useful in demonstrating intracranial aneurysms. (orig.)

  8. CT evaluation of sigmoid plate dehiscence causing pulsatile tinnitus

    International Nuclear Information System (INIS)

    Zhao, Pengfei; Lv, Han; Dong, Cheng; Wang, Zhenchang; Niu, Yantao; Xian, Junfang

    2016-01-01

    To evaluate the characteristics of sigmoid plate dehiscence (SPD) causing pulsatile tinnitus (PT) on CT arteriography and venography (CTA + V). Thirty PT patients treated successfully with SPD reconstruction were enrolled. Sixty asymptomatic patients were matched. The location, extent, number of SPD cases and concomitant signs, including venous outflow dominance, transverse sinus stenosis, high jugular bulb, temporal bone pneumatization, height of pituitary gland and pituitary fossa, abnormal mastoid emissary vein, were detected and compared using CTA + V. More than one SPD was found on the symptomatic side in 13/30 PT patients (43.3 %). The upper segment of the sigmoid plate was involved in 29/44 SPDs in the vertical direction (65.9 %); the lateral wall was involved in 38/44 SPDs in the horizontal direction (86.4 %). Singular SPD was detected in 3/60 asymptomatic patients (1.67 ± 0.35 mm 2 ), less so in PT patients (7.97 ± 5.17 mm 2 ). Compared with the control group, ipsilateral venous outflow dominance, high jugular bulb and bilateral transverse sinus stenosis were more common in the PT group, together with deeper pituitary fossa and flatter pituitary glands. SPD causing PT has characteristic CT findings. It may be generated by vascular or intracranial pressure abnormalities and act as a common key to triggering PT's perception. (orig.)

  9. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  10. CT versus FDG-PET/CT response evaluation in patients with metastatic colorectal cancer treated with irinotecan and cetuximab

    DEFF Research Database (Denmark)

    Skougaard, Kristin; Johannesen, Helle Hjorth; Nielsen, Dorte

    2014-01-01

    included in a phase II trial and treated with cetuximab and irinotecan every second week. They underwent FDG-PET/CT examination at baseline and after every fourth treatment cycle. Response evaluation was performed prospectively according to Response Evaluation Criteria in Solid Tumors (RECIST 1...

  11. Clinical introduction of image lag correction for a cone beam CT system

    International Nuclear Information System (INIS)

    Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob; Herk, Marcel van

    2016-01-01

    Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors’ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to

  12. Clinical introduction of image lag correction for a cone beam CT system.

    Science.gov (United States)

    Stankovic, Uros; Ploeger, Lennert S;