Beam Coupling Impedances of Small Discontinuities
Kurennoy, S S
2000-01-01
A general derivation of the beam coupling impedances produced by small discontinuities on the wall of the vacuum chamber of an accelerator is reviewed. A collection of analytical formulas for the impedances of small obstacles is presented.
Beam Coupling Impedances of Obstacles Protruding into Beam Pipe
Kurennoy, S S
1997-01-01
The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases are presented which allow simple practical estimates of the broad-band impedance contributions from such discontinuities.
Beam coupling impedances of obstacles protruding into a beam pipe
Kurennoy, Sergey S.
1997-03-01
The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities.
Beam coupling impedances of obstacles protruding into a beam pipe
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S. [AOT-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1997-03-01
The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. These results allow simple practical estimates of the broadband impedance contributions from such discontinuities. {copyright} {ital 1997} {ital The American Physical Society}
Transverse beam coupling impedance of the CERN Proton Synchrotron
Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.
2016-04-01
Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.
Beam coupling impedances of obstacles protruding into beam pipe
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.
1997-08-01
The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated analytically at frequencies for which the wavelength is large compared to a typical size of the obstacle. Simple formulas for a few important particular cases, including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. The analytical results are compared and agree with three-dimensional computer simulations. These results allow simple practical estimates of the broad-band impedance contributions from such discontinuities.
Beam Coupling Impedances of Obstacles Protruding into Beam Pipe.
Kurennoy, Sergey S.
1997-05-01
The beam coupling impedances of small obstacles protruding inside the vacuum chamber of an accelerator are calculated analytically at frequencies for which the wavelength is large compared to a typical size of the obstacle. Simple formulas for a few important particular cases including both essentially three-dimensional objects like a post or a mask and axisymmetric irises, are presented. The analytical results are compared and agree with three-dimensional computer simulations. These results allow simple practical estimates of the broad-band impedance contributions from such discontinuities.
Beam coupling impedances of fast transmission-line kickers.
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. (Sergey)
2002-01-01
Fast transmission-line kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. At very low frequencies the results are compared with simple analytical expressions for the coupling impedances of striplines in beam position monitors.
Coupling Impedances of Small Discontinuities: Dependence on Beam Velocity
Kurennoy, S S
2006-01-01
The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., S.S. Kurennoy, R.L. Gluckstern, and G.V. Stupakov, Phys. Rev. E 52, 4354 (1995)] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases - circular and rectangular chamber cross sections - are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate ...
The beam coupling impedance model of CERN Proton Synchrotron
Persichelli, Serena; Migliorati, Mauro; Salvant, Benoit
The research activity described in this thesis work is dedicated to developing a longitudinal and a transverse beam coupling impedance model for the CERN Proton Synchrotron (PS), in the framework of the Large Hadron Collider (LHC) Injector Upgrade (LIU) project. The study allows a better understanding of the instability threshold of the machine, helping predicting the effects of the current increase planned for the upgrade program. Furthermore, the knowledge of the machine beam coupling impedance model allows improving the stability of beams injected into the LHC chain, in prevision for the particle collision energy increase in program for LHC physics experiments.
Coupling impedances of small discontinuities: Dependence on beam velocity
Kurennoy, Sergey S.
2006-05-01
The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., Kurennoy, Gluckstern, and Stupakov, Phys. Rev. E 52, 4354 (1995)PLEEE81063-651X10.1103/PhysRevE.52.4354] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases—circular and rectangular chamber cross sections—are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate that the same technique, the field expansion into a series of cross-section eigenfunctions, is convenient for calculating the space-charge impedance of uniform beam pipes with arbitrary cross section.
REDUCING BEAM COUPLING IMPEDANCES IN SNS RING EXTRACTION KICKERS
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. (Sergey); Davino, D. (Daniele); Lee, Y. Y.
2001-01-01
The Spallation Neutron Source (SNS) Accumulator ring extraction system includes 14 modules of windowframe ferrite pulsing kicker magnets with the rise time of about 200 ns. Their contribution to the beam coupling impedances is a serious concern. The kicker impedances, as well as its deflecting magnetic field versus time, are studied using detailed 3-D MAFIA modeling. Various design options, external circuit resistances, and a range of ferrite permeabilities are explored. A kicker module with wide conductor windings around the ferrite behind the kicker current sheet suggests a significant reduction of the kicker transverse and longitudinal coupling impedances. This design provides a good extraction field performance, as demonstrated by electromagnetic simulations. Results of measurements for a small model are also presented.
REDUCING BEAM COUPLING IMPEDANCES IN SNS RING EXTRACTION KICKERS.
Energy Technology Data Exchange (ETDEWEB)
KURENNOY,S.S.; DAVINO,D.; LEE,Y.Y.
2001-06-18
The Spallation Neutron Source (SNS) Accumulator ring extraction kickers [1] consists of 14 modules of windowframe ferrite pulsing magnets with the rise time of about 200 ns. Their contribution to the beam coupling impedances is a serious concern. The kicker impedances, as well as its deflecting magnetic field versus time, are studied using detailed 3-D MAFIA modeling. Various design options, external circuit resistances, and a range of ferrite permeabilities are explored. A kicker module with wide conductor windings around the ferrite behind the kicker current sheet suggests a significant reduction of the kicker transverse and longitudinal coupling impedances. This design provides a good extraction field performance, as demonstrated by electromagnetic simulations. Results of measurements for a small model are also presented.
REDUCING BEAM COUPLING IMPEDANCES IN SNS RING EXTRACTION KICKERS
Energy Technology Data Exchange (ETDEWEB)
S.S. KURENNOY; D. DAVINO; Y. LEE
2001-06-01
The Spallation Neutron Source (SNS) Accumulator ring extraction system [1] includes 14 modules of window-frame ferrite pulsing kicker magnets with the rise time of about 200 ns. Their contribution to the beam coupling impedances is a serious concern. The kicker impedances, as well as its deflecting magnetic field versus time, are studied using detailed 3-D MAFIA modeling. Various design options, external circuit resistances, and a range of ferrite permeabilities are explored. A kicker module with wide conductor windings around the ferrite behind the kicker current sheet suggests a significant reduction of the kicker transverse and longitudinal coupling impedances. This design provides a good extraction field performance, as demonstrated by electromagnetic simulations. Results of measurements for a small model are also presented.
Geometric Beam Coupling Impedance of LHC Secondary Collimators
Frasciello, O; Zobov, M; Grudiev, A; Mounet, N; Salvant, B
2014-01-01
The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep under control beam instabilities and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are the main impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were by about a factor of 2 higher with respect to the theoretical predictions based on the current model. Up to now the resistive wall impedance has been considered as the major impedance contribution for collimators. By carefully simulating their geometric impedance we show that for the graphite collimators with half-gaps higher than 10 mm the geometric impedance exceeds the resistive wall one. In turn, for the tungsten collimators the geometric impedance dominates for all used gap values. Hence, i...
A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction
Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S
2004-01-01
The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.
Beam Coupling Impedances of Traveling-Wave Ferrite-Free Extraction Kickers
Kurennoy, Sergey
2002-04-01
Fast traveling-wave extraction kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of such transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. As one can expect, at very low frequencies the results are in agreement with simple analytical expressions available for the coupling impedances of striplines in beam position monitors.
Coupling Impedances of Azimuthally Symmetric Obstacles of Semi-Elliptical Shape in a Beam Pipe
Gluckstern, R L; Gluckstern, Robert L.; Kurennoy, Sergey S.
1996-01-01
The beam coupling impedances of small axisymmetric obstacles having a semi-elliptical cross section along the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the cavities with such a shape which allow simple estimates of their broad-band impedances.
Polarizabilities of an annular cut and coupling impedances of button type beam position monitors
Kurennoy, Sergei S.
The longitudinal and transverse coupling impedances of a small discontinuity on the accelerator chamber wall can be expressed in terms of the electric and magnetic polarizabilities of the discontinuity. The polarizabilities are geometrical factors and can be found by solving a static (electric or magnetic) problem. However, they are known in the explicit analytical form only for a few simple-shaped discontinuities, for example, for an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall are obtained. The results are applied to calculate the coupling impedances of button-type beam position monitors.
Polarizabilities of an annular cut and coupling impedances of button-type beam position monitors
Kurennoy, S S
1995-01-01
The longitudinal and transverse coupling impedances of a small discontinuity on the accelerator chamber wall can be expressed in terms of the electric and magnetic polarizabilities of the discontinuity. The polarizabilities are geometrical factors and can be found by solving a static (electric or magnetic) problem. However, they are known in the explicit analytical form only for a few simple-shaped discontinuities, for example, for an elliptic hole in a thin wall. In the present paper the polarizabilities of a ring-shaped cut in the wall are obtained. The results are applied to calculate the coupling impedances of button-type beam position monitors.
Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets
Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J
2014-01-01
The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.
Single beam collective effects in FCC-ee due to beam coupling impedance
Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail
2016-01-01
The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelerator are identified and evaluated, and their impact on the beam dynamics, which in some cases could lea...
Single beam collective effects in FCC-ee due to beam coupling impedance
Belli, Eleonora; Persichelli, Serena; Zobov, Mikhail
2016-01-01
The Future Circular Collider study, hosted by CERN to design post-LHC particle accelerator options in a worldwide context, is focused on proton-proton high-energy and electron-positron high-luminosity frontier machines. This new accelerator complex represents a great challenge under several aspects, which involve R&D on beam dynamics and new technologies. One very critical point in this context is represented by collective effects, generated by the interaction of the beam with self-induced electromagnetic fields, called wake fields, which could produce beam instabilities, thus reducing the machines performance and limiting the maximum stored current. It is therefore very important to be able to predict these effects and to study in detail potential solutions to counteract them. In this paper the resistive wall and some other important geometrical sources of impedance for the FCC electron-positron accelera- tor are identified and evaluated, and their impact on the beam dynamics, which in some cases could l...
FEM Analysis of Beam-coupling Impedance and RF Contacts Criticality on the LHC UA9 Piezo Goniometer
Danisi, A; Passarelli, A; Masi, A; Losito, R; Salvant, B
2014-01-01
The UA9 piezo-goniometer has been designed to guarantee micro-radians-accuracy angular positioning of a silicon crystal for a crystal collimation experiment in the LHC, and to minimize the impact on the LHC beam coupling impedance. This paper presents a Finite Element Method (FEM) study of the device, in both parking and operational positions, to evaluate its impact on the LHC impedance budget. In addition, the shielding contribution of the RF gaskets has been carefully evaluated, with the objective to assess the consequences for operation in case of their failure. A final word is drawn on the overall device impedance criticality.
EM Simulations in Beam Coupling Impedance Studies: Some Examples of Application
Zannini, C
2012-01-01
In the frame of the SPS upgrade an accurate impedance model is needed in order to predict the instability threshold and if necessary to start a campaign of impedance reduction. Analytical models, 3-D simulations and bench measurements are used to estimate the impedance contribution of the different devices along the machine. Special attention is devoted to the estimation of the impedance contribution of the kicker magnets that are suspected to be the most important impedance source in SPS. In particular a numerical study is carried out to analyze the effect of the serigraphy in the SPS extraction kicker. An important part of the devices simulations are the ferrite model. For this reason a numerical based method to measure the electromagnetic properties of the material has been developed to measure the ferrite properties. A simulation technique, in order to account for external cable is developed. The simulation results were benchmarked with analytical models and observations with beam. A numerical study was a...
Wakefields and coupling impedances
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. (Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave., Dallas, Texas 75237 (United States))
1995-02-01
After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics
Wakefields and coupling impedances
Kurennoy, Sergey
1995-02-01
After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.
Analysis of formulas used in coupling impedance coaxial-wire measurements for distributed impedances
International Nuclear Information System (INIS)
In this paper the authors study the validity of coupling impedance bench measurements for distributed impedances, comparing the commonly used log formula to the result obtained applying a modified version of Bethe's theory of diffraction to a long slot in a coaxial beam pipe. The equations found provide a quantitative expression for the influence of the wire thickness used in the measurement of the real and imaginary part of the longitudinal impedance. The precision achievable in an actual measurement is therefore discussed. The method presented has also been applied in the presence of lumped impedances
CSR Impedance for Non-Ultrarelativistic Beams
Energy Technology Data Exchange (ETDEWEB)
Li, Rui [Jefferson Lab., Newport News, VA (United States); Tsai, Cheng Y. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jefferson Lab., Newport News, VA (United States)
2015-09-01
For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.
Impedances and power losses for an off-axis beam
Kurennoy, S S
1996-01-01
A method for calculating coupling impedances and power losses for off-axis beams is developed. It is applied to calculate impedances of small localized discontinuities like holes and slots, as well as the impedance due to a finite resistivity of chamber walls, in homogeneous chambers with an arbitrary shape of the chamber cross section. The approach requires to solve a two-dimensional electrostatic problem, which can be easily done numerically in the general case, while for some particular cases analytical solutions are obtained.
Impedances of azimuthally symmetric irises and cavities with semielliptical profile in a beam pipe
Gluckstern, Robert L.; Kurennoy, Sergey S.
1997-03-01
The beam coupling impedances of small axisymmetric obstacles having a semielliptical cross section along the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the cavities with such a shape, which allows simple estimates of their broadband impedances.
Pumping slots: Coupling impedance calculations and estimates
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.
1993-08-01
Coupling impedances of small pumping holes in vacuum-chamber walls have been calculated at low frequencies, i.e., for wavelengths large compared to a typical hole size, in terms of electric and magnetic polarizabilities of the hole. The polarizabilities can be found by solving and electro- or magnetostatic problem and are known analytically for the case of the elliptic shape of the hole in a thin wall. The present paper studies the case of pumping slots. Using results of numerical calculations and analytical approximations of polarizabilities, we give formulae for practically important estimates of slot contribution to low-frequency coupling impedances.
On coupling impedances of pumping holes
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.
1993-04-01
Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.
Beam Impedance Studies of the PS Beam Gas Ionization Monitor
Avgidis, Fotios
2016-01-01
The Beam Gas Ionization monitor (BGI) is a device for continuous beam size monitoring that is intended to be installed in the CERN Proton Synchrotron (PS) during the extended year-end technical stop from December 2016 to April 2017. With the objective of determining the impedance contribution of the BGI vacuum chamber to the overall beam impedance, we report on RF measurements on the device in a laboratory frame, measurement data analysis, and RF simulations of the structure under investigation. For the impedance contribution characterization of the BGI, the following approach has been followed: First, the EM fields inside a simplified BGI model that doesn’t include any of the internal components of the vacuum chamber have been simulated. RF measurements have been performed on the same empty structure showing great agreement between measurement and simulation and thus verifying the validity of the model. Second, simulations have been executed on a fully assembled BGI model that includes all the internal ele...
Coupling impedances of small discontinuities: A general approach
Kurennoy, Sergey S.; Gluckstern, Robert L.; Stupakov, Gennady V.
1995-10-01
A general theory of the beam interaction with small discontinuities of the vacuum chamber of an accelerator is developed taking into account the reaction of radiated waves back on the discontinuity. The reactive impedance calculated earlier is reproduced as the first order and the resistive one as the second order of a perturbation theory based on this general approach. The theory also gives, in an easy and natural way, the analytical results for the frequencies and coupling impedances of the trapped modes due to small discontinuities on the vacuum chamber of a general cross section. Formulas for two important particular cases-a circular and a rectangular chamber-are presented.
Coupling impedances of small discontinuities: A general approach
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.; Gluckstern, R.L. [Physics Department, University of Maryland, College Park, Maryland 20742 (United States); Stupakov, G.V. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States)
1995-10-01
A general theory of the beam interaction with small discontinuities of the vacuum chamber of an accelerator is developed taking into account the reaction of radiated waves back on the discontinuity. The reactive impedance calculated earlier is reproduced as the first order and the resistive one as the second order of a perturbation theory based on this general approach. The theory also gives, in an easy and natural way, the analytical results for the frequencies and coupling impedances of the trapped modes due to small discontinuities on the vacuum chamber of a general cross section. Formulas for two important particular cases---a circular and a rectangular chamber---are presented.
Coupled Transmission Lines as Impedance Transformer
DEFF Research Database (Denmark)
Jensen, Thomas; Zhurbenko, Vitaliy; Krozer, Viktor;
2007-01-01
A theoretical investigation of the use of a coupled line section as an impedance transformer is presented. We show how to properly select the terminations of the coupled line structures for effective matching of real and complex loads in both narrow and wide frequency ranges. The corresponding....... Wideband matching performance with relative bandwidth beyond 100% and return loss > 20 dB is demonstrated both theoretically and experimentally. Good agreement is achieved between the measured and predicted performance of the coupled line transformer section....
Impedances and beam stability issues of the Fermilab recycler ring
Energy Technology Data Exchange (ETDEWEB)
Ng, King-Yuen
1996-04-01
The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).
Impedances of azimuthally symmetric irises and cavities with semielliptical profile in a beam pipe
Energy Technology Data Exchange (ETDEWEB)
Gluckstern, R.L.; Kurennoy, S.S. [Physics Department, University of Maryland, College Park, Maryland 20742 (United States)
1997-03-01
The beam coupling impedances of small axisymmetric obstacles having a semielliptical cross section along the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the cavities with such a shape, which allows simple estimates of their broadband impedances. {copyright} {ital 1997} {ital The American Physical Society}
Estimate of the coupling impedance for the storage rings of the NSLS
International Nuclear Information System (INIS)
The most important ingredient to evaluate the stability of a particle beam in a storage ring is the longitudinal coupling impedance Z/n and the transverse impedance Z/sub perpendicular to/ which is usually associated to the former. These impedances are calculated for the two storage rings which are part of the NSLS, namely the Ultra Violet Ring (UVR) and the x-Ray Ring
Magnetically Coupled Impedance-Source Inverters
DEFF Research Database (Denmark)
Loh, Poh Chiang; Blaabjerg, Frede
2013-01-01
input-to-output gain and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters, most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...
Magnetically coupled impedance-source inverters
DEFF Research Database (Denmark)
Loh, Poh Chiang; Blaabjerg, Frede
2012-01-01
input-to-output gain, and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use......Z-source inverters are a new class of inverters proposed with output voltage or current buck-boost ability. Despite their general attractiveness, there are some present limitations faced by existing Z-source inverters. Most of which are linked to their requirement for low modulation ratio at high...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology...
Coupling impedance of a periodic array of diaphragms
International Nuclear Information System (INIS)
A method is presented for calculating the high-frequency longitudinal and transverse coupling impedances in a periodic array of diaphragms in a circular perfectly conducting pipe. The method is based on Weinstein's theory of diffraction of a plane electromagnetic wave on a stack of halfplanes. Using Weinstein's solution, it is shown that the problem of finding the beam field in the pipe reduces to an effective boundary condition at the radius of the diaphragms that couples the longitudinal electric field with the azimuthal magnetic one. Solving Maxwell's equations with this boundary condition leads to simple formulae for Zlong and Ztr. A good agreement with a numerical solution of the problem found by other authors is demonstrated
A new method for calculation of low-frequency coupling impedance
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.; Stupakov, G.V.
1993-05-01
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained.
A new method for calculation of low-frequency coupling impedance
International Nuclear Information System (INIS)
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained
The concept of coupling impedance in the self-consistent plasma wake field excitation
Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.
2016-09-01
Within the framework of the Vlasov-Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.
Calculation of the coupling impedances of holes and slots on the liner using MAFIA and scaling
Energy Technology Data Exchange (ETDEWEB)
Thiagarajan, V.; Barts, T.; Kurennoy, S.; Chou, W.
1993-11-01
The location of a liner inside the beam tube is one of the options considered for the Super Colliders. The liner could serve as a synchrotron radiation intercept and also help enhance the vacuum. A definite distribution of holes or slots is required to be located on the liner for pumping out the desorbing gases. There will be wake fields propagating within the liner due to diffraction at discontinuities following the incident beam fields. The effect of these wake fields can be minimized by adopting the least number of pumping holes/slots required and through an optimal choice of hole/slot shape and size. The effect of the wake fields on the beam may be expressed through coupling impedances defined proportional to the corresponding forces integrated through distance per unit charge. It is necessary to compute the impedance of holes and slots and determine the scaling of the impedance with the dimensions of the hole/slot and the liner, in order to optimize the choice of pumping holes/slots. The coupling impedances of slots and holes have been calculated here using the code MAFIA and the scaling assessed. The results compare favorably with existing analytical results.
Matrix solution of coupling impedance in multi-layer circular cyclindrical structures
Energy Technology Data Exchange (ETDEWEB)
Hahn,H.; Choi, E.
2009-05-04
Continuing interest in computing the coupling impedance of cylindrical multi-layer beam tubes led to several recent publications. A novel matrix method is here presented in which radial wave propagation is treated in analogy to longitudinal transmission lines. Starting from the Maxwell equations the solutions for monopole electromagnetic fields are in each layer described by a 2 x 2 matrix. Assuming isotropic material properties within one layer, the radially transverse field components at the inner boundary of a layer are uniquely determined by matrix transfer of the field components at its outer boundary. By imposing power flow constraints on the matrix, field matching between layers is enforced and replaced by matrix multiplication. The coupling impedance of a stainless steel beam tube defined by a matrix is given as a representative demonstration.
A general approach for calculating coupling impedances of small discontinuities
Kurennoy, S S; Stupakov, G V; Kurennoy, Sergey S; Gluckstern, Robert L; Stupakov, Gennady V
1995-01-01
A general theory of the beam interaction with small discontinuities of the vacuum chamber is developed taking into account the reaction of radiated waves back on the discontinuity. The reactive impedance calculated earlier is reproduced as the first order, and the resistive one as the second order of a perturbation theory based on this general approach. The theory also gives, in a very natural way, the results for the trapped modes due to small discontinuities obtained earlier by a different method.
A General approach for calculating coupling impedances of small discontinuities
Kurennoy, Sergei S.; Gluckstern, Robert L.; Stupakov, Gennady V.
A general theory of the beam interaction with small discontinuities of the vacuum chamber is developed taking into account the reaction of radiated waves back on the discontinuity. The reactive impedance calculated earlier is reproduced as the first order, and the resistive one as the second order of a perturbation theory based on this general approach. The theory also gives, in a very natural way, the results for the trapped modes due to small discontinuities obtained earlier by a different method.
Beam steering and impedance matching of plasmonic horn nanoantennas
Afridi, Adeel
2016-01-01
In this paper, we study a plasmonic horn nanoantenna on a metal-backed substrate. The horn nanoantenna structure consists of a two-wire transmission line (TWTL) flared at the end. We analyze the effect of the substrate thickness on the nanoantenna's radiation pattern, and demonstrate beam steering in a broad range of elevation angles. Furthermore, we analyze the effect of the ground plane on the impedance matching between the antenna and the TWTL, and observe that the ground plane increases the back reflection into the waveguide. To reduce the reflection, we develop a transmission line model to design an impedance matching section which leads to 99.75% power transmission to the nanoantenna.
Ultrafast Beam Switching Using Coupled VCSELs
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The strategy is demonstrated by numerical simulation, showing a beam switching of 10 deg at 42 GHz.
Coupled Lines Filters for Broadband Impedance Matching of Microwave Amplifiers
Directory of Open Access Journals (Sweden)
Mohammed Lahsaini
2014-08-01
Full Text Available In this paper we present a broadband matching technique for the design of low noise amplifiers. This technique is based on the use of coupled lines filters and quarter wave transformers for the adaptation and stabilization of these amplifiers, presenting the theory and the design process of these circuits. The type of transistors used for modeling this amplifier is the HEMT of Alpha Industries®. The results we found show that this amplifier is unconditionally stable with a satisfactory gain of about 20 dB and good impedance matching across the band of interest [10-12] GHz. The amplifier modeled in this work can be integrated in satellite receiving systems and radar systems.
Coupled-Beam and Coupled-Bunch Instabilities
Burov, Alexey
2016-01-01
A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.
Directory of Open Access Journals (Sweden)
Hoi Shun Lui
2010-01-01
Full Text Available A short review of the receiving-mutual-impedance method (RMIM for mutual coupling compensation in direction finding applications using linear array is conducted. The differences between the conventional-mutual-impedance method (CMIM and RMIM, as well as the three different determination methods for receiving mutual impedance (RMI, will be discussed in details. As an example, direction finding with better accuracies is used for demonstrating the superiority of mutual coupling compensation using RMIM.
Beam measurements of the LHC impedance and validation of the impedance model
Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H
2014-01-01
Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.
Coupling impedances and heating due to slots in the KEK B-factory
Kurennoy, S S; Kurennoy, Sergey S; Chin, Yong Ho
1995-01-01
The longitudinal and transverse coupling impedances produced by the long slots in the Low Energy Ring of KEK B-factory are calculated. The power dissipated inside the vacuum chamber due to the fields scattered by the slots is evaluated using results for the real part of the coupling impedance. Estimates are made for the power flow through the slots to the pumping chamber.
Energy Technology Data Exchange (ETDEWEB)
Petracca, S. [Salerno Univ. (Italy)
1996-08-01
Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)
THE COUPLING IMPEDANCE OF VANE-LOADED TAPE HELIX SLOW-WAVE STRUCTURE
Institute of Scientific and Technical Information of China (English)
Chen Qingyou; Wang Zicheng; Wu Hongshi
2001-01-01
Based on the actual vane-loaded tape helix slow wave structure, a new theoretical analytic model for calculating coupling impedance is proposed by Chen Qingyou, et al.(1999)with calculated values of dispersion in good agreement with measured ones. In this paper, it is continued to use this model to calculate the coupling impedance of such a structure, and analyze the effects of the propagation power within vane gaps and the helix gap on the coupling impedance.As a result, the theoretical values are found to be in good agreement with the measured ones,with the maximum difference less than ±18%.
Roncarolo, F; Kroyer, T; Métral, E; Salvant, B
2008-01-01
The prediction of the resistive wall transverse beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instability. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to crosscheck the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of i) sample graphite plates, ii) stand-alone LHC collimator jaws and iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.
Ultrafast Directional Beam Switching in Coupled VCSELs
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.
Effect of the Various Impedances on Longitudinal Beam Stability in the CERN SPS
Lasheen, Alexandre; Repond, Joël; Shaposhnikova, Elena
2016-01-01
The High Luminosity (HL)-LHC project at CERN aims at a luminosity increase by a factor ten and one of the necessary ingredients is doubling the bunch intensity to 2.4x10¹¹ ppb for beams with 25 ns bunch spacing. Many improvements are already foreseen in the frame of the LHC Injector Upgrade (LIU) project, but probably this intensity would still not be reachable in the SPS due to longitudinal instabilities. Recently a lot of effort went into finding the impedance sources of the instabilities. Particle simulations based on the latest SPS impedance model are now able to reproduce the measured instability thresholds and were used to determine the most critical impedance sources by removing them one by one from the model. It was found that impedance of vacuum flanges and of the already damped 630 MHz HOM of the main RF system gave for 72 bunches the comparable intensity thresholds. Possible intensity gains are defined for realistic impedance modifications and for various beam configurations (number of bunches, l...
Beam-based model of broad-band impedance of the Diamond Light Source
Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo
2015-06-01
In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.
Energy Technology Data Exchange (ETDEWEB)
Li, Yingjie, E-mail: liyingji@msu.edu [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Wang, Lanfa [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)
2015-01-01
This paper presents the approximate analytical solutions to the longitudinal space charge (LSC) impedances of a round beam with uniform transverse distribution and sinusoidal line density modulations under two boundary conditions: (a) between parallel plates (b) inside a rectangular chamber, respectively. When the ratio of beam diameter to chamber height is small, the image charge fields of the round beam can be approximated by those of a line charge, the approximate analytical LSC impedances can be obtained by image method. The derived theoretical LSC impedances are valid at any perturbation wavelength and are consistent well with the numerical simulation results in a large range of ratios of beam diameters to chamber heights.
Report of the SSC impedance workshop
Energy Technology Data Exchange (ETDEWEB)
NONE
1985-10-28
This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.
Coupling of impedance functions to nuclear reactor building for soil-structure interaction analysis
International Nuclear Information System (INIS)
Finite element model of a nuclear reactor building is coupled to complex soil impedance functions and soil-structure-interaction analysis is carried out in frequency domain. In the second type of analysis applied in this paper, soil impedance functions are used to evaluate equivalent soil springs and dashpots of soil. These are coupled to the structure model in order to carry out the time marching analysis. Three types of soil profiles are considered: hard, medium and soft. Results of two analyzes are compared on the same structural model. Equivalent soil springs and dashpots are determined using new method based on the least square approximation. (author)
Effects of leakage inductances on magnetically-coupled impedance-source networks
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede;
2014-01-01
Coupled inductors have lately been used with impedance-source networks for keeping their shoot-through times short, while providing higher voltage boosts. The parameter that is critical to the operation of such impedance network based converter with coupled inductors is the leakage inductances. H....... However, the role of leakage inductances and its effect on the converter performance is often overlooked. This paper analyzes the effects of leakage inductances and demonstrates experimentally how the presence of leakage inductances degrades the performance of the converter....
Mounet, N
2010-01-01
Using B. Zotter’s formalism, we present here a novel, efficient and exact matrix method for the field matching determination of the electromagnetic field components created by an offset point charge travelling at any speed in an infinitely long circular multilayer beam pipe. This method improves by a factor of more than one hundred the computational time with three layers and allows the computation for more layers than three. We also generalize our analysis to any azimuthal mode and finally perform the summation on all such modes in the impedance formulae. In particular the exact multimode direct space-charge impedances (both longitudinal and transverse) are given, as well as the wall impedance to any order of precision.
A wide band slot-coupled beam sensing electrode for the Advanced Light Source (ALS)
International Nuclear Information System (INIS)
Stripline electrodes (traveling wave electrodes, directional couplers) are commonly used in particle accelerators as beam pickups and kickers. The longitudinally symmetric stripline has a constant beam coupling impedance as a function of length and has a characteristic magnitude sin(x) amplitude response in the frequency domain. An exponentially tapered stripline provides nearly constant coupling impedance vs. frequency and yields superior frequency-domain performance. In practice it is difficult to construct either of these devices for broad-band performance because of the transition from coaxial to stripline geometry. The authors report on the construction of an exponentially-tapered, slot-coupled 'stripline' which was relatively easy to construct and has the desired frequency response
Canonical formalism for coupled beam optics
Energy Technology Data Exchange (ETDEWEB)
Kheifets, S.A.
1989-09-01
Beam optics of a lattice with an inter-plane coupling is treated using canonical Hamiltonian formalism. The method developed is equally applicable both to a circular (periodic) machine and to an open transport line. A solution of the equation of a particle motion (and correspondingly transfer matrix between two arbitrary points of the lattice) are described in terms of two amplitude functions (and their derivatives and corresponding phases of oscillations) and four coupling functions, defined by a solution of the system of the first-order nonlinear differential equations derived in the paper. Thus total number of independent parameters is equal to ten. 8 refs.
Small Signal Modeling and Comprehensive Analysis of Magnetically Coupled Impedance Source Converters
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede;
2016-01-01
applications; however, due to effective role of system modeling in the closed-loop controller design, this paper is allocated to small-signal modeling and analysis of MCIS converters. The modeling is performed by means of the circuit averaging and averaged switch technique. A generalized small......Magnetically coupled impedance-source (MCIS) networks are recently introduced impedance networks intended for various high-boost applications. It employs coupled magnetic in the circuit to achieve higher voltage gain. Various MCIS networks have been proposed in the literature for myriad......-signal derivation is demonstrated for pulse width modulation (PWM) MCIS converters and it is shown that the derived transfer functions can simply be applied to Y-source, Γ-source, and T-source impedance networks. Various transfer functions for capacitor voltage, output voltage, magnetizing current, input and output...
Simulations and measurements of coupling impedance for modern particle accelerator devices
AUTHOR|(CDS)2158523; Biancacci, Nicolò; Mostacci, Andrea
In this document it has been treated the study of the coupling impedance in modern devices, already installed or not, in different particle accelerators. In the specific case: • For a device in-phase of project, several simulations for impedance calculation have been done. • For a component already realized and used, measurements of coupling impedance value have been done. Simulations are used to determine the impact of the interconnect between to magnets, designed for the future particle accelerator FCC, on the overall impedance of the machine which is about 100 km long. In particular has been done a check between theory, simulations and measurements of components already built, allowing a better and deeper study of the component we have analysed. Controls that probably will be helpful to have a clear guideline in future works. The measurements instead concern in an existing component that was already used in LHC, the longest particle accelerator ever realised on the planet, 27 km long. The coupling impe...
Wang, Lei; Yang, Shuaisai; Tang, Zhixiang; Shu, Weixing
2016-10-01
We propose a three-dimensional (3D) phase transformation method by an impedance-matched dielectric slab and apply it to generating hollow beams. We first employ transformation optics to establish a method for the transformation between two arbitrary 3D wavefronts through a flat dielectric and impedance-matched material. Then the method is used to convert a solid beam into a hollow beam with desired wavefront. By tuning the transformation surface, different hollow beams can be produced. The results are further validated by 3D finite-difference time-domain simulations.
A method of phase control and impedance matching of mutually coupled ICRF antennas in LHD
International Nuclear Information System (INIS)
In the Large Helical Device (LHD), the installation of a pair of ion cyclotron range of frequencies (ICRF) antennas from upper and lower ports is planned. These antennas are geometrically symmetrical and located side by side. By changing the current phase on the straps, the wave number parallel to the magnetic field line can be controlled. However, antenna impedances will also be changed and reflected power will increase due to mutual coupling. For efficient power injection and the protection of tetrode tubes, the parameters of impedance matching devices must be controlled together with the current phase. A method was formulated and trials of phase control and impedance matching were successfully conducted with a simplified two-port dummy antenna. (author)
Mechanical and electrical impedance matching in a piezoelectric beam for Energy Harvesting
Koszewnik, A.; Grześ, P.; Walendziuk, W.
2015-11-01
A piezoelectric beam is one of transducers for energy harvesting. It provides easy implementation and good performance in changing mechanical stress into electric voltage. In order to maximize output power, it is important to provide mechanical and electrical impedance matching. In the paper the authors proposed a methodology which allows to find values of lumped elements in an electromechanical model after completing appropriate measurements. Due to linear equations, it is possible to model a beam in both mechanical and electrical ways, and match the best load depending of frequency. The proposed model of a piezoelectric cantilever shows a potential use of these devices in micro scale as a cantilever which is a part of a silicon structure. Moreover, in the paper, the authors discuss mechanical aspects of using a weight as the way to tune the piezoelectric beam to a specific frequency. The electrical aspect of matching the source impedance with load, which is based on an electrical model of a piezoelectric transducer, is also presented. In the paper a mathematical model was verified by an experiment in which a laboratory stand equipped with a vibration generator, a piezoelectric energy harvester and acceleration sensors was used.
Development of a low impedance electron-beam system for high power excimer laser excitation
International Nuclear Information System (INIS)
Two modules of a low impedance electron-beam machine have been developed to pump a 200 J, 70 ns KrF laser. The laser is designed as the final amplifier of a tera-watt level picosecond excimer laser system. The operating characteristics of this device have been studied. The energy deposited in the 42 litter laser gain region is measured by several different diagnostics to be 3 kJ with good spatial uniformity. The triggered operation of the 500 kV main rail switch, which is essential for system synchronization, has been demonstrated by the UV laser irradiation along the rail gap axis
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter
2007-01-01
A new broadband quarter-wavelength impedance transformer based on an asymmetric coupled line section is presented. The bandwidth of the coupled line transformer is extended with the help of an interconnecting transmission line. An analytical model for the transformer is developed. The analysis...... of the structure reveals that a fractional bandwidth of more than 100% at –20 dB reflection level can be achieved with such a structure. An experimental transformer circuit has been designed, fabricated and tested. Theoretical and experimental results are fair agreement and confirm the established theory...
Wang, Lanfa
2014-01-01
This paper analyses the longitudinal space charge (LSC) impedances of a round uniform beam inside a rectangular and parallel plate chamber using image charge method. The analysis is valid for arbitrary wavelengths and the calculation converges fast. The research shows that only a few of image beams are needed to get a relative error less than 0.1%. The beam offset effect is also included.
Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability
Wu, J; Raubenheimer, T O; Huang, Z; Huang, Zhirong
2003-01-01
Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter $K$. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the ...
Electromagnetic scattering of a vector Bessel beam in the presence of an impedance cone
Salem, Mohamed
2013-07-01
The electromagnetic field scattering of a vector Bessel beam in the presence of an infinite circular cone with an impedance boundary on its surface is considered. The impinging field is normal to the tip of the cone and is expanded in terms of vector spherical wave functions; a Kontorovich-Lebedev (KL) transform is employed to expand the scattered fields. The problem is reduced to a singular integral equation with a variable coefficient of the non-convolution type. The singularities of the spectral function are deduced and representations for the field at the tip of the cone as well as other regions are given together with the conditions of validity of these representations. © 2013 IEEE.
Surface Impedance Formalism for a Metallic Beam Pipe with Small Corrugations
Energy Technology Data Exchange (ETDEWEB)
Stupakov, G.; Bane, K.L.F.; /SLAC
2012-08-30
A metallic pipe with wall corrugations is of special interest in light of recent proposals to use such a pipe for the generation of terahertz radiation and for energy dechirping of electron bunches in free electron lasers. In this paper we calculate the surface impedance of a corrugated metal wall and show that it can be reduced to that of a thin layer with dielectric constant {epsilon} and magnetic permeability {mu}. We develop a technique for the calculation of these constants, given the geometrical parameters of the corrugations. We then calculate, for the specific case of a round metallic pipe with small corrugations, the frequency and strength of the resonant mode excited by a relativistic beam. Our analytical results are compared with numerical simulations, and are shown to agree well.
Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2014-01-01
Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing...... thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other...... with large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules...
Pumping slots: impedances and power losses
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics
1996-08-01
Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)
Hynynen, Kullervo; Yin, Jianhua
2009-01-01
A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially-polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (average...
Beam envelope calculations in general linear coupled lattices
Energy Technology Data Exchange (ETDEWEB)
Chung, Moses, E-mail: mchung@unist.ac.kr [Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Qin, Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Groening, Lars; Xiao, Chen [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Davidson, Ronald C. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2015-01-15
The envelope equations and Twiss parameters (β and α) provide important bases for uncoupled linear beam dynamics. For sophisticated beam manipulations, however, coupling elements between two transverse planes are intentionally introduced. The recently developed generalized Courant-Snyder theory offers an effective way of describing the linear beam dynamics in such coupled systems with a remarkably similar mathematical structure to the original Courant-Snyder theory. In this work, we present numerical solutions to the symmetrized matrix envelope equation for β which removes the gauge freedom in the matrix envelope equation for w. Furthermore, we construct the transfer and beam matrices in terms of the generalized Twiss parameters, which enables calculation of the beam envelopes in arbitrary linear coupled systems.
A Physical Description of the Response of Coupled Beams
DEFF Research Database (Denmark)
Hugin, Claus Thomas
1997-01-01
An analytical method is presented for computing the vibrational response and the net transmitted power of bending wave fields in system consisting of coupled finite beams. The method is based on a wave approach that utilises the reflection and transmission coefficients of the different beam joints...... to couple the elements. These reflection and transmission coefficients are those derived by considering the coupling between the corresponding semi-infinite elements. The predicted results are in almost perfect agreement with exact calculations of the detailed response and net transmitted power. The results...... are valid for frequencies above which the influence of the reflected near fields for each of the beam elements is negligible. The method is demonstrated on different configurations of beams coupled in extension of each other....
Stopping Power for Strong Beam-Plasma Coupling
Gericke, Dirk O.
2001-10-01
The slowing down process of charged particles in plasma targets is investigated for the case of strong beam-plasma coupling. Strong beam-plasma correlations can be considered using the collision operator of the quantum Boltzmann equation. As a first step, dynamic screening is included in the first Born approximation. This approach gives good results for moderate beam-plasma coupling (Zb Γ^3/2 Bethe-formula, the standard model of the stopping power (Bethe plus Bloch corrections and Barkas terms), the Li & Petrasso formula and simulation data (MD and PIC), is given. This comparison clearly shows the advantage of the proposed model: it smoothly interpolates between the classical low velocity regime, where strong coupling effects occur, and the high velocity quantum regime, where collective modes are important. In the latter case, the experimentally proven Bethe-formula is obtained. Furthermore, it matches the simulation data for moderate as well as strong beam-plasma coupling.
DEFF Research Database (Denmark)
Lei, Anders; Xu, R.; Borregaard, L. M.;
2014-01-01
The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameter is determined from shaker measurements, and a highly accurate agreement is found between model and measurements on a unimorph MEMS-based screen printed PZT harvester. With a high coupling term K-2 Q similar or equal to 7, the harvester exhibits two optimum load points. The peak power performance...... of the harvester was measured to 11.7 nW at an acceleration of 10 mg with a load of 9 k Omega at 496.3 Hz corresponding to 117 mu W/g2....
Energy Technology Data Exchange (ETDEWEB)
Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)
2013-02-15
Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.
Proceedings of the impedance and bunch instability workshop
Energy Technology Data Exchange (ETDEWEB)
1990-04-01
This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.
Transverse impedance measurements in RHIC and the AGS
Biancacci, N; Blaskiewicz, M; Liu, C; Mernick, K; Minty, M; White, S
2014-01-01
The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance represents a source of detrimental effects for beam quality and stability at high bunch intensities. In this paper, we evaluate the global transverse impedance in both the AGS and RHIC with measurements of tune shift as a function of bunch intensity. The results are compared to past measurements and the present impedance model. First attempts at transverse impedance localization are as well presented for the RHIC Blue ring.
Laser frequency bandwidth narrowing by photorefractive two-beam coupling.
Chomsky, D; Sternklar, S; Zigler, A; Jackel, S
1992-04-01
We present a theoretical analysis and experimental demonstration of a new method for spectral narrowing of laser radiation. The bandwidth narrowing is experienced by a laser beam subjected to a photorefractive two-beam coupling process. Contrary to the conventional method of frequency filtering by a Fabry-Perot étalon, this technique has no intrinsic finesse limitation on its resolution. A factor of 2 in frequency bandwidth narrowing is achieved with an argon-ion laser.
Directory of Open Access Journals (Sweden)
Milan Svanda
2014-01-01
Full Text Available The recently introduced coupled shorted-patches technique for the design of extremely low-profile UHF RFID tag antennas is used to illustrate the flexibility of selected feeding methods for tuning the antenna input impedance for the complex values required for matching with typical RFID chips. We present parametric studies of the impedance behaviour of dipole-excited and directly excited antennas designed for radiofrequency identification of people in the European UHF frequency band. Our study can significantly facilitate the design of this class of on-body tag antennas.
Energy Technology Data Exchange (ETDEWEB)
Shah, Jyoti, E-mail: shah.jyoti1@gmail.com; Kotnala, Ravinder K., E-mail: rkkotnala@nplindia.org, E-mail: rkkotnala@gmail.com [Multiferroic and Magnetics Laboratory, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)
2014-04-07
Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.
Couplings in Phase Domain Impedance Modelling of Grid-Connected Converters
DEFF Research Database (Denmark)
Dowlatabadi, Mohammadkazem Bakhshizadeh; Wang, Xiongfei; Blaabjerg, Frede;
2016-01-01
The output impedance of a power converter plays an important role in the stability assessment of the converter. The impedance can be expressed in different frames such as the stationary frame (phase domain) or in the synchronous frame (dq domain). To treat the three-phase system like a single...
Optimizing nonlinear beam coupling in low-symmetry crystals.
Shumelyuk, A; Volkov, A; Odoulov, S; Grabar, A; Stoyka, I; Evans, D R
2014-10-01
The purpose of this paper is to find the polarizations and spatial orientations of the two interacting counterpropagating coherent light waves which ensure the largest beam coupling in monoclinic photorefractive crystal. The results of calculations are presented that are verified experimentally with Sn₂P₂S₆.
Vogt, Stephan; Su, Qiang; Gutiérrez-Sánchez, Cristina; Nöll, Gilbert
2016-04-19
Electrochemical or faradaic impedance spectroscopy (EIS) using the ferri/ferrocyanide couple as a redox probe at gold working electrodes was evaluated with respect to its ability to monitor consecutive surface modification steps. As a model reaction, the reversible hybridization and dehybridization of DNA was studied. Thiol-modified single stranded DNA (ssDNA, 20 bases, capture probe) was chemisorbed to a gold electrode and treated with a solution of short thiols to release nonspecifically adsorbed DNA before hybridization with complementary ssDNA (20 bases, target) was carried out. Reversible dehybridization was achieved by intense rinsing with pure water. The experimental procedures were optimized by kinetic surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) measurements to maximize the increase in reflectivity or decrease in frequency upon hybridization before hybridization/dehybridization was also monitored by EIS. In contrast to SPR and QCM-D, repeatable EIS measurements were not possible at first. Combined SPR/EIS and QCM-D/EIS measurements revealed that during EIS the gold surface is seriously damaged due to the presence of CN(-) ions, which are released from the ferri/ferrocyanide redox probe. Even at optimized experimental conditions, etching the gold electrodes could not be completely suppressed and the repeatability of the EIS measurements was limited. In three out of four experimental runs, only two hybridization/dehybridization steps could be monitored reversibly by EIS. Thereafter etching the gold electrode significantly contributed to the EIS spectra whereas the QCM-D response was still repeatable. Hence great care has to be taken when this technique is used to monitor surface modification at gold electrodes.
Nonlinear Control of Multicolor Beams in Coupled Optical Waveguides
Neshev, Dragomir N.; Sukhorukov, Andrey A.; Kivshar, Yuri S.
Photonic structures with a periodic modulation of the optical refractive index play an important role in the studies of the fundamental aspects of wave dynamics [1, 2]. In particular, photonic crystals, layered media, or closely spaced optical waveguides enable manipulation of the key phenomena governing optical beam propagation: spatial refraction and diffraction. Arrays of coupled optical waveguides are particularly attractive as an experimental testbed due to their easier fabrication and characterization, as well as because of the opportunities they offer for enhanced nonlinear effects as a result of the large propagation distances in such structures. The physics of beam propagation in optical waveguide arrays is governed by the coupling of light between neighboring waveguides and the subsequent interference of the coupled light. Since both the coupling and the interference processes are sensitive to the light wavelength, the output intensity profiles can be drastically different for each spectral component of the input beam. This is a particular concern in many practical cases, including ultra-broad bandwidth optical communications, manipulation of ultra-short pulses or supercontinuum radiation, where the bandwidth of the optical signals can span over a wide frequency range.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper. Unlike the natural frequency, the anti-resonant frequency is a local parameter rather than a global parameter of structures, thus the proposed technique can be used to locate the structural defects. An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated. In order to characterize the local discontinuity due to cracks, a rotational spring model based on fracture mechanics is proposed to model the crack. Subsequently, the proposed method is verified by a numerical example of a simply-supported beam with a crack. The effect of the crack size on the anti-resonant frequency is investigated. The position of the crack of the simply-supported beam is also determined by the anti-resonance technique. The proposed technique is further applied to the "contaminated" anti-resonant frequency to detect crack damage, which is obtained by adding 1-3% noise to the calculated data. It is found that the proposed technique is effective and free from the environment noise. Finally, an experimental study is performed, which further verifies the validity of the proposed crack identification technique.
Laser beam-plasma coupling in laser solenoid plasmas
International Nuclear Information System (INIS)
A model has been constructed to analyze the gross beam-plasma interaction in a laser solenoid plasma. The model includes a simple solution for a slab plasma response to a given laser beam, and a solution for axial beam size variations in response to arbitrary axial plasma structure. The two solutions are combined to determine the coupled behavior. Trapping of the focused laser beam where it enters the plasma is a significant problem, but can be achieved by a minimum level of imbedded field in the plasma. If the beam is trapped, it first focuses and then defocuses near the front of the bleaching wave (front of the laser heated plasma). In order to avoid divergence of the beam near the front, it is essential to have a pre-formed favorable density profile in the plasma. Such a condition is probably achieved automatically in the early stages of plasma heating. Several techniques are discussed which can be used to avert unfavorable refractive behavior (catastrophic self-focusing and defocusing)
Transverse impedance measurement in RHIC and the AGS
Energy Technology Data Exchange (ETDEWEB)
Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-05-12
The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.
Transverse Impedance of LHC Collimators
Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F
2007-01-01
The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.
Lazar, Jaroslav; Schnelting, Christoph; Slavcheva, Evelina; Schnakenberg, Uwe
2016-01-01
In the past decades, numerous measurements have applied electrochemical impedance spectroscopy (EIS) in an electrode-electrolyte system consisting of gold electrodes and the redox couple potassium ferrocyanide/potassium ferricyanide (HCF). Yet these measurements are often hampered by false positive and negative results. Electrochemical impedance signals often display a nonlinear drift in electrolyte systems containing the HCF redox couple, which can mask the accuracy of the analysis. Thus, this Article aims to elucidate the stability and reliability of this particular electrode-electrolyte system. Here, different gold electrode cleaning treatments were compared with respect to adsorption and roughness of the surface of gold electrodes. They show substantial nonlinear long-term drifts of the charge-transfer resistance RD. In particular, the use of HCF-containing electrolytes causes adsorption and corrosion on the gold electrode surface, resulting in a nonlinear impedance behavior that depends on the incubation period as well as on electrolyte composition. Consequently, it is strongly recommended not to use HCF containing electrolytes in combination with gold electrodes.
Directory of Open Access Journals (Sweden)
Young-Ho Park
2006-01-01
Full Text Available This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally, the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.
Radial Moment Calculations of Coupled Electron-Photon Beams
Energy Technology Data Exchange (ETDEWEB)
FRANKE,BRIAN C.; LARSEN,EDWARD W.
2000-07-19
The authors consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of 3-D beams of radiation as a function of depth into the slab, by solving systems of 1-D transport equations. They implement these radial moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified P{sub N} synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. They demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, they obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.
Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Baudrenghien, P; Bracco, C; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Esteban Mueller, J; Gentini, L; Goddar, B; Grudiev, A; Henrist, B; Jones, R; Lanza, G; Lari, L; Mastoridis, T; Métral, E; Mounet, N; Nougaret, J L; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Sapinski, M; Shaposhinkova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wollmann, D
2012-01-01
In 2011, the rapid increase of the luminosity performance of LHC came at the expense of increased temperature and pressure readings on several near-beam LHC equipments. In some cases, this beam induced heating was suspected to cause beam dumps and even degradation of the equipment. This contribution aims at gathering the observations of beam induced heating due to beam coupling impedance, their current level of understanding and possible actions that could be implemented during the winter stop 2011-2012.
International Nuclear Information System (INIS)
Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case
Pulsed beam dosimetry using fiber-coupled radioluminescence detectors
DEFF Research Database (Denmark)
Andersen, Claus Erik
2012-01-01
The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....
Schuster, Sönke; Tröbs, Michael; Heinzel, Gerhard
2014-01-01
The omnipresent tilt-to-length coupling in two-beam laser interferometers, frequently a nuisance in precision measurements, vanishes for the singular case of two beams with identical parameters and complete detection of both beams without clipping. This effect has been observed numerically and is explained in this paper by the cancellation of two very different effects of equal magnitude and opposite sign.
Dynamic impedance of piles in visco-elastic material considering axial loads
Institute of Scientific and Technical Information of China (English)
JIANG Jian-guo; ZHOU Xu-hong; ZHANG Jia-sheng
2005-01-01
The dynamic impedance function of pile in visco-elastie material considering axial loads under lateral dynamic force was analyzed, and the beam dynamic differential equation was used to induce the dynamic impedance function. After analyzing the edge conditions, the dynamic impedance functions were deduced. Contrasted with the result that does not consider axial loads, the axial loads have obvious influence on the dynamic impedance function.And the results show that the dimensionless prarmeter of the dynamic impedance will change from 6 % to 9 % when considering axial loads, and dimensionless prarmeter of the dynamic impedance of the coupling horizontal-sway will increase by 31 %.
Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.
2016-07-01
In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.
Gamp, Alexander
2013-01-01
We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
International Nuclear Information System (INIS)
In 2009, prostate cancer ranked as the most common cancer and the second most fatal cancer in men in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, endorectal MRI, transrectal ultrasound, biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. The TREIT system comprises an array of electrodes interfaced with a clinical transrectal ultrasound (TRUS) probe. We evaluate this imaging system through a series of phantom imaging experiments to assess the system's ability to image high and low contrast objects at various positions. We found that the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, this technology's ability to detect low contrast inclusions suggests that it has the potential to successfully detect prostate cancer
Wan, Y.; Halter, R.; Borsic, A.; Manwaring, P.; Hartov, A.; Paulsen, K.
2010-04-01
In 2009, prostate cancer ranks as the most common cancer and the second most fatal cancer in men in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, endorectal MRI, transrectal ultrasound, biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a TransRectal Electrical Impedance Tomography (TREIT) system is proposed as a novel prostate imaging modality. The TREIT system is comprised of an array of electrodes interfaced with a clinical TransRectal UltraSound (TRUS) probe. We evaluate this imaging system through series of phantom imaging experiments to assess the system's ability to image high and low contrast objects at various positions. We found that the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at 2 times the radius of the TREIT probe away from the probe surface. Furthermore, this technology's ability to detect low contrast inclusions suggests that it has the potential to successfully detect prostate cancer.
Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V.
2015-11-01
We analyze nonlocally coupled networks of identical chaotic oscillators with either time-discrete or time-continuous dynamics (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of oscillators with nonhyperbolic chaotic attractors and cannot be found in networks of systems with hyperbolic chaotic attractors. This hypothesis is supported by analytical results and numerical simulations for hyperbolic and nonhyperbolic cases.
Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2014-01-01
Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estima...
Computation for Coupling Waveguide Slot's Active Impedance%一种计算波导耦合缝隙有源阻抗的方法
Institute of Scientific and Technical Information of China (English)
丁宏
2012-01-01
针对耦合波导缝隙馈电时波导内电磁场复杂且不利于工程应用的问题,提出一种耦合波导缝隙有源阻抗计算方法.根据耦合波导端口处S矩阵与端口处输入阻抗矩阵的关系建立关于耦合波导缝隙有源阻抗方程,且采用牛顿法求解此非线性高阶分式方程,得到计及缝隙间互耦的耦合波导缝隙有源阻抗值.通过提取HFSS软件中耦合缝隙馈电的裂缝天线S矩阵进行仿真计算,结果表明该计算耦合缝隙有源阻抗的方法是有效的且适合大型裂缝天线耦合裂缝设计.%A method of coupling waveguide slot's active impedance calculation is presented due to the complicated electromagnetic field in waveguide and disadvantage in engineering application.The equation contained slot's active impedance is created according to the relation between the S matrix and the input impedance at the port of coupling waveguide.Newton method is applied to solve the higher order fractional equation to obtain the coupling slot's active impedance which takes mutual coupling between slots into account.Compute simulation results obtained by applying S matrix extracted from HFSS software in coupling slot's active impedance formula indicates that the method proposed in this paper is effective and suitable for coupling slot of large waveguide slots array antenna design.
2016-01-01
Proposal to negotiate three collaboration agreements in the context of the Future Circular Collider Study (FCC) concerning the development of HTS coated tapes integrated into the beam screen for impedance mitigation
Simulation study of LEBT for transversely coupled beam from an ECR ion source
Energy Technology Data Exchange (ETDEWEB)
Yang, Y., E-mail: yangyao@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Dou, W. P.; Sun, L. T.; Yao, Q. G.; Zhang, Z. M.; Yuan, Y. J.; He, Y.; Zh, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)
2016-02-15
A Low-Energy intense-highly charged ion Accelerator Facility (LEAF) program has been launched at Institute of Modern Physics. This accelerator facility consists of a superconducting Electron Cyclotron Resonance (ECR) ion source, a Low Energy Beam Transport (LEBT) system, and a Radio Frequency Quadrupole (RFQ). It is especially of interest for the extracted ion beam from the ECR ion source, which is transversely coupled, and this property will significantly affect the beam transmission in the LEBT line and the matching with the downstream RFQ. In the beam transport design of LEAF, beam decoupling in the LEBT is considered to lower down the projection emittances and the feasibility of the design has been verified by beam simulation with a transversely coupled beam from the ECR ion source.
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Cui Hu; She Wei-Long
2009-01-01
The modulational instability of two incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity is investigated analytically and numerically. Our results show that as a precursor to spatial optical soliton formation, modulational instability can be adjusted and controlled by the wavelength combinations of the signal and background beams. We also discuss the dependences of strength of modulational instability on intensities of two signal beams and background beam. These findings make it possible to predict the formation of incoherently coupled soliton pairs in azobenzene-containing polymer.
Characteristics of High-power GaAs Laser Beams and Their Coupling with Fibers
Institute of Scientific and Technical Information of China (English)
YU Henry Hai-ying; CUI Bi-feng; TIAN Zeng-xia; LIU Ying; ZOU De-shu; SHEN Guang-di
2005-01-01
The beams of 980 nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.
EFFECT OF UPER-STORY LINTEL BEAM HEIGHT ON THE BEHAVIOUR OF COUPLED SHEAR WALL
Directory of Open Access Journals (Sweden)
Hasan KAPLAN
1995-01-01
Full Text Available In multi-story buildings, shear walls are used against the horizontal loads because their stiffness are greater than those of columns. The lateral deflections of tall building structures due to earthquake or wind is important role on the damage of buildings during the earthquake. The effectiveness of coupled shear walls in resisting horizontal loading depends on strongly on the rigidty of the coupling beams. In this study, In this study, using by finite element the shear walls with coupled lintel beams are investigated. The effects of uperstory lintel beam rigidity on strength and deformation were determined.
Impedance and Collective Effects
Metral, E; Rumolo, R; Herr, W
2013-01-01
This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling
Behaviour of Plate Anchorage in Plate-Reinforced Composite Coupling Beams
Directory of Open Access Journals (Sweden)
W. Y. Lam
2013-01-01
Full Text Available As a new alternative design, plate-reinforced composite (PRC coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC coupling beam. Based on a nonlinear finite element model developed in the authors’ previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa.
Behaviour of plate anchorage in plate-reinforced composite coupling beams.
Lam, W Y; Li, Lingzhi; Su, R K L; Pam, H J
2013-01-01
As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors' previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa. PMID:24288465
Beam shaping design for coupling high power diode laser stack to fiber.
Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali
2011-06-20
A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.
Direct drive heavy-ion-beam inertial fusion at high coupling efficiency
Energy Technology Data Exchange (ETDEWEB)
Logan, B.G.; Perkins, L.J.; Barnard, J.J.
2008-05-16
Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.
On sixfold coupled vibrations of thin-walled composite box beams
Vo, Thuc; Lee, Jaehong; Ahn, Namshik
2009-01-01
This paper presents a general analytical model for free vibration of thin-walled composite beams with arbitrary laminate stacking sequences and studies the effects of shear deformation over the natural frequencies. This model is based on the first-order shear-deformable beam theory and accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural–torsional–shearing vibration are derived from the Hamilton’s princip...
Transverse Beam Size Effects in Beam Position Monitors
Kurennoy, Sergey
2001-04-01
The fields produced by a long beam with a given transverse charge distribution in a homogeneous vacuum chamber are studied. Signals induced by the displaced finite-size beam on electrodes of a beam position monitor (BPM) are calculated and compared to those from a pencil beam. The corrections to BPM signals due to a finite beam size are found analytically for a few particular transverse distributions of the beam current. The results for fields can also be directly applied for calculating the beam coupling impedances of small discontinuities.
Varshney, Madhukar; Li, Yanbin
2007-05-15
An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min. PMID:17045791
Comparison of the current LHC Collimators and the SLAC Phase 2 Collimator Impedances
Day, Hugo; Metral, Elias; Salvant, Benoit; Jones, Roger
2011-01-01
One of the key sources of transverse impedance in the LHC has been the secondary graphite collimators that sit close to the beam at all energies. This limits the stable bunch intensity due to transverse coupled-bunch instabilities and transverse mode coupling instability. To counteract this, new secondary collimators have been proposed for the phase II upgrade of the LHC collimation system. A number of designs based on different jaw materials and mechanical designs have been proposed. A comparison of the beam coupling impedance of these different designs derived from simulations are presented, with reference to the existing phase I secondary collimator design.
Comparison of the current LHC Collimators and the SLAC phase 2 Collimator impedances
Day, H A; Metral, E; Salvant, B; Jones, R M
2011-01-01
One of the key sources of transverse impedance in the LHC has been the secondary graphite collimators that sit close to the beam at all energies. This limits the stable bunch intensity due to transverse coupled-bunch instabilities and transverse mode coupling instability. To counteract this, new secondary collimators have been proposed for the phase II upgrade of the LHC collimation system. A number of designs based on different jaw materials and mechanical designs have been proposed. A comparison of the beam coupling impedance of these different designs derived from simulations are presented, with reference to the existing phase I secondary collimator design.
Institute of Scientific and Technical Information of China (English)
LI Wei; GAO Feng; TANG Bai-Quan; Christian Pruner; ZHANG Xin-Zheng; SHI Yan-Li; XU Jing-Jun; QIAO Hai-Jun; WU Qiang; Romano A. Rupp; LOU Ci-Bo; WANG Zhen-Hua
2008-01-01
@@ Light amplification due to two-beam coupling is realized in doped polymethyl methacrylate (PMMA) glasses. A coupling gain as large as 14 cm-1 is obtained. The dynamic behaviour of absorption and light-induced scattering due to the process of photopolymerization are also studied. The results show that the amplification and its dynamic process enable possible applications of PMMA in optical devices.
Impedance and instability threshold estimates in the main injector I
International Nuclear Information System (INIS)
One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 1010 protons per bunch, 95% normalized transverse emittances of 20π mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations
Impedance and instability threshold estimates in the main injector I
Energy Technology Data Exchange (ETDEWEB)
Martens, M.A.; Ng, K.Y.
1994-03-01
One of the important considerations in the design of the Main Injector is the beam coupling impedances in the vacuum chamber and the stability of the beam. Along with the higher intensities comes the possibility of instabilities which lead to growth in beam emittances and/or the loss of beam. This paper makes estimations of the various impedances and instability thresholds based on impedance estimations and measurements. Notably missing from this paper is any analysis of transition crossing and its potential limitations on beam intensity and beam emittance. Future work should consider this issue. The body of the work contains detailed analysis of the various impedance estimations and instability threshold calculations. The calculations are based on the Main Injector beam intensity of 6 x 10{sup 10} protons per bunch, 95% normalized transverse emittances of 20{pi} mm-mrad, and 95% normalized longitudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 150 GeV flattop energy. The conclusions section summarizes the results in the paper and is meant to be readable by itself without referring to the rest of the paper. Also in the conclusion section are recommendations for future investigations.
Efficient coupling of propagating broadband terahertz radial beams to metal wires.
Zheng, Zhu; Kanda, Natsuki; Konishi, Kuniaki; Kuwata-Gonokami, Makoto
2013-05-01
Bare metal wires have recently been demonstrated as waveguides for transporting terahertz (THz) radiation, where the guiding mode is radially polarized surface Sommerfeld waves. In this study, we demonstrate high-efficiency coupling of a broadband radially polarized THz pulsed beam, which is generated with a polarization-controlled beam by a segmented half-wave-plate mode converter, to bare copper wires. A total coupling efficiency up to 16.8% is observed, and at 0.3 THz, the maximum coupling efficiency is 66.3%. The results of mode-overlap calculation and numerical simulation support the experimental data well. PMID:23669920
High brightness beam shaping and fiber coupling of laser-diode bars.
Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai
2015-04-10
The strong beam quality mismatch in the fast and slow axes of laser-diode bars requires a significant beam shaping method to reach the parameters needed for fiber coupling. An effective solution to this problem is proposed that is based on a right-angle prism array and a distributed cylinder-lens stack. Coupling 12 mini-bars into a standard 100 μm core diameter and 0.15 numerical aperture fiber is achieved, and the output power can reach 400 W. Using this technique, production of compact and high brightness fiber-coupled laser-diode modules is possible.
The Torsion-Extension Coupling in Pretwisted Elastic Beams
DEFF Research Database (Denmark)
Krenk, Steen
1983-01-01
An explicit asymptotic formula is derived for the untwist of a pretwisted elastic beam subjected to homogeneous extension or equivalently for the longitudinal contraction produced by a torsional moment. It is based on an asymptotic expansion of the three dimensional equations of linear elasticity...
Self-focused beams to couple light into a whispering-gallery mode resonator
Huy, Kien Phan; Rauch, Jean-Yves; Féron, Patrice; Chauvet, Mathieu
2014-01-01
We propose an original method to couple light into a whispering-gallery mode resonator. This method benefits from the mode selectivity and robustness of the prism-coupling along with the single-mode propagation of the fiber taper. It consists in a prism shaped crystal with a waveguide inscribed inside it. The waveguide is self-inscribed in-situ by beam self-trapping to allow an optimum coupling to a given resonator.
Probing anomalous Higgs couplings at an collider using unpolarised beams
Indian Academy of Sciences (India)
Debajyoti Choudhury; Mamta
2007-11-01
We examine the sensitivity of colliders (based on + - linear colliders of c.m. energy 500 GeV) to the anomalous couplings of the Higgs to -boson via the process - → . This has the advantage over + - collider in being able to dissociate vertex from . We are able to construct several dynamical variables which may be used to constrain the various couplings in the vertex.
Impedance and component heating
Métral, E; Mounet, N; Pieloni, T; Salvant, B
2015-01-01
The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.
Impedance model of the CERN SPS and aspects of LHC single-bunch stability
Salvant, Benoit; Metral, Elias
2010-01-01
Upgrades of the CERN particle accelerators complex are planned to increase the potential of physics discovery in the LHC. In this respect, the beam coupling impedances of the SPS and LHC are expected to be among the limitations to the intensity upgrade scheme. In this thesis work, we present a general framework to better understand the impedance of a particle accelerator. In a first step, the impedance of single components are gathered into an impedance model accounting for the whole machine. In order to assess the relevance of this impedance model, its impact on beam dynamics is simulated and can be compared to impedance observables measured with beam. This general framework was applied to compute a more accurate transverse impedance model of the SPS from theoretical models for the 20 kickers and the 6.9 km long beam pipe, as well as time domain electromagnetic simulations of the 106 horizontal and 96 vertical SPS beam position monitors. Comparing HEADTAIL macroparticle simulations to beam-based measurements...
Lee, Hohyoung; Lee, Jeongbeom; Park, Gijung; Han, Yunseok; Lee, Youngwook; Cho, Gunhee; Kim, Hanam; Chang, Hongyoung; Min, Kyoungwook
2015-08-01
A high-speed impedance measurement system was developed, which enables the measurement of various characteristics of CW and pulsed plasmas with time resolution of less than a microsecond. For this system, a voltage and current sensor is implemented in a printed circuit board to sense the radio frequency signals. A digital board, which has a high-speed analog to digital converter and a field-programmable gate-array, is used to calculate the impedance of the signal. The final output of impedance is measured and stored with a maximum speed of 3 Msps. This sensor system was tested in a pulsed-plasma by applying it to the point between the matching box and the plasma chamber. The experimental equipment was constructed connecting the matching box, a 13.56 MHz generator, a 2 MHz generator that produced pulsed power, and a pulse-signal generator. From the temporal behavior of the measured impedance, we were able to determine the time intervals of transient states, especially of the initial active state. This information can be used to set the pulse frequency and duty for plasma processing. PMID:26329190
Improved techniques of impedance calculation and localization in particle accelerators
Biancacci, Nicolò; Migliorati, Mauro; Métral, Elias; Salvant, Benoit
In this thesis we mainly focus on particle accelerators applied to high energy physics research where a fundamental parameter, the luminosity, is maximized in order to increase the rate of particle collisions useful to particle physicists. One way to increase this parameter is to increase the intensity of the circulating beams which is limited by the onset of collective effects that may drive the beam unstable and eventually provoke beam losses or reduce the beam quality required by the particle physics experiments. One major cause of collective effects is the beam coupling impedance, a quantity that quantifies the effect of the fields scattered by a beam passing through any accelerator device. The development of an impedance budget is required in those machines that are planning substantial upgrades as shown in this thesis for the CERN PS case. The main source of impedance in the CERN LHC are the collimators. Within an impedance reduction perspective, in order to reach the goals of the planned upgrades, it ...
Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.
Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai
2015-06-20
Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.
Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals
Institute of Scientific and Technical Information of China (English)
Nouel Y.Kamber; XU Jing-Jun; Sonia M. Mikha; SONG Feng; ZHANG Guo-Quan; ZHANG Xin-Zheng; LIU Si-Min; ZHANG Guang-Yin
2000-01-01
We demonstrated experimentally the dependence of two-beam coupling on the incident pump intensity in our samples of doped LiNbO3 crystals. Our results show that there is an optimum pump intensity for the signal beam amplification, which can be easily controlled by doping the LiNbO3 crystal with suitable concentrations of Fe and damage-resistant dopants such as Mg, In, and Zn.
Fiber-optic coupling based on nonimaging expanded-beam optics.
Moslehi, B; Ng, J; Kasimoff, I; Jannson, T
1989-12-01
We have fabricated and experimentally tested low-cost and mass-producible multimode fiber-optic couplers and connectors based on nonimaging beam-expanding optics and Liouville's theorem. Analysis indicates that a pair coupling loss of -0.25 dB can be achieved. Experimentally, we measured insertion losses as low as -0.38 dB. The beam expanders can be mass produced owing to the use of plastic injection-molding fabrication techniques and packaged in standard connector housings. This design is compatible with the fiber geometry and can yield highly stable coupling owing to its high tolerance for misalignments. PMID:19759673
Gamp, A
2011-01-01
We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
Richardson, John G.
2009-11-17
An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.
Picosecond enhancement of photorefractive beam coupling in CdTe:V at 960 nm
Andreas Schroeder, W.; Stark, Thomas S.; Smirl, Arthur L.; Valley, George C.
1991-08-01
Photorefractive beam coupling in CdTe:V is observed with single 1 ps pulses at a wavelength of 960 nm. Coupling coefficients are substantially larger than observed with 30 ps pulses at 1.06 μm and nearly a factor of 100 larger than calculations based on conventional transport properties of CdTe. We consider anomalously large carrier diffusion (hot carriers) as a possible mechanism for the production of this nonlocal photorefractive grating.
Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile
Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin
2012-01-01
Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.
High flux cold Rubidium atomic beam for strongly coupled Cavity QED
Roy, Basudev
2012-01-01
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 $D^+$ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x $10^{10}$ atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 $\\mu$m cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, $\\kappa$, $\\gamma$)/2$\\pi$ equal to (7, 3, 6)/ 2$\\pi$ MHz.
Observations involving broadband impedance modelling
Energy Technology Data Exchange (ETDEWEB)
Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M
2013-01-01
The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.
ANALYSIS OF COMPOSITE LAMINATE BEAMS USING COUPLING CROSS-SECTION FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
JIANG Wen-guang; John L. Henshall
2006-01-01
Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations,only a thin slice of the beam to be analysed needs to be modelled. Conventional threedimensional ,solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method.
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2005-01-01
In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide with structural side branches attached at regular intervals. The analysis is based on periodic structure theory, and considers wave transmission in a fully tricoupled and semidefinite periodic...... assembly of beam-type elements or plane-wave transmission for normal incidence in a similar plate assembly. Receptances of a composite periodic element with offset resonant beams are derived and used for computing the frequency-dependent propagation constants of three coupled wave types as well...... as the distribution of motion displacements in each wave type. This is used for calculating the spatial variation of the forced harmonic responses of a semi-infinite periodic structure to point excitations by a longitudinal force and by a moment. Numerical simulations reveal the complicated wave coupling phenomena...
Model of a microwave beam coupling to CO 2 laser plasma
Caraway, E. L.; Sokol, M.; Grossman, B. G.
2002-04-01
We have designed a transmission line model of the microwave coupling mechanism for a microwave pumped CO 2 laser. The model is a total loss ridge waveguide transmission line having nonuniform impedance. The laser plasma is modeled as a frequency-dependent lossy dielectric and acts as a distributed resistance in the length of the microwave cavity. The coupling structure of the microwaves is designed not to be resonant at the microwave source frequency of 2.45 GHz at 1 kW and propagating the total microwave field energy to be absorbed without internal reflection. An exact solution to this general transmission line propagation constant for a shunt resistance along length of the guide is found. The measurements and predictions of the parameters of the plasma conductivity as a function of the attenuation constant agree closely.
Impedance studies of 2D azimuthally symmetric devices of finite length
Biancacci, N; Métral, E; Salvant, B; Migliorati, M; Palumbo, L
2014-01-01
In particle accelerators, the beam quality can be strongly affected by the interaction with self-induced electromagnetic fields excited by the beam in the passage through the elements of the accelerator. The beam coupling impedance quantifies this interaction and allows predicting the stability of the dynamics of high intensity, high brilliance beams. The coupling impedance can be evaluated with finite element methods or using analytical approaches, such as field matching or mode matching. In this paper we present an application of the mode matching technique for an azimuthally uniform structure of finite length: a cylindrical cavity loaded with a toroidal slab of lossy dielectric, connected with cylindrical beam pipes. In order to take into account the finite length of the structure, with respect to the infinite length approximation, we decompose the fields in the cavity into a set of orthonormal modes. We obtain a complete set of equations using the magnetic field matching and the nonuniform convergence of ...
Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity
Institute of Scientific and Technical Information of China (English)
Bin Ji; Wanji Chen; Jie Zhao
2009-01-01
Owing to the absence of proper analytical solu-tion of cantilever beams for couple stress/strain gradient elas-to-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plas-ticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of or0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materi-als, and thus the solution can be used to determine the mate-rial length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.
Probing WWγ and WWγγ couplings with high energy photon beams
International Nuclear Information System (INIS)
We examine the potential of a future 500 GeV linear e+e- collider for probing anomalous WWγ and WWγγ couplings in the so-called γ(γ)model, corresponding to colliding γe and γγ beams from Compton backscattering of laser light. We consider in detail the 'minimal' set (kγ, λγ) of CP conserving anomalous couplings and present first results for the CP violating 'partner' couplings (anti Kγ, anti lγ) as well. The reactions under consideration are γe → Wν, γγ → W+W- and, as a reference, also e+e- → W+W-. We discuss the impact of both circular polarization of laser photons and polarized e(anti e) beams. Photon 'beams' due to classical Bremsstrahlung are also studied for comparison. We analyze in detail, how changes of the assumed machine parameters, cuts and systematic errors affect the sensitivity to the anomalous couplings. (orig.)
Simulation of Heavy-Ion Beam Losses with the SixTrack-FLUKA Active Coupling
Hermes, Pascal; Cerutti, Francesco; Ferrari, Alfredo; Jowett, John; Lechner, Anton; Mereghetti, Alessio; Mirarchi, Daniele; Ortega, Pablo; Redaelli, Stefano; Salvachua, Belen; Skordis, Eleftherios; Valentino, Gianluca; Vlachoudis, Vasilis
2016-01-01
The LHC heavy-ion program aims to further increase the stored ion beam energy, putting high demands on the LHC collimation system. Accurate simulations of the ion collimation efficiency are crucial to validate the feasibility of new proposed configurations and beam parameters. In this paper we present a generalized framework of the SixTrack-FLUKA coupling to simulate the fragmentation of heavy-ions in the collimators and their motion in the LHC lattice. We compare heavy-ion loss maps simulated on the basis of this framework with the loss distributions measured during heavy-ion operation in 2011 and 2015.
Instability and dynamics of two nonlinearly coupled laser beams in a plasma
Shukla, P K; Marklund, M; Stenflo, L; Kourakis, I; Parviainen, M; Dieckmann, M E
2006-01-01
We investigate the nonlinear interaction between two laser beams in a plasma in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schroedinger equations that are coupled with the slow plasma density response. We study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations.
The LHC Transverse Coupled-Bunch Instability
Mounet, Nicolas; Métral, Elias
In this thesis, the problem of the transverse coupled-bunch instabilities created by the Large Hadron Collider (LHC) beam-coupling impedance, that can possibly limit the machine operation, is addressed thanks to several new theories and tools. A rather complete vision of the problem is proposed here, going from the calculation of the impedances and wake functions of individual machine elements, to the beam dynamics study. Firstly, new results are obtained in the theory of the beam-coupling impedance for an axisymmetric two-dimensional structure, generalizing Zotter's theories, and a new general theory is derived for the impedance of an infinite flat two-dimensional structure. Then, a new approach has been found to compute the wake functions from such analytically obtained beam-coupling impedances, over-coming limitations that could be met with standard discrete Fourier transform procedures. Those results are then used to obtain an impedance and wake function model of the LHC, based on the (resistive-) wall im...
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;
2016-01-01
A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.......A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...
Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis
Szekrényes, András
2014-09-01
A novel analytical model is developed to solve the problem of free vibration of delaminated composite beams. The beam with a single delamination was modelled by six equivalent single layers by establishing the kinematic continuity in the undelaminated portion of the system. In the delaminated region the layers were captured by the traditional theories. First, Timoshenko beam theory is applied to solve the problem, then by reducing the model, the corresponding Euler-Bernoulli solution is presented. Both the free and constrained models were considered. The most important aspect of the present analysis is that the beams of the delaminated region are subjected to normal forces, as well. That is the essential reason for leading to a coupled flexural-longitudinal vibration problem. It is also concluded that delamination buckling can take place if the normal force is compressive in one of the half-periods of the vibration and reaches a critical value. The problem was also investigated experimentally by modal hammer and sweep excitation tests on beams made of E-glass/polyester in order to measure the natural frequencies and mode shapes. The comparison of the analytical and experimental results indicates the importance of the independent rotations provided by Timoshenko beams over the simple beam theory. The delamination buckling of the beams was captured based on the static stability analysis in the first step. Further results show that the problem is more complex than it was thought before, e.g., some nonlinearity, time-dependent stiffness as well as parametric excitation aspects were discovered during the present analysis.
Fiber coupling efficiency for a Gaussian-beam wave propagating through non-Kolmogorov turbulence.
Zhai, Chao; Tan, Liying; Yu, Siyuan; Ma, Jing
2015-06-15
Nowadays it has been accepted that the Kolmogorov model is not the only possible turbulent one in the atmosphere, which has been confirmed by the increasing experimental evidence and some results of theoretical investigation. This has prompted the scientist community to study optical propagation in non-Kolmogorov atmospheric turbulence. In this paper, using the method of effective beam parameters and a non-Kolmogorov power spectrum which has a more general power law instead of standard Kolmogorov power law value 11/3 and a more general amplitude factor instead of constant value 0.033, the fiber coupling efficiency for a Gaussian-beam wave has been derived for a horizontal path in both weak and strong fluctuation regimes. And then the influence of spectral power law variations on the fiber coupling efficiency has been analyzed. It is anticipated that this work is helpful to the investigations of atmospheric turbulence and optical wave propagation in the atmospheric turbulence.
Laser coupling of the numerous flattened Gaussian beams in the fiber-based ICF laser driver
International Nuclear Information System (INIS)
Highlights: ► The laser coupling issue in the novel fiber-based ICF laser driver is analyzed. ► The requirements for the output capabilities of the fiber laser are given which provides some hint for future research of high energy fiber laser system. -- Abstract: Fiber-based inertial confinement fusion (ICF) laser driver provides a new pathway to realize the inertial fusion energy (IFE). The feasibility of this proposal is checked from the perspective of laser coupling process in this paper. Flattened Gaussian beam (FGB) is assumed for theoretical analysis. The focusing properties of the FGB are used to obtain the requirements for a single laser beam. Based on the typical parameters of the chamber and target in ICF research, the output energy from a single fiber amplification chain is estimated to be over several hundred milli-joule. New fiber structures needs to be designed to meet the requirements
Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator
Energy Technology Data Exchange (ETDEWEB)
Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN
2011-08-19
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.
Design of an Angle Detector for Laser Beams Based on Grating Coupling
Directory of Open Access Journals (Sweden)
Weidong Zhou
2012-02-01
Full Text Available A novel angle detector for laser beams is designed in this paper. It takes advantage of grating coupling to couple the incident light into a slab waveguide; and, the incident light’s angle can be determined by reading the outputs of light detectors within the waveguide. This device offers fast-responding on-chip detection of laser beam’s angle. Compared to techniques based on quadrant photodiodes or lateral effect photodiodes, the device in this paper has far greater detectable range (up to a few degrees, to be specific. Performance of the laser angle detector in this paper is demonstrated by finite-difference-time-domain simulations. Numerical results show that, the detectable angle range can be adjusted by several design parameters and can reach [−4°, 4°]. The laser beam angle detector in this paper is expected to find various applications such as ultra-fast optical interconnects.
Krishna Bhaskar, K.; Meera Saheb, K.
2015-12-01
A simple but accurate continuum solution for the shear flexible beam problem using the energy method involves in assuming suitable single term admissible functions for the lateral displacement and total rotation. This leads to two non-linear temporal differential equations in terms of the lateral displacement and the total rotation and are difficult, if not impossible, to solve to obtain the large amplitude fundamental frequencies of beams as a function of the amplitude and slenderness ratios of the vibrating beam. This situation can be avoided if one uses the concept of coupled displacement field where in the fields for lateral displacement and the total rotation are coupled through the static equilibrium equation. In this paper the lateral displacement field is assumed and the field for the total rotation is evaluated through the coupling equation. This approach leads to only one undetermined coefficient which can easily be used in the principle of conservation of total energy of the vibrating beam at a given time, neglecting damping. Finally, through a number of algebraic manipulations, one gets a nonlinear equation of Duffing type which can be solved using any standard method. To demonstrate the simplicity of the method discussed above the problem of large amplitude free vibrations of a uniform shear flexible hinged beam at higher modes with ends immovable to move axially has been solved. The numerical results obtained from the present formulation are in very good agreement with those obtained through finite element and other continuum methods for the fundamental mode, thus demonstrating the efficacy of the proposed method. Also some interesting observations are made with variation of frequency Vs amplitude at different modes.
Coupled flexural-torsional vibration band gap in periodic beam including warping effect
Institute of Scientific and Technical Information of China (English)
Fang Jian-Yu; Yu Dian-Long; Han Xiao-Yun; Cai Li
2009-01-01
The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory.The band structures of the periodic beam,both including warping effect and ignoring warping effect,are obtained.The frequency response function of the finite periodic beams is simulated with finite element method,which shows large vibration attenuation in the frequency range of the gap as expected.The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored.The result including warping effect agrees quite well with the simulated result.
Institute of Scientific and Technical Information of China (English)
张波; Geon Joon Lee; 刘慧; 龚旗煌; Jiwon Sohn; Jaehoon Hwang; Soo Young Park; Jin-Kyung Lee; Jai-Hyung Lee; Joon-Sung Chang
2002-01-01
We have investigated the photorefractive properties of a fully functional polymer, 9-(2-Ethyl-hexyl)-3-[2-(4-methanesulfonyl-phenyl)vinyl]-9H-carbazole, using a multiline He-Ne laser. We measured the wavelength-dependent two-beam coupling coefficient, which exhibited a maximal value of 105 cm- 1 at 609 nm under an applied electric field of 84 V/μm at room temperature.
High-flux cold rubidium atomic beam for strongly-coupled cavity QED
Energy Technology Data Exchange (ETDEWEB)
Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)
2012-08-15
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.
Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.
1967-01-01
An experimental verification of the theory for the potential dependence of the faradaic impedance in the case of irreversible electrode reactions, described in part XVIII, is presented for the Eu3+/Eu2+ couple in 1 M NaClO4 at a D.M.E. It is shown that two peaks occur in an a.c. polarogram, if both
User's Guide to BModes (Software for Computing Rotating Beam-Coupled Modes)
Energy Technology Data Exchange (ETDEWEB)
Bir, G.
2005-12-01
This guide explains data preparation and execution with BModes, a finite-element code that provides dynamically coupled modes for a beam. The beam can be a rotating or non-rotating rotor blade or a tower, and it can have arbitrary distribution of structural properties and geometry along its length. A coupled mode implies presence of coupled flexural, axial, and torsion motions in a natural mode of vibration. Knowledge of flap-lag-torsion-axial coupled modes is crucial to several applications. Examples are: accurate modeling of major flexible components for modal-based aeroelastic codes such as FAST (Fatigue, Aerodynamics, Structures, and Turbulence), validation of flexible component models using experimental data, modal-based fatigue analysis, and interpretation of aeroelastic-stability behavior of turbines. Our plan is to eventually integrate BModes with FAST to provide tower and blade modes as rotor speed and blade pitch control settings change during a simulation. This guide provides step-by-step instructions on how to prepare input files (specify blade geometry, section properties, and finite-element discretization), how to execute the code, and how to interpret the outputs.
Energy Technology Data Exchange (ETDEWEB)
Nakahama, M.; Gu, X.; Sakaguchi, T. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Matsutani, A. [Semiconductor and MEMS Processing Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ahmed, M.; Bakry, A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Koyama, F. [Photonics Integration System Research Center, Tokyo Institute of Technology, 4259-R2-22, Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-08-17
We report a high-speed electrical beam switching of vertical cavity surface emitting laser with a transverse coupled cavity. A high speed (sub-gigahertz) and large deflection angle (>30°) beam switching is demonstrated by employing the transverse mode switching. The angular switching speed of 900 MHz is achieved with narrow beam divergence of below 4° and extinction ratio of 8 dB. We also measured the near- and far-field patterns to clarify the origin of the beam switching. We present a simple one-dimensional Bragg reflector waveguide model, which well predicts the beam switching characteristic.
Goorjian, Peter M. (Inventor); Ning, Cun-Zheng (Inventor)
2005-01-01
Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.
Simple Low-Frequency Beam Pickup
Energy Technology Data Exchange (ETDEWEB)
Novokhatski, A.; Heifets, S.; /SLAC; Aleksandrov, A.; /Oak Ridge
2011-10-12
Detection of the field induced by a beam outside of the beam pipe can be used as a beam diagnostic. Wires placed in longitudinal slots in the outside wall of the beam pipe can be used as a beam pickup. This has a very small beam-coupling impedance and avoids complications of having a feedthrough. The signal can be reasonably high at low frequencies. We present a field waveform at the outer side of a beam pipe, obtained as a result of calculations and measurements. We calculate the beam-coupling impedance due to a long longitudinal slot in the resistive wall and the signal induced in a wire placed in such a slot and shielded by a thin screen from the beam. These results should be relevant for impedance calculations of the slot in an antechamber and for slots in the PEP-II distributed ion pump screens. The design of the low-frequency beam position monitor is very simple. It can be used in storage rings, synchrotron light sources, and free electron lasers, like LINAC coherent light source.
ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator
Energy Technology Data Exchange (ETDEWEB)
Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN
2010-10-27
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.
Stability of higher-order longitudinal modes in a bunched beam without mode coupling
International Nuclear Information System (INIS)
The theory of longitudinal instabilities of bunched beams was proposed by F. Sacherer. Starting from the Vlasov equation, he derived the integral equation for the perturbed distribution function. While the general method to solve the integral equation was given by Sacherer, a number of other papers discussing longitudinal bunched beam instability have also been published. Here we want to propose another formalism with which we can treat the integral equation without mode coupling for the case of a Gaussian bunch. We then generalize the formalism for the other bunch distributions, and derive a practical method to analyze the instability for the case of a parabolic bunch. While the solution of the Sacherer equation that we find is not new, we present another approach to solve it. Since the integral equation for the transverse instability is similar to that for the longitudinal instability, this formalism is also useful for the transverse case. 12 figs., 4 figs
Investigation of the thermo-optic effect in doubly coupled photonic crystal split-beam nanocavities
Lin, Tong; Tao, Jifang; Chau, Fook Siong; Deng, Jie; Zhou, Guangya; Gu, Yuandong
2016-07-01
We design and experimentally demonstrate doubly coupled photonic crystal split-beam nanocavities. The thermal response of the coupled nanocavities is characterized by controlling the device temperature: the resonant wavelengths of the odd mode (1557.28 nm) and even mode (1567.18 nm) are both redshifted linearly from 17.4 °C to 46.5 °C. The tuning ratio of the two modes is measured to be 97.4%, implying that they respond almost the same to temperature changes. Therefore, changes of the wavelength difference between this pair of modes can be applied to effectively decouple the thermo-optic effect from the optomechanical effect without on-chip temperature self-referencing. Additionally, the topmost quality-factor approaches 28 300 throughout the thermal tuning. The proposed structure paves the way for studying purely optomechanical actuations.
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
Institute of Scientific and Technical Information of China (English)
ZHANG Ping; BIAN Bao-Min; LI Zhen-Hua
2005-01-01
@@ A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors,a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.
Impact of the number of coupling points on values of composite beams deformations
Directory of Open Access Journals (Sweden)
Tarić Mirsad
2011-01-01
Full Text Available Technological development, thanks to which high-performance materials were produced, allowed engineers to design elegant structures, which in the total load have smaller share of dead weight. All this gave an opportunity to bridge the large spans. Technological development is accompanied by the development of powerful computer software that is able to, in the phase of construction modelling, include many parameters. Thanks to that, designers have a better insight into how elements behave under load, and they are able to choose how to use material and exploit their good characteristics. Composite structures, formed by coupling of steel and concrete, rank among the modern structures. Their advantage lies in the fact that the steel part of the cross-section takes part in tensile stresses transfer, while the concrete part, because of its massiveness, takes part in compressive stress transfer. Redistribution of stresses in one composite cross-section depends on many factors. In this paper, using finite element method, the influence of number coupling points on the deformation of simply supported beam, with a composite cross-section was analyzed. The span of the beam is 5m.
Vibration Analysis of a Postbuckled Microscale FG Beam Based on Modified Couple Stress Theory
Directory of Open Access Journals (Sweden)
R. Ansari
2014-01-01
Full Text Available On the basis of modified couple stress theory, the postbuckling behavior of the Euler-Bernoulli microscale FG beams is investigated by means of an exact solution method. The modified couple stress theory as a nonclassical continuum theory is capable of interpreting the size dependencies which become more significant at micro/nanoscales. The Von-Karman type nonlinear strain-displacement relationships are employed. The thermal effects are also incorporated into formulation. The governing equation of motion and the corresponding boundary conditions are derived using Hamilton’s principle. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A closed-form solution is obtained for the postbuckling deformation which is beyond the critical buckling load. To study the vibrations taking place in the vicinity of a buckled equilibrium position, the linear vibration problem is exactly solved around the first three buckled configurations. The natural frequencies of the lowest vibration modes around each of the first three buckled configurations are obtained. The influences of power-law exponent, boundary condition, length scale parameter, and thermal environment changes on the static deflection and free vibration frequencies are studied. A comparison is also made between the present results and those obtained via the classical beam theories.
Noll, Scott; Dreyer, Jason; Singh, Rajendra
2014-02-01
Structure borne vibration and noise in an automobile are often explained by representing the full vehicle as a system of elastically coupled beam structures representing the body, engine cradle and body subframe where the engine is often connected to the chassis via inclined viscoelastic supports. To understand more clearly the interactions between a beam structure and isolators, this article examines the flexural and longitudinal motions in an elastic beam with intentionally inclined mounts (viscoelastic end supports). A new analytical solution is derived for the boundary coupled Euler beam and wave equations resulting in complex eigensolutions. This system is demonstrated to be self-adjoint when the support stiffness matrices are symmetric; thus, the modal analysis is used to decouple the equations of motion and solve for the steady state, damped harmonic response. Experimental validation and computational verifications confirm the validity of the proposed formulation. New and interesting phenomena are presented including coupled rigid motions, modal properties for ideal angled roller boundaries, and relationships between coupling and system modal loss factors. The ideal roller boundary conditions when inclined are seen as a limiting case of coupled longitudinal and flexural motions. In particular, the coupled rigid body motions illustrate the influence of support stiffness coupling on the eigenvalues and eigenfunctions. The relative modal strain energy concept is used to distinguish the contribution of longitudinal and flexural deformation modes. Since the beam is assumed to be undamped, the system damping is derived from the viscoelastic supports. The support damping (for a given loss factor) is shown to be redistributed between the system modes due to the inclined coupling mechanisms. Finally, this article provides valuable insight by highlighting some technical issues a real-life designer faces when balancing modeling assumptions such as rigid or elastic
Directory of Open Access Journals (Sweden)
Xiang Xu
2013-09-01
Full Text Available This paper presents a novel method to nonlinearly investigate the dynamics of the coupled axial and torsional vibrations in the circular cross section beam of the steam turbine generator using the FFT analysis. Firstly, the coupled axial and torsional vibrations of a beam are proved by equivalent law of shearing stress and different boundary conditions. Then, a nonlinear mathematical model of the coupled axial and torsional vibrations is established by the Galerkin method. Lastly, the fast Fourier transform (FFT is employed to investigate the coupled effect of the beam vibration. A practical calculation example is calculated numerically and the coupled mechanism of the beam’s axial and torsional vibrations is analyzed in detail. The analysis results show that the frequencies of the coupled response would be existed in some special orders and the coupled response frequencies are smaller than the single vibration. Since for the first time the coupled mechanism of the beam’s axial and torsional vibrations is theoretically analyzed, the findings in this work may provide directive reference for practical engineering problems in design of steam turbine generators.
Impedance and collective effects in the KEKB
Energy Technology Data Exchange (ETDEWEB)
Chin, Yongho [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Oide, Katsunobu
1996-08-01
This paper focuses on beam instabilities due to single-beam collective effects, impedances from various beamline elements, ion trapping, photo-electrons, and other issues in the KEKB. We will also discuss the power deposition generated by a beam in the form of the Higher-Order-Mode (HOM) losses by interacting with its surroundings. (author)
Coupling the beam tracing code TORBEAM and the Fokker-Planck solver RELAX for fast electrons
Maj, O.; Poli, E.; Westerhof, E.
2012-12-01
In this paper the interface between the beam tracing code TORBEAM [Poli, Peeters and Pereverzev, Comp. Phys. Comm. 136, 90 (2001)] and the quasi-linear Fokker-Planck solver RELAX [Westerhof, Peeters and Schippers, Rijnhuizen Report No. RR 92-211 CA, 1992] is presented together with preliminary testing results for electron cyclotron waves in ITER plasmas and their effects on the electron distribution function. The resulting numerical package allows us to account for diffraction effects in the construction of the quasi-linear wave-particle diffusion operator. The coupling of the paraxial-WKB code TORBEAM to the ray-based code RELAX requires a reinterpretation of the paraxial wave field in terms of extended rays, which are addressed in details.
High frequency impedances in European XFEL
Energy Technology Data Exchange (ETDEWEB)
Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga
2010-06-15
The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)
Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams
Piovan, Marcelo T.; Filipich, Carlos P.; Cortínez, Víctor H.
2008-09-01
In this paper, analytical solutions for the free vibration analysis of tapered thin-walled laminated-composite beams with both closed and open cross-sections are developed. The present study is based on a recently developed model that incorporates in a full form the shear flexibility. The model considers shear flexibility due to bending as well as warping related to non-uniform torsion. The theory is briefly reviewed with the aim to present the equilibrium equations, the related boundary conditions and the constitutive equations. The stacking sequences in the panels of the cross-sections are selected in order to behave according to certain elastic coupling features. Typical laminations for a box-beam such as circumferentially uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) configurations are adopted. For open cross-sections, special laminations behaving elastically like the CAS and CUS configurations of closed sections are also taken into account. The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of a generalized power series methodology. A recurrence scheme is introduced with the aim to simplify the algebraic manipulation by shrinking the number of unknown variables. A parametric analysis for different taper ratios, slenderness ratios and stacking sequences is performed. Numerical examples are also carried out focusing attention in the validation of the present theory with respect to 2D FEM computational approaches, as well as to serve as quality test and convergence test of former finite elements schemes.
Energy Technology Data Exchange (ETDEWEB)
Lee, Edward P.
2002-02-01
The coupled Kapchinskij-Vladimirskij (K-V) envelope equations for a charged particle beam transported by a periodic system of quadrupoles with self-consistent space charge force have previously been solved by various approximate methods, with accuracy ranging from 1% to 10%. A new method of solution is introduced here, which is based on a double expansion of the beam envelope functions in powers of the focal strength and either the beam's emittance or its dimensionless perveance. This method results in accuracy better than 0.1% for typical lattice and beam parameters when carried through one consistent level of approximation higher than employed in previous work. Several useful quantities, such as the values of the undepressed tune and the beam's perveance in the limit of vanishing emittance, are represented by very rapidly converging power series in the focal strength, with accuracy of .01% or better.
An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode
Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin
2015-11-01
The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.
Sun, Weihua; Chen, Jun; Chen, Lujun; Wang, Jianlong; Zhang, Yongming
2016-07-01
Advanced oxidation processes (AOP) can be combined with biological treatments for recalcitrant organic pollutant decomposition. However, there has been no thorough investigation on the coupling of AOPs and membrane bioreactors (MBR) to treat polymer organic pollutants. This study proposes a new AOP that couples electron beam (EB) radiation and MBR treatment. This method was applied to treat real textile effluents containing polyvinyl alcohol (PVA). During the stable operation stage, 31 ± 7% (n = 28) COD was removed by the EB-MBR process. COD removal was enhanced to 45% at the end of the research period without process optimization. In addition, both the membrane flux and activated sludge system exhibited good stability. Only a 2% membrane flux decreased was observed after a 46 d operation period. PVA radiolysis and biofacies analysis mechanisms are also discussed. By contrast, PVA degradation using only the MBR treatment was ineffective in this study. This ineffectiveness was caused by membrane interception and floccule formation by PVA and activated sludge. PMID:27107385
Institute of Scientific and Technical Information of China (English)
Luo Ji-Run; Cui Jian; Zhu Min; Guo Wei
2013-01-01
Based on space-charge wave theory,the formulae of the beam-wave coupling coefficient and the beam-loaded conductance are given for the beam-wave interaction in an N-gap Hughes-type coupled cavity chain.The ratio of the nonbeam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam-wave interaction.As an example,the stabilities of the beam-wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π,π,and π/2 modes,respectively.The results show that stable operation of the 2π,π,and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain.
Reducing the SPS Machine Impedance
Collier, Paul; Guinand, R; Jiménez, J M; Rizzo, A; Spinks, Alan; Weiss, K
2002-01-01
The SPS as LHC Injector project has been working for some time to prepare the SPS for its role as final injector for the LHC. This included major work related to injection, acceleration, extraction and beam instrumentation for the LHC beams [1]. Measurements carried out with the high brightness LHC beam showed that a major improvement of the machine impedance would also be necessary [2]. In addition to removing all lepton related components (once LEP operation ended in 2000), the decision was made to shield the vacuum system pumping port cavities. These accidental cavities had been identified as having characteristic frequencies in the 1-1.5GHz range. Since the SPS vacuum system contains roughly 1000 of these cavities, they constitute a major fraction of the machine impedance. As removal of the ports and associated bellows is not possible, transition shields (PPS) had to be designed to insert within the pumping port cavities.
Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking
Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria
One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...
DEFF Research Database (Denmark)
Saracho, C. M.; Santos, Ilmar
2003-01-01
The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...
Srivastava, S.K.; Ramaneti, R.; Roelse, M.; Duy Tong, H.; Vrouwe, E.X.; Brinkman, A.G.M.; Smet, de L.C.P.M.; Rijn, van C.J.M.; Jongsma, M.A.
2015-01-01
Impedance spectroscopy of cell lines on interdigitated electrodes (IDEs) is an established method of monitoring receptor-specific cell shape changes in response to certain analytes. Normally, assays are done in multiwells making it a bulky, static and single use procedure. Here, we present a biosens
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede
2015-01-01
accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering...
Update on Beam Induced RF Heating in the LHC
Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J; Nosych, A; Nougaret, J; Persichelli, S; Piguiet, A; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M; Fassnacht, P; Jakobsen, S; Deile, M
2013-01-01
Since June 2011 the rapid increase of the luminosity performance of the LHC has come at the expense of both increased temperature and pressure of specific, near-beam, LHC equipment. In some cases, this beam induced heating has caused delays while equipment cool-down, beam dumps and even degradation of some devices. This contribution gathers the observations of beam induced heating, attributed to longitudinal beam coupling impedance, their current level of understanding and possible actions planned to be implemented during the 1st LHC Long Shutdown (LS1) in 2013-2014.
International Nuclear Information System (INIS)
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.
Gray, Carl E., Jr.
1988-01-01
Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.
Beam Measurements in Storage Rings
Hofmann, Albert
1996-05-01
Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high
Impedances of Laminated Vacuum Chambers
Energy Technology Data Exchange (ETDEWEB)
Burov, A.; Lebedev, V.; /Fermilab
2011-06-22
First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].
Energy Technology Data Exchange (ETDEWEB)
Fenili, André; Lopes Rebello da Fonseca Brasil, Reyolando Manoel [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo (Brazil); Balthazar, José M., E-mail: jmbaltha@gmail.com [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Universidade Estadual Paulista, Faculdade de Engenharia Mec and #x00E (Brazil); Francisco, Cayo Prado Fernandes [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Instituto de Aeronáutica e Espaço, Departamento de (Brazil)
2014-12-10
We derive nonlinear governing equations without assuming that the beam is inextensible. The derivation couples the equations that govern a weak electric motor, which is used to rotate the base of the beam, to those that govern the motion of the beam. The system is considered non-ideal in the sense that the response of the motor to an applied voltage and the motion of the beam must be obtained interactively. The moment that the motor exerts on the base of the beam cannot be determined without solving for the motion of the beam.
Impedance and collective effects in the LHC
Energy Technology Data Exchange (ETDEWEB)
Gareyte, J. [European Organization for Nuclear Research, Geneva (Switzerland)
1996-08-01
After a review of the main LHC parameters, and a brief description of the RF and vacuum systems, the coupling impedances of the main machine elements are given, as well as the resulting thresholds for instabilities. (author)
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;
2014-01-01
This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched...... by existing networks operated at the same duty ratio. The proposed impedance network also has more degrees of freedom for varying its gain, and hence, more design freedom for meeting requirements demanded from it. This capability has been demonstrated by mathematical derivation, and proven in experiment...
Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng
2016-05-30
A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070
Lauer, Christian; König, Harald; Grönninger, Günther; Hein, Sebastian; Gomez-Iglesias, Alvaro; Furitsch, Michael; Maric, Josip; Kissel, Heiko; Wolf, Paul; Biesenbach, Jens; Strauss, Uwe
2012-03-01
The impact of new direct-diode and fiber laser systems on industrial manufacturing drives the demand for highbrightness diode laser pump sources suitable for simple fiber coupling with high efficiency. Within the German funded project HEMILAS laser mini-bars with different bar geometries and small fill factors were investigated. We present results on 9xx nm bars with tailored beam parameter products for simplified coupling to fibers with core diameters of 200μm and 300μm with a numerical aperture of 0.22 and compare beam quality parameters, brightness, conversion efficiency, and thermal performance of different bar designs. Optimized epitaxy structures yield conversion efficiency maxima above 66%. The slow axis divergence angle of mini-bars with a fill factor of 10% featuring five 100μm wide and 4mm long emitters based on this epitaxy structure stays below 7°, which corresponds to a beam parameter product of 15mm mrad, up to very high output power of over 45W. This result was achieved for mounting on actively cooled submounts using hard solder. A similar bar with 5mm cavity length and using soft soldering reached an output power of 60W at the same beam parameter product. At 4mm cavity length, no COMD failures were observed up to currents exceeding the thermal rollover and the maximum output cw power was 95W.
Indian Academy of Sciences (India)
V Mantha; A K Mohanty; P Satyamurthy
2007-02-01
BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically ∼ 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth-eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of ∼ 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.
Numerical Calculations of Wake Fields and Impedances of LHC Collimators' Real Structures
Frasciello, Oscar
2015-01-01
The LHC collimators have very complicated mechanical designs including movable jaws made of higly resistive materials, ferrite materials, tiny RF contacts. Since the jaws are moved very close to the circulating beams their contribution in the overall LHC coupling impedance is dominant, with respect to other machine components. For these reasons accurate simulation of collimators' impedance becomes very important and challenging. Besides, several dedicated tests have been performed to verify correct simulations of lossy dispersive material properties, such as resistive wall and ferrites, benchmarking code results with analytical, semi-analytical and other numerical codes outcomes. Here we describe all the performed numerical tests and discuss the results of LHC collimators' impedances and wake fields calculations.
Development of a current monitor using a negative impedance circuit
International Nuclear Information System (INIS)
We developed a beam current transformer which appropriates for monitoring beam of an accelerator having operating period of a few seconds. The beam monitor is a new type CT which can measure DC component of beam using a negative impedance circuit. In this report, we describe stability of a time constant, temperature and frequency characteristic of the CT. (author)
Laser cooled ion beams and strongly coupled plasmas for precision experiments
International Nuclear Information System (INIS)
This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)
PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer
DEFF Research Database (Denmark)
Narendra, K.; Limiti, E.; Paoloni, C.;
2013-01-01
A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...
Directory of Open Access Journals (Sweden)
Alakhib Ibrahim Abdelbary
2016-07-01
Full Text Available In this work a simple double beam spectrophotometer detector for the nucleic acid detection has been designed. The developed system contains photodiodes as a sensor, logarithamatic transimpedance amplifier circuit and filter circuit.The developed prototype design accuracy is validated by running a RNA sample and the result shows that our simplified developed setup detects the present of RNA in the sample.
Peschardt, E
1980-01-01
The transverse coupling impedance has been measured in the ISR in the vertical plane and found to be mostly inductive with a phase angle of about 50 degrees for the lowest mode. The resistive part of this impedance is compensated below 1 MHz by a transverse feedback system. However, by applying to the kicker the signals from two pick-ups giving respectively a resistive and an inductive compensation, the phase angle of the feedback can be varied. The signal levels from the two pick-ups are individually adjusted with the correct settings obtained from the information given by the beam transfer function. In this way the stability margin is increased without changing the electronic gain of the feedback. A special set-up has been developed for the measurement of beam transfer functions at low frequencies (10 kHz to 1 MHz). (0 refs).
International Nuclear Information System (INIS)
The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (Te) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (ne) is in the range 108--1010-cm at the skimmer tip and drops abruptly to 106--108 cm-3 near the skimmer tip and drops abruptly to 106--108 cm-3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 104--105 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument
Directory of Open Access Journals (Sweden)
M. Sanbi
2014-01-01
Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.
Li, Zhili; Shi, Chao; Ren, Wei
2016-09-01
A mid-infrared quartz-enhanced photoacoustic sensor was developed using a multimode fiber (MMF)-coupled quantum cascade laser (QCL) and demonstrated for sensitive nitric oxide (NO) detection at a wavelength near 5.26 μm. The QCL radiation was readily coupled into a solid-core InF3 MMF (100 μm core) with 97% coupling efficiency using an aspheric lens. Despite the 25.5% transmission loss for the 1 m long MMF, the Gaussian beam-like fiber output of 5.72° divergence was almost completely focused through the microresonator tube (length, 8.0 mm; ID, 600 μm) designed for off-beam quartz-enhanced photoacoustic spectroscopy. The sensor exploiting the R6.5 (Π21/2) doublet of NO at 1900.08 cm-1 demonstrated a minimum detection limit of 24 parts per billion by volume at an averaging time of 130 s. The sensor was found to be insensitive to the fiber bending noise for a bending radius >5 cm.
The Aberdeen Impedance Imaging System.
Kulkarni, V; Hutchison, J M; Mallard, J R
1989-01-01
The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979
Impedance Localization Measurements using AC Dipoles in the LHC
Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio
2016-01-01
The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.
Shock tube coupled to the time-of-flight mass spectrometer via a molecular beam sampling system.
Krizancic, I; Haluk, M; Cho, S H; Trass, O
1979-07-01
A method for continuous mass spectrometric analysis of high-temperature reacting gas mixtures is described. The apparatus consists of a unique combination of three devices: the shock tube, the time-of-flight mass spectrometer, and the supersonic molecular beam. The driven section of the shock tube constitutes the reservoir of a supersonic molecular beam by which gas is continuously extracted from the reaction zone and introduced through a two-stage high-capacity vacuum system into the ionization region of the mass spectrometer. The shock tube and the mass spectrometer are coupled at right angles to one another. This configuration avoids excessive pressure buildup in the mass spectrometer system. The apparatus has an estimated mass resolution of 100 amu, a frequency range of 10-100 kHz, and can be operated over a wide range of shock conditions during the complete high-temperature pulse. PMID:18699630
Wakefield and impedance studies of a liner using MAFIA
Energy Technology Data Exchange (ETDEWEB)
Chou, W.; Barts, T.
1993-03-01
The liner is a perforated beam tube that is coaxial with an outer bore tube. The 3D code MAFIA (version 3.1) is used to study the wakefields, impedances, and resonances of this structure. The short-range wakes and low-frequency (below the cutoff) impedances are in agreement with the theoretical model. The long-range wakes and high-frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the Superconducting Super Collider impedance budget is discussed.
Wakefield and impedance studies of a liner using MAFIA
Energy Technology Data Exchange (ETDEWEB)
Chou, W.; Barts, T. (SSC Laboratory, Dallas, Texas 75237 (United States))
1993-12-25
The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.
Wakefield and impedance studies of a liner using MAFIA
Chou, W.; Barts, T.
1993-12-01
The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.
Laser cooled ion beams and strongly coupled plasmas for precision experiments
Energy Technology Data Exchange (ETDEWEB)
Bussmann, Michael
2008-03-17
This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-11-10
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.
Yang, Xi
2015-01-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.
Saleh, M. A.; Evans, D. R.; Allen, A. S.; Bunning, T. J.; Guha, S.
2002-03-01
By fitting the experimental results to a theoretical analysis of two-beam coupling including diffraction effects [1], the photorefractive gain as well the dark current irradiance has been evaluated. Crystals with a transparent conductive coating were used to reduce grating writing instabilities; instabilities as well as multiple reflection effects were also eliminated by AR (anti-reflection) coating the crystal surfaces [2]. [1] G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, T. W. Vere, and J. P. Duignan, Materials Research Society Symposium Proceedings 597 (2000) 263-274. [2] D. R. Evans, S. A. Basun, M. A. Saleh, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, "Elimination of Photorefractive Grating Writing Instabilities in Iron-doped Lithium Niobate," Submitted to IEEE J. Quantum Electronics. Dec. 2001.
Pushover analysis on coupled shear wall with different patterns of coupling beam%不同连梁形式联肢剪力墙的静力弹塑性分析
Institute of Scientific and Technical Information of China (English)
管民生; 杜宏彪; 姜晶; 韩大建
2009-01-01
建立12层钢筋混凝土联肢剪力墙结构分析模型,用两种不同的侧向载荷分布模式,分别对采用钢筋混凝土连梁和型钢混凝土连梁的联肢剪力墙结构进行静力弹塑性(Pushover)分析.在此基础上,以变形和延性(包括顶点位移、层间位移和结构塑性铰分布)为参数评估其抗震性能.研究发现,在承载力相同时,型钢混凝土连梁比钢筋混凝土连梁的截面尺寸小很多,型钢混凝土连梁的联肢剪力墙抗震性能较好.%The coupled shear wall structures with reinforced concrete coupling beams and steel reinforced concrete coupling beams were analyzed by pushover analysis with two common load patterns. The seismic performances were studied by means of the deformation and ductility such as the top drift, inter-story drifts and plastic joints distribution. The results show that the cross section size of steel reinforced concrete coupling beam is smaller than the one of reinforced concrete coupling beam under the same loads, and the seismic performance of coupled shear wall with steel reinforced concrete coupling beam is better than that of coupled shear wall with reinforced concrete coupling beam.
Goza, Andres
2016-01-01
We present a strongly-coupled immersed-boundary method for flow-structure interaction problems involving thin deforming bodies. The method is stable for arbitrary choices of solid-to-fluid mass ratios and for large body motions. As with many strongly-coupled immersed-boundary methods, our method requires the solution of a nonlinear algebraic system at each time step. The system is solved through iteration, where the iterates are obtained by linearizing the system and performing a block LU factorization. This restricts all iterations to small-dimensional subsystems that scale with the number of discretization points on the immersed surface, rather than on the entire flow domain. Moreover, the iteration procedure we propose does not involve heuristic regularization parameters, and has converged in a small number of iterations for all problems we have considered. We derive our method for general deforming surfaces, and verify the method with two-dimensional test problems of geometrically nonlinear beams undergoi...
Reciprocity and mutual impedance formulas within lossy cavities
Directory of Open Access Journals (Sweden)
F. Gronwald
2005-01-01
Full Text Available We discuss the validity of reciprocity and mutual impedance formulas within lossy cavities. Mutual impedance formulas are well-known from antenna theory and useful to describe the electromagnetic coupling between electromagnetic interference sources and victims. As an example the mutual impedance between two dipole antennas within a lossy rectangular cavity is calculated from a system of coupled Hallén's equations that efficiently is solved by the method of moments.
Line Impedance Estimation Using Active and Reactive Power Variations
DEFF Research Database (Denmark)
Timbus, Adrian Vasile; Rodriguez, Pedro; Teodorescu, Remus;
2007-01-01
This paper proposes an estimation method of power system impedance based on power variations caused by a distributed power generation system (DPGS) at the point of common coupling (PCC). The proposed algorithm is computationally simple and uses the voltage variations at the point of common coupling...... (PCC) caused by the variations of the power delivered to utility network to derive the value of grid impedance. Accurate estimation of both resistive and inductive part of the impedance is obtained, as the results presented show....
Directory of Open Access Journals (Sweden)
Mohammad Johari Ibahim
Full Text Available BACKGROUND: High-dose synchrotron microbeam radiation therapy (MRT has shown the potential to deliver improved outcomes over conventional broadbeam (BB radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments. AIM: To develop an in vitro approach to determine biological dose equivalence between MRT and BB using two different cell-based assays. METHODS: The acute response of tumour and normal cell lines (EMT6.5, 4T1.2, NMuMG, EMT6.5ch, 4T1ch5, SaOS-2 to MRT (50-560 Gy and BB (1.5-10 Gy irradiation was investigated using clonogenic and real time cell impedance sensing (RT-CIS/xCELLigence assays. MRT was performed using a lattice of 25 or 50 µm-wide planar, polychromatic kilovoltage X-ray microbeams with 200 µm peak separation. BB irradiations were performed using a Co60 teletherapy unit or a synchrotron radiation source. BB doses that would generate biological responses similar to MRT were calculated by data interpolation and verified by clonogenic and RT-CIS assays. RESULTS: For a given cell line, MRT equivalent BB doses identified by RT-CIS/xCELLigence were similar to those identified by clonogenic assays. Dose equivalence between MRT and BB were verified in vitro in two cell lines; EMT6.5ch and SaOS-2 by clonogenic assays and RT-CIS/xCELLigence. We found for example, that BB doses of 3.4±0.1 Gy and 4.40±0.04 Gy were radiobiologically equivalent to a peak, microbeam dose of 112 Gy using clonogenic and RT-CIS assays respectively on EMT6.5ch cells. CONCLUSION: Our data provides the first determination of biological dose equivalence between BB and MRT modalities for different cell lines and identifies RT-CIS/xCELLigence assays as a suitable substitute for clonogenic assays. These results will be useful for the safe selection of MRT doses for future veterinary and clinical trials.
Turk Cakir, I; Tasci, A T; Cakir, O
2016-01-01
We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (∆κγ, λγ) and (∆κz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb-1.
Energy Technology Data Exchange (ETDEWEB)
Groote, S. [Tartu Uelikool, Loodus- ja Tehnoloogiateaduskond, Fueuesika Instituut, Tartu (Estonia); Institut fuer Physik der Johannes-Gutenberg-Universitaet, Mainz (Germany); Liivat, H.; Ots, I.; Sepp, T. [Tartu Uelikool, Loodus- ja Tehnoloogiateaduskond, Fueuesika Instituut, Tartu (Estonia)
2010-03-15
In searching for indications of new-physics scalar particle and unparticle couplings in e{sup +}e{sup -}{yields}t anti t, we consider the role of transversely polarized initial beams at e{sup +}e{sup -} colliders. By using a general relativistic spin density matrix formalism for describing the particles spin states, we find analytical expressions for the differential cross section of the process with t or anti t polarization measured, including the anomalous coupling contributions. Thanks to the transversely polarized initial beams these contributions are first order anomalous coupling corrections to the Standard Model (SM) contributions. We present and analyze the main features of the SM and anomalous coupling contributions. We show how differences between SM and anomalous coupling contributions provide means to search for anomalous coupling manifestations at future e{sup +}e{sup -} linear colliders. (orig.)
Rotor damage detection by using piezoelectric impedance
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Universal impedance fluctuations in wave chaotic systems.
Hemmady, Sameer; Zheng, Xing; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2005-01-14
We experimentally investigate theoretical predictions of universal impedance fluctuations in wave chaotic systems using a microwave analog of a quantum chaotic infinite square well potential. We emphasize the use of the radiation impedance to remove the nonuniversal effects of the particular coupling between the outside world and the scatterer. Specific predictions that we test include the probability density functions (PDFs) of the real and imaginary parts of the universal impedance, the equality of the variances of these PDFs, and the dependence of these PDFs on a single loss parameter.
Impedance simulation for LEReC booster cavity transformed from ERL gun cavity
Energy Technology Data Exchange (ETDEWEB)
Liu, Chuyu [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-11-24
Wake impedance induced energy spread is a concern for the low energy cooling electron beam. The impedance simulation of the booster cavity for the LEReC projection is presented in this report. The simulation is done for both non-relativistic and ultra-relativistic cases. The space charge impedance in the first case is discussed. For impedance budget consideration of the electron machine, only simulation of the geometrical impedance in the latter case is necessary since space charge is considered separately.
Potential energy savings with personalized ventilation coupled with passive chilled beams
DEFF Research Database (Denmark)
Lyubenova, Velina S.; Holsøe, Jan W.; Melikov, Arsen Krikor
2011-01-01
distribution used today. The potential of PV for energy saving has been studied little. In this study, the energy saving potential of desk mounted PV in conjunction with either mixing ventilation or a passive chilled beam system is compared to mixing ventilation alone by means of computer simulations. An open...... 20% (and up to 40% when extending the temperature in the room by 2 °C above the upper limit recommended in the standards) compared to mixing ventilation only. When PV was combined with passive chilled beams, the reduction of the supplied air was up to 80%. This ventiltion strategy may lead to energy......Personalized ventilation (PV) is an individually controlled air distribution system aimed at improving inhaled air quality and thermal comfort of each occupant. Numerous studies have shown that PV may improve occupants’ health, comfort and performance in comparison with traditional total volume air...
A coupled bunch instability due to beam-photoelectron interactions in KEKB-LER
Energy Technology Data Exchange (ETDEWEB)
Ohmi, Kazuhito [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
LER of KEKB is designed to storage the positron beam of 2.6 A with multibunch operation. Nb = 3.3 x 10{sup 10} positrons are filled in a bunch and the bunch passes every 2ns through a beam chamber. The photoelectron instability may be serious for KEKB-LER. We consider a motion of photoelectrons produced by a bunch with a computer simulation technic. A cylindrical chamber with a diameter of 10 cm was used as a model chamber. About 15 times of the photoelectrons were produced by a bunch. The wake force was calculated for the loading bunches with displacements of 0.5 mm and 1 mm. The wake characteristics seems to be caused by the trapped electrons kicked by the loading bunch. The wake was saturated with the loading displacement of 0.5 mm. We obtained a growth rate by the wake force. It is very high rate, 2500s{sup -1} which exceeds damping rates of various mechanism, radiation, head-tail and feedback. Perhaps it is essential to remove the photoelectrons around the positron beam explicitly. If we apply magnetic field fo about 20 G, the growth rate will be reduced. (S.Y.)
Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen
2012-08-13
We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits. PMID:23038521
Modelling Coupled Electric Field and Motion of Beam of Ionic Polymer-Metal Composite
Directory of Open Access Journals (Sweden)
Dominik Ireneusz
2014-03-01
Full Text Available In this paper, a mathematical model of electromechanical transduction of Ionic Polymer-Metal Composites is presented. The aim of the research was to create a physics-based, geometrically scalable model to use in control systems. The relation between actuating voltage and the tip displacement was described with a transfer function. The model is derived from the basic physical properties of researched materials. To calculate the final transfer function, two impedance models are considered - with and without neglecting the resistance of the metal electrodes. In this paper, the model with non-zero electrode resistance is calculated. Later, the model is simplified (taking the physical properties into account and the numerical values based on the parameters of the samples are calculated. The simplifications allow the model to predict the response to low-frequency sine wave actuation. The frequency-domain characteristics of the samples were created experimentally and compared to the model. The results have proven the accuracy of the model.
International Nuclear Information System (INIS)
The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides
Impedance model for nanostructures
Directory of Open Access Journals (Sweden)
R. S. Akhmedov
2007-06-01
Full Text Available The application of the impedance model for nanoelectronic quantum-mechanical structures modelling is described. Characteristics illustrating the efficiency of the model are presented.
Eslambolchi, Hossein
1984-01-01
It is well known that normal mode coupling in large diameter piezoelectric plates causes serious difficulties when attempting to operate over wide frequency bands. As a consequence transducers are commonly constructed as a mosaic of elemental resonators, each of which has a predominant single mode of mechanical oscillation at the frequency of interest. Such transducer arrays may be electrically steered to angles other than normal by applying different phases of driving voltages to different e...
Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
Rui, Guanghao; Chen, Weibin; Abeysinghe, Don C; Nelson, Robert L; Zhan, Qiwen
2012-08-13
Coupling nanoscale emitters via optical antennas enables comprehensive control of photon emission in terms of intensity, directivity and polarization. In this work we report highly directional emission of circularly polarized photons from quantum dots coupled to a spiral optical antenna. The structural chirality of the spiral antenna imprints spin state to the emitted photons. Experimental results reveal that a circular polarization extinction ratio of 10 is obtainable. Furthermore, increasing the number of turns of the spiral gives rise to higher antenna gain and directivity, leading to higher field intensity and narrower angular width of emission pattern in the far field. For a five-turn Archimedes' spiral antenna, field intensity increase up to 70-fold simultaneously with antenna directivity of 11.7 dB has been measured in the experiment. The highly directional circularly polarized photon emission from such optically coupled spiral antenna may find important applications in single molecule sensing, quantum optics information processing and integrated photonic circuits as a nanoscale spin photon source. PMID:23038571
Giachino, R; Metral, E; Papotti, G; Pieloni, T; Trad, G; Buffat, X; Kaltchev, D
2013-01-01
A novel type of 2.76 m long slotted, or perforated, strip-line pick-up, or kicker electrode structure, for CSRe stochastic cooling of non-relativistic particle beams with β~ 0.7 is presented. It is installed inside a bending vacuum chamber with the output signal taken from the downstream end. This slotted structure features a sufficiently broad bandwidth, good beam coupling impedance, low losses and a comparatively easy mechanical construction and installation into the CSRe dipole chamber. In this paper the electrode structure and pickup tank, as well as the beam test results will be presented.
International Nuclear Information System (INIS)
Direct coupling of the optical field in a ∼244 nm thick, CdSe/ZnS quantum dot film to an optical fiber has yielded lasing in the red (λ ∼ 644 nm) with a threshold pump energy density < 2.6 mJ cm−2. Comprising 28–31 layers of ∼8 nm diameter quantum dots deposited onto the exterior surface of a 125 μm diameter coreless silica fiber, this free-running oscillator produces 134 nJ in 3.6 ns FWHM pulses which correspond to 37 W of peak power from an estimated gain volume of ∼4.5 × 10−7 cm3. Lasing was confirmed by narrowing of the output optical radiation in both the spectral and temporal domains, and the laser beam intensity profile approximates a top hat
A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam
Institute of Scientific and Technical Information of China (English)
Cui Bi-Feng; Guo Wei-Ling; Du Xiao-Dong; Li Jian-Jun; Zou De-Shu; Shen Guang-Di
2012-01-01
A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes.For a laser with three active regions,a slope efficiency as high as 1.49 W/A,a vertical divergence angle of 17.4°,and a threshold current density of 271 A/cm2 are achieved.By optimizing the structural parameters,the beam quality is greatly improved,and the level of the COD power increases by more than two times compared with that of the conventional laser.
Observations involving broadband impedance modelling
Energy Technology Data Exchange (ETDEWEB)
Berg, J.S.
1995-08-01
Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)
1997-12-31
A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38
Experimental study on the function of coupling beams for micropiles in landslide%滑坡微型桩连梁作用试验研究
Institute of Scientific and Technical Information of China (English)
方志森; 詹珽; 赵祥
2012-01-01
Model tests for the sliding function of micropiles in landslide have been carried out for studying the affection of coupling beams in landslide reinforcement, which aim to explain the damage extent of micropiles and their anti-sliding effect with coupling beams. According to the results from tests, the degree of damage for micropiles with coupling beams is smaller than that without the beams. The coupling beams could reduce about 60% of the top displacement of micropiles, and effectively reduce the pile displacement in sliding surface, which meant it might improve the overall slip resistance of pile, and promote the shear strength in sliding surface. The micropiles with coupling beams could effectively improve the stability of landslide about 4.5%. All the results and conclusions are hoped to provide the foundation for the reinforcing mechanism of landslide with micropiles.%为研究微型桩连梁在抗滑作用中的效果,进行了滑坡微型桩抗滑作用大型物理模型试验,对比了有无连梁情况下,微型桩的破坏情况及其抗滑效果。试验结果为：连梁能有效减小微型桩桩身的破坏程度;能减小微型桩桩顶60%左右的位移;能够有效减小滑面处桩身位移,提高桩体的整体抗滑性,能促进其滑面处抗剪强度;连梁能有效提高滑坡体稳定性4.5%。研究结果可为微型桩加固滑坡机理提供参考。
Scaling of induction-cell transverse impedance: effect on accelerator design
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-09
The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z_{⊥} . This note addresses the dimensional scaling of Z_{⊥} , which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z_{⊥} with the accelerating gap size relates BBU growth directly to highvoltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.
Scaling of induction-cell transverse impedance: effect on accelerator design
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-09
The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z_{⊥}. This note addresses the dimensional scaling of Z_{⊥}, which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z_{⊥} with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.
Papa, A.; Kettle, P.-R.; Ripiccini, E.; Rutar, G.
2016-07-01
Several scintillating fibre prototypes (single- and double-layers) made of 250 μm multi-clad square fibres coupled to silicon photomultiplier have been studied using electrons, positrons and muons at different energies. Current measurements show promising results: already for a single fibre layer and minimum ionizing particles we obtain a detection efficiency ≥ 95 % (mean collected light/fibre ≈ 8 phe), a timing resolution of 550 ps/fibre and a foreseen spatial resolution < 100 μm, based on the achieved negligible optical cross-talk between fibres (< 1 %). We will also discuss the performances of a double-layer staggered prototype configuration, for which a full detection efficiency (≥ 99 %) has been measured together with a timing resolution of ≈ 400 ps for double hit events.
Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B
2009-01-01
The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede;
2014-01-01
This paper introduces a Y-shaped impedance network for realizing converters that demand a high voltage gain while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched by existing networks...... operated at the same duty ratio. This capability has been demonstrated by mathematical derivation for the proposed network in comparison with other recently reported networks. To further prove the network performance, a single-switch dc-dc converter has been implemented with the network, before testing...... it experimentally. The results obtained clearly verify the network performance in addition to its higher power density that can generally be achieved by coupled magnetics....
Superconducting fault current-limiter with variable shunt impedance
Llambes, Juan Carlos H; Xiong, Xuming
2013-11-19
A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.
Fuchs, J.; Nakatsutsumi, M.; Marquès, J.-R.; Antici, P.; Bourgeois, N.; Grech, M.; Lin, T.; Romagnani, L.; Tikhonchuk, V.; Weber, S.; Kodama, R.; Audebert, P.
2007-12-01
We have performed a systematic study of beam propagation (400 ps, I = 1010-1014 W cm-2) in underdense plasmas (ne = 1019-1020 cm-3) at a level of reduced complexity compared with the smoothed beams currently used in inertial confinement fusion studies, using one or two well-controlled filaments. These experiments have been performed on the LULI 100 TW laser facility. The use of well-controlled, diffraction-limited single filaments is possibly due to the use of adaptative optics. We have used either a single filament or two filaments having variable distance, delay, intensity ratio and polarization. The single filament configuration allows to study basic beam propagation and reveals occurrence of filamentation at low intensity levels. The use of two filaments demonstrates the occurrence of beam coupling and merging, and the importance of cross-talk effects supported by the plasma.
Energy Technology Data Exchange (ETDEWEB)
Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)
1996-08-01
This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)
AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo
2016-01-01
Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...
New Magnetically Coupled Impedance (Z-) Source Networks
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
by their discontinuous currents drawn from the sources and/or high stresses experienced by their components. This paper thus proposes three new MCIS networks named respectively as quasi-Y-source, quasi-Γ-Z-source and quasi-T-source or quasi-Trans-Z-source networks. These new networks inherit all advantages....... Derivations of all two-winding MCIS networks, including existing and new networks, from the generalized three-winding MCIS networks are then systematically illustrated, before comparing them. Operational principles, mathematical derivations, simulation and experimental results of all studied networks have...
International Nuclear Information System (INIS)
The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground
Beam-Wall interaction in the LHC liner
Mostacci, A
2001-01-01
The beam pipe foreseen for the LHC is rather unconventional. To shield the cold bore of the magnets from the synchrotron radiation emitted by protons at 7 TeV, a beam screen (the so called "liner") has been introduced practically along all the machine. The present design of the liner is a compromise among beam stability issues, vacuum requirements, heat load on the cold bore, electron cloud effects and mechanical constraints. Three main potential sources of beam energy loss in the actual LHC liner are addressed, namely the interaction with the pumping holes, the (sawtooth) surface corrugation and the effect of an azimuthally inhomogeneous metallic beam pipe modelling the high resistivity of the welding. The losses are estimated through a detailed electromagnetic analysis (by means of standard theories) seeking for analytical expressions of electromagnetic fields and/or coupling impedance. An analytical (or semi-analytical) approach is considered for each problem, to better understand the relevant parameters t...
Creasy, M. Austin
2016-03-01
Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.
Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg
potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor...... cells through experimental studies and mathematical modelling. These studies all revolve around the electrochemical impedance spectroscopy (EIS) characterisation method. EIS is performed by applying a sinusoidal current or voltage signal to the fuel cell and calculating the impedance from the response...
Kelisani, M. Dayyani; Doebert, S.; Aslaninejad, M.
2016-08-01
The critical process of beam loading compensation in high intensity accelerators brings under control the undesired effect of the beam induced fields to the accelerating structures. A new analytical approach for optimizing standing wave accelerating structures is found which is hugely fast and agrees very well with simulations. A perturbative analysis of cavity and waveguide excitation based on the Bethe theorem and normal mode expansion is developed to compensate the beam loading effect and excite the maximum field gradient in the cavity. The method provides the optimum values for the coupling factor and the cavity detuning. While the approach is very accurate and agrees well with simulation software, it massively shortens the calculation time compared with the simulation software.
DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION
Energy Technology Data Exchange (ETDEWEB)
Maximillian J. Kieba
2002-08-30
This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD
BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade
Energy Technology Data Exchange (ETDEWEB)
Smith, Jeffrey Claiborne; /SLAC; Keller, Lewis; /SLAC; Lundgren, Steven; /SLAC; Markiewicz, Thomas; /SLAC; Young, Andrew; /SLAC
2010-08-26
The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.
Longitudinal Coupled-Bunch Instabilities in the CERN PS
Damerau, H; Mehler, M; Rossi, C; Shaposhnikova, E; Tückmantel, Joachim; Vallet, J L
2007-01-01
Longitudinal coupled bunch instabilities in the CERN PS represent a major limitation to the high brightness beam delivered for the LHC. To identify possible impedance sources for these instabilities, machine development studies have been carried out. The growth rates of coupled bunch modes have been measured, and modes have been identified using mountain range data. Growth rate estimations from coupled bunch mode theory are compared to these results. It is shown that the longitudinal impedance of the broad resonance curve of the main 10 MHz RF system can be identified as the most probable source. Several modes are driven simultaneously due to the large width of the resonance, which is considered for the analysis.
International Nuclear Information System (INIS)
The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)
Implantable Impedance Plethysmography
Directory of Open Access Journals (Sweden)
Michael Theodor
2014-08-01
Full Text Available We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.
Comparison of axial and radial electron beam-breakup transit-time oscillators
Energy Technology Data Exchange (ETDEWEB)
Kwan, T.J.T. [Los Alamos National Lab., NM (United States); Mostrom, M.A. [Mission Research Corporation, Albuquerque, NM (United States)
1995-08-01
Comparison of two configurations of a novel high-power microwave generator is presented in this article. Coupling the beam-breakup instability with the transit-time effect of the electron beam in the cavity, rapid energy exchange between the electrons and cavity modes can occur. The dominant cavity modes in the axial and radial configurations are different but their growth rates are comparable. We found that the radial configuration can have a beam impedance less than 10 {Omega} and therefore more suitable for low-voltage and high power operation. Good agreements have been obtained between linear theory and simulation for both configurations.
Beam - cavity interaction beam loading
International Nuclear Information System (INIS)
The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)
Tahir, N A; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, Dieter H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I V; Fortov, V E
2003-01-01
Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are consider...
Fiber‐free coupling between bulk laser beams and on‐chip polymer‐based multimode waveguides
DEFF Research Database (Denmark)
Jensen, Thomas Glasdam; Nielsen, Lars Bue; Kutter, Jörg Peter
2011-01-01
light from a bulk beam to on‐chip waveguides and back into a bulk beam again. Using this setup, as much as 20% of the light coming from the source can be retrieved after passing through the on‐chip waveguides. The proposed setup is based on a pin‐aided alignment system that makes it possible to change...
Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp
2015-12-01
Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for
Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp
2015-12-01
Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for
Impedance calculation for ferrite inserts
Energy Technology Data Exchange (ETDEWEB)
Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab
2005-01-01
Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.
Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...
Gynecologic electrical impedance tomograph
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
A Multisection Broadband Impedance Transforming Branch-Line Hybrid
Kumar, S; Danshin, T
1995-01-01
Measurements and design equations for a two section impedance transforming hybrid suitable for MMIC applications and a new method of synthesis for multisection branch-line hybrids are reported. The synthesis method allows the response to be specified either of Butterworth or Chebyshev type. Both symmetric (with equal input and output impedances) and non-symmetric (impedance transforming) designs are feasible. Starting from a given number of sections, type of response, and impedance transformation ratio and for a specified midband coupling, power division ratio, isolation or directivity ripple bandwidth, the set of constants needed for the evaluation of the reflection coefficient response is first calculated. The latter is used to define a driving point impedance of the circuit, synthesize it and obtain the branch line immittances with the use of the concept of double length unit elements (DLUE). The experimental results obtained with microstrip hybrids constructed to test the validity of the brute force optim...
拉伸和弯曲耦合层合梁应力分析%ANALYSIS OF STRESS FOR LAMINATE BEAM WITH TENSION AND BEND COUPLING
Institute of Scientific and Technical Information of China (English)
马功勋
2001-01-01
The differentiating equations of displacements have been developed for laminate beam under the coupling of tension and bend. For laminate beam with tension and bend coupling,the calculating formula of normal stress and layer shear stress were educed. The stresses of rule-normal and asymmetrical laminate beam were analyzed. The distribution of stresses is asymmetrical.As the number of laminate series is more than 8, the distribution of asymmetrical stresses tends to symmetrical distribution.%本文建立了拉伸和弯曲耦合层合梁的位移微分方程。导出了拉弯耦合层合梁正应力和层间剪应力的计算公式，分析了规则非对称正交层合梁的应力具有非对称特性。当规则非对称正交层合梁的铺层组数大于8时，其应力趋于对称分布。
Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments
Sibener, S. J.; Buss, R. J.; Lee, Y. T.
1978-05-01
A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.
Liu, Yang; Shu, Dong-Wei
2014-08-01
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.
Joshi, A.; Suryanarayan, S.
1989-03-01
The problem of free vibration of beams having different end conditions and subjected to static initial loads has been studied with the aim of arriving at good closed-form analytical solutions. Elementary beam theory is used as a starting point to obtain the transverse vibration frequencies for various cases of classical homogeneous end conditions and for various values of the static axial load and end moment. These results indicate that it is possible to identify simple algebraic expressions which accurately represent the solution for various boundary conditions. It is also found that reasonably accurate estimates of the predominantly flexural frequency of coupled flexural-torsional vibration can be obtained from the uncoupled flexural vibration frequency of beam-columns. This is achieved by defining an effective axial load parameter, which is a combination of the axial load, the end moment and the slenderness parameter. Finally, the study also brings out that the various expressions, corresponding to different end conditions, can be combined together into a single expression for the predominantly flexural frequency. This expression is common for the boundary conditions considered here and use is made of various normalizing factors which depend on the boundary conditions, and are obtainable from the corresponding free vibration and stability analyses of beam-columns.
A valveless micro impedance pump driven by electromagnetic actuation
Rinderknecht, Derek; Hickerson, Anna Iwaniec; Gharib, Morteza
2005-01-01
Over the past two decades, a variety of micropumps have been explored for various applications in microfluidics such as control of pico- and nanoliter flows for drug delivery as well as chemical mixing and analysis. We present the fabrication and preliminary experimental studies of flow performance on the micro impedance pump, a previously unexplored method of pumping fluid on the microscale. The micro impedance pump was constructed of a simple thin-walled tube coupled at either end to glass ...
Métral, E
2011-01-01
Many collective effects were observed in 2010, first when the intensity per bunch was increased and subsequently when the number of bunches was pushed up and the bunch spacing was reduced. After a review of the LHC performance during the 2010 run, with a particular emphasis on impedances and related single-beam coherent instabilities, but mentioning also beam-beam and electron cloud issues, the potential of the LHC for 2011 will be discussed. More specifically, the maximum bunch/beam intensity and the maximum beam brightness the LHC should be able to swallow will be compared to what the injectors can provide.
Ring impedance and stored current for the photon factory
International Nuclear Information System (INIS)
The impedance of the Photon Factory ring is computed using estimates for individual vacuum chamber component impedances, and computer results for the impedance of the RF cavities. The total single-bunch loss impedance is expected to be about 2.5 MΩ at a bunch length of 2.0 cm. This is lower than the SPEAR impedance (per unit length of ring circumference) by about a factor of 5. Thus, the threshold current for single bunch instabilities which limit the beam current will probably be on the order of 150 - 200 mA. There should be no problem in reaching a stored current of 500 mA with 312 bunches. RF and beam parameters, such as stored current, klystron power, synchrotron radiation power, higher mode power, cavity power and reflected power are computed as a function of energy for two operating regions: at a constant beam current of 500 mA for lower energies where a klystron power of less than 650 kW is required, and at a constant klystron power of 650 kW at higher energies. Results are given for operation with and without a wiggler, and for both the single-bunch and 312-bunch modes. (author)
Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.
1999-12-01
The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)
Energy Technology Data Exchange (ETDEWEB)
Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.
Yang, Xi; Huang, Xiaobiao
2016-08-01
We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.
The Impedance of the Ceramic Chamber in J-PARC
Shobuda, Yoshihiro; Ohmi, Kazuhito; Toyama, Takeshi
2005-01-01
The ceramic chamber is adopted at the RCS (rapid cycling synchrotron) in J-PARC. The copper stripes are on the outer surface of the chamber in order to shield the electro-magnetic field produced by the beam. The inner surface of the chamber is coated by TiN to suppress the secondary electron emission. In this paper, we calculate the strength of electro-magnetic field produced by the beam and evaluate the impedance of this ceramic chamber.
International Nuclear Information System (INIS)
A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 1011 and 5.0 × 1011 molecule s−1 cm−3 of C2H5• (ethyl) and t-C4H9• (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K
Leplat, N; Rossi, M J
2013-11-01
A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300-630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C4H10 at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10(11) and 5.0 × 10(11) molecule s(-1) cm(-3) of C2H5(●) (ethyl) and t-C4H9(●) (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K. PMID:24289411
International Nuclear Information System (INIS)
High density plasma physics, radiation emission/scattering and related atomic physics, spectroscopy and diagnostics are going to make large steps forward due to new experimental facilities providing beams of intense heavy ions and X/XUV free electron laser radiation. These facilities are currently being established at GSI-Darmstadt and DESY-Hamburg in Germany to access new and complementary parameter regimes for basic research which have never been obtained in laboratories so far: homogenous benchmark samples near solid density and temperatures from eV up to keV. This will provide important impact to many disciplines like astrophysics, atomic physics in dense environments, dense and strongly coupled plasma effects, radiation emission, equation of state. The spectroscopic analysis of the radiation emission plays a key role in this research to investigate the dynamics of electric fields in multi-particle coupled Coulomb systems and the modification of plasma statistics
Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.
1967-01-01
The electrode impedance in the case of specific adsorption of the electroactive species is discussed, critically applying the charge separation model of Delahay. Comparison with experiments performed with the In3+/In(Hg) couple in 1 M KCNS, comprising impedance, chronopotentiometric and surface-tens
Calculation of longitudinal CSR impedance in curved chamber
International Nuclear Information System (INIS)
Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ, was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The method adopted in our code was originated by T. Agoh and K. Yokoya [1]. It solves the parabolic equation in the frequency domain in a curvilinear coordinate system. In our studies, the chamber has uniform rectangular crosssection along the beam trajectory, which is the same as that in [1]. But the curvature of the beam trajectory is freed, and then we can investigate the CSR impedance of a single or a series of bending magnets. The calculation results indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. With an approximation of a wiggling chamber inside a wiggler, the coherent wiggler radiation (CWR) impedance has also been studied. Due to chamber shielding, the CWR impedance exhibits narrow peaks at frequencies satisfying the resonant conditions. (author)
Microwave Impedance Measurement for Nanoelectronics
Directory of Open Access Journals (Sweden)
M. Randus
2011-04-01
Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.
Wahlstrand, J K; McCole, E T; Cheng, Y -H; Palastro, J P; Levis, R J; Milchberg, H M
2013-01-01
Nonlinear optics experiments measuring phase shifts induced in a weak probe pulse by a strong pump pulse must account for coherent effects that only occur when the pump and probe pulses are temporally overlapped. It is well known that a weak probe beam experiences a greater phase shift from a strong pump beam than the pump beam induces on itself. The physical mechanism behind the enhanced phase shift is diffraction of pump light into the probe direction by a nonlinear refractive index grating produced by interference between the two beams. For an instantaneous third-order response, the effect of the grating is to simply double the probe phase shift, but when delayed nonlinearities are considered, the effect is more complex. A comprehensive treatment is given for both degenerate and nondegenerate pump-probe experiments in noble and diatomic gases. Results of numerical calculations are compared to a recent transient birefringence measurement [Loriot et al., Opt. Express 17, 13429 (2009)] and a recent spectral i...
CSNS/RCS中主要阻抗元件的仿真计算研究%Impedance Computation of Main Components in CSNS/RCS
Institute of Scientific and Technical Information of China (English)
李勇; 王娜; 刘瑜冬; 李志平; 施华; 黄良生; 王生
2012-01-01
中国散裂中子源(CSNS)快循环同步加速器(RCS)是强流质子加速器,对环中真空元件的阻抗研究是判断束流能否稳定运行的重要依据.通过正确估算环中元件阻抗,可及时对元件的阻抗进行有效控制和防止束流不稳定性发生,从而减小束流损失.本文利用CST电磁场仿真软件给出了RCS环中高频腔及准直器的耦合阻抗,并探讨了bus- bar结构对高频腔本身及束流稳定的影响,发现需重新设计bus-bar结构使腔固有频率大于10 MHz才能彻底解决因共振可能引起的丢束.此外,计算表明,主准直器屏蔽有利于减小耦合阻抗及损失功率,在安装代价较小的情况下需对主准直器进行屏蔽.%The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton accelerator. The study on the coupling impedance in the ring plays an important role in the stability of the beams. The total impedances of the ring and the occurrence of the beam instability can be controlled by evaluating of the coupling impedance accurately. The impedances of some main components in the RCS ring, such as RF cavities and collimator were calculated by using numerical simulation. The impact of bus-bar's configuration on RF cavities and beams was estimated by impedance calculation. To solve resonance thoroughly, the inherent frequency should be more than 10 MHz by designing bus-bar's structure again. Furthermore, the RF shield of primary collimator was introduced, which shows a significant reduction of both the longitudinal coupling impedances and the loss power with small installation cost.
钢板－混凝土双连梁受力性能有限元分析%Mechanical behavior study of steel plate -reinforced concrete dual coupling beams
Institute of Scientific and Technical Information of China (English)
陆铁坚; 宋宁; 王鹏皓; 杨诗龙
2015-01-01
Reinforced concrete dual coupling beam structural models and steel plate -reinforced concrete dual coupling beam structural models were established respectively by means of ABAQUS software.The nonlinear fi-nite element computations were executed respectively.The ultimate load capacity,failure mode and ductility of the two different finite element models were compared and analyzed.The computation results demonstrate that the failure mode of reinforced concrete dual coupling beams and steel plate -reinforced concrete dual coupling beams belong to bending -shear failure.The steel plate -reinforced concrete dual coupling beams can bear larger plas-tic rotations working as the good structural members of energy dissipation in whole structures;The steel plate -reinforced concrete dual coupling beams still behave the lateral resistance even after the yield of dual beams,but the range of the lateral resistance is less than the reinforced concrete dual coupling beams;both the ductility and the ability of energy dissipation of steel plate -reinforced concrete dual coupling beams are less than that of the reinforced concrete dual coupling beams,but the load capacity and the lateral rigidity are relatively higher.%运用 ABAQUS 分别建立钢筋－混凝土双连梁与钢板－混凝土双连梁有限元模型，进行有限元非线性计算，对比分析2种不同模型的极限承载力、破坏性能及延性。研究结果表明：钢板－混凝土双连梁同钢筋混凝土双连梁的破坏形态一样，属于弯剪破坏，可在梁端形成较大的塑性转角，成为剪力墙结构良好的抗震耗能构件；钢板－混凝土双连梁在达到屈服荷载时仍有一定的位移变形，但位移变形的幅度不如钢筋混凝土双连梁大；钢板－混凝土双连梁的延性及耗能性能不如钢筋混凝土双连梁好，但钢板－混凝土双连梁的极限承载力与刚度大于钢筋混凝土双连梁。
Optically stimulated differential impedance spectroscopy
Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P
2014-02-18
Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.
DEFF Research Database (Denmark)
Goh, Ailian; Gao, Feng; Loh, Pon Chiang;
2007-01-01
control, and push up the overall system costs. Therefore, alternative topological solutions are of interest, and should preferably be implemented using only passive LC elements and diodes, connected as unique impedance networks. A number of possible network configurations are now investigated...... in this paper, and are respectively named as Z-source, H-source, EZ-source and their respective "inverted" variants. The presented impedance networks can either be used with a traditional voltage-source or current-source inverter, and can either be powered by a voltage or current source. All impedance networks...... the practicalities and performances of the described impedance networks....
Mardirian, Marine; Afeyan, Bedros; Huller, Stefan; Montgomery, David; Froula, Dustin; Kirkwood, Robert
2012-10-01
We will present theoretical and computational results on Brillouin interactions between two beams in co-, counter-, and orthogonal propagation geometries. The beams will be structured (with speckle patterns), the plasma will have inhomogeneous flow including the Mach -1 surface. As the growth rate of the instability surpasses the natural frequency of the ion wave, the strong coupling regime (SCR) is reached, where reactive quasi-modes with intensity dependent frequency shifts result. This is especially true in laser hot spots. We trace the consequences of operations in this regime with different damping rates on the ion acoustic waves. We consider convective and absolute instabilities as well as the design of experiments which could examine these new regimes of instability behavior with new 10 psec time resolved diagnostics. Whether well enough conditioned beams can result after 10's or 100's of pairwise crossings in direct and indirect drive ICF configurations, and whether SRS can thus be strongly suppressed downstream, remains to be demonstrated. But the prospects exist for such new paths to instability control in a staged manner before STUD pulses are implemented.-
Analyzing Impedance Spectroscopy Results
Institute of Scientific and Technical Information of China (English)
Yoed Tsur; Sioma Baltianski
2006-01-01
In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments. A number of different approaches, which differ even by the definition of the problem, are used in the literature. Some aimed towards finding an equivalent circuit. Others aimed towards finding directly dielectric properties of the material under an assumed model. Others towards finding distribution of relaxation times, either parametric or point-by point. No matter what the approach is, this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well. Therefore some a-priori knowledge about the system must be used. In addition, we should remember that the ultimate goal is to get physical insight about the system.
Bogónez Franco, Francisco; Nescolarde Selva, Lexa Digna; Bragós Bardia, Ramon; Rosell Ferrer, Francisco Javier; Yandiola, Iñigo
2009-01-01
The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the ...
Development of a current monitor using a negative impedance circuit
International Nuclear Information System (INIS)
I developed a beam current transformer (CT) for monitoring the beam of a slow-cycling accelerator. The beam monitor is a new type of CT that measures the average current of a circulating beam using a negative impedance circuit (NIC). Adding an NIC can extend the low-frequency cutoff of a CT down to 0 Hz (Ninomiya et al., 2006 [1]). This report presents the detail of our proposed beam-monitoring system. The measurable band width of the CT is 30 kHz. The stability of the droop time constant of the square pulse response is ∼2%/s. This beam monitor was developed for the synchrotron at the Wakasa–Wan Energy Research Center (WERC) and is currently installed there
Impedance source power electronic converters
Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang
2016-01-01
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...
Impedance reduction mechanisms in a magnetically immersed electron diode
International Nuclear Information System (INIS)
The successful operation of a magnetically-immersed electron diode using inductive-voltage-adder (IVA) technology for radiography requires a stable impedance for > 30 ns. In an IVA, the voltages from many acceleration gaps are added in series along a magnetically-insulated transmission line. The final voltage is applied to a thin needle that is immersed in a 10--50 Tesla solenoidal magnetic field. An electron beam is produced in a small spot at the anode target (10 MV). The electron current flowing off the needle is determined by the space-charge limited flow in a long pipe. Ion-emitting plasmas are produced from direct beam heating of the target and from radiation emitted from the several eV target surface that heats the outer walls of the anode (1--4.5-cm radius). Plasma ions are attracted to the electron beam and provide a degree of charge neutralization. The presence of these neutralizing ions reduces the diode impedance (nominally 300 Ohms), enhancing the electron current. The author is studying the impedance reduction mechanisms with the hybrid simulation code IPROP. He finds ions emitted from the anode walls lead to a reduced but stable impedance consistent with bipolar flow. If the ions are permitted to strip in ion-ion collisions, however, a runaway loss of impedance occurs that provides diode current well above the bipolar limit. Assuming nitrogen ion emission, he has qualitatively reproduced impedance behavior observed in experiments on the Hermes III IVA accelerator at Sandia National Laboratories. Several mitigation schemes are being investigated
Impedance-Tunable Transformation Optics: A New Strategy for Refctionless Design of Optical Elements
Cao, Jun; Yan, Shenglin; Sun, Xiaohan
2013-01-01
We propose a new strategy to remove the reections resulted from the finite embedded transformation-optical design by putting forward an impedance-tunable coordinate transformation,on which the functions of impedance coefficients can be derived in the original space without changing the refractive index. Based on the method, two-dimensional (2D) reectionless beam compressors, bends and splitters are designed through tuning the impedance coefficients. The numerical simulations show that the reection can be removed without inserting an antireflective coating. The impedance-tunable coordinate transformation can also be applied to other transformation-optical designs, such as cloaking, lens, antennas, etc.
Damage detection technique by measuring laser-based mechanical impedance
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)
2014-02-18
This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.
Stability Issues of the Mu2e Proton Beam
Energy Technology Data Exchange (ETDEWEB)
Ng, K.Y.; /Fermilab
2009-05-01
Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.
Acoustic impedances of ear canals measured by impedance tube
DEFF Research Database (Denmark)
Ciric, Dejan; Hammershøi, Dorte
2007-01-01
During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...
Herr, W
2014-01-01
One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2005-01-01
and wave forces that are associated with the characteristic wave-types, which can exist in a multicoupled periodic system [Mead, J. Sound Vib. 40, 19–39 (1975)]. The third part of the paper considers a finite specific test-structure with eight periodic elements and with structural terminations...... is examined in the first part of the present paper, and the damping-dependent decrease in wave coupling is revealed for a structure with multiresonant side-branches. In the second part, the simplifying semi-infinite assumption is relaxed and general expressions for the junction responses of finite...... and multicoupled periodic systems are derived as a generalization of the governing expressions for finite, mono-coupled periodic systems [Ohlrich, J. Sound Vib. 107, 411–434 (1986)]. The present derivation of the general frequency response of a finite system utilizes the eigenvectors of displacement responses...
Impedance-matching analysis in IR leaky-wave antennas
Premkumar, Navaneeth; Xu, Yuancheng; Lail, Brian A.
2015-08-01
Planar leaky-wave antennas (LWA) that are capable of full-space scanning have long since been the pursuit for applications including, but not limited to, integration onto vehicles and into cameras for wide-angle of view beam-steering. Such a leaky-wave surface (LWS) was designed for long-wave infrared frequencies with frequency scanning capability. The LWS is based on a microstrip patch array design of a leaky-wave impedance surface and is made up of gold microstrip patches on a grounded zinc sulphide substrate. A 1D composite right/left-handed (CRLH) metamaterial made by periodically stacking a unit cell of the LWS in the longitudinal direction to form a LWA was designed. This paper deals with loading the LWA with a nickel bolometer to collect leaky-wave signals. The LWA radiates a backward leaking wave at 30 degrees at 28.3THz and scans through broadside for frequencies 20THz through 40THz. The paper deals with effectively placing the bolometer in order for the collected signal to exhibit the designed frequency regime. An effective way to maximize the power coupling into the load from the antenna is also explored. The benefit of such a metamaterial/holographic antennacoupled detector is its ability to provide appreciable capture cross-sections while delivering smart signals to subwavelength sized detectors. Due to their high-gain, low-profile, fast response time of the detector and ease of fabrication, this IR LWA-coupled bolometer harbors great potential in the areas of high resolution, uncooled, infrared imaging.
Institute of Scientific and Technical Information of China (English)
赵军; 马鑫; 高丹盈
2012-01-01
The experiment was carried out on the shear performance of 5 steel fiber reinforced concrete coupling beams and 1 common reinforced concrete coupling beam under low cyclic load. The effects of steel fibers on the cracks and failure modes of reinforced concrete coupling beams were studied. The changing laws of diagonal section bearing capacity of steel fiber reinforced concrete coupling beams with mixed fiber content were analyzed. Based on the calculating method for the diagonal section bearing capacity of common reinforced concrete coupling beam, the calculating method for the diagonal section bearing capacity of reinforced concrete coupling beam with steel fibers was put forward. Comparative results show that the calculated values agree well with test ones.%通过低周反复荷载下5个钢筋钢纤维混凝土连梁和1个普通钢筋混凝土连梁的抗剪性能试验,研究了钢纤维对钢筋混凝土连梁裂缝和破坏形态的影响,探讨了钢筋钢纤维混凝土连梁的斜截面承载力随钢纤维掺量的变化规律,结合普通钢筋混凝土连梁斜截面承载力的计算方法,提出了钢筋钢纤维混凝土连梁斜截面承载力的计算公式,比较结果表明,计算值和试验值吻合较好.
Kasai, J.; Mozume, T.; Yoshida, H.; Simoyama, T.; Gopal, A. V.; Ishikawa, H.
2004-02-01
We have grown InGaAs/AlAs/AlAsSb coupled double quantum wells (C-DQWs) with AlAs diffusion-stopping layers by molecular beam epitaxy. An obtained sample had many cross-hatched lines, suggesting relatively poor structural quality. Optical measurements, however, revealed that the optical quality of the C-DQWs was greatly improved compared to earlier C-DQWs without AlAs diffusion-stopping layers. The intersubband absorption saturation intensity in the present C-DQW sample was extremely low, measuring 34 fJ/m2 at the optical communication wavelength of 1.62 m, while ultrafast response times of about 600 fs were maintained.
Numerical simulation of the PEP-II beam position monitor
Energy Technology Data Exchange (ETDEWEB)
Kurita, N.; Martin, D.; Ng, C.-K.; Smith, S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T.
1996-08-01
We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)
Coplanar, Microstrips and Coupled Microstrip Lines
DEFF Research Database (Denmark)
Jensen, Bent Poul
1995-01-01
In the accessible literature is applied simplified calculation methods for coupled microstrips, as give a fair decision of the characteristic impedances within 10-20% accuracy. In this report it is succeeded to appear calculation methods that give the desired exactly calculations of differential...... mode impedance (identical to 2x odd mode impedance) and commom mode impedance (identical to 1/2x even mode impedance). The conformal mapping with Schwarz-Christoffel formula give no possibility for the inverse functions for a synthesis optimization. For that reason there is calculated figures, who can...... be used for stipulation of strip dimensions within 4% precision, referred to produced coupled microstrips and measured impedances. The report is initiated with exactly calculation of impedances for coplanar strips and microstrips, because these calculations apply to the calculations of coupled...
Yoshimura, Tetsuzo; Kaburagi, Hiroshi
2009-02-01
To reduce efforts for optical assembly, we developed the reflective self-organized lightwave network (R-SOLNET). In R-SOLNET, optical devices with wavelength filters on their core facets are distributed in photo-induced refractive-index increase (PRI) media such as photo-polymers. Write beams from some devices and reflected write beams from the wavelength filters of the other devices overlap. In the overlap regions, the refractive index increases, pulling the write beams to the wavelength filter locations (the "pulling water" effect). By self-focusing, self-aligned optical waveguide networks are formed between the optical devices. Simulations based on the finite difference time domain method revealed that self-aligned optical waveguides of R-SOLNET are formed between cores with 2-μm and 0.5-μm widths including Y-branching waveguides. Experiments demonstrated that R-SOLNET is formed between an optical fiber and a micro-mirror placed with ~800-μm gap. For angular misalignment of 3o between the optical fiber and the micro-mirror, a bow-shaped R-SOLNET was observed. For lateral misalignment of 30 μm, an S-shaped R-SOLNET was observed. These results suggest that by placing reflective elements in PRI media, optical waveguides can be lead to the elements to form R-SOLNET. This enables self-aligned optical couplings for optoelectronic boards, intra-chip optical circuits, VCSELs/PDs, optical switches, and so on.
Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.
2015-04-01
The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d1), and 1,2-difluorobenzene (4-d1) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d1), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d1), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = - 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQqaa was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d1) and 1,2-difluorobenzene (4-d1), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.
Sun, Ming; Sargus, Bryan A; Carey, Spencer J; Kukolich, Stephen G
2015-04-21
The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d1), and 1,2-difluorobenzene (4-d1) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d1), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d1), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = - 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq(aa) was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d1) and 1,2-difluorobenzene (4-d1), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.
Active impedance metasurface with full 360° reflection phase tuning
Zhu, Bo O.; Zhao, Junming; Feng, Yijun
2013-01-01
Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366
Space-charge impedance calculations in long-wavelength approximation
Kurennoy, Sergey S.
1999-12-01
Space-charge impedance calculations for smooth vacuum chambers with an arbitrary cross-section and perfectly conducting walls are considered in the long-wavelength approximation, when ωb/(βγc)≪1, where b is a typical transverse size. For the SNS beam energies βγ⩽1.8, and the wavelengths are long when λ≫b. Within the long-wavelength approximation, the fields can be found by solving a 2-D electrostatic problem. Two examples are presented: the space-charge impedance of screening wires (RF-cage) and of a ceramic chamber with inner metal stripes. In addition, we explore the transverse space-charge impedance of a circular pipe with account of betatron oscillations in a wide frequency range.
International Nuclear Information System (INIS)
Plasma opening switch (POS) experiments have been performed on the PBFA II ion beam accelerator to develop a switch which will provide voltage and power gain to an applied-B lithium ion diode. These experiments have successfully coupled power to electron and ion beam diodes using a Magnetically-Injected-Plasma (MIP) POS. Carbon plasma with electron densities of 1 x 1012 to 2 x 1013 /cm3 have been injected from the anode into the 8 cm gap of the 20-ohm Magnetically-Insulated-Transmission Line (MITL) of PBFA II along a Br,z magnetic field. The MIP switch uses the inertia of the plasma to keep the switch closed and the magnetic pressure of Bθ from the conduction current to open the switch. The configuration of the injecting magnetic field and the plasma source has a significant effect on the efficiency of coupling power to high impedance loads. Plasma near the center of the injecting magnetic field limits the opening impedance of the switch and subsequently the power delivered to the load. The axial location of the switch with respect to the load has also been identified as a critical parameter in increasing the coupling efficiency. A length of 10 to 20 cm of MITL between the POS and the load has increased the power delivered to the load. Data on switch performance with high impedance loads and factors which improved performance are discussed
Energy Technology Data Exchange (ETDEWEB)
Scheurer, J.N. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Aiche, M. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Aleonard, M.M. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Barreau, G. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Bourgine, F. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Boivin, D. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Cabaussel, D. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Chemin, J.F. [Bordeaux-1 Univ., 33 -Gradignan (France). Centre d`Etudes Nucleaires; Doan, T.P. [Bordeaux-1 Univ., 33 -Gradignan (France). Centre d`Etudes Nucleaires; Goudour, J.P. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Harston, M. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires; Brondi, A. [Istituto Nazionale di Fisica Nucleare, Naples (Italy)]|[Naples Univ. (Italy). Dipt. di Scienze Fisiche; La Rana, G. [Istituto Nazionale di Fisica Nucleare, Naples (Italy)]|[Naples Univ. (Italy). Dipt. di Scienze Fisiche; Moro, R. [Istituto Nazionale di Fisica Nucleare, Naples (Italy)]|[Naples Univ. (Italy). Dipt. di Scienze Fisiche; Vardaci, E. [Istituto Nazionale di Fisica Nucleare, Naples (Italy)]|[Naples Univ. (Italy). Dipt. di Scienze Fisiche; Curien, D. [CRN-IN2P3, Strasbourg (France)
1997-02-01
For the first time the 4{pi} {gamma}-ray spectrometer EUROGAM II has been coupled to a 4{pi} light charged particle detector array, DIAMANT, during a test experiment on the reaction {sup 32}S + {sup 58}Ni at 120 MeV beam energy. A very large improvement in the peak-to-background ratio of the {gamma}-spectra has been found when EUROGAM II is triggered by DIAMANT to select an exit channel. A simple algebra has been developed which provides theoretical estimates in good agreement with these experimental results. It is demonstrated that, depending on both the {gamma}-spectrometer and ancillary detector performances, much better peak-to-background can be obtained by such a coupling. For the same peak-to-background ratio, the use of an ancillary detector allows for a lower {gamma}-ray coincidence level and therefore improves the statistics. Ways to select the most appropriate ancillary detector are given. The ability of the ancillary detector to provide a total Doppler shift correction is crucial for the improvement of the peak-to-background ratio. (orig.).
IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS
Institute of Scientific and Technical Information of China (English)
Liang Li; Xiao-bo Wan; Gi Xue
2002-01-01
Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.
Transverse mode coupling in RHIC
Energy Technology Data Exchange (ETDEWEB)
Raka, E.
1990-02-21
In the Proceedings of the Workshop on the RHIC Performance, it was stated that the transverse mode coupling instability, posed a potential intensity limitation for protons. This was based on the expression I{sub b} = 4(E{sub t}/qe) Q{sub s} 4 {radical}{pi} {sigma} {ell}/(Im (Z{sub {perpendicular}}) < {beta}{sub {perpendicular}} > R 3) where E{sub t} is the total energy, q the charge state, Q{sub s} the synchrotron tune, < {beta}{sub {perpendicular}} > the average beta function, R the machine radius, and {sigma}{sub {ell}} the rms bunch length of a Gaussian distribution in longitudinal phase space. For a < {beta}{sub {perpendicular}} > of 55 m and 10{sup 11} protons/bunch, the allowed impedance Z{sub {perpendicular}} for protons at injection, where Q{sub s} = 0.11 {times} 10{sup {minus}3}, would be less than 1.2 M{Omega}/m. The purpose of this report is to discuss the consequences of two factors that were omitted in this equation, which comes from the ZAP program, to RHIC. These are the space charge impedance and the incoherent tune spread of the beam.
Institute of Scientific and Technical Information of China (English)
X.Wu; Q.Zhao; D.Cole; M.Doleans; G.Machicoane; F.Marti; P.Miller; J.Stetson; M.Steiner; P.Zavodszky
2007-01-01
The Coupled Cyclotron Facility(CCF)has been operating at the NSCL since 2001,providing up to 160MeV/u heavy ion beams for nuclear physics experiments.Recent steps,particularly the improvement of the ECR-to-K500 injection line,were taken to improve the CCF performance.For that purpose an off-line ECR source.ARTEMIS-B,was built and used to investigate the impact on beam brightness under various source operating conditions,different initial focusing systems and current analysis dipole.Beam dynamics simulations including space-charge and 3D electrostatic field effects were performed and beam diagnostics including emittance scanner were used,leading to a better understanding of the CCF beam injection process New initial electrostatic focusing elements such as a large-bore quadrupole triplet and a quadrupole doubledoublet with compensating octupole were tested,and a new beam tuning procedure was established to improve the beam brightness for the CCF.Following these efforts,a significant increase of primary beam power out of the CCF has been achieved.
International Nuclear Information System (INIS)
A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)
Construction of Tunnel Diode Oscillator for AC Impedance Measurement
Shin, J. H.; Kim, E.
2014-03-01
We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.
Electrochemical Impedance Modeling of a Solid Oxide Fuel Cell Anode
DEFF Research Database (Denmark)
Mohammadi, R.; Søgaard, Martin; Ramos, Tania;
2014-01-01
A simulation package for the impedance response of SOFC anodes is presented here. The model couples the gas transport in gas channels and within a porous electrode with the electrochemical kinetics. The gas phase mass transport is modeled using mass conservation equations. A transmission line model...... (TLM), which is suitably modified to account for the electrode microstructural details, is used for modeling the impedance arising from the electrochemical reactions. In order to solve the system of nonlinear equations, an in-house code based on the finite difference method was developed. Some...
Mutual Impedance Probes on board Rosetta, Bepi-Colombo and JUICE
Henri, Pierre; Lebreton, Jean-Pierre; Rauch, Jean-Louis; Béghin, Christian; Décréau, Pierrette; Eriksson, Anders; Grard, Réjean; Hamelin, Michel; Mazelle, Christian; Randriamboarison, Orélien; Schmidt, Walter; Trotignon, Jean-Gabriel; Wattieaux, Gaétan; Winterhalter, Daniel; Aouad, Youcef; Colin, Fabrice; Lagoutte, Dominique; Le Duff, Olivier; Vallières, Xavier
2015-04-01
The mutual impedance probe is an active radio frequency probe, designed to measure in situ the bulk plasma properties. An ideal configuration consists of both a transmitting and a receiving dipole, whose baseline is at least a few Debye Lengths. Due to various accommodation constraints on the spacecraft, the transmitter may only be a monopole. In that case, the image of the transmitter charge is distributed over the whole spacecraft surface. The operating principle consists in injecting a frequency-variable current through the transmitter, in a frequency range that encompasses the plasma frequency (or upper hybrid frequency in a magnetised plasma), and measuring the induced voltage at the receiver. Assuming a transmitted current I(f) of constant amplitude that induces a potential difference V(f) at the receiver dipole, the mutual impedance probe provides the coupling complex impedance Z(f) = V(f)/I(f) between the transmitter and the receiver as a function of frequency. The impedance depends on the plasma properties, in particular the bulk density and temperature (in case of a Maxwellian distribution) of the electron population. The measurement principle is illustrated with in situ observations from the Mutual Impedance Probe (RPC-MIP), one of the five sensors of the Rosetta Plasma Consortium (RPC) on the ESA Rosetta mission. RPC-MIP has been providing regular measurements of the comet plasma environment since early August 2014 when Rosetta was within 100 km from the nucleus of its target comet 67P/Churyumov-Gerasimenko. RPC-MIP operates in the frequency range from 7 kHz to 3.5 MHz that allows covering the plasma density range expected during the mission from solar wind to deep coma densities. RPC-MIP operates in two geometrical configurations. In the baseline configuration, the transmitter and receiver dipoles are aligned on a 1m-beam. The transmitter-receiver distance, of the order of 50 cm, allows probing plasmas with Debye lengths up to 20-25 cm. For longer
Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads
DEFF Research Database (Denmark)
Lu, Xiaonan; Sun, Kai; Huang, Lipei;
2014-01-01
, negative incremental impedance of CPL, proposed stabilizers are considered in the calculation of the impedance. It is demonstrated that with the proposed stabilizers, the instable poles can be moved to the stable region in the frequency domain. Simulation model with three interfacing converters......DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...... issues induced by negative incremental impedances. This negative impedance makes the system poorly damped and the stability is thereby degraded. To enhance the system stability, virtual impedance based stabilizer comprised of series-connected inductance and resistance is employed. In particular, two...
Impedance matching and emission properties of optical antennas in a nanophotonic circuit
Huang, Jer-Shing; Biagioni, Paolo; Hecht, Bert
2008-01-01
An experimentally realizable prototype nanophotonic circuit consisting of a receiving and an emitting nano antenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between nanophotonic circuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the transmitting nano antenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nano antenna impedance to the transmission line characteristic impedance by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the transmitting antenna also depends on its geometry but is independent of the degree of impedance matching. Our systems approach to nanophotonics provides the basis for realizing gener...
[Monitoring cervical dilatation by impedance].
Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F
1992-01-01
Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774
Oblique impacts into low impedance layers
Stickle, A. M.; Schultz, P. H.
2009-12-01
Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA
International Nuclear Information System (INIS)
Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (AuNRsd) is made by focused ion beam. •AuNRsd coupled with Ag nanoparticles (Ag NPs/AuNRsd) is competent to sense target molecules in a solution. •Ag NPs/AuNRsd SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/AuNRsd as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10−12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (AuNRsd) was fabricated using the focused ion beam method. AuNRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on AuNRsd and Ag NPs/AuNRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on AuNRsd was estimated by an enhancement factor of ≈107 in magnitude, which increased ≈1012 in magnitude for that on Ag NPs/AuNRsd. A highly SERS-active Ag NPs/AuNRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10−3 to 10−12 M) in water or milk solution upon AuNRsd or Ag NPs/AuNRsd were well distinguished. The peaks at 680 and 702 cm−1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm−1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., AuNRsd) or Ag (i.e., Ag NPs/AuNRsd) surface. At the interface of Ag NPs/AuNRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/AuNRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food
Definition of the characteristic impedance
Institute of Scientific and Technical Information of China (English)
徐云生; Abbas Sayed OMAR
1996-01-01
Currently available definitions of the characteristic impedance are ambiguous andior inaccurate.A general definition,based on the description of discontinuities between adjacent waveguides,is given.This definition is accurate and independent of the structure concerned.So it can be applied to the design of passive components in any type of transmission lines.Using this definition,a given structure can be uniquely characterized,but the absolute value of the characteristic impedance has no sense any more.As an example,the design of a microstrip impedance transformer using this new definition is presented.Numerical results using the mode-matching method prove the accuracy of the theory.
Hybrid-Source Impedance Networks
DEFF Research Database (Denmark)
Li, Ding; Gao, Feng; Loh, Poh Chiang;
2010-01-01
Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...... the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually...
Gas breakdown and plasma impedance in split-ring resonators
Hoskinson, Alan R.; Parsons, Stephen; Hopwood, Jeffrey
2016-02-01
The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5-9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.
Microgrid Reactive and Harmonic Power Sharing Using Enhanced Virtual Impedance
DEFF Research Database (Denmark)
He, Jinwei; Wei Li, Yun; Guerrero, Josep M.;
2013-01-01
only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedances at fundamental and harmonic frequencies are realized using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the mismatched DG...... feeder impedances can be properly compensated, resulting in accurate reactive and harmonic power sharing at the same time. In addition, this paper shows that the microgrid PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, an improved...... proportional plus resonant voltage controller is developed to ensure accurate power sharing and PCC harmonic voltage compensation without using any fundamental/harmonic component detections....
Short-circuit impedance measurement
DEFF Research Database (Denmark)
Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad
2003-01-01
Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....
Input impedance characteristics of microstrip structures
Directory of Open Access Journals (Sweden)
A. I. Nazarko
2015-06-01
Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.
Saliba, J.; Loukili, A.; Grondin, F.
2010-06-01
Creep and damage in concrete govern the long-term deformability of concrete. Thus, it is important to understand the interaction between creep and damage in order to design reliable civil engineering structures subjected to high level loading during a long time. Many investigations have been performed on the influence of concrete mixture, the effect of the bond between the matrix and the aggregates, temperature, aging and the size effect on the cracking mechanism and fracture parameters of concrete. But there is a lack of results on the influence of the creep loading history. In the present paper, an experimental investigation on the fracture properties of concrete beams submitted to three point bending tests with high levels of sustained load that deals with creep is reported. The results aim first to investigate the ranges of variation of the time response due to creep damage coupled effects under constant load and secondly to evaluate the residual capacity after creep. For this purpose a series of tests were carried out on geometrically similar specimens of size 100x200x800mm with notch to depth ratio of 0.2 in all the test specimens. The exchange of moisture was prevented and beams were subjected to a constant load of 70% and 90% of the maximum capacity. Three point bending test were realized on specimen at the age of 28 days to determine the characteristics of concrete and the maximum load so we could load the specimens in creep. Threepoint bend creep tests were performed on frames placed in a climate controlled chamber [1]. Then after four months of loading, the beams subjected to creep were removed from the creep frames and then immediately subjected to three-point bending test loading up to failure with a constant loading rate as per RILEM-FMC 50 recommendations. The residual capacity on the notched beams and the evolution of the characteristics of concrete due to the basic creep was considered. The results show that sustained loading had a strengthening
Gascón, M.; Schnorrenberger, L.; Pietras, B.; Álvarez-Pol, H.; Cortina-Gil, D.; Díaz Fernández, P.; Duran, I.; Glorius, J.; González, D.; Perez-Loureiro, D.; Pietralla, N.; Savran, D.; Sonnabend, K.
2013-10-01
Among the variety of crystal calorimeters recently designed for several physics facilities, CALIFA (CALorimeter for In-Flight emitted gAmmas and light-charged particles) has especially demanding requirements since it must perform within a very complicated energy domain (gamma-ray energies from 0.1 to 20 MeV and up to 300 MeV protons). As part of the R&D program for the Barrel section of CALIFA, a reduced geometry prototype was constructed. This prototype consisted of a 3 × 5 array of CsI(Tl) crystals of varying dimensions, coupled to large area avalanche photodiodes. Here reported are the details regarding the construction of the prototype and the experimental results obtained at the NEPTUN tagged gamma beam facility, reconstructing gamma energies up to 10 MeV. Dedicated Monte Carlo simulations of the setup were also performed, enabling a deeper understanding of the experimental data. The experimental results demonstrate the effectiveness of the reconstruction method and helped to establish the most suitable crystal geometry to be employed within the forthcoming calorimeter.
Impedance characteristics of the Bz diode on the LION accelerator
International Nuclear Information System (INIS)
The LION accelerator at Cornell University is being used to study the characteristics of the applied B/sub z/, or 'barrel' diode. This 0.8 TW, 4 ohm, ion accelerator has the ability to take several shots per day, and hence alloys systematic scans to be performed. An important result of a recent series of experiments is that the diode impedance remains relatively constant, decaying only slowly, during the 50 nsec pulse. When the diode is operated with a 4.5 mm gap and a 21 kG insulating magnetic field, the typical diode parameters, are a voltage of 1 MV and a total current of 250 kA, leading to a diode impedance of 4 ohms and power of 0.25 TW. The diode impedance decays with a 100 nsec time constant. The ion beams have peak currents of roughly 125 kA and typical impedances of Bohms, which decays with a time constant of 25 nsec. The Child-Langmuir gap was approximately 2 mm and closed with a velocity of roughly 2X10/sup 6/ cm/sec. Current experimental work is aimed at characterizing the impedance of the B/sub z/ diode as a function of the applied magnetic field, the A-K gap, the anode curvature, and the anode groove parameters. In addition, the effect of changing the voltage rise with a plasma opening switch and of adding an electron limiter is examined. The ion beam quality is examined at the focus of the barrel diode with a swept Thomson parabola and various Rutherford scattering diagnostics
Kicker impedance measurements for the future multiturn extraction of the CERN Proton Synchrotron
Métral, Elias; Giovannozzi, Massimo; Grudiev, Alexei; Kroyer, Tom; Sermeus, Luc
2006-01-01
In the context of the novel multi-turn extraction, where charged particles are trapped into stable islands in transverse phase space, the ejection of five beamlets will be performed by means of a set of three new kickers. Before installing them into the machine, a measurement campaign has been launched to evaluate the impedance of such devices. Two measurement techniques were used to try to disentangle the driving and detuning impedances. The first consists in measuring the longitudinal impedance for different transverse offsets using a single displaced wire. The sum of the transverse driving and detuning impedances is then deduced applying Panofsky- Wenzel theorem. The second uses two wires excited in opposite phase and yields the driving transverse impedance only. Finally, the consequences on the beam dynamics are also analyzed.
Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology
Sommerville, Jason D.
2009-12-01
Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field
Enhanced modeling of magnetic impedance sensing system for damage detection
International Nuclear Information System (INIS)
There has been recent interest in utilizing the magneto-mechanical coupling characteristics of a magnetic transducer to perform impedance-based damage detection of electrically conductive structures. This approach is non-contact in nature and has potential advantages in many applications. One important parameter in this approach is the lift-off distance, i.e. the distance from the transducer to the structure monitored, the change of which changes the magneto-mechanical coupling. In the past, the magneto-mechanical coupling is extracted completely or partially from experiment in an ad hoc manner. A predictive capability of magneto-mechanical coupling under given lift-off distance would play a significant role in damage detection practice and in sensor design/optimization. In this research, we formulate detailed first-principles-based modeling of a magnetic impedance transducer. In particular, the complete electrical effect of the structure is explicitly taken into consideration. Comprehensive analyses and experiments are carried out, which validate the underlying hypothesis as well as the accuracy of the new model proposed for impedance response prediction. (paper)
Small Signal Loudspeaker Impedance Emulator
DEFF Research Database (Denmark)
Iversen, Niels Elkjær; Knott, Arnold
2014-01-01
from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...
Plasma opening switch experiments on the Particle Beam Accelerator II
International Nuclear Information System (INIS)
Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly (80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented
International Nuclear Information System (INIS)
The general purpose of my research work is to follow and to interpret the surface evolution of materials, which have received several treatments. During my PhD and my post-doc work, my field of research was tribology. Since I arrived in the 'Aval du Cycle Electronucleaire' group of the Institut de Physique Nucleaire de Lyon, my research activities are in line with the CNRS program 'PACE ' (Programme sur l'Aval du Cycle Electronucleaire) within the ACTINET network. They are coordinated by the PARIS (Physico-chimie des actinides et autres radioelements en solution et aux interfaces) and NOMADE (NOuveaux MAteriaux pour les DEchets) GDR with ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), EDF and IRSN (Institut de Radioprotection et de Surete Nucleaire) as partner organisations. My work focused on the study of fission products and actinides migration in barrier materials, which may be capable of assuring the long term safety of deep geological repositories. Until now, it was necessary to use the coupling of ion beam analysis techniques and physico-chemical characterization techniques. During the last few months, I have became interested in understanding radiolytic effects. This new orientation has led us to use ion beams as an irradiating tool. These irradiation experiments are pursued in three major projects. The study of cobalt sulfide inhibition effects of radiolysis gas production during the irradiation of model organic molecules. This is a collaboration with the IRSN, the Institut de Recherche sur la Catalyse and the Ecole Nationale Superieure des Mines de Saint-Etienne. A PhD, co-directed by M. Pijolat from ENSMSE and myself, concerning this study will start in October 2003. Water radiolysis effects on iron corrosion are also studied in the particular case of vitrified nuclear waste containers, which will be stored in deep geological repositories. One ANDRA financed PhD, co-directed by Nathalie Moncoffre and myself, is dedicated to this study
Space-charge impedance of rf-shielding wires with external ceramic and conducting pipes
Wang, Tai-Sen F.; Kurennoy, Sergey S.; Gluckstern, Robert L.
2001-10-01
We studied the electrostatic field due to a charged-particle beam with uniform particle density propagating inside an rf-shielding cage (rf cage) constructed from evenly spaced conducting wires. The beam and the rf cage are surrounded by a ceramic beam pipe positioned inside a conducting pipe concentric with the beam and the rf cage. The space-charge impedances in the long wavelength regime are investigated by considering the electrostatic fields due to the longitudinal and transverse perturbations on the density of the charged-particle beam. Shielding effects due to the rf cage are discussed and simple formulas are derived for estimating the space-charge impedances. Numerical examples are given for illustration. Comparisons between analytical estimates and the results produced by the field-solver computer program MAFIA show good agreement.
Fedele, R; Lisak, M
2005-01-01
A hydrodynamical description of coherent instabilities that take place in the longitudinal dynamics of a charged-particle coasting beam in a high-energy accelerating machine is presented. This is done in the framework of the Madelung fluid picture provided by the Thermal Wave Model. The well known coherent instability charts in the complex plane of the longitudinal coupling impedance for monochromatic beams are recovered. The results are also interpreted in terms of the deterministic approach to modulational instability analysis usually given for monochromatic large amplitude wave train propagation governed by the nonlinear Schr\\"odinger equation. The instability analysis is then extended to a non-monochromatic coasting beam with a given thermal equilibrium distribution, thought as a statistical ensemble of monochromatic incoherent coasting beams ("white" beam). In this hydrodynamical framework, the phenomenon of Landau damping is predicted without using any kinetic equation governing the phase space evolutio...
Energy Technology Data Exchange (ETDEWEB)
Zholents, A.
1994-12-01
The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.
Monitoring the electron beam position at the TESLA test facility free electron laser
Energy Technology Data Exchange (ETDEWEB)
Kamps, T.
2000-06-14
The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)
Monitoring the electron beam position at the TESLA test facility free electron laser
International Nuclear Information System (INIS)
The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)
2013-10-24
Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and
Tapping mode microwave impedance microscopy
Lai, K.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.
A spatial impedance controller for robotic manipulation
Fasse, Ernest D.; Broenink, Jan F.
1997-01-01
Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the
Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo
2013-05-01
Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.
Tractor beams for optical micromanipulation
Yevick, Aaron; Grier, David G.
2016-03-01
Tractor beams are traveling waves that transport illuminated objects in the retrograde direction relative to the direction of propagation. The theory of photokinetic effects identifies design criteria for long-range general- purpose tractor beams. These criteria distinguish first-order tractor beams that couple to induced dipole moments from higher-order tractor beams that rely on coupling to higher-order multipole moments to achieve pulling. First-order tractor beams are inherently longer-ranged and operate on a wider variety of materials. We explore the physics of first-order tractor beams in the context of a family of generalized solenoidal waves.
Energy Technology Data Exchange (ETDEWEB)
Zhang, P.; Baboi, N.; Jones, R.M.; Eddy, N.
2012-11-01
Beam-excited higher order modes (HOMs) can provide remote diagnostics information of the beam position and cavity misalignment. In this paper we report on recent studies on the resolution with specially selected series of modes with custom-built electronics. This constitutes the first report of measurements of these cavities in which we obtained a resolution of 20 micron in beam offset. Details of the setup of the electronics and HOM measurements are provided.
H-Mode Accelerating Structures with PMQ Beam Focusing
Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P
2011-01-01
We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...
An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme
DEFF Research Database (Denmark)
He, Jinwei; Li, Yun Wei; Guerrero, Josep M.;
2013-01-01
In order to address the load sharing problem in islanding microgrids, this paper proposes an enhanced distributed generation (DG) unit virtual impedance control approach. The proposed method can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic...... frequencies. In contrast to conventional virtual impedance control methods, where only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedance at fundamental and harmonic frequencies is regulated using DG line current and point of common coupling (PCC) voltage...... feed-forward terms, respectively. With this modification, the impacts of mismatched physical feeder impedances are compensated. Thus, better reactive and harmonic power sharing can be realized. Additionally, this paper also demonstrates that PCC harmonic voltages can be mitigated by reducing...
Acoustic Wavefront Manipulation: Impedance Inhomogeneity and Extraordinary Reflection
Zhao, Jiajun; Chen, Zhining; Li, Baowen
2013-01-01
Optical wavefront can be manipulated by interfering elementary beams with phase inhomogeneity. Therefore a surface allowing huge, abrupt and position-variant phase change would enable all possibilities of wavefront engineering. However, one may not have the luxury of efficient abrupt-phase-changing materials in acoustics. This motivates us to establish a counterpart mechanism for acoustics, in order to empower the wide spectrum of novel acoustic applications. Remarkably, the proposed impedance-governed generalized Snell's law (IGSL) of reflection is distinguished from that in optics. Via the manipulation of inhomogeneous acoustic impedance, extraordinary reflection can be tailored for unprecedented wavefront manipulation while ordinary reflection can be surprisingly switched on or off. Our results may power the acoustic-wave manipulation and engineering. We demonstrate novel acoustic applications by planar surfaces designed with IGSL.
Development of a radio frequency excited local impedance probe
International Nuclear Information System (INIS)
Local void fraction measurements were made with a Karlsruhe type impedance probe. The probe was operated at radiofrequency to minimize sensitivity to liquid phase resistivity. Two types of signal thresholding were used: level and derivative. A dual beam X-ray system was used as a calibration standard for the radio frequency excited impedance probe. Calibration was performed in vertical air/water flows. Derivative thresholding was found to be preferable to level thresholding, however, in both schemes hydrodynamic and surface tension effects were observed below a liquid superficial velocity of 0.5 m/s. Table salt (NaCl) was added to the water to verify the probe's response to changing water resistivity. Derivative thresholding appeared to work quite well but level thresholding was found to be inadequate due to the change in capacitance. (orig.)
A compact broadband nonsynchronous noncommensurate impedance transformer
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar
2012-01-01
Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...
Coupling between minimum scattering antennas
DEFF Research Database (Denmark)
Andersen, J.; Lessow, H; Schjær-Jacobsen, Hans
1974-01-01
Coupling between minimum scattering antennas (MSA's) is investigated by the coupling theory developed by Wasylkiwskyj and Kahn. Only rotationally symmetric power patterns are considered, and graphs of relative mutual impedance are presented as a function of distance and pattern parameters. Crossed......-dipoles and helices are considered in order to establish a correspondence with simple antenna structures....
Contactless Impedance Sensors and Their Application to Flow Measurements
Directory of Open Access Journals (Sweden)
Karel Štulík
2013-02-01
Full Text Available The paper provides a critical discussion of the present state of the theory of high-frequency impedance sensors (now mostly called contactless impedance or conductivity sensors, the principal approaches employed in designing impedance flow-through cells and their operational parameters. In addition to characterization of traditional types of impedance sensors, the article is concerned with the use of less common sensors, such as cells with wire electrodes or planar cells. There is a detailed discussion of the effect of the individual operational parameters (width and shape of the electrodes, detection gap, frequency and amplitude of the input signal on the response of the detector. The most important problems to be resolved in coupling these devices with flow-through measurements in the liquid phase are also discussed. Examples are given of cell designs for continuous flow and flow-injection analyses and of detection systems for miniaturized liquid chromatography and capillary electrophoresis. New directions for the use of these sensors in molecular biology and chemical reactors and some directions for future development are outlined.
Contactless impedance sensors and their application to flow measurements.
Opekar, František; Tůma, Petr; Stulík, Karel
2013-02-27
The paper provides a critical discussion of the present state of the theory of high-frequency impedance sensors (now mostly called contactless impedance or conductivity sensors), the principal approaches employed in designing impedance flow-through cells and their operational parameters. In addition to characterization of traditional types of impedance sensors, the article is concerned with the use of less common sensors, such as cells with wire electrodes or planar cells. There is a detailed discussion of the effect of the individual operational parameters (width and shape of the electrodes, detection gap, frequency and amplitude of the input signal) on the response of the detector. The most important problems to be resolved in coupling these devices with flow-through measurements in the liquid phase are also discussed. Examples are given of cell designs for continuous flow and flow-injection analyses and of detection systems for miniaturized liquid chromatography and capillary electrophoresis. New directions for the use of these sensors in molecular biology and chemical reactors and some directions for future development are outlined.
A Review of Galvanically Isolated Impedance-Source DC–DC Converters
DEFF Research Database (Denmark)
Chub, Andrii; Vinnikov, Dmitri; Blaabjerg, Frede;
2016-01-01
Impedance-source converters, an emerging technology in electric energy conversion, overcome limitations of conventional solutions by the use of specific impedance-source networks. Focus of this paper is on the topologies of galvanically isolated impedance-source dc-dc converters. These converters...... isolated dc-dc converters according to the element that transfers energy from the input to the output: a transformer, a coupled inductor, or their combination. This classification reveals advantages and disadvantages, as well as a wide space for further research. This paper also outlines the most promising...
Fundamental impedance identification method for grid-connected voltage source inverters
DEFF Research Database (Denmark)
Sun, Xiaofeng; Chen, J.; Guerrero, Josep M.;
2014-01-01
Considering the importance of line fundamental impedance from the inverter to the point of common coupling (PCC) in microgrids, this study analyses the influence of fundamental impedance on system stability. Line fundamental impedance values not only apply to decoupled droop control, which can...... realise accurate control between active and reactive power, but also regulate the droop coefficient to eliminate system circulation, realise power sharing and improve system stability when a multi-distributed generation system operates in parallel. Moreover, the PCC can sense grid fault on the basis...
An Algorithm and System for Measuring Impedance in D-Q Coordinates
Francis, Gerald
2010-01-01
This dissertation presents work conducted at the Center for Power Electronics Systems (CPES) at Virginia Polytechnic Institute and State University. Chapter 1 introduces the concept of impedance measurement, and discusses previous work on this topic. This chapter also addresses issues associated with impedance measurement. Chapter 2 introduces the analyzer architecture and the proposed algorithm. The algorithm involves locking on to the voltage vector at the point of common coupling be...
Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.
2016-04-01
Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.
Impedance spectroscopy of food mycotoxins
Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.
2012-01-01
A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.
Mechanical impedance measurement and damage detection using noncontact laser ultrasound.
Lee, Hyeonseok; Lim, Hyeong Uk; Hong, Jung-Wuk; Sohn, Hoon
2014-06-01
This Letter proposes a mechanical impedance (MI) measurement technique using noncontact laser ultrasound. The ultrasound is generated by shooting a pulse laser beam onto a target structure, and its response is measured using a laser vibrometer. Once ultrasound propagation converges to structural vibration, MI is formed over the entire structure. Because noncontact lasers are utilized, this technique is applicable in harsh environments, free of electromagnetic interference, and able to perform wide-range scanning. The formation of MI and its feasibility for damage detection are verified through thermo-mechanical finite element analysis and lab-scale experiments.
Longitudinal stability of Flat Bunches with Space-Charge or Inductive Impedance
Santiago Gonzalez, I
2008-01-01
We study the loss of Landau damping for the longitudinal plane via the "Sacherer formalism". Stability limits are calculated for several longitudinal beam distributions, in particular for two types of flat bunches, which could be of interest to the LHC upgrade. The resulting stability diagrams are computed and displayed for different azimuthal modes. A general recipe is given for calculating the threshold intensity in the case of a capacitive impedance below transition or, equivalently, for a purely inductive impedance above transition. The formalism was applied to the case of the PS Booster, as an example of space-charge impedance below transition, and to the SPS, as an example of inductive impedance above transition.
Tsai, Cheng-Ying; Li, Rui; Tennant, Chris
2015-01-01
As is known, microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy recovery linac machines. To more accurately quantify MBI in a single-pass system and for more complete analyses, we further extend and continue to increase the capabilities of our previously developed linear Vlasov solver [1] to incorporate more relevant impedance models into the code, including transient and steady-state free-space and/or shielding coherent synchrotron radiation (CSR) impedances, the longitudinal space charge (LSC) impedances, and the linac geometric impedances with extension of the existing formulation to include beam acceleration [2]. Then, we directly solve the linearized Vlasov equation numerically for microbunching gain amplification factor. In this study we apply this code to a beamline lattice of transport arc [3] following an upstream linac...
Spheromak Impedance and Current Amplification
Energy Technology Data Exchange (ETDEWEB)
Fowler, T K; Hua, D D; Stallard, B W
2002-01-31
It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.
Energy Technology Data Exchange (ETDEWEB)
Pham, Q.T.; Anne, A.; Bony, M.; Delage, E. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Donnarieix, D. [Centre Jean Perrin, Service de physique médicale, 58 rue Montalembert, 63011 Clermont-Ferrand Cedex (France); Dufaure, A.; Gautier, M. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Lee, S.B. [Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 (Korea, Republic of); Micheau, P.; Montarou, G.; Perrot, Y. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France); Shin, J.I. [Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 (Korea, Republic of); Incerti, S. [Université de Bordeaux, Centre d’Études Nucléaires de Bordeaux-Gradignan, UMR-5797, Chemin du Solarium, 33175 Gradignan (France); CNRS-IN2P3, Centre d’Études Nucléaires de Bordeaux-Gradignan, UMR-5797, Chemin du Solarium, 33175 Gradignan (France); Maigne, L., E-mail: maigne@clermont.in2p3.fr [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand (France)
2015-06-15
The GATE Monte Carlo simulation platform based on the Geant4 toolkit is in constant improvement for dosimetric calculations. In this paper, we present the integration of Geant4-DNA processes into the GATE 7.0 platform in the objective to perform multi-scale simulations (from macroscopic to nanometer scale). We simulated three types of clinical and preclinical beams: a 6 MeV electron clinical beam, a X-ray irradiator beam and a clinical proton beam for which we validated depth dose distributions against measurements in water. Frequencies of energy depositions and DNA damage were evaluated using a specific algorithm in charge of allocating energy depositions to atoms constituting DNA molecules represented by their PDB (Protein Data Bank) description.
A mathematical model for electrical impedance spectroscopy of zwitterionic hydrogels.
Feicht, Sarah E; Khair, Aditya S
2016-08-17
We report a mathematical model for ion transport and electrical impedance in zwitterionic hydrogels, which possess acidic and basic functional groups that carry a net charge at a pH not equal to the isoelectric point. Such hydrogels can act as an electro-mechanical interface between a relatively hard biosensor and soft tissue in the body. For this application, the electrical impedance of the hydrogel must be characterized to ensure that ion transport to the biosensor is not significantly hindered. The electrical impedance is the ratio of the applied voltage to the measured current. We consider a simple model system, wherein an oscillating voltage is applied across a hydrogel immersed in electrolyte and sandwiched between parallel, blocking electrodes. We employ the Poisson-Nernst-Planck (PNP) equations coupled with acid-base dissociation reactions for the charge on the hydrogel backbone to model the ionic transport across the hydrogel. The electrical impedance is calculated from the numerical solution to the PNP equations and subsequently analyzed via an equivalent circuit model to extract the hydrogel capacitance, resistance, and the capacitance of electrical double layers at the electrode-hydrogel interface. For example, we predict that an increase in pH from the isoelectric point, pH = 6.4 for a model PCBMA hydrogel, to pH = 8 reduces the resistance of the hydrogel by ∼40% and increases the double layer capacitance by ∼250% at an electrolyte concentration of 0.1 mM. The significant impact of charged hydrogel functional groups to the impedance is damped at higher electrolyte concentration. PMID:27464763
Suppression of bending waves in a beam using resonators with different separation lengths.
Yang, Cheng; Cheng, Li
2016-05-01
This work is concerned with the suppression of a bending wave in a beam using resonators. Particular focus is put on the separation length between resonators. It is demonstrated that, for a beam with identical resonators attached at equal intervals, the bending wave transmission efficiency varies with respect to the separation length. The phenomena and the underlying physics are investigated by resorting to a simple beam model having two resonators resting on it. The two resonators are coupled over the segment through various bending wave components, comprising both propagating waves and evanescent waves, generated at the resonator locations where the beam encounters impedance discontinuities. The separation length, specifying the phase change of the propagating waves and the amplitude decay of the evanescent waves travelling from one resonator to the other, is thereby the parameter determining the extent to which the resonators would be coupled and the degree of the power that is transmitted. Results show, qualitatively, the difference in the working mechanism of the resonators in different separation length regions, with criteria being defined to distinguish those regions. Particularly, in the intermediate separation region, the evanescent waves are shown to play an important role in the coupling and are responsible for transmitting power, comparable with that transmitted by propagating waves, to the far field. PMID:27250132
Wave impedance retrieving via Bloch modes analysis
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;
2011-01-01
The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin......-ciples violation, like antiresonance behaviour with Im(ε) fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field...
Development of beam position monitor for test beam of BEPC II
International Nuclear Information System (INIS)
Three stripline beam position monitors and some feed-throughs were developed to measure the position of beam non-interceptively in test beam facility. After three stripline beam position monitors were produced, calibrations of the monitors were carried out on a workbench, which has high precision and is controlled by a computer. Then two monitor's were installed at the beam line and some experiments were carried out. Four 1 mm thickness stainless steel strips are main modules of the monitor, signals induced in these strips reflect the position of the beam bunch. Calibration coefficient, system characteristic impedance and port transmission coefficient of monitor are introduced in this paper. (authors)
Application of impedance measurement techniques to accelerating cavity mode characterization
Hanna, S. M.; Stefan, P. M.
1993-11-01
Impedance measurements, using a central wire to simulate the electron beam, were performed on a 52 MHz accelerating cavity at the National Synchrotron Light Source (NSLS). This cavity was recently installed in the X-ray storage ring at the NSLS as a part of an upgrade of the ring. To damp higher-order modes (HOM) in this cavity, damping antennas have been installed. We implemented the impedance measurement technique to characterize the cavity modes up to 1 GHz and confirm the effectiveness of the damping antennas. Scattering parameters were measured using a network analyzer (HP 8510B) with a personal computer as a controller. Analysis based on S and T parameters for the system was used to solve for the cavity impedance, Z( ω), as a function of the measured transmission response, S21( ω). Search techniques were used to find the shunt resistance Rsh, and Q from the calculated Z( ω) for different modes. Our results for {R}/{Q} showed good agreement with URMEL simulations. The values of Q were compared with other independent Q measurement techniques. Our analytical technique offers an alternative approach for cases where full thru-reflection-line (TRL) calibration is not feasible and a more time-effective technique for obtaining {R}/{Q}, compared with the bead-pull method.
Lorentz Force Electrical Impedance Tomography
Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril
2014-01-01
This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...
Micro-Horn Arrays for Ultrasonic Impedance Matching
Rao, Shanti; Palmer, Dean
2009-01-01
Thin-layered structures containing arrays of micromachined horns, denoted solid micro-horn arrays (SMIHAs), have been conceived as improved means of matching acoustic impedances between ultrasonic transducers and the media with which the transducers are required to exchange acoustic energy. Typically, ultrasonic transducers (e.g., those used in medical imaging) are piezoelectric or similar devices, which produce small displacements at large stresses. However, larger displacements at smaller stresses are required in the target media (e.g., human tissues) with which acoustic energy is to be exchanged. Heretofore, efficiencies in transmission of acoustic energy between ultrasonic transducers and target media have been severely limited because substantial mismatches of acoustic impedances have remained, even when coupling material layers have been interposed between the transducers and the target media. In contrast, SMIHAs can, in principle, be designed to effect more nearly complete acoustic impedance matching, leading to power transmission efficiencies of 90 percent or even greater. The SMIHA concept is based on extension, into the higher-frequency/ lower-wavelength ultrasonic range, of the use of horns to match acoustic impedances in the audible and lower-frequency ultrasonic ranges. In matching acoustic impedance in transmission from a higher-impedance acoustic source (e.g., a piezoelectric transducer) and a lowerimpedance target medium (e.g., air or human tissue), a horn acts as a mechanical amplifier. The shape and size of the horn can be optimized for matching acoustic impedance in a specified frequency range. A typical SMIHA would consist of a base plate, a face plate, and an array of horns that would constitute pillars that connect the two plates (see figure). In use, the base plate would be connected to an ultrasonic transducer and the face plate would be placed in contact with the target medium. As at lower frequencies, the sizes and shapes of the pillars
Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.
2015-08-01
Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.
Depth Analysis of the Performance of Coupling Beams in Shear Wall Structure%剪力墙结构中的连梁性能深度剖析
Institute of Scientific and Technical Information of China (English)
高文梅; 李成
2012-01-01
连梁是剪力墙结构中的重要构件,具有跨度小、截面大、内力大等特点,连梁是剪力墙结构抗震的第一道防线,因此,做好连梁的受力特性分析非常重要。%Binding beam is very important in shear wall structure. It has small span, big section and big reaction. Binding beam is the first line of defense for seismic in shear wall structure. So it is very important to do the analysis of characteristics.
Impedance Spectra of Mixed Conductors: a 2D Study of Ceria
Ciucci, Francesco; Goodwin, David G
2009-01-01
In this paper we develop an analytical framework for the study of electrochemical impedance of mixed ionic and electronic conductors (MIEC). The framework is based on first-principles and it features the coupling of electrochemical reactions, surface transport and bulk transport processes. We utilize this work to analyze two dimensional systems relevant for fuel cell science via finite element method (FEM). Alternate current Impedance Spectroscopy (IS) of a ceria symmetric cell is simulated near equilibrium condition (zero bias) for a wide array of working conditions including variations of temperature and $H_2$ partial pressure on a two dimensional fuel cell sample with patterned metal electrodes. The model shows agreement of IS curves with the experimental literature with the relative error on the impedance being consistently below 2%. Important two-dimensional effects such the effects of thickness decrease and the influence of variable electronic and ionic diffusivities on the impedance spectra are also ex...
High transmission acoustic focusing by impedance-matched acoustic meta-surfaces
Al Jahdali, Rasha
2016-01-19
Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.
Possibilities of electrical impedance tomography in gynecology
V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.
2013-04-01
The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.
Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.
Ravi, Karthik; Katzka, David A
2016-09-01
The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223
Active impedance matching of complex structural systems
Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.
1991-01-01
Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.
Impedance of a slotted-pipe kicker
Energy Technology Data Exchange (ETDEWEB)
Feng Zhou [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics
1996-08-01
This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)
Experimental Verification of Acoustic Impedance Inversion
Institute of Scientific and Technical Information of China (English)
郭永刚; 王宁; 林俊轩
2003-01-01
Well controlled model experiments were carried out to verify acoustic impedance inversion scheme, and different methods of extracting impulse responses were investigated by practical data. The acoustic impedance profiles reconstructed from impulse responses are in good agreement with the measured value and theoretical value.
Far-infrared embedding impedance measurements
Neikirk, D. P.; Rutledge, D. B.
1984-01-01
A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.
Estimating the short-circuit impedance
DEFF Research Database (Denmark)
Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad
1997-01-01
A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage and curr...
H-mode accelerating structures with permanent-magnet quadrupole beam focusing
Kurennoy, S. S.; Rybarcyk, L. J.; O'Hara, J. F.; Olivas, E. R.; Wangler, T. P.
2012-09-01
We have developed high-efficiency normal-conducting rf accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H-mode structures with PMQ focusing for higher beam velocities are also presented. H-PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Energy Technology Data Exchange (ETDEWEB)
Mastoridis, Themistoklis [Stanford Univ., CA (United States)
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
International Nuclear Information System (INIS)
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Fractional Order Element Based Impedance Matching
Radwan, Ahmed Gomaa
2014-06-24
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.
Identification of irradiated potatoes by impedance measurements
International Nuclear Information System (INIS)
Measuring the impedance was found to be a highly reliable and practical technique for identifying irradiated potatoes. Impedance was measured by puncturing a potato tuber with a steel electrode and passing a 3 -- 5 mA alternating current through it. Three parameters were determined: Z0/Z180 (impedance ratio at 5 kHz, 0 to 180 seconds after puncturing), Z sub(50k)/Z sub(0.5k) (impedance ratio at 50 kHz to 0.5 kHz) and Z sub(50k)/Z sub(5k) (impedance ratio at 50 kHz to 5 kHz). Among these, parameter Z sub(50k)/Z sub(5k) was the most favourable index. The technique allowed not only differentiation between unirradiated and irradiated potatoes but an estimation of the irradiation dose for up to six months after irradiation, independent of the potato storage condition. (author)
The IMPACT shirt: textile integrated and portable impedance cardiography
International Nuclear Information System (INIS)
Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient’s home. (paper)
Impedance of flexible suction caissons
DEFF Research Database (Denmark)
Liingaard, Morten; Andersen, Lars; Ibsen, Lars Bo
2007-01-01
and coupled sliding-rocking vibrations, influence of the foundation geometry and examination on the properties of the surrounding soil. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency......-dependent coefficients corresponding to different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated using a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic...
Institute of Scientific and Technical Information of China (English)
张辉; 洪尚任; 鲍时超; 乔木
2012-01-01
The four beam coupled oscillator model type ultrasonic motor drive mechanism was studied. A new structure motor of the four beam coupled oscillator model type ultrasonic motor was designed and manufactured, and the experimental test was made. Results indicate that the type of motor was simple and compact structure, and had good performance , such as fast response speed, good control characteristics and low-speed and large torque. The expected design objective was obtained. The development of modal transformation type ultrasonic motor have practical significance and reference value.%对四梁耦合振子式超声波电动机的驱动机理进行了研究,设计并制作了四梁耦合振子式的新型结构电机,并进行了实验测试.实验结果表明,该类型电机不但结构简单紧凑,而且具有良好的输出性能,如反应速度快、控制特性好,低速大转矩等,设计达到了预期效果.该研究对模态转换型新型超声波电动机的研发有实际意义和参考价值.
Wave impedances of drill strings and other periodic media
Drumheller, Douglas S.
2002-12-01
It is commonly known that wave reflections are caused by abrupt spatial variations in the physical parameter called wave impedance. When a material contains a spatially periodic distribution of wave impedances some very interesting and complex wave propagation phenomena will occur. Two examples of such periodic structures immediately come to mind: the first is a sandwiched structure of two types of plates, say for example, identical layers of thin steel plates interspersed with identical thick aluminum plates; and the second is a large number of identical long thin pipes that are connected from end to end with identical short heavy threaded couplings. The pipe assembly is our primary concern here because it represents the drill string, used worldwide to drill for natural energy resources. We want to understand how waves propagate through drill strings because we want to use them as a means of communication. But while the second structure is our primary concern, it is the study of the first structure, composed of layers, that is the truly historical problem and the source of much of our understanding of this rich set of wave physics. Traditionally, wave propagation in periodic media has been studied as an eigenvalue problem. The eigenvalues themselves yield information about phase velocities, group velocities, passbands, and stopbands. Most often the analysis has stopped there and the eigenvectors have been ignored. Here we turn our attention to the eigenvectors, using them to evaluate the impedance of the periodic structure with particular emphasis on the periodic drill string. As you might expect the impedance of the drill string is a complex number, which is evaluated from a very complicated expression. However, we have discovered that the impedance at two physical locations along the length of each piece of drill pipe in the drill string always reduces to a real number. This is immensely important because it allows us to match the impedance of the drill string
Simulation of Instability at Transition Energy with a New Impedance Model for CERN PS
Wang, Na; Biancacci, Nicolo; Migliorati, Mauro; Persichelli, Serena; Sterbini, Guido
2016-01-01
Instabilities driven by the transverse impedance are proven to be one of the limitations for the high intensity reach of the CERN PS. Since several years, fast single bunch vertical instability at transition energy has been observed with the high intensity bunch serving the neu-tron Time-of-Flight facility (n-ToF). In order to better understand the instability mechanism, a dedicated meas-urement campaign took place. The results were compared with macro-particle simulations with PyHEADTAIL based on the new impedance model developed for the PS. Instability threshold and growth rate for different longitu-dinal emittances and beam intensities were studied.
Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.
2008-01-01
Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.
Measurements of electrical impedance of biomedical objects.
Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław
2016-01-01
Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250
Tracking of electrochemical impedance of batteries
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
Toda, Minoru
2002-03-01
A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems. PMID:12322878
Turner, R. E.; Amendt, P. A.; Landen, O. L.; Wallace, R. J.; Thorp, K.; Pien, G.
2004-11-01
Indirect drive ICF experiments were performed on the Omega laser at LLE, both with and without distributed polarization rotators (DPR) in the laser beams. The hohlraums were irradiated with a three-cone beam geometry, experimentally adjusted to produce high-yield implosions with no DPRs installed. X-ray images of the cores of these implosions showed a small but tolerable P2 asymmetry. Similar experiments with DPRs installed produced lower yields, and x-ray images of the imploded cores showed substantially increased P2 asymmetries, suggesting that the shallow-angle cone of beams, which transits through the longest length of plasma and along the shallowest density gradients, had substantially increased absorption compared to the no-DPR case. We will show high magnification (nearly 100x) x-ray images of the cores, along with fusion neutron data. For capsules driven with good symmetry, we show the neutron yield results from capsules whose surfaces have been deliberately roughened by a measured amount, in order to compare to mix models in simulations.
International Nuclear Information System (INIS)
We study the impedance due to coherent synchrotron radiation (CSR) generated by a short bunch of charged particles passing through a dipole magnet of finite length in a vacuum chamber of a given cross section. Our method represents a further development of the previous studies: we decompose the electromagnetic field of the beam over the eigenmodes of the toroidal chamber and derive a system of equations for the expansion coefficients in the series. We illustrate our general method by calculating the CSR impedance of a beam moving in a toroidal vacuum chamber of rectangular cross section.
Institute of Scientific and Technical Information of China (English)
高轩能; 黄文欢; 张惠华
2011-01-01
To research the fire-resistant behavior of the composite beam in fire, an ANSYS model for fire-structure coupling analysis was established, by the method combining finite element method in space and finite difference method in time, and the temperature fields and the deflection-time curves of the composite beams under ISO 834 fire were numerically simulated and analyzed with the thermal-analysis ANSYS program and the nonlinear whole process analysis ANSYS program. The numerical results show: under ISO standard fire, the temperature of measuring point in tested beam is highly consistent with the ANSYS simulation result, and the curve between mid-span deflection and exposed-to-fire time of the tested beam is in good agreement with the theoretical result.%采用在空间上运用有限单元法与在时间上运用有限差分法相结合的方法,建立组合梁的火-结构耦合ANSYS分析模型;编制组合梁ANSYS热分析程序和全过程受火非线性分析程序,对组合梁在国际标准ISO834规定的标准火灾的温度场和挠度-时间曲线进行分析和计算.数值计算结果表明:在国际标准ISO834规定的标准火灾下,试验梁测点的温度与ANSYS理论计算结果高度吻合,试验梁位移-受火时间曲线与理论计算结果符合良好.
SPATIAL VARIABILITY OF PEDOZEMS MECHANICAL IMPEDANCE
Directory of Open Access Journals (Sweden)
Zhukov A.V.
2013-04-01
Full Text Available We studied the spatial variability of pedozem mechanical impedance in ResearchRemediation Center of the Dnipropetrovsk State Agrarian University in Ordzhonikidze. Thestatistical distribution of the soil mechanical impedance within the studied area is characterized by deviation from the normal law in 0–10 and 30–50 cm layers from the surface. 2D and 3D modeling shows the structural design of the soil as locations of high mechanical impedance which found in the soils with less hardness.
Impedance Spectroscopy of Dielectrics and Electronic Conductors
DEFF Research Database (Denmark)
Bonanos, Nikolaos; Pissis, Polycarpos; Macdonald, J. Ross
2013-01-01
Impedance spectroscopy is used for the characterization of materials, such as electroceramics, solid and liquid electrochemical cells, dielectrics and also fully integrated devices, such as fuel cells. It consists of measuring the electrical impedance - or a closely related property......, and procedures for the correction of measurement errors. The applications of impedance spectroscopy are illustrated with examples from electroceramics and polymer-based dielectric systems. The way in which the technique is applied to the two classes of materials is compared with reference to the different models...
Study of a rectangular coupled cavity extended interaction oscillator in sub-terahertz waves
Institute of Scientific and Technical Information of China (English)
Zhang Kai-Chun; Wu Zhen-Hua; Liu Sheng-Gang
2008-01-01
An extended interaction oscillator(EIO)generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes.A rectangular reentrant coupled-cavity is proposed aB the slow-wave structure of EIO.By CST,the circuit parameters including frequency-phase dispersion,interaction impedance and characteristic impedance are simulated and calculated.The operation mode of EIO is chosen very close to the point where βL=2π with corresponding frequency 120 GHz,the beam voltage 12 kV and the dimensions of the cavity with the period 0.5 mm,the height 3 mm and the width 1.4 mm.Simulation results of beam-wave interaction by PIC show that the exciting frequency is 120.85 GHz and output peak power 465 W with 12-period coupled-cavity with the perveance 0.17μP.Simulation results indicate that the EIO has very wide range of the operation voltage.
Tunable Beam Diffraction in Infiltrated Microstructured Fibers
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;
We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....
DEFF Research Database (Denmark)
Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril;
2013-01-01
Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead of in...
New Regularization Method in Electrical Impedance Tomography
Institute of Scientific and Technical Information of China (English)
侯卫东; 莫玉龙
2002-01-01
Image reconstruction in elecrical impedance tomography(EIT)is a highly ill-posed inverse problem,Regularization techniques must be used in order to solve the problem,In this paper,a new regularization method based on the spatial filtering theory is proposed.The new regularized reconstruction for EIT is independent of the estimation of impedance distribution,so it can be implemented more easily than the maxiumum a posteriori(MAP) method.The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution.We implemented our regularization method with two dimensional computer simulations.The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.
Impedance feedback control for scanning electrochemical microscopy.
Alpuche-Aviles, M A; Wipf, D O
2001-10-15
A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463
Interpretation of faradaic impedance for Corrosion monitoring
Energy Technology Data Exchange (ETDEWEB)
Itagaki, M.; Taya, A.; Imamura, M.; Saruwatari, R.; Watanabe, K. [Science University of Tokyo, Chiba (Japan)
2004-02-15
A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance? In the present paper, the above-mentioned question is examined theoretically and experimentally
Electrochemical Impedance Studies of SOFC Cathodes
DEFF Research Database (Denmark)
Hjelm, Johan; Søgaard, Martin; Wandel, Marie;
2007-01-01
Mixed ion- and electron-conducting composite electrodes consisting of doped ceria and perovskite have been studied by electrochemical impedance spectroscopy (EIS) at different temperatures and oxygen partial pressures. This paper aims to describe the different contributions to the polarisation...
Thermal Impedance of Rectangular Microwave Oven Linings
Institute of Scientific and Technical Information of China (English)
SHIShang－zhao; XUFu－qiu; 等
1996-01-01
Amodel was preseted for calcultaing the thermal impedance of the insulation and refractory linings of rectangular microwave ovens,of which the oven cavity's dimensions are relatively small,while the linings re relatively thick.
Modeling degradation in SOEC impedance spectra
DEFF Research Database (Denmark)
Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth;
2013-01-01
Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...
Institute of Scientific and Technical Information of China (English)
HE Yong; ZOU Wen-Kang; SONG Sheng-Yi
2011-01-01
@@ In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load.The circuit parameters of MITLs are well understood by employing the concept of Sow impedance derived from Maxwell's equations and pressure balance across the flow.However, the electron density in an MITL is always taken as constant in the application of flow impedance.Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected.We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other.It is found that the assumption of constant electron density profile in the calculation of the Sow impedance is not always valid.The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL.The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly experiments and theories in the future.
A Study on the Optimal Receiver Impedance for SNR Maximization in Broadband PLC
Directory of Open Access Journals (Sweden)
Massimo Antoniali
2013-01-01
Full Text Available We consider the design of the front-end receiver for broadband power line communications. We focus on the design of the input impedance that maximizes the signal-to-noise ratio (SNR at the receiver. We show that the amplitude, rather than the power, of the received signal is important for communication purposes. Furthermore, we show that the receiver impedance impacts the amplitude of the noise term. We focus on the background noise, and we propose a novel description of the noise experienced at the receiver port of a PLC network. We model the noise as the sum of four uncorrelated contributions, that is, the active, resistive, receiver, and coupled noise components. We study the optimal impedance design problem for real in-home grids that we assessed with experimental measurements. We describe the results of the measurement campaign, and we report the statistics of the optimal impedance. Hence, we study the best attainable performance when the optimal receiver impedance is deployed. We focus on the SNR and the maximum achievable rate, and we show that power matching is suboptimal with respect to the proposed impedance design approach.
Absorption and impedance boundary conditions for phased geometrical-acoustics methods
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2012-01-01
developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated......Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce...
Directory of Open Access Journals (Sweden)
Dejan Krizaj
2012-10-01
Full Text Available Electrical impedance measurements of the suspensions have to take into account the double layer impedance that is due to a very thin charged layer formed at the electrode-electrolite interface. A dedicated measuring cell that enables variation of the distance between the electrodes was developed for investigation of electrical properties of suspensions using two electrode impedance measurements. By varying the distance between the electrodes it is possible to separate the double layer and the suspension impedance from the measured data. From measured and extracted impedances electrical lumped models have been developed. The error of non inclusion of the double layer impedance has been analyzed. The error depends on the frequency of the measurements as well as on the distance between the electrodes.
Institute of Scientific and Technical Information of China (English)
李巨韬; 郭伟; 王建
2013-01-01
为了解决平行梁式电容称重传感器极板耦合角位移带来的输出电容值与输入载荷之间的非线性问题,运用力法对平行梁式弹性体超静定结构进行了计算分析,得出了与上下极板夹角关联的主要结构参数,通过内力对极板角度进行了解析,并在有限元软件中验证了计算的正确性.此结果为平行梁通过结构参数设计优化耦合角位移提供了理论方法,并根据非平行板电容计算公式,构建了更加精确的载荷与电容的数学模型,为传感器输出输入特性曲线的拟合提供了依据.%In order to solve nonlinear problems of the output capacitor value and the input load for which plate coupling angular displacement causes in parallel beam capacitive sensor,calculating and analyzing is made in this paper to the statically indeterminate structure of parallel beam elastomer in terms of the force method,and gets the main structural parameters correlating to the angle between the upper and lower plate.The coupling angle has been calculated by internal forces,and the conclusions have been confirmed in the finite element simulation.This conclusion can provide the theoretical approach for optimizing coupling angular displacement by means of designing the structure parameters of the parallel beam,meanwhile based on Non-parallel plate capacitor formula,a more accurate analytical model of load and capacitance has been constructed,which can provide the basis for fitting of the sensor input-output characteristic curve.
Torrents Dolz, Josep M.; Juan Garcia, Pablo; Aguado de Cea, Antonio
2007-01-01
Since Electric Impedance Spectroscopy (EIS) has been widely used to determine physical properties of materials, it becomes necessary to evaluate different error contributions. In this work, it is studied the effect of the current leakage due to the lack of galvanic insulation from sample to ground, which could distort the results. In order to known the effects of ground coupling, an electric equivalent model is developed to distinguish between the contribution of the sample impedance and the ...
Studies on the coupling transformer to improve the performance of microwave ion source
International Nuclear Information System (INIS)
A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source
Discussion on design of single pile cap and coupling beam by new regulation%结合新规范谈单桩承台及连系梁的设计
Institute of Scientific and Technical Information of China (English)
张亮亮
2012-01-01
Combining with the design practice of the manual holing pouring pile,according to the related regulation,the paper has the detailed exploration for the functions,the stressed status and design points of the single pile cap under columns and coupling beams,and undertakes the analysis,so as to provide the theoretic direction for similar engineering design.%结合人工挖孔灌注桩的设计实践,根据相关规范,对柱下单桩承台及连系梁的功能、受力状况及设计要点进行了详细探索,并加以分析,为类似工程设计提供了理论指导。
Tunable acoustic radiation pattern assisted by effective impedance boundary
Qian, Feng; Quan, Li; Wang, Li-Wei; Liu, Xiao-Zhou; Gong, Xiu-Fen
2016-02-01
The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no fingerprint of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No.11474160), the Fundamental Research Funds for Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLOA201401), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
Non-paraxial Elliptical Gaussian Beam
Institute of Scientific and Technical Information of China (English)
WANG Zhaoying; LIN Qiang; NI Jie
2001-01-01
By using the methods of Hertz vector and angular spectrum transormation, the exact solution of non-paraxial elliptical Gaussion beam with general astigmatism based on Maxwell′s equations is obtained. We discussed its propagation characteristics. The results show that the orientation of the elliptical beam spot changes continuously as the beam propagates through isotropic media. Splitting or coupling of beam spots may occur for different initial spot size. This is very different from that of paraxial elliptical Gaussian beam.
Energy Technology Data Exchange (ETDEWEB)
Manzolaro, M., E-mail: mattia.manzolaro@lnl.infn.it; Andrighetto, A. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Meneghetti, G. [Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy); Vivian, G.; D’Agostini, F. [INFN, Laboratori Nazionali di Legnaro, Viale dell’Universita’ 2, Legnaro, 35020 Padova (Italy); Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova (Italy)
2016-02-15
In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 10{sup 13} fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.
Energy Technology Data Exchange (ETDEWEB)
Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Van Winkle, Daniel; /SLAC
2007-07-06
Several high-current accelerators use feedback techniques in the accelerating RF systems to control the impedances seen by the circulating beam. These Direct and Comb Loop architectures put the high power klystron and LLRF signal processing components inside feedback loops, and the ultimate behavior of the systems depends on the individual sub-component properties. Imperfections and non-idealities in the signal processing leads to reduced effectiveness in the impedance control loops. In the PEP-II LLRF systems non-linear effects have been shown to reduce the achievable beam currents, increase low-mode longitudinal growth rates and reduce the margins and stability of the LLRF control loops. We present measurements of the driver amplifiers used in the PEP-II systems, and present measurement techniques needed to quantify the small-signal gain, linearity, transient response and image frequency generation of these amplifiers.
Directory of Open Access Journals (Sweden)
Qiang Zhang
2015-01-01
Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.
Electromagnetic Wave Scattering By the Coated Impedance Cylinder
Directory of Open Access Journals (Sweden)
V.I. Vyunnik
2010-01-01
Full Text Available In this work the boundary conditions for the impedance circular cylinder coated by a low contrast dielectric thin layer are derived. Expression for the reduced impedance of the cylinder is obtained. Conditions and applicability limits of the proposed approach are defined. Influence of the coating impedance on the reduced impedance of the cylinder is investigated.
Institute of Scientific and Technical Information of China (English)
李小珍; 洪沁烨; 耿杰; 刘德军; 单春胜
2015-01-01
研究目的：在我国新建中低速磁浮运营线的背景下，因中低速磁浮轨道梁较为轻巧，为保证磁浮列车行车安全及舒适性，需对其进行磁浮列车－轨道梁耦合振动分析验证。本文以株洲某厂磁浮试验线20 m 简支梁为工程背景，建立车辆为12个自由度的二系悬挂质量－弹簧－阻尼模型，并考虑轨道不平顺对车桥振动的影响，建立磁浮列车－轨道梁竖向耦合振动分析模型，且编制仿真分析软件 VTBIM，通过仿真值与现场试验实测值的对比，验证所建模型的合理性。研究结论：（1）现场试验测试轨道梁基频、振型及轨道梁跨中动挠度／加速度，轨道梁基频及振型测试结果比仿真值略小；（2）磁浮车辆通过简支梁时，梁跨中竖向挠度／加速度的实测值均略小于仿真值，仿真值随车速的变化规律与实测值规律一致，挠度时程曲线仿真值与实测波形基本一致；（3）研究结果表明本文所建立的中低速磁浮列车－轨道梁竖向耦合振动模型合理，编制的仿真分析软件的计算结果可信；（4）该研究结果可用于中低速磁浮轨道梁设计参考。%Research purposes:In our country under the background of new construction of medium and low speed maglev operation,because the low speed maglev rail beam is relatively light,in order to ensure the safety and comfort,the maglev train -track beam coupling vibration should be analyzed and verified.Based on the engineering background of 20 m simply supported beam of maglev test line in a factory of Zhuzhou,this paper establishes the secondary suspension quality -spring - damper model that vehicle is 12 degrees of freedom,builds maglev trains and track beam vertical coupling vibration analysis model considering the impact of track irregularity,and designs the simulation analysis software VTBIM.Through comparing the simulation value with the measured values
McDonald, Kirk T
2000-01-01
Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.
VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS
Directory of Open Access Journals (Sweden)
V. I. Bankov
2016-01-01
Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological
Resonant impedance of bellows above cutoff
Energy Technology Data Exchange (ETDEWEB)
Krinsky, S
1980-01-01
The perturbation method of Chatard-Moulin and Papiernik is used to calculate the longitudinal and transverse impedances, Z(..omega..) and Z/sub perpendicular/(..omega..), of a bellows. The bellows shape is defined by its radius a(z) = a (1 + epsilons(z)), where a is the mean radius, epsilon a small parameter, and s(z) describes the convolution of the bellows. A finite wall conductivity is considered and the resonant contribution to the impedance above the cutoff frequency of the unperturbed chamber is determined, obtaining analytic approximations to the resonant frequencies, quality factors, and shunt impedances. The relation Z/sub perpendicular/(..omega..) = (2c/a/sup 2/)Z(..omega..)/..omega.., of course, does not hold as an identity, but it is found to be a useful relation for the shunt impedances, holding exactly for one family of transverse modes and providing an upper bound on the shunt impedances of the second set of transverse modes.
Energy Technology Data Exchange (ETDEWEB)
Andersen, C.E., E-mail: clan@risoe.dtu.dk [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Damkjaer, S.M.S.; Kertzscher, G. [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Greilich, S. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), D-69120 Heidelberg (Germany); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)
2011-10-15
Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al{sub 2}O{sub 3}:C. The key elements in the protocol are that Al{sub 2}O{sub 3}:C is pre-dosed with {approx}20 Gy before each measurement session, and that the crystals are not perturbed by optical stimulation. Using 6 and 18 MV linear accelerator photon beams, the new RL protocol was found to have a linear dose-response from 7 mGy to 14 Gy, and dosimetry in this range could therefore be performed using a single calibration factor ({approx}6 x 10{sup 6} counts per Gy for a 2 mg crystal). The reproducibility of the RL dosimetry was 0.3% (one relative standard deviation) for doses larger than 0.1 Gy. The apparent RL sensitivity was found to change with accumulated dose ((-0.45 {+-} 0.03)% per 100 Gy), crystal temperature ((-0.21 {+-} 0.01)%/ deg. C), and dose-delivery rate ((-0.22 {+-} 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement compared with the combined RL/OSL protocol, that required relatively long readout times and where the optical stimulation greatly affected the RL sensitivity. The only significant caveat was the apparent change in RL-response with accelerator dose-delivery rate. - Highlights: > New readout protocol based only on the RL signal from pre-dosed Al{sub 2}O{sub 3}:C. > Fast readout. > Linear dose-response. > High-dynamic range (7 mGy-14
Seebacher, David
2009-01-01
In many particle accelerators, including the LHC at the European Organization for Nuclear Research CERN, NEG coatings are used to improve vacuum performance. In other particle accelerators there have been hints that those coatings could have a relevant impact on the beam coupling impedance, however the data available is contradictory. To clarify the possible impact of NEG coatings the electromagnetic properties have been measured. The measurements have been carried out by means of cavity perturbation method. The second part of this thesis deals with the microwave waveguide reflectometer developed at CERN several years ago, which is used as part of the quality assurance test program for the LHC assembly. To ensure optimum operation and to avoid an expensive removal of any foreign object from inside the LHC beam-screen after its completion, microwave reflectometry is performed. Until now several objects have been found by means of reflectometry, but so far neither precise data about the reflections of different...
Non-Linear Time-Domain Simulations of the RF Station-Beam Dynamics Interaction for the LHC
International Nuclear Information System (INIS)
Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.
A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
International Nuclear Information System (INIS)
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam-wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally symmetric waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented. (cross-disciplinary physics and related areas of science and technology)
A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Institute of Scientific and Technical Information of China (English)
Peng Wei-Feng; Hu Yu-Lu; Yang Zhong-Hai; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam-wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally symmetric Waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented.
Directory of Open Access Journals (Sweden)
Bulent Yardimoglu
2004-01-01
Full Text Available The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers. The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present model results with those in the literature indicate excellent agreement.
DEFF Research Database (Denmark)
Andersen, Claus Erik; Damkjær, Sidsel Marie Skov; Kertzscher Schwencke, Gustavo Adolfo Vladimir;
2011-01-01
Radioluminescence (RL) and optically stimulated luminescence (OSL) from carbon-doped aluminum oxide crystals can be used for medical dosimetry in external beam radiotherapy and remotely afterloaded brachytherapy. The RL/OSL signals are guided from the treatment room to the readout instrumentation...... using optical fiber cables, and in vivo dosimetry can be carried out in real time while the dosimeter probes are in the patient. The present study proposes a new improved readout protocol based solely on the RL signal from Al2O3:C. The key elements in the protocol are that Al2O3:C is pre-dosed with 20...... ((−0.21 ± 0.01)%/ °C), and dose-delivery rate ((−0.22 ± 0.01)% per 100 MU/min). A temporal gating technique was used for separation of RL and stem signals (i.e. Cerenkov light and fluorescence induced in the optical fiber cable during irradiation). The new readout protocol was a substantial improvement...
Modarresi, H.; Lazenka, V.; Menéndez, E.; Lorenz, M.; Bisht, M.; Volodin, A.; Van Haesendonck, C.; Grundmann, M.; Van Bael, M. J.; Temst, K.; Vantomme, A.
2016-08-01
Ferrimagnetic CoFe2O4 (cobalt ferrite) is formed within an epitaxial BiFeO3 (bismuth ferrite) thin film matrix by Co channeled ion implantation and subsequent annealing. The presence of nanoscale CoFe2O4 crystals in the matrix is confirmed by x-ray diffraction using synchrotron radiation. The significantly increased magnetic moment and the low-temperature coercive field of the composite system evidence the formation of ferrimagnetic cobalt ferrite and its nanoscale character, respectively. The results demonstrate that ion beam synthesis is an appropriate method to controllably transform a planar system into a granular one, increasing the interface area between cobalt ferrite and bismuth ferrite. The ferroelectric nature of the BiFeO3–CoFe2O4 composite is confirmed by several scanning probe microscopy techniques. At room temperature, the composite exhibits a magnetoelectric voltage coefficient of α ME = 17.5 V (cm · Oe)‑1, while a single-phase BiFeO3 thin film shows a α ME value of 4.2 V (cm · Oe)‑1. The high magnetoelectric voltage coefficient is interpreted to be the result of the interfacial interaction between the ferrimagnetic CoFe2O4 nanocrystallites and the multiferroic BiFeO3 matrix.
Microstrip Yagi Antenna with Dual Aperture-Coupled Feed
Pogorzelski, Ronald; Venkatesan, Jaikrishna
2008-01-01
A proposed microstrip Yagi antenna would operate at a frequency of 8.4 GHz (which is in the X band) and would feature a mechanically simpler, more elegant design, relative to a prior L-band microstrip Yagi antenna. In general, the purpose of designing a microstrip Yagi antenna is to combine features of a Yagi antenna with those of a microstrip patch to obtain an antenna that can be manufactured at low cost, has a low profile, and radiates a directive beam that, as plotted on an elevation plane perpendicular to the antenna plane, appears tilted away from the broadside. Such antennas are suitable for flush mounting on surfaces of diverse objects, including spacecraft, aircraft, land vehicles, and computers. Stated somewhat more precisely, what has been proposed is a microstrip antenna comprising an array of three Yagi elements. Each element would include four microstrip-patch Yagi subelements: one reflector patch, one driven patch, and two director patches. To obtain circular polarization, each driven patch would be fed by use of a dual offset aperture-coupled feed featuring bow-tie-shaped apertures. The selection of the dual offset bow-tie aperture geometry is supported by results found in published literature that show that this geometry would enable matching of the impedances of the driven patches to the 50-Omega impedance of the microstrip feedline while maintaining a desirably large front-to-back lobe ratio.
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Ferrofluid Microwave Devices With Magnetically Controlled Impedances
Fannin, P. C.; Stefu, N.; Marin, C. N.; Malaescu, I.; Totoreanu, R.
2010-08-01
Ferrofluid filled transmission lines are microwave electronic devices. The complex dielectric permittivity and the complex magnetic permeability of a kerosene based ferrofluid with magnetite nanoparticles, in the frequency range (0.5-6) GHz were measured, for several values of polarising field, H. Afterwards, the input impedance of a short-circuited transmission line filled with this ferrofluid was computed using the equation Z = Zc tanh(γl). Here Zc and l are the characteristic impedance and the length of the coaxial line and γ is the propagation constant, depending on the dielectric and magnetic parameters of the material within the line. It is demonstrated how the impedance displays a frequency and polarizing field dependence, which has application in the design of magnetically controlled microwave devices.
Hemmady, Sameer; Zheng, Xing; Hart, James; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M
2006-09-01
Statistical fluctuations in the eigenvalues of the scattering, impedance, and admittance matrices of two-port wave-chaotic systems are studied experimentally using a chaotic microwave cavity. These fluctuations are universal in that their properties are dependent only upon the degree of loss in the cavity. We remove the direct processes introduced by the nonideally coupled driving ports through a matrix normalization process that involves the radiation-impedance matrix of the two driving ports. We find good agreement between the experimentally obtained marginal probability density functions (PDFs) of the eigenvalues of the normalized impedance, admittance, and scattering matrix and those from random matrix theory (RMT). We also experimentally study the evolution of the joint PDF of the eigenphases of the normalized scattering matrix as a function of loss. Experimental agreement with the theory by Brouwer and Beenakker for the joint PDF of the magnitude of the eigenvalues of the normalized scattering matrix is also shown.
Multilayer impedance pump: a bio-inspired valveless pump with medical applications
Loumes, Laurence
This thesis introduces the concept of multilayer impedance pump, a novel pumping mechanism inspired from the embryonic heart structure.The multilayer impedance pump is a composite two-layer fluid-filled elastic tube featuring a thick, gelatin-like internal layer similar in nature to the embryonic cardiac jelly, and that is used to amplify longitudinal elastic waves. Pumping is based on the impedance pumping mechanism. Elastic waves are generated upon small external periodic compressions of the elastic tube. They propagate along the tube's walls, reflect at the tube's extremities and drive the flow in a preferential direction. This fully coupled fluid-structure interaction problem is solved for the flow and the structure using the finite element method over a relevant range of frequencies of excitation. Results show that the two-layer configuration can be an efficient wave propagation combination, and that it allows the pump to produce significant flow for small excitations. The multilayer impedance pump is a complex system in which flow and structure exhibit a resonant behavior. At resonance, a constructive elastic wave interaction coupled with a most efficient energy transmission between the elastic walls and the fluid is responsible for the maximum exit flow. The pump efficiency reaches its highest at resonance, highlighting furthermore the concept of resonance pumping.Using the proposed multilayer impedance pump model, we are able to bring an additional proof on the impedance nature of the embryonic heart by comparing a peristaltic and an impedance multilayer pump both excited in similar fashion to the one observed in the embryonic heart.The gelatin layer that models the embryonic cardiac jelly occupies most of the tube walls and is essential to the propagation of elastic waves. A comparison between the exact same impedance pump with and without the additional gelatin layer sheds light on the dynamic role of the cardiac jelly in the embryonic heart and on nature
Numerical modelling errors in electrical impedance tomography.
Dehghani, Hamid; Soleimani, Manuchehr
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct images of internal impedance values of a volume of interest, based on measurements taken on the external boundary. Since most reconstruction algorithms rely on model-based approximations, it is important to ensure numerical accuracy for the model being used. This work demonstrates and highlights the importance of accurate modelling in terms of model discretization (meshing) and shows that although the predicted boundary data from a forward model may be within an accepted error, the calculated internal field, which is often used for image reconstruction, may contain errors, based on the mesh quality that will result in image artefacts.
Electrical impedance measurement of irradiated potatoes
International Nuclear Information System (INIS)
Several chemical, biochemical and histological methods have been suggested for the identification of irradiated potatoes but these methods are either time consuming or lack the reliability and precision to be of much practical use. Measurement of electrical conductivity or impedance appears to be a simple and reliable technique. We have examined the suitability of electrical impedance method for potatoes grown in our country after exposing to a sprout inhibiting dose of 0.1 kGy. The results of this study are described. 10 refs., 3 figs., 2 tabs
Performance of impedance transformer for high power ICRF heating in LHD
International Nuclear Information System (INIS)
In order to increase the loading resistance and decrease the maximum voltage on the transmission line, pre-matching is necessary. Pre-stub tuner is one of the candidates, but space is limited around the antenna port. In-vessel impedance transformer for FAIT antenna worked well. Therefore, we designed ex-vessel impedance transformer for HAS and FAIT antennas. They are designed to be inserted in the transmission line outside of the vacuum vessel close to ceramic feed-throughs. The diameter of the outer conductor is 241.2 mm, which is the same size as that of the transmission line, and the diameter of the inner conductor is 185.6 mm. This means that the characteristic impedance is 15.7 Ω. The flange to flange length is 628 mm, and it is not enough for the perfect matching for the frequency of 38.5 MHz but it is effective for increasing the loading resistance. Electromagnetic simulation was performed with HFSS in order to estimate the increment of loading resistance and the electric field which cause the breakdown. The estimated enhancement factors of loading resistances are 2.5 and 1.65 for FAIT and HAS antennas, respectively. The ex-vessel impedance transformers were attached to HAS antennas in 2014. The loading resistance was compared without and with the ex-vessel impedance transformer for the lower HAS antenna changing the distance between the antenna and the last closed flux surface. The upper antenna was turned off in order to avoid mutual coupling effect. The loading resistance was increased from 1.5 to 2 times with the ex-vessel impedance transformer, which agreed with the simulation. The ex-vessel impedance transformers for FAIT antennas was installed in 2015. High power injection is expected with FAIT antennas owing to the increase of the loading resistance
Institute of Scientific and Technical Information of China (English)
潘超; 翁大根
2012-01-01
It is suggested that the coupled reinforced concrete shear wall should be disconnected at the middle of coupling beams and then steel dampers would be set vertically in the slits to couple the disconnected wall piers, resulting in a damping controlled shear wall system. The steel dampers weaken the wall in stiffness, enhance the capacity of energy dissipation during strong earthquakes, and then reduce the earthquake action and avoid severe structural damage. Regarding the damper and the coupling beam together as an equivalent coupling beam, both the damping and stiffness properties of the damping controlled system can be analyzed simply by continuous medium method. The damping control mechanism of the system was investigated and the formulas for calculating key parameters were derived simultaneously. According to the analysis results, a simplified performance/demand-based design method which adopts the damper ductility factor and coupling ratio as the governing factors was proposed for the convenience of practical application of the proposed damped wall. The design procedure was prescribed and discussed in detail and verified by a simple design example. Nonlinear dynamic analysis of the designed damping controlled wall indicates that with a proper set of damping parameters, the wall＇s dynamic responses can be well controlled compared with the conventional wall.%将钢筋混凝土联肢剪力墙在连梁跨中开缝,在缝中设置沿竖向变形的钢阻尼器,从而形成耗能联肢剪力墙体系。在强震作用下,耗能剪力墙中的阻尼器一方面适当削弱联肢剪力墙刚度以降低地震作用,另一方面阻尼器屈服后可耗散部分地震能量,从而减小墙肢及连梁的塑性损伤。将阻尼器与连梁组合为等效连梁,运用等效连续化方法对耗能剪力墙体系的刚度特性与阻尼特性进行了简化分析,对耗能剪力墙体系的减震机理进行了论证,并推导出体系关键参数的计算式。以阻
Directory of Open Access Journals (Sweden)
Humayra Ferdous
2013-12-01
Full Text Available Focused Impedance Measurement (FIM is a technique where impedance can be measured with the optimum level of localization without much increase in complexity of measuring instrument. The electrodes are applied on the skin surface but the organs inside also contributes to the measurement, as the body is a volume conductor. In a healthy and disease free lung region, the air enters at breathe-in increases the impedance of the lung and impedance reduces during breathe-out. In contrast, for a diseased lung, where part of the lungs is filled with water or some fluid, air will not enter into this zone reducing impedance change between inspiration and expiration. With this idea, the current work had been executed to have general view of localised impedance change throughout thorax using 6-electrode FIM. This generated a matrix mapping from both the front and from the back of the thorax, which afterwards provided that how impedance change due to ventilation varies from frontal plane to back plane of human bodies.
Locating Impedance Change in Electrical Impedance Tomography Based on Multilevel BP Neural Network
Institute of Scientific and Technical Information of China (English)
彭源; 莫玉龙
2003-01-01
Electrical impedance tomography (EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery.Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between theimpedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.
Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks
Sherrit, S.; Djrbashian, A.; Bradford, S C
2013-01-01
Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.
Energy Technology Data Exchange (ETDEWEB)
Borole, Abhijeet P [ORNL; Aaron, D [Georgia Institute of Technology; Hamilton, Choo Yieng [ORNL; Tsouris, Costas [ORNL
2010-01-01
Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium weremeasuredusing electrochemicalimpedancespectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.1 to 36.3 in the first 43 days indicating exoelectrogenic biofilm formation. The external load on the MFC was decreased in a stepwise manner to allow further enrichment. MFC operation at a final load of 50 decreased the anode impedance to 1.4 , with a corresponding cathode and membrane/solution impedance of 12.1 and 3.0 , respectively. An analysis of the capacitive element suggested that most of the three-dimensional anode surface was participating in the bioelectrochemical reaction. The power density of the air-cathode MFC stabilized after 3 months of operation and stayed at 422 ( 42 mW/m2 (33 W/m3) for the next 3 months. The normalized anode impedance for theMFCwas 0.017 k cm2, a 28-fold reduction over that reported previously. This study demonstrates a unique ability of biological systems to reduce the electron transfer resistance in MFCs, and their potential for stable energy production over extended periods of time.
Shen, Dazhong; Li, Dongdong; Yang, Xiuwen; Zhu, Yan; Dong, Jianfeng; Kang, Qi
2011-03-15
Poly(glycidyl methacrylate) cation exchange monolithic column was prepared in fused-silica capillaries of 320 μm i.d. by thermally initiated radical polymerization and utilized in capillary ion chromatography. With 15 mM methanesulfonic acid as the mobile phase, the separations of a mixture of inorganic cations (Li(+), Na(+), NH(4)(+), K(+)) was tested by using a capacitively coupled contactless conductivity detector (C(4)D) and a low impedance C(4)D (LIC(4)D). The LIC(4)D is the series combination of a C(4)D and a quartz crystal resonator. At the resonant frequency of the series combination, the capacitor impedance from capillary wall was offset by the inductance impedance from the quartz crystal resonator. A minimum impedance was obtained in the impedance-frequency curve of the combination. The responses of the C(4)D and LIC(4)D were analyzed based on an equivalent circuit model. It was shown that the sensitivity of the C(4)D to the change in analyte concentration is rather poor due to the high ratio of the impedance from the capillary wall capacitor to the solution impedance. The LIC(4)D has the similar sensitivity as a contact conductivity detector but a much smaller cell volume. The on-column detection model was realized by LiC(4)D without preparation of optical detection window in monolithic column.
Design of HTS transmit filter using step impedance resonators
Energy Technology Data Exchange (ETDEWEB)
Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)
2010-11-01
We have designed a high-temperature superconducting (HTS) transmit filter with step impedance resonators (SIRs). A transmit filter using half-wavelength straight-line resonators requires substantial spacing between adjacent resonators. This means that the filter needs a large substrate and that the number of poles is limited. Using SIRs overcomes this problem because SIRs are compact and have weak coupling. An electromagnetic simulator based on the moment method was used to design the SIR filter, which has a center frequency of 5 GHz and a bandwidth of 120 MHz. Simulation showed that it is approximately 19% smaller than a conventional half-wavelength straight-line resonator filter. Additionally, the maximum surface current is approximately 17% less than that of the conventional filter.
Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University
Energy Technology Data Exchange (ETDEWEB)
Luo, Tianhuan [Indiana Univ., Bloomington, IN (United States)
2011-08-01
The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.
Electrical Impedance Tomography Technology (EITT) Project
Oliva-Buisson, Yvette J.
2014-01-01
Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.
Identification of irradiated potatoes by impedance measurements
International Nuclear Information System (INIS)
A variety of parameters drawn from impedance measurements are tested to distinguish between irradiated and non-irradiated potatoes. Some of these parameters are able to identify the irradiated potatoes. The identification is still possible after a storage time of 3 months. (author)
Identification of irradiated potatoes by impedance measurements
International Nuclear Information System (INIS)
Identification of irradiated potatoes (Alpha variety) by electrical impedance measurements has been carried out. Experiments were performed by passing ∼3m A alternating current through the potato tubers that were punctured with the galvanized metallic electrodes. The parameters Z0/Z180 (impedance ratio at 50 Hz zero to 180 seconds post puncturing) Z50 k/Z5 k, Z0.5 k/ Z50 k/Z0.05 k (impedance ratio at 50 khz, and 0.05 khz, respectively) were determined at various temperatures and the best temperature for the measurement was obtained. The selection of the identification parameter was based on its constancy over the post irrigation storage time (six months), as well as, its dependency on the magnitude of the absorbed dose.Based on the above criteria, the impedance ratio of Z50 k/Z5 k was determined to be the best identification parameter.The obtained empirical formulas allow to estimate the applied dose and also to differentiation between the irradiated and unirradiated potatoes at the temperature of the (20-30digc)
Detection of irradiated potatoes by impedance measurement
International Nuclear Information System (INIS)
Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)
The electrochemical impedance of metal hydride electrodes
DEFF Research Database (Denmark)
Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;
2002-01-01
The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC equ...
Impedance-matched drilling telemetry system
Normann, Randy A.; Mansure, Arthur J.
2008-04-22
A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.
H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, Sergey S. [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory
2011-01-01
We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.
Huang, Jun; Li, Zhe; Zhang, Jianbo
2015-01-01
In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.
Coupling Gammasphere and ORRUBA
Energy Technology Data Exchange (ETDEWEB)
Ratkiewicz, A.; Cizewski, J. A.; Manning, B. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Pain, S. D.; Bardayan, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J. C.; Matos, M. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Chipps, K. A. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Hardy, S.; Shand, C. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 and Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Jones, K. L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Kozub, R. L. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Lister, C. J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Peters, W. A. [Oak Ridge Associated Universities, Oak Ridge, TN 37830 (United States); Seweryniak, D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-04-19
The coincident detection of particles and gamma rays allows the study of the structure of exotic nuclei via inverse kinematics reactions using radioactive ion beams and thick targets. We report on the status of the project to couple the highresolution charged-particle detector ORRUBA to Gammasphere, a high-efficiency, high-resolution gamma ray detector.
Longitudinal instability in HIF beams
International Nuclear Information System (INIS)
In contrast to an electron induction accelerator, in which the particle velocity is virtually constant, the resistive and inductive components of accelerating module impedances can cause instability for an intense non-relativistic heavy ion beam accelerated in a similar structure. Since focusing requirements at the fusion pellet imply a momentum spread approx-lt 3 x 10-4 at the end of the accelerator, it is essential to understand and suppress this instability. There is also an economic issue involved for this application; selection of parameters to control the instability must not unduly affect the efficiency and cost of the accelerator. This paper will present the results of analytic and computational work on module impedances, growth rates and feed back (forward) systems. 2 refs., 3 figs
Zhao, Yanlin; Yao, Jun; Wang, Mi
2016-07-01
On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.
Inter-Changeability of Impedance Devices for Lymphedema Assessment.
van Zanten, Malou; Piller, Neil; Ward, Leigh C
2016-06-01
Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711
Electrochemical Impedance of Ethanol Oxidation in Alkaline Media
Institute of Scientific and Technical Information of China (English)
DANAEE Iman; JAFARIAN Majid; GOBAL Fereydoon; SHARAFI Mahboobeh; MAHJANI Mohammad-ghasem
2012-01-01
Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions.The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was studied by ac impedance spectroscopy.Electrooxidation of ethanol on Ni shows negative resistance on impedance plots.The impedance shows different patterns at different applied anodic potential.The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model.At potentials higher than 0.52 V(vs.Ag/AgCl),a pseudoinductive behavior was observed,but at those higher than 0.57 V,impedance patterns were reversed to the second and third quadrants.The conditions required for the reversing of impedance pattern were delineated with the impedance model.
Impedance adaptation methods of the piezoelectric energy harvesting
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Complex impedance and equivalent bolometer, analysis of a low noise bolometer for SAFARI
Lindeman, M.A.; Khosropanah, P.; Hijmering, R.A.; De Ridder, M.; Gottardi, L; de Bruijn, M; van der Kuur, J; de Korte, P.A.J.; Gao, J. R.; Hoevers, H.
2012-01-01
Transition-edge-sensor (TES) bolometers are the chosen detector technology for the SAFARI Imaging Spectrometer on the SPICA telescope. For this mission, SRON is developing bolometers, each consisting of a TiAu TES that is weakly coupled to the thermal bath through thin legs of silicon nitride. In order to understand and optimize the bolometer and to verify our detector models, we characterize the devices using a series of complex impedance measurements. We apply equivalent bolometer analysis ...
Segmental and whole body electrical impedance measurements in dialysis patients
Nescolarde Selva, Lexa
2006-01-01
The main objective of this thesis is to contribute to the prevention and control of the cardiovascular risk, hydration state and nutritional state in dialysis patients using non-invasive electrical impedance measurements. The thesis is structured in three parts with the following objectives: 1) to establish electrical impedance reference data for healthy Cuban population, 2)to improve the diagnostic based on impedance methods in Cuban hemodialysis (HD)patients and 3) to develop the impedance ...
Using A Particular Sampling Method for Impedance Measurement
Lentka Grzegorz
2014-01-01
The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measu...
Acoustic Impedance Inversion VIa Wavelet Transform COnstraints
Institute of Scientific and Technical Information of China (English)
HuiyanZHANG; BainianLU; 等
1998-01-01
As is well known,the acoustic impedance inversion problem is,in general.an underdetermined inverse problem and some constraints about the model have to be incorporated in the inversion scheme,In this article,we assume that a prioir scale information about the model is available to constrain the inversion.We then explore another approach by means of the wavelet transform.WT,where we are specifically concerned with the selection and application of a priori scale information in the wavelet domain to reconstruct the acoustic impedance model.A simple example is explored,which show that the WT approach improves results in comparison with the conventional approach.
Are patents impeding medical care and innovation?
Directory of Open Access Journals (Sweden)
E Richard Gold
2010-01-01
Full Text Available BACKGROUND TO THE DEBATE: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D, leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation.
Impedance of Surface Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars; Clausen, Johan Christian
2005-01-01
is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...
Impedance of Surface Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars; Clausen, Johan
2007-01-01
is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related......Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...
Assessment of chest impedance in relation to phonocardiography
DEFF Research Database (Denmark)
Zimmermann, Niels Henrik; Møller, Henrik; Hammershøi, Dorte;
2010-01-01
), it is possible to measure the impedance of the surface of the skin and at the same time investigate the influence of different pressures and diameters of a transducer. The impedance tube is made specifically with the purpose of measuring chest impedances in the frequency range from 50 Hz to 5 kHz. An MLS...
Estimating the Transverse Impedance in the Fermilab Recycler
Energy Technology Data Exchange (ETDEWEB)
Ainsworth, Robert [Fermilab; Adamson, Philip [Fermilab; Burov, Alexey [Fermilab; Kourbanis, Ioanis [Fermilab; Yang, Ming-Jen [Fermilab
2016-06-01
Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.
Impedance Interaction Modeling and Analysis for Bidirectional Cascaded Converters
DEFF Research Database (Denmark)
Tian, Yanjun; Deng, Fujin; Chen, Zhe;
2015-01-01
For the cascaded converter system, the output impedance of source converter interacts with the input impedance of load converter, and the interaction may cause the system instability. In bidirectional applications, when the power flow is reversed, the impedance interaction also varies, which brin...